OpenMAX|AL

OpenMAX™ Application Layer
Application Programming Interface
Specification
Version 1.0 Specification

Copyright © 2009 The Khronos Group Inc.

June 23, 2009

Document version 1.0.0

Copyright © 2009 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the
Khronos Group, Inc. It or any components may not be reproduced, republished, distributed,
transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior
written permission of the Khronos Group. You may use this specification for implementing the
functionality therein, without altering or removing any trademark, copyright or other notice from
the specification, but the receipt or possession of this specification does not convey any rights to
reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may
describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter
member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any
fashion, provided that NO CHARGE is made for the specification and the latest available update
of the specification for any version of the API is used whenever possible. Such distributed
specification may be reformatted AS LONG AS the contents of the specification are not changed
in any way. The specification may be incorporated into a product that is sold as long as such
product includes significant independent work developed by the seller. A link to the current
version of this specification on the Khronos Group website should be included whenever
possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or
implied, regarding this specification, including, without limitation, any implied warranties of
merchantability or fitness for a particular purpose or non-infringement of any intellectual
property. Khronos Group makes no, and expressly disclaims any, warranties, express or implied,
regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification.
Under no circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or representatives be
liable for any damages, whether direct, indirect, special or consequential damages for lost
revenues, lost profits, or otherwise, arising from or in connection with these materials.

SAMPLE CODE and EXAMPLES, as identified herein, are expressly depicted herein with a
“grey” watermark and are included for illustrative purposes only and are expressly outside of the
Scope as defined in Attachment A - Khronos Group Intellectual Property (IP) Rights Policy of
the Khronos Group Membership Agreement. A Member or Promoter Member shall have no
obligation to grant any licenses under any Necessary Patent Claims covering SAMPLE CODE
and EXAMPLES.

Khronos, OpenKODE, OpenVG, OpenSL ES and OpenMAX are trademarks of the Khronos
Group Inc. OpenCL is a trademark of Apple Inc., COLLADA is a trademark of Sony Computer
Entertainment Inc. and OpenGL is a registered trademark of Silicon Graphics Inc. used under
license by Khronos. All other product names, trademarks, and/or company names are used
solely for identification and belong to their respective owners.

OpenMAX|AL

Table of Contents

PART 12 USER MANUAL ...ttt h e bt e bt s bt e b b e e b e e e b e e ke et e e s et e heesbeeebe e bt enbeenbeneee e 1
1 OVERVIEWV ...ttt bbbkt h e e bt ekt e ke e be e A e e he e e Rt e ebe ekt e mbeeabeeb b e nb e e nbeenbeenbeanneas 2
1.1 PURPOSE OF THIS DOCUMENTccutiiiitiitiitistisiieiee ittt sr st sa s sr bbb e bbbttt sn e an e r e an e 2
1.1.1 AbOUL the KNION0OS GIOUP....ccviieiieieieiieste st st te et e e et ste e re et e et e e e sbesbesbeste s e enae e eneeneesrenrenneeneenes 2

1.2 SCOPE ..ottt R bR E R bbb bbbttt 2
1.3 INTENDED AUDIENCE ...c.tutututiiitetetetetttesesestt st s b e bbb ebese ettt b bbb bbb b sttt bbb bbb bbbttt bbb 2
1.4 ABRIEF HISTORY OF OPENIMAXcittttititiiiiiiriatititet ettt bbbttt 3
1.4.1 The OpenMAX APPIICAtION LAYETc.ciiieieieeeee et sttt se et srenre e enaenes 3

1.4.2 Relationship t0 OPENIMAX Lcoiii ettt bttt e bbb be b b enes 4

1.5 RELATIONSHIP TO OPENSL ES 1.0 .. .ottt s 4
1.6 CONVENTIONS USED ..ottt sttt sh bbb r bbb snesn bbb 6
1.6.1 Parameter RANQE NOTALIONooiiiiiiieie ettt sbe bbb 6

1.6.2 Format and TypographiC CONVENTIONSccueiiiiiieiie ettt bbb 6

1.7 ACKNOWLEDGEMENTS ..c.ttitiitiitietieitiitesttaressesteesee et asesas bt sbeebe e e s b b ah e b e b e b e e e b e b b s b e ke e e e e nn e sn b e b e re s 7

2 OPENMAX AL FEATURES AND PROFILES........coooi it 8
2.1 MOTIVATION ..ttt ettt bbb bbbttt e b b h b6 E bbbttt bbb bbbttt 8
2.2 OPENMAX AL PROFILE DEFINITIONovitttiteteststsiiesesistesebeeebeiesese sttt bbbttt ettt 8
2.3 PROFILES. ...ttt ettt bbb bbbt e b b E b8 E bbbt bbb bbbttt 8
2.4 OPTIONALITY RULES OF FEATURES AND PROFILESccuititeteteieiesesttnesistsraissesesesesesentstsssessesesesesssesesesnesssnnas 11
2.5 MIDIINOPENMAX AL ..ottt b bbbt b e bbbt bbb e e s e s b e e e b e st e abenbesreene s 12
2.6 PROFILE NOTES ...ttitiitiiiietieit ittt sttt sr bbbt bbb bbb e e h e b bbb e s e e b e bbb e b e 12
2.7 BEHAVIOR FOR UNSUPPORTED FEATURESccuiitiitiiiiitiniieie ittt sr sttt sn bbbt an e sn e 12

3 DESIGN OVERVIEW ...ttt bbbttt b e e e s bt e e bt e bt e st e nbb et e e beenbe e e 13
3.1 OBJIECT IMODEL ...ttt sttt b bbb b e bt bbbt na e r e b b r s 13
311 ODJECES AN INTEITACES ...ttt bbbttt b et e e bbb eebeeneenes 13

312 GEHEIS QNG SELEIS.ueieiie ettt e bbbttt e e et et bt b e bt b e et et e bbb e eneenes 14

3.1.3 Representation iN COUE........ccuiiiiiiieeieiese sttt ae st tesaeeteese e s e seentesaesreereeneens 14

OpenMAX|AL

3.1.4 The XAODJECHIT INTEITACE ... cciiiieie ettt aesne e eneens 15

3.1.5 The Engine Object and XAENGINEItf INtErface........c.ccevveieiieiiiiiii s 16
3.1.6 The Relationship Between Objects and INtErfaces.........cccvivviriviieieeice e 16
3.1.7 The XADynamiclnterfaceManagementltf INterface ..o 18
3.1.8 RESOUICE AHTOCALION ... ettt bbbttt b et nb e r et b nnns 18
3.2 THREADING IMODEL ...ttt ittt bbb bbb bbb bbbt e e r e bbb ene s 19
K I R |V o To o] @ o1 L1 o] PO TSSOSO 19
322 TRFEAM SATELYeeieeeeeee ettt bbbt bbbttt bt eeeneenes 19
3.3 INOTIFICATIONS ...ttt sttt e e eh bbbt e st e bR bR e b ek e s e e e e e R e b e e bt bbbt e st e e e b e b ar b e be e 20
34 ERROR REPORTING ...ttttututiitititetetetesese ettt b bbbt h bbb bbbkttt bbbt 21
3.5 EXTENSIBILITY oottctttttetestneesest ettt s sttt b bbbt bbb b6 bbbttt bbb b bt 21
TR T80 = 1o Vol o] =TS 21
3.5.2 Permitted Modifications to PhySiCal COUEceveieiiriiiiiceseee et 21
3.5.3 Extending SUPPOIted INTErfAace TYPEScovivueieiieeeeeriesieste e ste et e st sre st a e e seesaesbesnesreaneeneeneens 22
3.5.4 Extending SUPPOItEd ODJECE TYPES ..uveieiiiieriesiesieireereereeie e stestesseeseeseestesaessessesressesseeseeseesseseessessenseens 22
3.5.5 Extending Method Parameter RANQESccoiiiieiieiiinieie ittt ettt sbe bbbt 22
3.5.8 RESUIT COUES ...ttt b et b bbbt b bbbt b bbb r et b e e 23
3.5.7 Interface ID AIOCALION SCNEMEccoiiiiiiiii bbbt 23
3.5.8 Avoiding Naming COIISIONSceiiiiiiiiieie ittt b bbbt 23

4 FUNCTIONAL OVERVIEW ...ttt bttt st b e sb e ettt e b et esbeenbe e e 25
4.1 OBIECT OVERVIEW ..ottt sttt sttt ah bbb sa bbbkt e bbbt bbbt et b e sr e bbb 25
N N =Yoo 11 =T @ o] =Tt S 25
O V=T L= @ o =Tt £ 26
4121 Data SOUrce and SINK STIUCTUEScvitiirieieiiec ettt se e nr e 26

4.1.3 Metadata EXIractor ODJECL........ccvciviieiiiiresese ettt e e e e saesbesnesre s e eneeneens 26
O N (o [0 I @ TU L o0 Y 1D @ o] T 27
I O T 1T - o =Tt R 27
4.1.6 LED Array Control ODJECLociiiie ettt sttt e e tesaesneereeneens 27

OpenMAX|AL "

I A = To T 1@ 1= o S 27

e Y A1 o] = {0 T @] 1 £0] I @] 1= od 27

4.2 AUDIO PLAYBACK AND RECORDINGcututririiiiteteteteteiestnt st eb bbbttt bbbttt 28
4.3 VIDEO PLAYBACK AND RECORDINGciuiiiiiiiiiiiiirisie sttt sr bbb skt 28
4.4 IMAGE RENDERERING AND CAPTUREcutitiiiiiiiti ittt sttt sr et sb bbb sr bbb sr e 28
4.5 PLAYBACK OF MIDI Lottt bbb et 28
4.5.1 SUPPOIt FOr MODIIE DLS.... .ottt bttt e e b bbb 28

4.6 DISPLAY REGIONS.....ccutitiitiiiieitiiteitt sttt sttt sh et b sttt ne e ab b bbb s e e b e b sh e b e bbb e e e b r e sr e b e b e re s 29
4.7 OPENMAX AL USE CASES....cuiiiiiiiitiiiisiieiie ittt sh bbb b e sh bbb e e e ene s 31
O R N o [T I g o ANV Ao (=T B d P Yo - o S 31

O N o T B = oY/ 7= o S 32

A T = ToTo T (|1 To X o 1T 33

O 11 1T UoT= 0 - =Y R 34

I To (= To J OF U 1] - TSSO T PP SPTTPRP 35

476 SHIECAMEIA ...cciiiieeiecicee ettt Rt bt r et n e nn e 36

A.7.7 RAGIO PIAYDACK.cctiiiieeie e bbbttt bbbt bbbt e e e s b e b b e beene e 37

4.7.8 REAAING MEIAUALA.eeuieeeteite ettt b bbbttt b e b e b bt b e e s e e st e seesbe b sbeebeene e 38
PART 2: AP REFERENCEottt bttt h e bt e bt s bt ek e s b b e e bt e s b e e beebe s nesbeesanesbeeeas 39
5 BASE TYPES AND UNITS. ..ttt ettt ettt e e e e s bt e e b e et e e st e ebb e st e e sbeenbeenne s 40
5.1 STANDARD UNITS Lttt et h bbb bbb bbb ne b e bbb e e e 40
5.2 BASE TYPES ...ttt R bRt r e r s 40

6 FUNGCTIONS ..t bbbkt h e bR £ b b £ b £ e R e e e b e b e eh e e bt e bt e b e e st en e nn e b et ebenb e neenees 42
B.1 XACREATEENGINEcvtitteitteteieseit sttt bbbk bbbttt bbbttt 42
6.2 XAQUERYNUMSUPPORTEDENGINEINTERFACESciviuittiitieienintninestsrasesesesesesese et sessssebeseiesesese s ssssansnananas 43
6.3 XAQUERYSUPPORTEDENGINEINTERFACEScuttiririiiiateteteieiesesestsesssbssesebesesesese ettt eb bbb 43

7 OBJECT DEFINITIONS ...tttk b bbbt r bbb et b b an et eneen s 44
7.1 CAMERA I/O DEVICEcotitiiieiiitiitetiat ettt ettt b et b et h et bt b bbb bt et b st b e n et b et 45
7.2 ENGINE OBJIECT .utiitiitiiiieiieitiite sttt sr bbbttt h b bbb e e bbb bbb e e e b nb e ab e bbb 46

OpenMAX|AL ’

7.3 LED ARRAY I/O DEVICE ...veiiutiiitee it sctee st eteesate s etes st s ete s s abe s s ebessabe s s bessabe s s bessabessbessnbesssbessnbessbesanbesssrens 48

