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Abstract—To classify Egeria densa, Brazilian waterweed, in 

scan-digitized color infrared aerial photographs, we are 
developing automated methods based on data-mining and 
knowledge-engine techniques. In this paper, we present progress 
to date, compare the results of the two approaches, and discuss 
current problems and anticipated solutions. 
 

Index Terms—Active learning, class-specific ensemble, data 
mining, knowledge engine, rule-based classification. 
 

I. BACKGROUND AND PROBLEM 
IRBORNE data collection, including aerial photography, is 
still needed for many applications. For example, 

monitoring invasive weeds and mapping wetland species 
frequently necessitate high-resolution data and flexible 
collection times. Monitoring Egeria densa, an invasive 
submergent weed, by remote sensing ideally requires 2-meter 
(at minimum) color infrared (CIR) imagery collected during 
morning low-tide conditions. Egeria densa, commonly called 
Brazilian waterweed, has grown uncontrolled in the 
Sacramento-San Joaquin Delta of Northern California for over 
35 years and now covers about 2400 hectares of waterways. 
This exotic weed is displacing native flora, disrupting 
navigation and recreational uses of waterways, clogging 
irrigation intake trenches, and causing reservoir-pumping 
problems. CIR aerial photography and other airborne CIR 
imagery have been used to monitor the areal extent of Egeria 
[1]. The image database is at: http://romberg.sfsu.edu/~egeria. 

There is a significant gap between fast routine airborne data 
collection and the slow interpretation and analysis of the 
resulting detailed and often complex data sets. Finding an 
efficient computerized method for detecting and mapping 
Egeria in CIR imagery would greatly enhance monitoring and 
support control protocols. 
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Classifying Egeria in CIR airphotos by automated methods, 
however, presents a challenge due to a number of unfavorable 
conditions including variable imaging conditions, problems 
associated with water-related subjects, and other 
environmental changes. Digital analyses also indicate that 
subtle changes (e.g., in Egeria canopy density, film 
vignetting, or water turbidity) produce overlapping spectral 
response patterns. In addition, the spectral response patterns 
for Egeria do not separate well from those of other classes in 
CIR imagery. For example, dense well-submerged Egeria 
appears black and is confused with shadows on land; Egeria 
exposed during very low tide appears pinkish and is confused 
with terrestrial vegetation. Fig. 1 illustrates these problems. 
Clearly, computer-assisted multispectral classification 
methods are problematic under these conditions, and 
visual/manual image interpretation and analysis are time-
consuming and costly.  

 

 
Fig. 1.  Scan-digitized CIR aerial photography showing spectral variations in 
Egeria and lack of spectral separation between Egeria and extraneous classes. 

In the next sections, we describe the data used for current 
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algorithm experiments, the methods most recently developed, 
and the results of our experiments. We conclude with a 
discussion of current problems and anticipated solutions to 
these problems. 

 

II. DATA AND EXPERIMENTS 
The experiments reported here used CIR aerial photographs 

of the Sacramento-San Joaquin Delta flown in October 2000 
at 1:24,000 scale. The airphotos were scan-digitized and color 
separated to create 3-band (G, R, and near infrared) digital 
imagery at a nominal 1-meter spatial resolution. Subsets were 
selected to represent cases in which Egeria is readily 
interpretable to an image analyst yet problematic to classify by 
computerized methods due to significant spectral variability. 
The subsets were geometrically corrected. Algorithms were 
trained using one of the subsets and tested using the others.  

Because prior experiments had shown that confusion 
between submerged Egeria and shadows on land was a 
significant source of error, land/water masks were created for 
each of the five training/testing sites and acted as control 
structures during processing.   

Two approaches were developed and tested: one using 
active learning with class-specific ensembles (the data-mining 
method) and one using traditional multispectral classification 
followed by a rule-based knowledge engine. The data-mining 
method only processes data where the land/water masks 
indicate water is present. The knowledge-engine method 
processes all of the imagery and then uses the masks to 
reassign apparently misclassified pixels to more appropriate 
classes (e.g., Land Vegetation present in water area is 
reassigned to Egeria). 

To keep the tests comparable, both approaches were bound 
by these constraints: 
 Using the same and only one training image. 
 Using the same land/water masks for focus and/or 

cleanup. 
 Using the same four test sites for accuracy assessment. 
 Using the same Egeria coverage maps (interpreted from 

the imagery by an independent researcher) to generate 
accuracy statistics. 

A. Active Learning with Class-Specific Ensembles  
The data-mining algorithm consists of techniques for 

feature extraction, automated classification, and active 
learning with dual ensembles [2], [3]. This prototype system 
uses 13 features: three texture features per spectral band, three 
color features, and one edge feature. To calculate these 
features, the original image is divided into blocks of 8 x 8 
pixels, each block overlapping each of its neighbors by four 
pixels. The texture features represent three types of textures: 
texture containing pure submerged Egeria patches, texture 
containing Egeria in shallower water, and texture containing 
Egeria adjacent to landmasses. The texture features are 
derived from the Discrete Cosine (DC) Transform matrix 
described in [4]. The DC value of each image block is then 
compared with the DC values for all textures and bands. The 

color features are generated by the YCbCr method [4]; Y, Cb, 
and Cr are the three features. The average intensity of each 
block is compared with these YCbCr components. Sobel’s 
edge detection algorithm [5] is used to create the edge feature. 
To avoid identifying all edges, many of which are irrelevant, 
we use only edges that have Egeria color.  

An active-learning algorithm using dual ensembles was 
employed to increase generalization and to decrease human 
expert involvement. A classification learning algorithm uses 
the training data to “learn” the mapping between the inputs 
and the output classes. It then predicts the classes for the test 
data. Active learning [6], [7] is a supervised learning 
algorithm that combines the results from multiple 
classification algorithms. An ensemble consists of a set of 
classifiers that generate a committee decision. In these 
experiments, we used class-specific ensembles. 