T4 IMEDIAPLAYER OBJIECT w.uttiietitetetetseetsesesetesetetsesesesesesssessssssesesesesesasasasassesesesssesasssassesesesesassssnsnssesssssssasnes 49
7.5 MEDIA RECORDER OBUJECT ...outututttteseesestsetesesetsesesesssesssessesssesesssesesassssssssesesssssssasssnssesesesasasasssnsnssesesesssasnes 52
7.6 METADATA EXTRACTOR OBJIECT ...iitiuiiiiiiiiieiti sttt sttt sh st sn e sn bbb sa e en b sr e nr e 55
7.7 OUTPUT MIX OBIECT ..uiiiietiiesit sttt sh bbbttt b b bbb e e e bbb bbb et sa e r e b b nr b e 57
7.8 RADIO IO DEVICEoiiititiieetiiteeeett sttt h et b bbb bbbt bbbttt b bbbttt b e 59
7.9 VIBRA IO DEVICE ..ottt etttk h b e bbbt bbbt bbbt n et b et 60
8 INTERFACE DEFINITIONS ...ttt sttt ettt she e sb e et e e b e enn e e 61
8.1 XAAUDIODECODERCAPABILITIESITFottt e 62
8.2 XAAUDIOENCODERITFtiiiutitietetetritrt e esete et st ese s et e et e esese st et s e e s et et e e e e e s e e et ese s et et e s neeseneteaetenaes 65
8.3 XAAUDIOENCODERCAPABILITIESITFtututietitirireeseieeeteeseseseeeseietssstsesesesesessessesss e e esesesassessssesesssssssasnes 67
8.4 XAAUDIOIODEVICECAPABILITIESITFtutittitititrireseseeeeeteeseseseeesesessssssssesesesessessssss e e sesesessssesssssssesssssssasnes 70
8.5 XA CAMERAITF ...ttt ettt ettt s ettt e e e s e bbb et e es bbb e e ne s en et ten s 84
8.6 XACAMERACAPABILITIESITF ..ottt sttt es ettt ettt s et s s es s b enenenaes 110
8.7 XACONFIGEXTENSIONSITFcoititteiriittseietste e tseseseseeeestess e e esesees e seese s et et e e s et es et eee s e as e esesesensseeaes 123
8.8 XADEVICEVOLUMEITF.....oiiiitiiititiiiiee e bbb bbb se e sr e sr e 126
8.9 XADYNAMICINTERFACEMANAGEMENTITF ..cviitiiiiiiiiiiiiie i 129
8.10 KADYNAMICSOURCEITE ...ttt bbbt an e 134
8.11 KA ENGINEITE .ttt e e b er Rt bbbt e e er b b r e 136
8.12 DN =TS I 74 = = T I 1 =S RTRR 158
8.13 KAIMAGECONTROLSITE ...ttt bbbt 168
8.14 XAIMAGEDECODERCAPABILITIESITE ...cocutiiitiiseieeeeneeerineeeseeeessseseseeseseseessssss e e esesesessssssssssesesesssnsnes 174
8.15 XAIMAGEEFFECTSITF .ottt ettt ettt ee s 177
8.16 XAIMAGEENCODERITFcutiiitiititeirirtctsetetste ettt es ettt ettt en e eeaes 181
8.17 XAIMAGEENCODERCAPABILITIESITFE ...coittiitieseieeeeneeesineeeseesesseessseesesessssssssssesesesesesssssssssssesesesssssnes 184
8.18 KALEDARRAY ITF ..ttt en e r et s e R e r e e r e et s nme e an e e neen e e e nne e 187
8.19 XAMETADATAEXTRACTIONITF ...ttt bbb 191

OpenMAX|AL ‘

8.20 XAMETADATAINSERTIONITF ..ottt ettt e s r e ne e nn e nneen e e nne e 203

8.21 XAMETADATATRAVERSALITE ..ottt bbbt 214
8.22 XAOBIECTITF oottt bbb bbbttt bbbttt 219
8.23 KAOUTPUTIMIXITE .ttt et bbbt se e sr e r e b 229
8.24 KAPLAY ITF Lottt h b bRt b e e bR e bk e et ne e ar b b e 233
8.25 KAPLAYBACKRATEITF ...ttt e 243
8.26 KAPREFETCHSTATUSITE ..ottt bbb 250
8.27 KARADIOITF 1ttt E et b et b e e e h R bkt et ne e an b b r e 256
8.28 KARD ST ettt bttt h e oo b e e bt e s bt ek b e eh e ek £ e e b e e ke oA e e e Re e eRe e ebe e bt e R bt enb e e he e e beenbeenbeenne s 271
8.29 XARECORDITF ...tttk b bbb bbbt bbbt 289
8.30 X ASEEKITF oottt b bbbkt 298
8.31 X ASNAPSHOTITE L.ttt bbbttt bbb bbbttt b bbbttt 302
8.32 XASTREAMINFORMATIONITEoitititititetettittti sttt bbbttt 312
8.33 X ATHREADSYNCITF ..ttt ettt bbbt bbbttt b bbbttt 321
8.34 XAVIBRAITF ..ttt bbbttt bbb bbb bbbttt bbbttt 323
8.35 XAVIDEODECODERCAPABILITIESITF ..ottt s 328
8.36 XAVIDEOENCODERITF ...ttt bbb ar e 331
8.37 XAVIDEOENCODERCAPABILITIESITE ..ottt e 333
8.38 XAVIDEOPOSTPROCESSINGITF ... ciuiiiiiiiiieitiirisie sttt 336
8.39 KAV OLUMEITE ottt bbb bbbt se e ar bbb 344
9 MACROS AND TYPEDEFS ...ttt ettt b ettt e et se e ae e sae e 351
0.1 STRUCTURES ... tutststsisttstetetetetesesese sttt bbb bbb st 60 b bbb b8 h 16 £ bbb bbb bttt bbb bbbttt 351
L1005 D VYU o [ToT @ [=Tod I 1= o]] o] (o1 OSSP 351
0.1.2 XAAUAIOENCOUBISEIINGS ... viiveeveiererieiiiesiestesesieete e eie e ste e s e sreeseeseeseesaesbesreeseeseeneeseensesaesresresneanens 353
LTRSS T €AV U o 1o g o014 =TTl] (o] OSSPSR 354
9.1.4 XAAUAIOOULPULDESCIIPION ... evtiveieretieeiiesie st siesteereeeesieseeste e sresreeseeseeseesaesaesresresseeseeseeseseesresresneanens 356
9.1.5 XAAUIOStreamINfOrMAaLtiON.coiiiiiiie it bbb e b 357

OpenMAX|AL

0.1.6 XACAMEIADESCIIPIONvivetesiesteseeesieeeiestestestesseeseeseesteseestestesseeseeseeseeseessesaesseaseeseeneeseenseneesresresneanens 358

0.1.7 XADAtaFOrMAt_IMIMEcccie ittt esreeste e e esaeeneesseenteestaenaeeneeas 359
0.1.8 XADAIAFOIMAL_PCIMoiieiie ittt ettt te e ee e sneesseesteenteenaeaneesseestaeseeesaeeneeas 360
0.1.9 XADaAtaFOrmat_RAWIMAGEcoiiieiiiiii ittt ettt ettt e e e be e b et e e b e ssb e sbeesbeesbeesbeenneas 360
9.1.10 DA B Lo Tz L (o] g Vo [0 | £SO 361
9.1.11 XADAtaLOCAtOr IODEBVICE.cviiieiie ettt ettt sttt te e st e e sbe e sbe e e e st e sbaesteesraeseeennens 361
9.1.12 XADatalLocator NaAtiVEDISPIAYccceviieieiiieie e 362
9.1.13 XADAtaLocator OULPULIMIX.......ciuiiiiiiiieite sttt ettt ettt sttt sb e bt sne b s 362
9.1.14 XADAIALOCAIOr _URI ..eiiiiiiiiie it e et st e et e e beeabaeetes 362
9.1.15 KADBLASINK ... 363
9.1.16 XADBIASOUICE. ... eveiereieie sttt ettt et r e r et r et en e nr e n e nrns 363
9.1.17 DY = o T 1T o] o] P 364
9.1.18 XAFOCUSPOINPOSITION ... 364
9.1.19 XAHSL et E R R bRt r b n e r s 364
9.1.20 DO L= T @0 o =Yool] o] (o] PSSR 365
9.1.21 XAIMAGESELLINGS ... vttt ettt bbbttt b et bt b e bt b e s st enb e seeeb e besbeebeaneaneenennas 365
9.1.22 XAIMageStreamINfOrMAatIONcceiiiiiii e e 365
9.1.23 XAINEEITACEID ...ttt ettt bbbt b e bbb r et r e e 367
9.1.24 XALEDDESCIIPION ...ttt ettt ekttt e b e s bbbt bt se e e b bt e b e ebe et e e neenbenbesbesbesbeebeanes 367
9.1.25 XAMediaContainerINfOrmMationccociiieiiiiieiie e 367
9.1.26 XAMELAALAINTO ... e et n 368
9.1.27 XAMIDIStreamINformMation..........ccovoveiiiiiinrein e 368
9.1.28 XANGLIVEHANAIE ..ottt 369
9.1.29 D {=Tod - T P 369
9.1.30 XATIMedTextStreamINfOrmation.........cccoviiriiii e 370
9.1.31 XAVendorStreamInfOrMatioN. ..o 370
9.1.32 XAVIDIADESCIIPLON ...ttt sttt et b bbbt e et e bt b e sb e et e et et e nbesbesbesnesbeenes 371

Op@ﬂMAX' AL viii

9.1.33 DNV To e To L@ oo o LTSt) o P 371

9.1.34 DNV 1o (=TI T=] 1 1o PP 372
9.1.35 XAVideoStreamInfOormMation ... 372
0.2 IMACROS. ...ttt bttt bR R R R R R bRt 374
0.2.1 XAAPIENTRY ettt b ettt h e bt e bt e b e et e b e e e he e e bt ekt et e e st e ebbesbeenbeenbeenbeenneas 374
0.2.2 XA_AUDIOCODERC...... .. ittt ettt bbbttt ae e be e e bt et e e st e ebbesbeesbeesbeenbeenneas 374
9.2.3 XA _AUDIOPROFILE and XA _AUDIOMODEccoooiiiiiiiiiiie et 374
0.2.4 XA _BOOLEAN ...ttt ettt ettt ettt h e bt e bt e b e b e e Rt e e Rt e e bt e bt e bt e R bt en b e nhbenbe e beenne e 380
0.25 XA _BYTEORDERotttk b ettt sttt b e e e bt et et e ebb e s beenbeenbeenbe e e s 381
9.26 XA _CAMERA_APERTUREMODE........cccoiiiiiiiiieiie e 381
9.27 XA _CAMERA_AUTOEXPOSURESTATUSoitiiiiiie ittt s 381
0.2.8 XA _CAMERACBEVENT ...ttt sttt bbbttt n bbbt n b nb e sn b sneeneas 381
0.2.9 XA _CAMERACAP ...ttt h bbbt e bR Rt bt e r bt r e ne s 383
9.2.10 XA_CAMERA_EXPOSUREMODE.........ccciiiitiieiieiee st 384
9.2.11 XA_CAMERA _FLASHMODE........coiiiiiiiiitiit st 385
9.2.12 XA_CAMERA _FOCUSMODE..... .ottt ettt et st sbeesae e 386
9.2.13 XA_CAMERA_FOCUSMODESTATUS ..ottt ettt ettt ne s 387
9.2.14 XA_CAMERA_ISOSENSITIVITYMODEcoiiiiiiiiieie ettt 387
9.2.15 XA _CAMERA _LOCK ..ottt ettt bbbt b e sbe bt et e e st e sbeesbeesbeenbeanne s 387
9.2.16 XA_CAMERA_METERINGMODEcooiiiiiieie ettt 388
9.2.17 XA_CAMERA_SHUTTERSPEEDMODEoooiiiii et 388
9.2.18 XA_CAMERA_WHITEBALANCEMODEcoooiiiiiieiesne e 389
9.2.19 XA_CAMERA_ZOOMoooooeeeeeeeeeeeeeee e eeeeee e eee e s e s ees s ees e e 390
9.2.20 XA_CHARACTERENCODING.cociiiiiiiteitiitesieetie et nn e 390
9.2.21 XA _COLORFORMAT ...ttt ettt ettt st es ettt s e n s 392
9.2.22 XA _CONTAINERTYPE ...ttt bbbt 395
9.2.23 XA _DATAFORMAT ...ttt ettt ettt sttt et b e s he e e b e e ebe e bt e st e esbesbbesbeesbeenbeanneas 396

OpenMAX|AL "

9.2.24 XA_DATALOCATOR ..ottt et ettt nnn 397

9.2.25 XA_DEFAULTDEVICEID ..ottt 397
9.2.26 XA_DEVICECONNECTION. ..ottt ettt 398
9.2.27 XA_DEVICELOCATION ...ttt ittt eb et s et eb b aneneas 399
9.2.28 XA _DEVICESCOPE ...ttt bbbttt sb bbb 399
9.2.29 XADOMAINTYPE ..ttt ettt sttt ettt et b et b e b e bt b e e et e sbeeb e e be e bt eb e e Rt enbeseeebenbesbeebeeneaneeeennas 400
9.2.30 XA _DYNAMIC_ITF _EVENT ..ottt ettt 400
9.2.31 XA _ENGINEOPTION ..ottt ettt bbbt 401
9.2.32 XA _EQUALIZER ...ttt 401
9.2.33 XA_FOCUSPOINTS ..otttk 402
9.2.34 XA_FREQRANGE ..ottt bbbttt bbbttt bbbt 405
9.2.35 XA_IMAGECODEC.......ccuittitiiiis ettt bbbttt bbbttt bbb 405
9.2.36 XA _IMAGEEFFECT ..ottt bbbkt 406
9.2.37 XA _TODEVICE ..ottt bbbt bbbttt bbbt 406
9.2.38 XA_METADATA_FILTER ...ocuiiititiiiie ettt 407
9.2.39 XA_METADATATRAVERSALMODEcoctitiiiiiiiiisisieiee ettt 407
9.2.40 XA MIDIBANK ..otttk ettt b bRt et b bbb r e 407
9.2.41 XA _MIDI_UNKNOWN ..ottt bbbttt ettt e s es e abeneas 407
9.2.42 XA MILLIBEL ..ttt 408
9.2.43 XA _MILLIHERTZ_MAX ..ttt sttt bbb 408
9.2.44 XA _MILLIMETER _MAX ...ttt ittt bbbttt b b 408
9.2.45 XA _NODE_PARENT ..ottt bbbttt bbbt 408
9.2.46 XA _NODETYPE ...ttt bbbttt bbbttt bbbt 409
9.2.47 XA_OBIECT_EVENT .ttt 410
9.2.48 XA_OBIECT _STATE ...ttt bbbkttt 410
9.2.49 XA_OBUIECTID ...ttt bbbttt bbbttt 411
9.2.50 XA _ORIENTATION ..ottt bbbttt bbbt et eb bbb 411