We used all classification algorithms available in the 
machine-learning package WEKA [8] that can be applied to 
image data. These algorithms are efficient and powerful in 
learning, yet distinct in underlying principles. They include: 
Alternating Decision Trees, Decision Tables, Hyper Pipes, 
Kernel Density, and PRISM. An association-rule algorithm 
[9] was employed to find the best combination of classifiers 
associated with each class (Egeria and non-Egeria). In other 
words, this algorithm outputs the dual ensembles. Finally, the 
ensemble information was combined following the rule of 
majority. Further details of the method may be found in [3].  

Preliminary experiments with data-mining methods revealed 
three identifiable sources of error: (1) significant spectral 
confusion between submerged Egeria and shadows on land; 
(2) misclassifications of spectrally obvious Egeria due to poor 
representation during training of the various Egeria types; and 
(3) problems with feature descriptions for small objects. 
Consequently, the experiments reported here include three 
components not found in the earlier papers: (1) land/water 
masks to function as control structures limiting processing at 
various stages to only data where the masks indicate water is 
present; (2) a larger training site to represent more diverse 
types of Egeria; and (3) aerial photography scan-digitized to a 
finer resolution (1-meter rather than 2-meter) to allow the 8 x 
8 pixel blocks to better describe smaller objects. 

B. Multispectral Classifier with Knowledge Engine 
The second method reported here uses a traditional 

multispectral classifier—namely, the Euclidean minimum 
distance classifier—followed by a rule-based knowledge 
engine. By itself, the minimum distance classifier performs 
poorly since Egeria is spectrally confused with other subjects, 
particularly land vegetation (at low tide conditions) and 
shadows on land (when well submerged). In addition, as 
mentioned earlier, variations in imaging conditions and 
environmental changes may cause subtle changes that affect 
class separability. Such variations would normally require 
retraining for changing conditions. 

To address these problems, a knowledge engine was written 
within ERDAS Imagine using the Knowledge Engineer 
utility [10]. This utility allows the creation of a decision tree 
for rule-based classification by identifying variables, rules, 
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and output classes of interest. From the initial classes output 
by the minimum distance classifier, the knowledge engine 
creates a five-class map containing the following classes: 
Egeria densa, Water, Land Vegetation, Shadow/Inland Water, 
and Soil/Urban. The knowledge engine uses the land/water 
masks to reassign apparently misclassified pixels to more 
appropriate classes. This process allows spectrally identical 
areas within the land and water to be classified differently. For 
example: 
 Land Vegetation present in water is reassigned to Egeria. 
 Dark Egeria on land is reassigned to Shadow/Inland 

Water. 
Since the goal is to monitor and map Egeria, this coarse 

classification is satisfactory. For accuracy assessment, all 
maps were recoded to Egeria and non-Egeria. 

 

III. RESULTS, DISCUSSION, AND CONCLUSIONS 
To evaluate the test results, three criteria were used: 

precision, recall, and the F measure.  They are defined as: 
 Precision (P): the fraction of the relevant information 

over the retrieved information or the fraction of the 
classification that is correctly identified; TP/(TP + FP) 
where TP = true positives and FP = false positives. 

 Recall (R): the fraction of the relevant information that is 
retrieved over all relevant information; TP/(TP + FN) 
where FN = false negatives. 

 F measure (F): an overall combination of P and R criteria; 
(2*P*R)/(P + R). 

Table I summarizes the evaluation results, and Fig. 2 
illustrates the maps produced. In general, the data-mining 
method excelled in recall while the knowledge-engine method 
excelled in precision. Overall, the data-mining method yielded 
a somewhat larger F measure. However, visual inspection of 
the output classification maps compared to the Egeria 
coverage maps, in Fig. 2, reveals that the data-mining method 
produced more obvious classification anomalies.   

Whereas these results are satisfactory for preliminary trials, 
more study is needed. Two apparent problems need to be 
addressed: (1) geometric correction and creation of land/water 
masks were the most labor-intensive and time-consuming 
procedures, and reuse of the masks requires very meticulous 
geometric correction of any new imagery; and (2) the higher 
(1-meter) resolution has not entirely improved the feature 
descriptions for small objects and is probably the cause of 
many misclassifications. As trials proceed, we intend to refine 
processing in two ways: (1) by finding an automated means of 
creating the land/water masks that will not require meticulous 
geometric correction and (2) by replacing the blocks of 8 x 8 
pixels with shapes more descriptive of the spatial information 
in the imagery. 
 

TABLE I 
SUMMARY OF RESULTS 

 

Data Mining P R F
Test site 1 0.76 0.85 0.80

Test site 2 0.61 0.77 0.68
Test site 3 0.23 0.82 0.36
Test site 4 0.68 0.68 0.68

Test Average 0.57 0.78 0.63
Training site 0.88 0.94 0.91

Overall Average 0.632 0.812 0.686
    

Knowledge Engine P R F
Test site 1 0.85 0.80 0.82
Test site 2 0.55 0.45 0.50
Test site 3 0.40 0.65 0.50
Test site 4 0.63 0.54 0.58

Test Average 0.608 0.61 0.60
Training site 0.96 0.86 0.91

Overall Average 0.678 0.66 0.662
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 (a) (b) (c) 
Fig. 2.  Egeria maps for training and test sites with white indicating locations of Egeria: (a) Egeria coverage maps interpreted from imagery by 
independent researcher, (b) output maps from data-mining method, (c) output maps from knowledge-engine method.  Relative image sizes have 
been altered to fit on page. 
 