OpenMAX|AL '

9.251 XA_PCMSAMPLEFORMAT ..ottt e 411

9.2.52 XA PLAYEVENT Lo s 412
9.2.53 XA PLAYSTATE ..ottt et ettt e nr e e nr e erenre e ene s 412
9.2.54 XA PREFETCHEVENT ...ttt 413
9.2.55 XA _PREFETCHSTATUS ... e 413
9.2.56 XA PRIORITY ot 413
9.2.57 XA PROFILE ...t bbb 414
9.2.58 XA _RADIO_EVENT ...ttt bbb 415
9.2.59 XA_RATECONTROLMODEcccoiiiiiiii i 416
9.2.60 XA RATEPROP ..ottt ettt ettt 416
9.2.61 XA RDS_EVENT ..ottt et et sr e nre e ene s 417
9.2.62 XA_RDSPROGRAMMETYPE........cot ittt e 418
9.2.63 XA _RDSRTPLUS ...ttt et ettt nr e are e ene s 423
9.2.64 XA_RECORDEVENT ...ttt ettt nn e 426
9.2.65 XA _RECORDSTATE ...ttt ettt ettt nn 426
9.2.66 XA _RENDERINGHINT L..ooiiiiii s 427
9.2.67 XA RESULT ottt bbbt 427
9.2.68 XA _ROOT_NODE_ID ...ttt e 428
9.2.69 XA _SAMPLINGRATE ..ot 429
9.2.70 XA _SEEKMODE ..ottt 429
9.2.71 XA_STEREO_MODE.......oiiiiiiiii e s 430
9.2.72 XA_SPEAKER ..o e 430
9.2.73 XA_STREAMOECBEVENT ..ottt et 431
9.2.74 XA TIME Lo 431
9.2.75 XA_VIDEOCODEC ..ottt ettt re e sr e eare e ene s 432
9.2.76 XA_VIDEOMIRROR ...ttt ettt et 432
9.2.77 XA_VIDEOPROFILE and XA_VIDEOLEVELcccccoiiiiiiieiie e 433

OpenMAX|AL "

9.2.78 XA _VIDEOSCALE ...t 438

[N = IR N o o AN |] O = T 440
APPENDIX A: REFERENGQCES...... ..ottt ettt e e e et e e e s eat e e e e et it e s e sabaeeeseabeeesanbaeeeans 441
APPENDIX B: GLOSSARY OF RDS TERIMS ...ttt ettt ettt e sttt s s sabaa e s erba e 442
APPENDIX C: OBJECT-INTERFACE MAPPINGo oottt ettt sttt s st a s erba s s sbae e 443
APPENDIX D: SAMPLE CODE ...ttt ettt ettt s et e e st e e e s sb e e s s s bt e e s sabanesssbbaeesssbaneeans 446
D.1 AUDIO PLAYBACK WITH EQUALIZER.....ciiiiiiiiiitiiit ettt e e s s st b e e e s e s s st b ats s e s e s s sbbbaba s e s s s s ssbbabesesessaanes 446
D.2 AUDIOIVIDEO PLAYBACK .. .veieiitii ettt ettt e ettt e ettt e e st at e e e e ettt e e s aba e e e s sa b e e s s sabes s e sabbaesssbbasesesbaesssabeneessbbenss 450
D.3 RADIO WITH RDS SUPPORTutttiiiiii ittt seiit bttt e st e sab b et e s e e s s e sb b b a b e e e e e st sbb b et e e e s e s s s asb bbb e e e s e s ssabbbbanesaaas 456
D.4 AUDIO RECORDING THROUGH MICROPHONEooiiiivieeiitieieeetieeeeieee e s eaveessssteesssbreessssbeeessssassssnsenessssseess 461
D.5 SNAPSHOT WITH PREVIEW.......uviiiiiteee e sttt e ettt e s eteeesette s s satesesesaeessasseesessbanessssbesesastessessseeessseeeesassessssnses 465
D.6 METADATA EXTRACTIONvtiieiettite e iteee e sttt e e eettee e s eateeesstaeessssaesessabaeessbbeeesasteseesabeeessbaesesasbeeessrenessrrens 472

OpenMAX|AL

PART 1: USER MANUAL

1 Overview

1.1 Purpose of this Document

This document details the API for OpenMAX Application Layer (AL) 1.0. Developed as an open standard by the
Khronos Group, OpenMAX AL™ is an application-level multimedia playback and recording API for mobile
embedded devices. It provides a device-independent, cross-platform interface for applications to access a device’s
audio, video and imaging capabilities.

1.1.1 About the Khronos Group

The Khronos Group is a member-funded industry consortium focused on the creation of open standard, royalty-free
APIs to enable the authoring and accelerated playback of dynamic media on a wide variety of platforms and devices.
All Khronos members can contribute to the development of Khronos API specifications, are empowered to vote at
various stages before public deployment, and may accelerate the delivery of their multimedia platforms and
applications through early access to specification drafts and conformance tests. The Khronos Group is responsible
for open APIs such as OpenGL® ES, OpenKODE™, OpenSL ES™ and OpenVG™.

1.2 Scope

OpenMAX AL accommodates common multimedia application use cases by standardizing a set of representative
objects, as well as interfaces on those objects, to control and configure them.

It is an application-level, C-language, multimedia API designed for resource-constrained devices. The OpenMAX
AL API design puts particular emphasis on ensuring the API is suitable for mobile embedded devices - including
basic mobile phones, smart “feature” phones, PDAs and mobile digital music players. Nevertheless, this does not
preclude its applicability to other sophisticated media playback and recording devices.

The OpenMAX AL API design devotes particular attention to application-developer friendliness. Its status as an
open cross-platform API enables developers to port the same source across multiple devices with minimal effort.
Thus OpenMAX AL provides a stable base for application development.

This document specifies the OpenMAX AL API. It does not define how to implement the API.

1.3 Intended Audience

This specification is meant for application-developers and implementers. The document is split into a user manual
section and an API reference section. Application-developers can use this document as a user guide to learn about
how to use OpenMAX AL and they can refer to the API reference when developing their applications. Implementers
of the API can use this specification to determine what constitutes an implementation conforming to the OpenMAX
AL standard.

OpenMAX|AL 2

1.4 A Brief History of OpenMAX

The OpenMAX set of APIs was originally conceived as a method of enabling portability of components and media
applications throughout the mobile device landscape. Brought into the Khronos Group in mid-2004 by a handful of
key mobile hardware companies, OpenMAX has gained the contributions of companies and institutions spanning the
spectrum of the multimedia field. As such, OpenMAX stands to unify the industry in taking steps toward media
component portability. Stepping beyond mobile platforms, the general nature of the OpenMAX AL API makes it
applicable to all media platforms.

1.4.1 The OpenMAX Application Layer

The OpenMAX AL API provides application-level, multimedia solutions with portability across an array of
platforms - by providing a common abstraction for a system’s media playback and recording functionality. The API
organizes this abstraction around a set of high level objects. An application acquires all objects from one “engine”
object which encapsulates an OpenMax AL session and serves as an umbrella for all other objects.

Application
—————————————————— OpenMAX AL APk ————————————————_
2 Nhicct |
AL Engine Object F--- Ohioct |
T Object

Figure 1: OpenMAX AL application, engine and object abstraction

Principle among these objects is the “media object”. Each media object represents either a playback or recording
task, denoted media player or media recorder respectively, which takes data from a designated source and sends it to
a designated sink.

In some cases, the sources and sinks are themselves objects. For instance a camera device might act as a source or an
audio output mix might act as a sink. In other cases a source or sink is simply a location, such as a memory buffer
containing a sound or a file to which one writes recorded data.

All objects expose interfaces which serve as controls relevant to their operation. Interfaces constitute structures of
methods grouped by functional affinity. Thus a player exposes interfaces for playback, rate control, seeking and
metadata extraction.

An application constructs a use case by instantiating the requisite set of objects and then creating the correct
associations between them. For instance, an application achieves playback of a 3gp file by creating an audio output
mix and then creating a media player with that output mix as an audio sink, a video window as the video sink, and a
file as the source.

The application controls a use case by retrieving interfaces from the objects that implement it and calling methods
on those interfaces. Given the playback example above, the application may retrieve a playback interface from the
player and then control the player’s operation by using methods on the playback interface to change the state
between stopped, paused and playing.

OpenMAX|AL 3

Sink:
OQutput
Mix

Play
Interface

Y

Source: .
File URI Media Player

Y

Sink:
Display
Window

Figure 2: Local file playback use case

1.4.2 Relationship to OpenMAX IL

The OpenMAX AL represents the highest layer of the OpenMAX family of APIs. As such, it serves the multimedia
needs of application developers.

The Khronos group also provides an API for system integrators, denoted as the OpenMAX Integration Layer (IL).
OpenMAX IL defines an integration framework for the internals of a multimedia architecture which abstracts the
codecs, file manipulations, transformations, and peripheral components installed on a system. The IL also provides a
means for these components to interoperate with each other - even if they are delivered from multiple sources.

The working groups for each APl have co-operated to deliberately design AL to be amenable to an IL-based
implementation. For example, IL defines the set of low-level components to satisfy the constituent functionality of
high-level AL use cases. Thus, an AL implementor may construct a media object as a chain of IL components.

OpenMAX AL does not mandate an AL solution be based on IL (nor does it mandate any particular implementation
detail). Nevertheless, the relationship between APIs enables a rich and efficient software ecosystem for multimedia.

1.5 Relationship to OpenSL ES 1.0

OpenMAX AL is an application-level multimedia playback and recording API for mobile embedded devices.
OpenSL ES 1.0 is an application-level enhanced audio API, also designed for mobile embedded devices. As such,
both APIs do overlap in certain basic audio functionality (such as audio playback, audio recording and basic MIDI).
The Venn diagram in Figure 3 illustrates the functional overlap in the two APIs.

OpenMAX|AL ‘

CpenSLES. OpenMAX|AL
(Enhanced audio API) (Multimedia API)

3D Audio
Audi
Audio Playb
Effects
Audi
Advanced
ity Record
MIDI
Buffer
queues

Figure 3: OpenSL ES 1.0 versus OpenMAX AL

As the Venn diagram shows, OpenMAX AL has audio features like analog radio tuner and RDS that are not part of
OpenSL ES 1.0. Similarly, OpenSL ES 1.0 has advanced audio features like effects (reverberation, stereo widening,
bass boost, etc.) and positional 3D audio that are not part of OpenMAX AL.

The primary focus of OpenMAX AL is media (audio, video, and image) capture and rendering. The primary focus
of OpenSL ES 1.0 is advanced audio and MIDI functionality for mobile devices. Further, both OpenMAX AL and
OpenSL ES 1.0 are partitioned into profiles based on market segments:

e OpenSL ES 1.0 has three overlapping profiles: Phone, Music and Game.

e OpenMAX AL has two overlapping profiles: Media Player and Media Player/Recorder.
Each of these profiles has well-defined feature sets and conformance requirements. For example, to be compliant
with the OpenMAX AL Media Player profile, an OpenMAX AL implementation must provide audio, image and
video playback functionality. An audio-only OpenMAX AL implementation would not be compliant with either

profile of the OpenMAX AL specification.

This segmentation into profiles ensures that there will be no confusion whatsoever regarding which API is suitable
for a particular set of use cases.

e Example 1: an audio-only application will have no need for video and image functionality and therefore
would likely pick one of the OpenSL ES 1.0 profiles, depending on the use cases of interest.

o Example 2: a media playback and recording application would use the OpenMAX AL Media
Player/Recorder profile.

e Example 3: An advanced multimedia/game application that needs audio/video/image playback and
recording as well as advanced audio features like 3D audio and effects would use both the Media
Player/Recorder profile of OpenMAX AL and the Game profile of OpenSL ES 1.0.

The two APIs have been designed such that their architecture is identical. Further, each API has identical API
methods for the same functionality. At the same time, the APIs are also independent — each can be used as a

OpenMAX|AL

standalone API by itself (as in Examples 1 and 2) or can co-exist with the other on the same device (as in Example

3).

1.6

Conventions Used

When this specification discusses requirements and features of the OpenMAX AL API, specific words are used to
indicate the requirement of a feature in an implementation. The table below shows a list of these words.

Table 1: Requirement Terminology

Word

Definition

May

The stated functionality is an optional requirement for an implementation of the OpenMAX AL API.
Optional features are not required by the specification but may have conformance requirements if they are
implemented. This is an optional feature as in “The implementation may have vendor-specific extensions.”

Shall

The stated functionality is a requirement for an implementation of the OpenMAX AL API. If an
implementation fails to meet a shall statement, it is not considered as conforming to this specification.
Shall is always used as a requirement, as in “The implementation shall support the play interface”.

Should

The stated functionality is not a requirement for an implementation of the OpenMAX AL API but is
recommended or is a good practice. Should is usually used as follows: “An OpenMAX AL implementation
of the game profile should be capable of playing content encoded with an MP3 codec”. While this is a
recommended practice, an implementation could still be considered as conforming to the OpenMAX AL
API without implementing this functionality.

Will

The stated functionality is not a requirement for an implementation of the OpenMAX AL API. Will is
typically used when referring to a third party, as in “the application framework will correctly handle
errors”.

1.6.1

Parameter Range Notation

Valid parameter ranges are specified using both enumerated lists of valid values and sequential ranges. The ranges

are specif

ied using the following interval notation [Error! Reference source not found.]: (a, b) for open intervals,

[a, b] for closed intervals, and (a, b] and [a, b) for half-closed intervals, defined as follows:

(a,b) ={x|a<x<b}
[a,b]={x|a<x<b}
(a,b]={x|a<x<b}
[a,b) ={x]a<x<Db}

1.6.2

Format and Typographic Conventions

This document uses the following conventions:

OpenMAXIAL

Table 2: Format and Typographic Conventions

Format Meaning

Courier font | Sample code, API parameter specifications

1.7 Acknowledgements

The OpenMAX AL specification is the result of the contributions of many people. The following is a partial list of
contributors in order of company name then contributers surname, including the respective companies represented at
the time of their contribution:

Stewart Chao, AMD (now with Qualcomm)
Wilson Kwan, AMD (now with Qualcomm)
Chris Grigg, Beatnik

Andrew Ezekiel Rostaing, Beatnik
Tim Granger, Broadcom

Roger Nixon, Broadcom

Wolfgang Schildbach, Coding Technologies
Nathan Charles, Creative

Robert Alm, Ericsson

Lewis Balfour, Ericsson

Harald Gustafsson, Ericsson

Hékan Gardrup, Ericsson

Erik Noreke, Ericsson

Brian Murray, Freescale

Yeshwant Muthusamy, Nokia

Matti Paavola, Nokia (Chair)

Scott Peterson, NVIDIA

Isaac Richards, NVIDIA

Neil Trevett, NVIDIA

Jim Van Welzen, NVIDIA (Past Chair)
Tom Longo, Qualcomm (Editor)

John Mortimer, QSound

Mark Williams, QSound

Ytai Ben-Tsvi, Samsung

Natan Linder, Samsung

Gal Sivan, Samsung

Weijun Jiang, SKY MobileMedia
Stephan Tassart, ST Microelectronics
Brian Evans, Symbian

James Ingram, Symbian

Leo Estevez, Texas Instruments
Danny Jochelson, Texas Instruments

OpenMAX|AL 7

2 OpenMAX AL Features and Profiles

OpenMAX AL is designed with media application developers in mind. It provides support for a number of audio,
video and image features that facilitate the development of a wide range of applications on the target devices.
Supported features include:

o Media playback: Includes playback of PCM audio, encoded audio, MIDI ringtones, Ul sounds, encoded
video and image content as well as extraction of metadata embedded in the media content. Video playback
refers to support for synchronized audio/video playback. Image playback refers to the decoding and display
of compressed image data.

e Media recording: Includes support for recording of audio and video, and image capture. Video recording
refers to support for synchronized audio/video recording. Image capture refers to camera functionality.

e Effects and controls: For audio, includes support for general controls such as volume and balance, and
music player effects such as equalizer. For image and video, includes support for controlling the brightness,
contrast and gamma adjustments.

Optional functionality includes:

MIDI: Includes support for SP-MIDI, mobile DLS, and mobile XMF.

Analog Radio: Includes support for analog radio tuning as well as support for RDS/RBDS content.
LED array: Includes support controlling multiple colored LED arrays.

Vibration device (“vibra”): Includes support for controlling vibration device intensity and frequency.

Section 2.4 discusses optional features in the API.

These features enable the development of multimedia-rich applications such as media players, media recorders, and
games.

2.1 Motivation

The definition of OpenMAX AL profiles accommodates the fact that OpenMAX AL may be used for a range of
devices catering to different market segments. Not all implementations of OpenMAX AL will need (or can
accommodate) all of the functionality represented by this large set of features. For example, a media playback-only
device would have little use for implementing all the media recording functionality that is also part of the API.

Thus OpenMAX AL segments the APIs into two groupings of functional affinity relative to typical devices -
specifically, a collection of player functionality and a collection of recorder functionality.

2.2 OpenMAX AL Profile Definition

An OpenMAX AL profile is a defined subset of features of the same functional type collectively required on any
implementation that claims to support that profile.

2.3 Profiles

OpenMAX AL defines two profiles: Media Player and Media Player/Recorder. A short description and rationale
of each of the profiles is discussed below:

OpenMAX|AL 8

e Media Player: This profile encapsulates media playback functionality including the ability to render audio,
video and image data in one or more formats. The Media Player profile is appropriate for playback-only
devices which do not include any support for capturing or recording media. Personal media players are
good examples of devices that would use this profile.

e Media Player/Recorder: This profile encapsulates all-inclusive media playback and recording
functionality including the ability to capture as well as render audio, video and image data in one or more
formats. High-end mobile phones are good examples of devices that would use this profile. This profile
subsumes the Media Player profile.

The following table lists the features in the two profiles of OpenMAX AL. A “Y” in a cell indicates that the
corresponding API feature is mandatory in that profile, while a blank cell indicates an absence of that feature.

Table 3: Features of the OpenMAX AL Profiles

API (Profile) Feature mgS(ia?' hRAee[;jr:?dz:ayer/
KEY USE CASES

Playback of audio and video files Y Y
Rendering of image sources Y Y
Recording and storage of audio and video sources Y
Capture and storage of image sources Y
DATA ACCESS

Support for various media container formats Y Y
Specify a stream source (local/remote file, memory/flash, etc.) Y Y
Identify data sources by name, such as URL/URI, or by file handle Y Y
Respect DRM Y Y
Select an input source from among a multitude of available inputs Y
Select an output destination from among a multitude of available outputs Y Y
DEVICE CAMERA

Camera flash activation Y
Camera Effects Y
Exposure settings (exposure time, aperture and 1SO sensitivity) Y
Focus control (including macro-focus on/off) Y
White balance control Y
Optical and digital zoom Y
PLAYBACK, RECORDING AND PROCESSING CONTROLS

“VCR-type” playback modes: play, pause, stop, rewind, fast-forward Y Y
Play multiple sounds at a given time Y Y
Playback of raw PCM audio Y Y
Playback of sampled audio encoded in a form other than raw PCM Y Y

OpenMAX|AL 9

API (Profile) Feature

Media
Player

Media Player/
Recorder

Playback of mono and stereo sampled audio

<

Y

Volume control

Audio balance control

Audio pan control

End-to-end looping of audio/video content

Audio/video segment looping

Seeking to a seek point (such as chapter)

Route media to multiple simultaneous outputs

Set a sound’s priority

Audio equalization

<|=<|=<|=<|=<|=<|=<|=<]|=<

Audio recording from a microphone or on-device line-in jack

Audio recording from another software component

Record audio to a non-PCM format

Recording modes: record and stop

Query the estimated size of the output image based on current image settings

<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<]|=<]|=x<

PER-APPLICATION SETTINGS

Use key-value pairs to query and set both the codec and non-codec configurations of the
underlying media engine

PER-OBJECT SETTINGS

Set video encoder properties: frame rate, bitrate (constant/variable), size, resolution,
duration limit and codec format

Set audio encoder properties: bitrate (constant/variable), channel count, duration limit,
sampling frequency, codec format, size, and resolution

Set image encoder properties: codec format, size and resolution

Set and query image/video encoder special effects, if supported. Effects include, but are

not limited to, “monochrome”, “sepia”, “emboss”, “paintbrush”, “solarize”, “red-eye

reduction”, “cartoon” and “negative”

METADATA

Extract metadata from media files and embedded media streams

Insert/edit metadata in recorded media content

EVENT AND ERROR NOTIFICATIONS

Callbacks for periodic media positioning (such as for progress bar)

Callback alerts when playback is in a prescribed position (such as for looping)

Callbacks for error conditions

CAPABILITY QUERIES

OpenMAX|AL

10

API (Profile) Feature mgs;?, :\q/l eectli;idZ:ayer/
Enumerate and query the capabilities of available input sources Y
Enumerate and query the capabilities of available output destinations Y Y

Query the API version humber Y Y

Query capabilities of the OpenMAX AL implementation Y Y
MISCELLANEOUS

Query the_degree to which an OpenMAX AL implementation is based on OpenMAX IL: v v

none, partial or full

Extensibility Y Y
Minimum 16-bit PCM audio output Y Y

2.4

Optionality Rules of Features and Profiles

In an effort to minimize confusion among developers and reduce fragmentation, OpenMAX AL adheres to the
following rules on features and profiles:

1.

All features within a profile are mandatory — this is critical in assuring developers and implementers that if
they pick a profile, all the functionality representative of that profile will indeed be present. Then,
applications written towards a specific profile will indeed be portable across OpenMAX AL
implementations of that profile.

A feature that does not fit in any of the profiles is considered to be an optional feature. OpenMAX AL does
not categorize optional features in any way, to avoid a potentially confusing combinatorial explosion and
effectively negating the benefits of the first rule. Vendors are free to pick and choose from the entire set of
optional features to augment their implementations of either of the two profiles. An important exception to
this rule is MIDI functionality. See section 2.5 for an explanation of the special designation for MIDI in
OpenMAX AL.

Vendors are free to implement features from more than one profile, but they can claim compliance with a
profile only if they implement all of the features of that profile. Example: If a vendor implements the Media
Player profile in its entirety and adds just audio recording from the recorder profile, then that vendor can
only claim compliance with the Media Player profile.

The following table lists some of the optional features in OpenMAX AL with the rationale for their optionality.

Table 4: Optional Features in OpenMAX AL

Optional Feature Reason for Optionality

Reception and playback of analog radio content Implies dependency on radio hardware (such as FM
radio chip).

Controlling the analog radio tuner of the device Implies dependency on radio hardware

Retrieve RDS (Radio Data System) content from the Implies dependency on radio hardware.

currently tuned station.

MIDI functionality See Section 2.5 for the special designation for MIDI

in OpenMAX AL

OpenMAX|AL u

2.5 MIDI in OpenMAX AL

MIDI is considered fundamental functionality for mobile phones, an important class of target devices for OpenMAX
AL. However, there exist other target devices for AL such as personal media players and recorders that typically
have no use for MIDI functionality. Mandating MIDI in OpenMAX AL would place a gratuitous burden on such
devices to implement MIDI just to claim compliance with OpenMAX AL. For this reason, MIDI is designated as
optional functionality. All MIDI-related features are in an optional “+ MIDI” category (an exception to the second
rule defined in section 2.4). Implementations that do support MIDI functionality can lay claim to this “+ MIDI”
designation in addition to the profile(s) they support. Example: “AL Media Player + MIDI” or “AL Media
Player/Recorder + MIDI”. However, to avoid fragmentation of the API with respect to MIDI, an implementation can
lay claim to the “+ MIDI” designation only if it supports all of the following MIDI-related features:

MIDI file playback and related callbacks
SP-MIDI

Mobile DLS

Mobile XMF

2.6 Profile Notes

Profiles notes are used within this specification to identify objects and interfaces where support is optional in one or
more of the profiles. Objects and interfaces without profile notes are mandated in all profiles. Here are some
representative examples of profile notes found in the specification:

PROFILE NOTES

This object represents an optional feature and consequently optional in all profiles.

PROFILE NOTES
This interface is mandated only in the Media Player profile.

2.7 Behavior for Unsupported Features

If an application attempts to use a feature that is not present in a specific implementation of OpenMAX AL, the
implementation shall fail the request to use the feature, returning the XA_RESULT_FEATURE_UNSUPPORTED
error code (see section 3.4 Error Reporting). This can happen either when calling GetInterface() on an
unsupported interface or when attempting to call an unsupported method in an interface. Furthermore, if an interface
with an unknown ID is used (either during object creation or in a GetInterface () call), this same result code
shall be returned. This facilitates portability of applications using non-standard extensions.

OpenMAX|AL g

3 Design Overview

3.1 Object Model
3.1.1 Objects and Interfaces

The OpenMAX AL API adopts an object-oriented approach using the C programming language. The API includes
two fundamental concepts on which are built all other constructs: an object and an interface.

An object is an abstraction of a set of resources, assigned for a well-defined set of tasks, and the state of these
resources. An object has a type determined on its creation. The object type determines the set of tasks that the object
can perform. This can be considered similar to a class in C++.

An interface is an abstraction of a set of related features that a certain object provides. An interface includes a set of
methods, which are functions of the interface. An interface also has a type which determines the exact set of
methods of the interface. We can define the interface itself as a combination of its type and the object to which it is
related.

An interface ID indentifies an interface type. This identifier is used within the source code to refer to the interface
type.

Objects and interfaces are tightly related — an object exposes one or more interfaces, all of which have different
interface types, that is, an object may contain at most one interface of each interface type. A given interface instance
is exposed by exactly one object. The application controls the object’s state and performs the object operations
exclusively through the interfaces it exposes. Thus, the object itself is a completely abstract notion, and has no actual
representation in code, yet it is very important to understand that behind every interface stands an object.

The relationship between object types and interface types is as follows. The object type determines the types of
interfaces that may be exposed by objects of this type. Each object type definition in this document includes a
detailed list of the interfaces on that object.

PROFILE NOTES
The set of interface types allowed for a given object type may vary across profiles. This will be explicitly stated
in this document, per object, and per interface type.

An object’s lifetime is the time between the object’s creation and its destruction. The application explicitly
performs both object creation and destruction, as will be explained later in this document.

An object maintains a state machine with the following states:

e Unrealized (initial state): The object is alive but has not allocated resources. It is not yet usable; its
interfaces’ methods cannot yet be called.

e Realized: The object’s resources are allocated and the object is usable.

e Suspended (optional state): The object has fewer resources than it requires in order to be usable but it
maintains the state it was in at the moment of suspension. This state is optional to the extent that, in the face
of resource loss, the implementation has the option of putting an object either in the Suspended state or the
Unrealized state.

The following state diagram illustrates the states and transitions.

OpenMAX|AL @

Realize()

Unrealized <<Resource Loss>> Realized

|

|

A |

AN

0 |
81 S
N iy e
N q) | E
<<Resource Loss>> o1 =
N S 0
\\ 8 | &)

N Q) |

\\\ Q/: :

AN Vo

S I

N
N |
N
AN |
\\
-—————> System-induced transitions Suspended

———> Client-induced transitions

Figure 4: Object state diagram

When the application destroys an object, that object implicitly transitions through the Unrealized state. Thus it frees
its resources and makes them available to other objects.

See section 3.1.7 for more details on resource allocation.

3.1.2 Getters and Setters

Getters and setters provide access to object properties. An application uses a setter to change the value of an object’s
property and a getter to retrieve a value of an object’s property.

Unless explicitly specified in a getter’s method name, a getter shall always return the exact value that was set by a
previous call to a setter, even if that value had been rounded off internally by the implementation. An exception to
this rule is that a Boolean getter must return only logically (but not necessarily numerically) the same value as was
set.

Here is a short example that demonstrates the use of a getter and a setter:

XAresult res;
XAVolumeltf volumeltf;
XAmillibel vol;

res
res

(C*volumeltf)->GetVolumeLevel (volumeltf, &vol); CheckErr(res);
(*volumeltf)->SetVolumeLevel (volumeltf, vol + 7); CheckErr(res);

Unless specified otherwise, applications are responsible for allocation and deallocation of memory buffers used in
the interface methods.

3.1.3 Representation in Code

OpenMAX|AL :

As stated in the previous section, objects have no representation in code. OpenMAX AL refers an object via its
XAObjectItf interface (see section 8.23).

The API represents interfaces as C structures, where all the fields are method-pointers, representing the methods.
These interface structures are always stored and passed as pointer-to-pointer-to-struct and never by value (this level
of indirection enables more efficient API implementations).

Each of the interface methods has a first argument, called se I ¥, whose type is the interface type. Thus when calling
an interface method, the caller must pass the interface pointer in this argument. Additionally, each of the callback
prototypes has a first argument called cal ler, whose type is the interace type.

Here is an example of a simple interface:

struct XASomelnterfaceltf ;
typedef const struct XASomelnterfaceltf * const * XASomelnterfaceltf;

struct XASomelnterfaceltf_ {

XAresult (*Methodl) (
XASomeInterfacel tf self,
XAuint32 value

)

XAresult (*Method2) (
XASomelnterfaceltf self,
XAuint32 * pValue

3

This interface is called XASome I nterface l tf and has two methods: Method1() and Method2(). Such an
interface will be used as follows:

XAuint32 i;
XAresult res;

XASomelnterfaceltf someltf;
// ... obtain this interface somehow ...

res (*someltf)->Methodl(someltf, 42); CheckErr(res);
res (*someltf)->Method2(someltf, &i); CheckErr(res);

Note that this code excludes the mechanism for obtaining the interface itself, which will be explained in the
following sections.

3.1.4 The XAODbjectltf Interface

XAObjectItf is a special interface type fundamental to the architecture. Every object type in the API exposes
this interface. It is the “entry-point” for an object since every method that creates a new object actually returns the
XAObjectItf of this object. Using this interface, an application may perform all the basic operations on the
object and may access other interfaces exposed by the object.

The application destroys the object by calling the Destroy () method of the XAObject1tf interface.
The application obtains other interfaces of the object by calling the GetInterface() method of the

XAObjectItf interface. The application retrieves an interface by its type ID which uniquely identifies it; an
object cannot contain more than one interface of a certain type.

OpenMAX|AL b

The application controls the state of the object by calling the Real ize () and Resume () methods of the
XAObjectlItf interface.

For a complete and detailed specification of this interface type, see section 8.23.

3.1.5 The Engine Object and XAEngineltf Interface

Other fundamental entities in the architecture are the engine object and the XAEngine I t¥ interface. These entities
serve as the API’s entry-point. The application begins an OpenMAX AL session by creating an engine object.

The engine object is created using the global function xaCreateEngine()
(see section 6.1). The result of engine object creation is a XAOb ject1tfF interface, regardless of the
implementation.

After creating the engine object, the application can obtain this object’s XAEng ine I tF interface. This interface
contains creation methods for all the other object types in the API.

To create an object process:

e Create and realize an engine object if one has not been created already.

e Obtain the XAEngine I tf interface from this object.

e Call the appropriate object creation method of this interface.

o If the call succeeds, the method will return an XAObjectl tf interface of the new object.

e After working with the object, call the Destroy() method of the XAOb jectItf to free the object and
its resources.

For a complete and detailed specification of the engine object and the XAEngine I tF interface type, please refer to
sections 7.2 and 8.12 respectively.

3.1.6 The Relationship Between Objects and Interfaces

The set of interfaces exposed by an object is determined by three factors:

e The object’s type
e The interfaces requested by the application during the object’s creation
e The interfaces added and removed by the application during the object’s lifetime

An object’s type determines the set of interfaces that will always exist, regardless of whether the application
requests them or not. These interfaces are called implicit interfaces and every object type has its own set of implicit
interfaces that will exist on every object of this type. The XAObjectltf interface, introduced in section 3.1.4, is
fundamentally required on every object, so it is designated as implicit on all object types, that is, the application
never needs to explicitly request that it be exposed on any object.

Every object type also defines a set of interfaces that are available on objects of this type, but will not be exposed by
an object unless explicitly requested by the application during the object’s creation. These explicitly requested
interfaces are called explicit interfaces.

Finally, every object type also defines a set of interfaces that may be added and removed by the application during
the object’s lifetime. These types of interfaces are called dynamic interfaces and they are managed by a dedicated
interface, called XADynamic InterfaceManagementltf (see section 8.10), which enables this dynamic
binding. Attempts to dynamically add or remove implicit interfaces on an object will fail.

OpenMAX|AL o

The set of explicit and dynamic interfaces for a given object type may vary between implementations (see section
3.5). However, for a given profile, each object type has a set of mandated explicit interfaces and a set of mandated
dynamic interfaces that shall be supported by every implementation.

When an application requests explicit interfaces during object creation, it can flag any interface as required. If an
implementation is unable to satify the request for an interface that is not flagged as required, this will not cause the
object to fail creation. On the other hand, if the interface is flagged as required and the implementation is unable to
satisfy the request for the interface, the object will not be created.

The following table summarizes whether an object is created and an interface is exposed, according to how the
specification relates their types and how the application designates the interface at the object’s creation.

Table 5: Interface Exposure Rules During Object Creation

Determined by the application
Interface requested by application R AER Ml
Interface marked as Interface not marked as requested by
required required application
Implicit v v v
o Mandated
= interface
=68 Explicit v v x
25
E G E Available v v X
s E3
= © 8 | Optional
o) o un q
] interface Not ‘\ x x
- available

Key:

v | Object is created and interface is exposed, subject to resource constraints

x | Object is created but interface is not exposed

& | Object is not created and interface is not exposed

The next table summarizes whether interface is exposed on an object when the application requests to add the
interface dynamically, according to whether the specification mandates support for the interface on the object type
and whether this support is mandated dynamically or not.

Table 6: Interface Exposure Rules for Dynamic Adding of Interfaces

Determined by application
Application dynamically adds interface
Mandated interface v
)
>
oc c Mandated .
o o " Auvailable v
BEE dynamic Optional
S =0 interface]
£ aE.) 5 Not available X
g3
A o »n
E Not mandated dynamic 7
Key:

OpenMAX|AL

17

v | Interface is exposed, subject to resource constraints

* | Interface is not exposed

? | Interface maybe exposed (implementation dependant), subject to resource constraints

3.1.7 The XADynamiclnterfaceManagementltf Interface

The XADynamiclnterfaceManagementItf interface provides methods for handling interface exposure on an
object after the creation and realization of the object. The XADynamiclnterfaceManagementltf itselfisan
implicit interface on all object types.

The dynamic nature of an interface is unrelated to it being optional or mandated for an object. An interface that is
“mandated” as dynamic can actually be realized both at object creation time as well as dynamically, at any point in
the object’s lifetime (using the XADynamiclnterfaceManagementltf). Interfaces that represent a significant
resource drain if realized on object creation but that are never used, are prime candidates for dynamic interfaces. By
making them dynamic, the application developer can use them only when needed, often resulting in significant
resource optimization. Dynamic interfaces are explicitly called out in the “Mandated Interfaces” sections of the
corresponding objects in section 7.

Although this interface provides a method for requesting the acquisition of an additional interface, namely
AddInterface(), the implementation may deny the request. The criteria for denial are implementation
dependent. For example, the state of an object’s player or recorder may influence the success or failure of dynamic
interface addition. Upon a successful Add Interface() call for a specified interface, that interface is immediately
usable. There is no separate call to “realize” the given interface. The interface instance is obtained, just as for static
interfaces, by using the GetlInterface() method.

An application may retire a dynamic interface with a Remove Interface() call. After a
Removelnterface() call, the dynamic interface is no longer usable. When an object is unrealized, all interfaces,
including the dynamic interfaces, are unusable and effectively removed from the object.

3.1.8 Resource Allocation

The exact amount of resources available on an OpenMAX AL implementation may vary across different
implementations and over the lifetime of an engine object. As a result, an application using the OpenMAX AL API
must always be prepared to handle cases of failure in object realization or dynamic interface addition. In addition, an
object’s resources may be stolen by another entity (such as another object or the underlying system) without prior
notice.

To allow applications to influence the resource allocation by the system, a priority mechanism is introduced. Priority
values are set on a per-object basis. Applications can use these object priorities to influence the behavior of the
system when resource conflicts arise. For example, when a high-priority object needs a certain resource and the
resource is currently assigned to a lower-priority object, the resource will most likely be “stolen” from the low-
priority object (by the system) and re-assigned to the high-priority object. An application can change the priority of
an object at any point during the lifetime of the object. It is also worth noting that these object priorities set by the
application are confined to this instance of the API engine. They are unrelated to the priorities that may be assigned
by the system to the application itself and other components running on the system, for the purposes of resource
management.

OpenMAX|AL e

When a resource is stolen from an object, this object will automatically transition to either the Suspended state or the
Unrealized state, depending on whether its interface states are preserved or reset, respectively. To which of the states
the object transitions is determined solely by the implementation. When in either of these two states, all of this
object’s interfaces, except for the XAObjectltf interface and the XADynamiclnterfaceManagementltf
interface, become unusable, and return an appropriate error code. Dynamic interfaces are treated the same as any
other interfaces. If the object the dynamic interface is exposed on is Suspended or Unrealized, the dynamic
interfaces will be suspended or unrealized, respectively.

The application may request to be notified of such a transition. This is done by registering for a notification on the
object. The application may also request to be notified when resources become available again, which may allow for
the object to regain usability. The notification will include any dynamic interfaces as well, that is, the notification is
sent when all the interfaces and the object can have their resources. Individual notification is NOT sent for each
dynamic interface.

The application may attempt to recover an Unrealized or Suspended object by calling its Real ize () or
Resume () methods, respectively. If the call succeeds, the object will return to the Realized state, and its interface
states will be either recovered or reset to default, depending on whether it was unrealized or suspended. The
Removelnterface() method is special and can be used in any object state to retire dynamically exposed
interfaces. This may help in successfully realizing or resuming the object.

When a stolen resource is freed, the implementation checks whether this resource can be used in order to recover an
interface in a resources stolen state. The check is made in object priority order, from high to low. It is not guaranteed,
however, that attempting to recover an object after getting this notification will succeed.

An important difference regarding interfaces that are exposed dynamically is how resources are managed. When a
dynamic interface loses its resources, a notification is sent but the object state is not affected. Also, other interfaces
on the same object are not affected. The application may register for notification of dynamic interface resource
changes.

After a lost resources notification, the dynamically exposed interface will become unusable. Two different types of
lost resources notification can be received- resource lost, and resource lost permanently. The first type of
notifications indicates that the dynamic interface may be resumed by the application after a resource available
notification has been received. When the Resume I nterface () call succeeds, the dynamic interface will be fully
recovered. The second type of notification means that the current instance of the exposed dynamic interface can’t
recover from the resource loss and shall be retired by the application.

3.2 Threading Model
3.2.1 Mode of Operation

The OpenMAX AL API is generally synchronous. This means that an APl method will return only after its
operation is complete, and any state changes caused by the method call will be immediately reflected by subsequent
calls.

However, in some specific cases, a synchronous operation is not desirable, due to operations that may take a long
time. In such cases, the actual termination of the operation will be signaled by a notification. Any state changes
caused by the call are undefined between the time of the call and until the time of notification.

Asynchronous functions will be clearly designated as such in their documentation. Otherwise, a synchronous mode
of operation should be assumed.

3.2.2 Thread Safety

OpenMAX|AL b

The OpenMAX AL API may operate in one of two modes, which determine the behavior of the entire API regarding
reentrancy:

e Thread-safe mode: The application may call the API functions from several contexts concurrently. The
entire API will be thread-safe — that is, any combination of the API functions may be invoked concurrently
(including invocation of the same method more than once concurrently) by multiple application threads,
and are guaranteed to behave as specified.

¢ Non-thread-safe mode: The application needs to take care of synchronization and ensure that at any given
time a maximum of one API method is being called. The entire API is not thread-safe — that is, the
application needs to ensure that at any given time a maximum of one of the API functions is being executed,
or else undefined behavior should be expected.

An implementation shall support one or more of these modes.

The mode of operation is determined on engine creation, and cannot be changed during the lifetime of the engine
object. An implementation shall support at least one of these modes, and should document which modes are
supported.

Note that an application written to work with non-thread-safe mode will be able to work with a thread-safe mode
engine without change. As a result, a valid implementation of thread-safe mode is automatically considered a valid
implementation of the non-thread-safe mode; however, implementations of both modes may choose to implement
them differently. Implementers should note that implementation of thread-safe mode assumes knowledge of the
threading mechanisms used by the application.

3.3 Notifications

In several cases, the application needs to be notified when some event occurred inside the OpenMAX AL
implementation, such as when playback of a file has ended, or when an asynchronous method has completed. These
notifications are implemented as callback functions — the application registers a method whose signature is specified
by the API, and this method will be called by the OpenMAX AL implementation every time a certain event occurs.

Callback functions are registered per-interface and per-event type, thus registering a callback for a certain event on a
given object (through one of its interfaces) will not cause this callback to be called if the same event occurs on a
different object, or if a different event occurs on the same object. The event type is simply designated by the method
that was used to register the callback.

At any given time, a maximum of one callback function may be registered per-interface, per-event type. Registering
a new callback on the same interface, using the same registration method, will un-register the old callback. Similarly,
registering NULL is the way to un-register an existing callback without registering a new one.

The context from which the callbacks are invoked is undefined, and typically implementation- and OS-dependant.
Thus the application cannot rely on any system call or OpenMAX AL API call to work from within this call.
However, to avoid a dead-end, each implementation should document the list of functions that can be safely called
from the callback context. It is highly recommended that the implementation provide at least the means of posting
messages to other application threads, where the event shall be handled. In addition, the XAThreadSyncltf
interface (see section 8.33) must be usable from within the callback context.

The application should be aware of the fact that callbacks may be invoked concurrently with other callbacks,
concurrently with application invocation of an APl method, or even from within API calls, and thus should be
prepared to handle the required synchronization, typically using the XAThreadSync 1 tF interface (see section
8.33).

For more specific details, refer to the engine object documentation in section 7.2.

OpenMAX|AL 0

3.4 Error Reporting

Almost every API method indicates its success or failure by a result code (except for methods that are not allowed to
fail under any circumstances). An APl method’s documentation states the valid result codes for that method and an
implementation shall return one of these result codes. For synchronous methods, the result code is the return value
of the method. For asynchronous functions, the result code is contained in the data of the notification sent upon the
completion of the operation.
Every APl method has a set of pre-conditions associated with it, consisting of:

¢ Ranges for parameters

e APl state in which the method should be called

e Context from which the method can be called
The pre-conditions are clearly documented for every method. When the application violates any of the pre-
conditions, the method call will fail, and the method’s result code will indicate the violation. The API will remain
stable and its state will not be affected by the call. However, it is recommended that applications do not rely on this
behavior and avoid violating the pre-conditions. The main value of this behavior is to aid in the debug process of
applications, and to guarantee stability in extreme conditions, and specifically under race-conditions.
However, the API’s behavior may be undefined (and even unstable) in any of the following conditions:

e Corruption of the sel f parameter, which is passed as every method’s first parameter, or any other
parameter passed by pointer.
e Violation of the threading policy.

3.5 Extensibility
3.5.1 Principles

The OpenMAX AL API was designed with extensibility in mind. An extended API is defined as one that provides
functionality additional to that defined by the specification, yet considered still conforming to the specification.

The main principles of the extensibility mechanism are:
e Any application written to work with the standard API will still work, unchanged, on the extended API.
e For an application that makes use of extensions, it will be possible and simple to identify cases where these

extensions are not supported, and thus to degrade its functionality gracefully.

Possible extensions may include vendor-specific extensions as well as future versions of OpenMAX AL.

3.5.2 Permitted Modifications to Physical Code

The OpenMAX AL header files shall be edited only for the following purpose:

e Toamend definitions of types (for example, 32 bit signed integers) such that they have correct
representation.

Any vendor-specific extensions to the API shall reside in header files other than the OpenMAX AL header files.

OpenMAX|AL a

3.5.3 Extending Supported Interface Types

An extended APl may introduce new interface types and expose these interfaces on either existing object types or on
extended object types (see section 3.5.4).

An extended APl may also expose standard interfaces on standard / extended object types that do not normally
require exposing these interfaces.

The extended interfaces will be defined in a manner similar to standard interfaces. The extended interface types will
have unique IDs, generated by the extension provider.

Note that the extending APl may not alter standard interfaces or apply different semantics on standard interfaces,
even if the syntax is preserved. An exception to this rule is extending the valid parameter range of functions, detailed
later.

Functions may not be added to any of the interfaces defined in the specification. To do that, a new interface which
includes the desired standard interface must be defined, along with a new interface ID which must be generated,

It is also highly recommended that whenever an interfaces signature changes (even slightly), a new interface ID will
be generated, and the modified interface will be considered a new one. This is to protect applications already written
to work with the original interface.

3.5.4 Extending Supported Object Types

An extended APl may introduce new object types to those specified in the standard API. The extended objects may
expose either standard or extended interface types. Should it expose standard interfaces — they must still behave as
specified. Otherwise, the extended API may provide extended interface types with different semantics.

The extended objects will be created by extended interfaces with creation functions. These extended interfaces
typically will be exposed by the standard engine object, but can also be exposed on other objects.

3.5.5 Extending Method Parameter Ranges

An extended APl may support an extended range of parameters for a standard method than the range mandated by
the specification. The semantics of the extended range are left to the extended API’s specification. However, for
mandated ranges, the API shall behave exactly according to the specification.

Care must be taken when the extended API is vendor-specific in these cases — future versions of the APl may
use these extended values for different purposes. To help guard against collisions with future API versions,
implementations of an extended API shall have the most significant bit set on any extensions to an enumeration
(a fixed set of discrete unsigned values). For example:

#define XA SEEKMODE_FAST ((XAuint32) 0x0001)
#define XA_SEEKMODE_ACCURATE ((XAuint32) 0x0002)
/* ACME extension to SEEKMODE enumeration */

#define XA_SEEKMODE_ACME_FOO ((XAuint32) 0x8001)

The most significant bit does not need to be set for any extensions to continuous ranges or for signed values.

OpenMAX|AL §

3.5.6 Result Codes

It is not possible to extend the result codes for any standardized method in the API. An implementation shall return
one of the result codes listed in the method’s documentation.

3.5.7 Interface ID Allocation Scheme

A common interface 1D allocation scheme shall be used for vendor-specific interface IDs, to prevent collisions by
different vendors.

The UUID mechanism provided freely in the Web-site below is highly recommended to be used by all providers of
extensions.

http://wwwv.itu.int/ITU-T/asn1/uuid.html

The interface IDs do not have to be registered — it is assumed that the above mechanism will never generate the
same ID twice.

3.5.8 Avoiding Naming Collisions

It is recommended that vendors providing extended APIs qualify all the global identifiers and macros they provide
with some unique prefix, such as the vendor name. This prefix will come after the API prefix, such as
XAAcmeDistortionltf.

This is meant to reduce the risk of collisions between vendor-specific identifiers and other versions of the
specification of other vendors.

The example below demonstrates using extensible features of the specification. The code will compile both on
implementations which support the extended API as well as those which do not:

void ShowExtensibility(XAEngineltf *eng)
{
XAresult res;
XAboolean supported;
XAObjectltf player;
XAAcmeDistortionltf distortionltf;
XAPlayltf playbackltf;
XAmillibel vol;

/* create an audio player */
res = eng->CreateMediaPlayer(eng, &player, ...); CheckErr(res);
res = (*player)->Getlnterface(player,
&XA_11D_ACME_DISTORTION, (void*)&distortionltf);
if (XA_RESULT_ FEATURE_UNSUPPORTED == res)

{

supported = false;
else

CheckErr(res);

supported = true;
}

/* continue using the player normally whether

OpenMAX|AL 23

http://www.itu.int/ITU-T/asn1/uuid.html�

the extension is supported or not */
res = (*player)->Getlnterface(player, &XA 11D_PLAYBACK,
(void*)&playbackltf);
CheckErr(res);

/* whenever calling an extension’s method,
wrap it with a condition. */
if (supported)

/* employ one of the interface’s methods */
res = (*distortionltf)->SetDistortionGain(distortionltf, vol);
CheckErr(res);

OpenMAX|AL

24

4 Functional Overview

4.1 Object Overview

OpenMAX AL represents entities in its architecture as objects, including:

Engine Object

Media Objects

Metadata Extractor Object
Audio Output Mix Objects
Camera Objects

LED Array Objects

Radio Objects

Vibration Control Objects

The following sections provide an overview of each of these.

4.1.1 Engine Object

The engine object is the entry point to the OpenMAX AL API. This object enables you to create all the other objects
used in OpenMAX AL.

The engine object is special in the sense that it is created using a global function, xaCreateEngine() (see
section 6.1). The result of the creation process is the XAObject1tf interface (see section 8.23) of the engine
object. The implementation is not required to support the creation of more than one engine at a given time.

The engine object can have two different modes of operation, thread-safe mode and non-thread safe mode. The
application specifies the mode of operation upon engine object creation. See section 3.2 for details.

The engine object shall expose the XAThreadSync I tf interface (see section 8.33) to enable synchronization
between the API’s callback contexts and the application contexts.

After creation of the engine object, most of the work will be done with the XAEngine I tF interface (see section
8.12) exposed by this object.

An additional functionality of the engine object is querying implementation-specific capabilities. This includes the
encoder and decoder capabilities of the system. The OpenMAX AL API gives implementations some freedom
regarding their capabilities, and these capabilities may even change according to runtime conditions. For this reason,
during runtime the application may query the actual capabilities. However, this specification defines a minimum set
of capabilities, expressed as a set of use-cases that shall be supported on every implementation, according to the
profiles that are implemented. These use-cases are described in detail in section 4.8.

The engine object represents the system’s various multimedia-related devices via unique device IDs. It supports the
enumeration of audio input, audio output, camera, radio, LED and vibrator devices as well as mechanisms to query
their capabilities. Applications can use information regarding the devices’ capabilities to:

o Determine if they can even run on the system (for example, an application that can render only 8 kHz 8-bit

audio might not be able to run on a system that can handle only sampling rates of 16 kHz and above at its
outputs.)

OpenMAX|AL s

e Configure the user interface accordingly so that the user is presented with the correct device choices in the
Ul menus.

The audio 1/0 device capabilities interface is described in section 8.2.

4.1.2 Media Objects

A media object implements a multimedia use case by performing some media processing task given a prescribed set
of inputs and outputs. Media objects include (but are not limited to) objects that present and capture media streams,
often referred to as players and recorders, respectively. They operate on audio, video, and image data or some
combination of them.

The following characteristics define a media object:

e The operation it performs, denoted by the creation method used to instantiate the media object.
e The inputs it draws data from, denoted as its data sources and specified at media object creation.
e The outputs it sends data to, denoted as its data sinks and specified at media object creation.

The media object creation methods are described in section 8.12.

4.1.2.1 Data Source and Sink Structures

A data source is an input parameter to a media object specifying from where the media object will receive a
particular type of data (such as audio, video, or image). A data sink is an input parameter to a media object
specifying to where the media object will send a particular type of data (such as audio, video, or image).

The number and types of data sources and sinks differ from one media object to another. The following
characteristics define a data source or sink:

® |ts data locator which identifies where the data resides. Possible locators include:
® URIs (such as a filename)
® Memory addresses
® |/O devices
® Qutput Mixes
® Cameras
® |ts data format which identifies the characteristics of the data stream. Possible formats include:
® MIME-type based formats
® PCM formats
® RAW image formats

An application specifies a media object’s respective data source(s) and sink(s) upfront in the creation method for the

media object. Collectively, the media object together with its associated source(s) and sinks(s) define the use case
the application wants executed.

4.1.3 Metadata Extractor Object

Player objects support reading of the metadata of the media content and recorder objects support writing metadata.
However, sometimes it is useful just to be able to read metadata without having to be able to playback the media. A

OpenMAX|AL 26

Metadata Extractor object can be used for reading metadata without allocating resources for media playback. Using
this object is recommended particularly when the application is interested only in presenting metadata without
playing the content and when wanting to present metadata of multiple files. The latter is particularly interesting for
generating playlists for presentation purposes because a player object would unnecessarily allocate playback
resources. Furthermore, players cannot change their data source dynamically; therefore, for metadata extraction
from multiple files, the application needs to create and destroy player objects many times, which is both inefficient,
and may result in fragmentation of the heap. A Metadata Extractor object does not have a data sink, but it has one
data source that can be dynamically changed.

4.1.4 Audio Output Mix Object

The API allows for routing of audio to multiple audio outputs and includes an audio output mix object that facilitates
this functionality. The application retrieves an output mix object from the engine and may specify that output mix as
the sink for a media object. The audio output mix object is specified as a sink for a media object using the

XA _DATALOCATOR_OUTPUTMI X data locator as described in section 9.2.24. The engine populates the output mix
with a set of default audio output devices. The application may query for this list of devices or request changes to it
via the XAOutputMix1tF interface. The API does not provide a direct audio output 10-device as a sink for media
objects.

The audio output mix object is defined in section 7.7 and the output mix interface is described in section 8.24.

4.1.5 Camera Object

Control of one of the device’s cameras is handled via the Camera object. The number of cameras supported by a
device and their capabilities can be retrieved from the media engine via the XACameraCapabilitiesltf
interface. A camera 1/O device exposes the XACameral tf interface, which is used to control camera features such
as flash, focusing, metering, exposure compensation, sensitivity, shutter speed, aperture, white balance, and zoom.
The camera 1/0 object is connected to a media recorder media object to capture still images or video.

4.1.6 LED Array Control Object

Control of the device’s LEDs is handled via the LED array object. Querying the capabilities of and creating a LED
array object is an engine-level operation, while control over individual LEDs is handled by the object.

4.1.7 Radio Object

Control of the device’s FM/AM radio is handled via the Radio object. Instantiating a Radio object is an engine-level
operation. The Radio 1/O device can expose two interfaces: XARadioltf and XARDS1tf. XARadioltfisan
implicit interface that is used to control the basic functionality, such as setting the frequency. XARDS I tf is an
optional interface to control Radio Data System functionality.

The Radio 1/0 device object shall be connected to a Media Player object to make the radio audible.

4.1.8 Vibration Control Object

Control of the device’s vibration support is handled via the Vibra object. Querying the capabilities of and creating a
Vibra object is an engine-level operation, while control of the actual vibration is handled by the object.

OpenMAX|AL i

4.2 Audio Playback and Recording

This section introduces OpenMAX AL functionality for the playback and recording of sampled audio content.

An audio player is used for sampled audio playback. OpenMAX AL supports both file-based and in-memory data
sources, as well piped content. The API supports data encoded in many formats, although the formats supported by a
device are implementation-dependent.

An audio recorder is used for capturing audio data. Audio capture is an optional component of OpenMAX AL for
implementations of the Media Player profile.

4.3 Video Playback and Recording

This section introduces OpenMAX AL functionality for the playback and recording of video.

A video player supports the playback of synchronized audio/video content and video content absent of audio.
OpenMAX AL supports both file-based and in-memory data sources as well as piped content. The APl supports data
encoded in many formats, although the formats supported by a device are implementation-dependent. An application
can also use a video player to display the preview window for a camera.

A video recorder is used for capturing synchronized audio/video content and video content absent of audio. Video
capture is an optional component of OpenMAX AL for implementation of the Media Player profile.

4.4 Image Renderering and Capture

This section introduces OpenMAX AL functionality for the rendering and capture of image content.

An image player supports the rendering of image data. OpenMAX AL supports both file-based and in-memory data
sources as well as piped content. The API supports data encoded in many formats, although the formats supported
by a device are implementation-dependent.

An image recorder supports the capture of image data. Captured snapshots may be encoded or raw. Image capture is
an optional component of OpenMAX AL for implementations of the Media Player profile.

4.5 Playback of MIDI

OpenMAX AL supports MIDI playback using the standard player creation mechanism, the creation method
XAEngineltf: :CreateMediaPlayer (). This method provides the ability to specify a MIDI data source and
an audio output device, as well as an optional data source for an instrument bank data source and data sinks for an
LED array output device and a Vibra output device. OpenMAX AL supports MIDI data sources that refer to SP-
MIDI [SP-MIDI] and Mobile XMF [mXMPF] files. Playback is controlled via the standard OpenMAX AL interfaces,
such as XAVolume 1 tF, XAPlaybackltf, XAPlaybackRatel tf, and XASeekItf. MIDI players also
support metadata extraction via the XAMetadataExtractionltf.

4.5.1 Support for Mobile DLS

OpenMAX AL supports Mobile DLS [mDLS] soundbanks as stand-alone files provided to a media player object on
creation or embedded within a Mobile XMF file. In addition, the media player supports the GM soundbanks [MIDI]
by default.

OpenMAX|AL 28

In several cases, a media player will not be able to handle two DLS banks at the same time (for example, bank
provided during media player creation and bank embedded in the content). In such a case, player creation may fail,
and the application can retry the creation without providing the additional bank.

When a program is selected for a MIDI channel (using bank select / program change messages), the media player
will first look for the program in the embedded DLS bank, if such exists. If it is not found, the media player will
look in the DLS bank that was provided on creation, if applicable. If it is still not found, the media player will try to
load the program from the built-in GM bank. If the program does not exist there either, the media player shall
generate silence on the specified channel, but should still keep track of that channel’s state.

4.6 Display Regions
Conceptually OpenMAX AL maintains three separate notions relating to the visual output:

e Display: Corresponds to the entire logical screen area (or “desktop™). The display is provided by the native
windowing manager in the form of a native handle. All interaction with this entity is handled exclusively
via native interfaces using the native handle (not via OpenMAX AL). Multiple media objects may operate
on the same display.

e Window: Corresponds to the window within the display. A window may be sized to encompass the entire
display and yet it is considered an independent entity (for instance, a fullsize window may be later sized
down to a region less than the entire display or have other windows on top of or behind it). The window is
provided by the native windowing manager in the form of a native handle. All interaction with this entity is
handled exclusively via native interfaces using the native handle (not via the OpenMAX AL). Multiple
media objects may operate on the same window.

e Region: Corresponds to the area within the native window where the media object presents its output. This
may include the entire window area or be some subset of the window area. The region is specific to a
particular media object.

-

|:|\

Display < Region < >Window

Figure 5: Display with windowed rendering

OpenMAX|AL o

Display < Region <

\.

Figure 6: Display with full-screen rendering

The native display handle and the native window handle associated with an AL media object are of type

XA DATALOCATOR_NATIVEDISPLAY and reside in the data sink structure. Together these handles provide
media objects the hooks necessary to interact with the native windowing manager. Note that OpenMAX AL does
not presently standardize the interaction with the native windowing manager but assumes this communication will
take place via platform specific interfaces.

OpenMAX|AL

30

4.7 OpenMAX AL Use Cases

This section illustrates the typical use of objects and interfaces in some typical cases of OpenMAX AL use. The
support for these use cases is mandatory in all profiles unless otherwise stated in profile notes. We indicate optional
interfaces and objects with grey color.

4.7.1 Audio and Video Playback

o XAObjectltf
o XAEngineltf
o XAVideoDecoderCapabilitiesltf
o XAAudioDecoderCapabilitiesltf

creates Tl | Default
! Output Mix OutputDevice| output
! Device
|
|
| XAOutputMixitf

R | XAObjectltf
DataS
alasource Media Player
XASeekltf Native
Display

XAVolumeltf
XAPlayltf
XAObjectltf

Figure 7: Audio and video use case

The Media Player object facilitates audio and video playback. A Media Player is created using the XAEngineltf
interface of the engine object. Upon creation, we associate the Media Player with an Output Mix (which we create
via the XAEngineltF interface) for audio output and with a native display handle for video output. We also set
the data source of the Media Player during creation. The data source could be, for example, a URI pointing to a
video file in the local file system. The Output Mix is by default associated with the system-dependent default output
device.

PROFILE NOTES
The support for this use case is mandated in all profiles.

OpenMAX|AL 5

4.7.2 Audio Playback

o XAObjectltf
o XAEngineltf
o XAAudioDecoderCapabilities|tf

creates _-~

-
-

e / \
el cregtes creates
/,/ ’ \
- // \
URI
Default
Output
Device
O XAEqualizerltf
’ O XAOutputMixItf
URI

O XAObjectltf

O XASeekitf
O XAvolumeltf
O XAPlayltf

O XAObjectltf

Figure 8: Audio playback with multiple players use case

OpenMAX AL may support playback multiple audio files simultaneously. This use case leverages two Media Player
objects for audio playback. We create the Media Players using the XAEngine I'tf interface of the engine object.
Upon creation, we associate the Media Players with an Output Mix (which we created with the XAEnginel tf
interface) for audio output. We also set the data sources of the Media Players during creation. The data sources can
be, for example, URIs pointing to audio files in the local file system. The Output Mix is by default associated with
the system-dependent default output device.

PROFILE NOTES
The support for this use case is mandated in all profiles.

OpenMAX|AL =

4.7.3 Recording Audio

o XAObjectltf
o XAEngineltf

o XAAudiolODeviceCapabilities|tf
o XAAudioEncoderCapabilities|tf

creates

|
|
|
'
al
I
|
|
|
|
|
|
|
|
|

Micro-
phone

Media Recorder

O XARecordItf
O XAObjectltf

Figure 9: Recording audio use case

O XAAudioEncoderltf

URI

An Audio Recording use case is handled by an Media Recorder object. It is created using XAEngine I 'tf interface

of the engine object. Upon creation, it is associated with an audio data source, which can be, for example, a

microphone (an audio input device). The data sink of the Media Recorder can be a URI pointing to an audio file in

the local file system on which the audio will be recorded.

PROFILE NOTES

The support for this use case is mandated only in the Media Player/Recorder profile.

OpenMAX|AL

33

4.7.4 Image Player

o XAObjectltf

o XAEngineltf
o XAlmageDecoderCapabilitiesltf

creates
|

URI . Native
DataSource Hﬁ DataSink Display

edia Player

XAMetadataTraversalltf
XAMetadataExtractionltf
XAlmageControlltf
XAlmageEffectsltf
XAPlayltf
XAObjectltf

Figure 10: Image player use case

Media Player object also supports image playback. We create a Media Player using the XAEngine 1 tF interface of
the engine object. Upon creation, we associate the Media Player with a native display handle for image output. We
also set the data source of the Media Player during creation. The data source can be, for example, a URI pointing to
an image file in the local file system.

PROFILE NOTES
The support for this use case is mandated in all profiles.

OpenMAX|AL .

4.7.5 Video Camera

o XAObjectltf
o XAEngineltf
o XACameraCapabilitiesltf
o XAAudiolODeviceCapabilitiesltf
o XAVideoEncoderCapabilities|tf
o XAAudioEncoderCapabilities|tf

/ N “~._ creates
,/ N S~
’ \\
creates AN AN
/ N o~
/ S S~ i
, \ ‘ N Native
creates DataSink| Display

O XACameraltf

O XAObjectltf

URI

Media Recorder

- Source O XAAudioEncoderltf
Micro- pa O XAVideoEncoderltf
phone O XARecordltf

O XAObjectltf

Figure 11: Video camera use case

Video camcorder use case requires a Media Recorder object for recording and a Media Player for the viewfinder.
We create both using the XAEngine ltf interface of the engine object. Upon creation, we associated both with the
same Camera object (which we create with the XAEng ine I tF interface). We set the audio data source of the
Media Recorder to be a microphone (an audio input device). The data sink for the Media Player is a native window
or display handle (as it was in the previous video playback use case). The data sink of the Media Recorder can be a

URI pointing to a video file in the local file system where the data will be recorded.

PROFILE NOTES
The support for this use case is mandated only in the Media Player/Recorder profile.

OpenMAX|AL

4.7.6 Still Camera

o XAObjectltf
o XAEngineltf
o XACameraCapabilities|tf

o XAlmageEncoderCapabilitiesltf

Native
Display

DataSink

O
XACameraltf URI

O XAObjectltf

O XAlmageEncoderltf
O XASnapshotltf

O XAObjectltf

Figure 12: Still camera use case

Still camera use case is similar to the video camera use case except the Media Recorder exposes different interfaces.
It provides the XASnapshot I tf interface for still image capture and XAImageEncoder 1 tF for the image
encoder settings (instead of the XARecordltf and XAVideoEncoder I tf interfaces respectively)

PROFILE NOTES

The support for this use case is mandated only in the Media Player/Recorder profile.

OpenMAX|AL .

4.7.7 Radio Playback

o XAObjectltf
o XAEngineltf

creates

|
|
|
|
|
|
|
|
|
N/

: . Default
Media Player DataSink Output Mix OutputDevice output
Device
XARDSItf XAVolumeltf
XARadioltf XAPlayltf XAOutputMixItf
XAObjectltf XAODbjectltf XAObjectltf

Figure 13: Radio playback use case

A Media Player object may also facilitate the radio playback use case. As always, we create the Media Player using
the XAEnginel tF interface of the engine object. Upon creation, we associate the Media Player with an Output
Mix (which we create with the XAEngineltF interface) for audio output. By default, OpenMAX AL

automatically associates the Output Mix with the system-dependent default output device. During the creation, we
set the Radio 1/0 device (which we create with the XAEngine I tf interface) as the data source.

PROFILE NOTES

The support for this use case is optional in all profiles since support for Radio 1/0 device object is optional.

OpenMAX|AL

37

4.7.8 Reading Metadata

o XAObjectltf
o XAEngineltf

|
creates
|

URI AN

M' Metadata Extractor |

l (L XAMetadataExtractionltf
XAMetadataTraversalltf

XADynamicSourceltf
XAObjectltf

Figure 14: Reading meta data use case

A Metadata Extractor object will read the metadata of a media file without allocating resources for audio playback.
As in other use cases, we create the object using XAEngine I tf interface of the engine object and, upon creation,
we set the data source of the Metadata Extractor. The data source is typically a URI pointing to a media file in the
local file system. However, the Metadata Extractor supports the XADynamicSource I tf interface which we can
use to change the data source. Therefore we may extract metadata from multiple files (in series) without creating a
new Metadata Extractor object for every single file. The XAMetadataExtractionltf and
XAMetadataTraversal I tf interfaces are used for actually reading and traversing the metadata from a file.

PROFILE NOTES

The support for this use case is mandated in all profiles.

OpenMAX|AL .

PART 2: APl Reference

5 Base Types and Units

OpenMAX AL defines a set of cross-platform fixed width types that are used within the API. The definition of these
are system-dependent and the platform provider must specify these types. OpenMAX AL also defines a set of types
for different units required by the API, such as distance and volume. To aide programmability, most of these units
are based on the thousandth unit of a SI unit [ISO1000].

5.1 Standard Units

The table below shows the standard types for units used in OpenMAX AL.
Table 7: OpenMAX AL Unit Types

Unit Measurement C type

Angle millidegree (mdeg) XAmillidegree
Distance millimeter (mm) XAmillimeter
Frequency milliHertz (mHz) XAmilliHertz
Scale/Factor permille (%o) XApermille
Time millisecond (ms) XAmillisecond
Time microsecond (ps) XAmicrosecond
Volume level millibel (mB) XAmillibel

5.2 Base Types

typedef <system dependent> XAiIntS8;

typedef <system dependent> XAuint8;
typedef <system dependent> XAintl6;
typedef <system dependent> XAuintl6;
typedef <system dependent> XAiInt32;
typedef <system dependent> XAuint32;
typedef <system dependent> XAuint64;

typedef XAuint32 XAboolean;
typedef XAuint8 XAchar;
typedef XAintl6 XAmillibel;
typedef XAuint32 XAmillisecond;
typedef XAuint32 XAmilliHertz;
typedef XAint32 XAmillimeter;
typedef XAInt32 XAmillidegree;
typedef XAintl6 XApermille;
typedef XAuint32 XAmicrosecond;
typedef XAuint64 XAtime;
typedef XAuint32 XAresult;

Type Description

XAInt8 An 8-bit signed type. The definition of this type is system-dependent.

OpenMAX|AL “

XAuint8

An 8-bit unsigned type. The definition of this type is system-dependent.

XAInt1l6 A 16-bit signed type. The definition of this type is system-dependent.

XAuintl6 A 16-bit unsigned type. The definition of this type is system-dependent.

XAINnt32 A 32-bit signed type. The definition of this type is system-dependent.

XAuint32 A 32-bit unsigned type. The definition of this type is system-dependent.

XAuint64 A 64-bit unsigned type. The definition of this type is system-dependent.

XAboolean A Boolean type, where zero is false and all remaining values are true.

XAchar A character type. All strings within the API, except where explicitly defined otherwise,

are UTF-8, null-terminated, XAchar arrays.

XAmillibel

A type for representing volume in millibels (mB), one thousandth of a Bel, one hundredth
of a decibel.

XAmillisecond

A type for representing time in milliseconds, (ms), one thousandth of a second).

XAmilliHertz

A type for representing frequency in milliHertz (mHz), one thousandth of a Hertz.

XAmillimeter

A type for representing distance in millimetres (mm), one thousandth of a meter.

XAmillidegree

A type for representing an angle in millidegrees (mdeg), one thousandth of a degree.

XApermille

A type for representing a scale or factor in permille. One permille (1%o.) is equal to a factor
of 0.001. One thousand permille (1000%o) is equal to a factor of one.

XAmicrosecond A type for representing time in microseconds, one millionth of a second).
XAtime A type for representing time measured as seconds since midnight, 1 January 1970 UTC.
XAresult A type for standard OpenMAX AL errors that all functions defined in the API return.

OpenMAX|AL .

6
6.1

Functions
xaCreateEngine

xaCreateEngine

XAresult XAAPIENTRY xaCreateEngine(
XAObjectltf * pEngine,
XAuint32 numOptions,

const

XAEngineOption * pEngineOptions,

XAuint32 numlnterfaces,

const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired
)
Description | [nitializes the engine object and gives the user a handle.
Pre-conditions | None
Parameters | pEngine [out] | Pointer to the resulting engine object.
numOptions [in] | The number of elements in the options array. This
parameter value is ignored if pEngineOptions is NULL.
If numOptions is equal to 0, the engine is initialized
without any optional features.
pEngineOptions [in] | Array of optional configuration data. A NULL value
initializes the engine without the optional features being
enabled.
numlnterfaces [in] | Number of interfaces that the object is requested to support
(not including implicit interfaces).
pInterfacelds [in] | Anarray of numInterfaces interface IDs, which the

object should support.
This parameter is ignored if numInterfaces is zero.

pInterfaceRequired | [in] | Anarray of numInterfaces flags, each specifying
whether the respective interface is required on the object or
optional. A required interface will fail the creation of the
object if it cannot be accommodated and the error code
XA_RESULT_FEATURE_UNSUPPORTED will be then
returned.

This parameter is ignored if numInterfaces is zero.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_MEMORY_FAILURE
XA_RESULT_FEATURE_UNSUPPORTED
XA_RESULT_RESOURCE_ERROR

Comments

The options supported by an individual implementation are implementation-dependent.
Standardized options are documented in section.9.2.31. The engine is destroyed via the destroy
method in XAObjectltf. See Appendix F: for examples using this method.

OpenMAX|AL 42

See Also

Engine object [see section 7.2].

6.2

xaQueryNumSupportedEnginelnterfaces

xaQueryNumSupportedEnginelnterfaces

XAresult XAAPIENTRY xaQueryNumSupportedEnginelnterfaces(
XAuint32 * pNumSupportedinterfaces

);
Description | Queries the number of supported interfaces available on engine object.
Parameters [pNumSupportedInterfaces | [out] Identifies the number of supported interfaces

available. Must be non-NULL.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

The number of supported interfaces will include both mandated and optional interfaces available
for the engine object.

See also

xaQuerySupportedEnginelnterfaces(),
XAEngineltf: :QueryNumSupportedInterfaces [see section 8.12].

6.3

xaQuerySupportedEnginelnterfaces

xaQuerySupportedEnginelnterfaces

XAresult XAAPIENTRY xaQuerySupportedEnginelnterfaces(
XAuint32 index,
XAlnterfacelD * plInterfaceld

):
Description | Queries the supported interfaces on engine object.
Pre-conditions | None
Parameters | Index [in] Incrementing index used to enumerate available interfaces.
Supported index range is 0 to N-1, where N is the number of
supported interfaces.
pInterfaceld | [out] Identifies the supported interface corresponding to the given
index. Must be non-NULL.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

The number of supported interfaces will include both mandated and optional interfaces available
for the engine object.

See also

xaQueryNumSupportedEnginelnterfaces(),
XAEngineltf: :QueryNumSupportedlnterfaces [see section 8.12].

OpenMAX|AL

43

7 Object Definitions

This section documents all the object types supported by the API. Some object types are mandated to be supported
only in a selection of the profiles. Where this is the case, the object’s description will include a profile note stating
this.

Each object type has a list of mandated interfaces that must be supported for that object type. If the object type
itself is not mandated, if the implementation allows creation of objects of that type, it must still support all the
mandated interfaces for the object type. The list of mandated interfaces may vary according to profile, as
documented in the profiles notes. The mandated interface sections also documents whether an interface is implicit or
must be supported dynamically.

Besides of the mandated interfaces, an object is free to support any interfaces defined in this specification (and any
vendor-specific interfaces). However, some interfaces specified in this specification make much more sense with a
specific object type than some other interfaces. Therefore, for information only, each object type has also a list of
applicable optional interfaces. The implementer is not limited to support only these listed interfaces, but these lists
provide the application developer a hint concerning which optional interfaces might be supported.

OpenMAX|AL “

7.1 Camera |I/O Device

Description

The camera 1/0 device object provides access to still image and video data from a camera source and exposes
controls for camera-related settings. A Media Recorder object may leverage a camera object to capture image or
video data. See section F.5 for an example using this object.

PROFILE NOTES
Creation of objects of this type is mandated in the Media Player/Recorder profile.

Mandated Interfaces

XACameraltf [see section 8.5]
This interface controls the camera.

This interface is an implicit interface on this object.
XAODbjectltf [see section 8.23]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.
XADynamiclnterfaceManagementlItf [see section 8.10]

This interface is used for adding interfaces to the object after creation.

This interface is an implicit interface on this object.

Applicable Optional Interfaces

XAConfigextensionsltf [see section 8.7]

This interface can be used to get and set parameters for any AL object in a vendor-specific manner.

XAlmageControlsitf [see section 8.14]

This interface exposes controls for brightness, contrast and gamma adjustments.

XAlmageEffectsItf [see section 8.16]
This interface controls the image effects.

This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

XAVideoPostProcessingltf [see section 8.37]

This interface controls scaling, mirroring, cropping and rotating.

OpenMAX|AL

45

7.2 Engine Object

Description

This object type is the entry point of the AP1. An implementation shall enable creation of at least one such object,
but attempting to create more instances (either by a single application or by several different applications) may fail.

The engine object supports creation of all other OpenMAX AL objects via its XAEngine 1 tF interface, and
querying of the implementation’s capabilities via interfaces. See Appendix F: for examples using this object.

PROFILE NOTES

Creation of objects of this type is mandated in all profiles.

Creation

An engine is created using the global function xaCreateEngine () (see section 6.1).

Mandated Interfaces
XAEngineltf [see section 8.12]

This interface exposes methods for creation of other OpenMAX AL objects.
This interface is an implicit interface on this object.
XAODbjectltf [see section 8.23]
This interface exposes basic object functionality.
This interface is an implicit interface on this object.
XADynamiclnterfaceManagementlItf [see section 8.10]
This interface is used for adding interfaces to the object after creation.

This interface is an implicit interface on this object.

XAAudiolODeviceCapabilitiesltf [see section 8.2]
This interface exposes methods for querying available audio device capabilities.

This interface is an implicit interface on this object.

XAAudioDecoderCapabitiesltf [see section 8.1]
This interface exposes methods for querying audio decoder capabilities.

This interface is a mandated interface on this object.

OpenMAX|AL .

XAAudioEncoderCapabitiesitf [see section 8.3]
This interface exposes methods for querying audio encoder capabilities.

This interface is a mandated interface on this object.

XACameraCapabilitiesItf [see section 8.6]
This interface exposes methods for querying camera device capabilities.

This interface is mandated only for Media Player/Recorder profile.

XAlmageDecoderCapabitiesltf [see section 8.15]
This interface exposes methods for querying image decoder capabilities.

This interface is a mandated interface on this object.

XAlmageEncoderCapabitiesitf [see section 8.18]
This interface exposes methods for querying image encoder capabilities.

This interface is a mandated interface on this object.

XAVideoDecoderCapabitieslItf [see section 8.35]
This interface exposes methods for querying video decoder capabilities.

This interface is a mandated interface on this object.

XAVideoEncoderCapabitiesItf [see section 8.37]
This interface exposes methods for querying video encoder capabilities.

This interface is a mandated interface on this object.

XAThreadSyncltf [see section 8.33]
This interface exposes methods for entering and exiting critical section.

This interface is a mandated interface on this object.

Applicable Optional Interfaces

XADeviceVolumeltf [see section 8.8]

This interface controls audio input and output device specific volumes.

XAConfigExtensionsltf [see section 8.7]

This interface can be used to get and set parameters for any AL object in a vendor-specific manner.

OpenMAX|AL

7.3 LED Array |I/O Device

Description

The LED array 1/O device object encapsulates and controls a set of LEDs. Its functionality covers setting LED color,
activating and deactiving LEDs.

PROFILE NOTES
This object is a standardized extension and consequently optional in all profiles.

Mandated Interfaces
XAODbjectltf [see section 8.23]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

XALEDArrayltf [see section 8.19]
This interface exposes all LED capabilities for a LED array 10Device.

This interface is an implicit interface on this object.

XADynamiclnterfaceManagementlitf [see section 8.10]
This interface is used for adding dynamic interfaces (see section 3.1.6) to the object.

This interface is an implicit interface on this object.

Applicable Optional Interfaces

XAConfigextensionsltf [see section 8.7]

This interface can be used to get and set parameters for any AL object in a vendor-specific manner.

OpenMAX|AL .

7.4 Media Player Object

Description

The media player object plays audio, video or image content as specified by the data source. It performs any implicit
decoding, applies any specified processing and performs synchronized rendering of final audio, video, and image
streams to the destinations specified by the audio and image/video data sinks.

The application may omit the audio sink or image/video sink when creating a media player (that is, by passing NULL
as a parameter) if the media player does not wish to playback the desired content.

Media players may render data from a variety of sources. The controls exposed in the playback interface are
appropriate for all sources. Though conceptually identical, the precise effect of each playback state depends on the
use case. Unlike the playback interface, the seek and playback rate controls may be inappropriate for sources where
such functionality is not achievable. For instance, persistent time-based content is amenable to seeking and rate
control, yet live data is amenable to neither.

To illustrate, consider these typical use cases:

The playback of an audio-only, video-only or audio-and-video file. The ability to seek and set rate on this player
depends on the nature of the content and/or the capabilities of the media player implementation. The media player
performs any synchronization inherent in audio-and-video content. In the context of this use case, the playback
states have the following interpretation:

Table 8: Presentation and Playback State for Audio/Video Media

Playback State

Audio Content

Image/Video Content

Presentation

Stopped not presented not presented not updating
Playing presented presented updating
Paused not presented presented not updating

Table 9:

The display of an image file. Due to its instantaneous nature, an image file cannot be seeked and its rate annot be
changed. In the context of this use case, the playback states have the following interpretation:

Presentation and Playback Staete for Image Media

Playback State

Audio Content

Image/Video Content

Presentation

Stopped not applicable | not presented not applicable
Playing not applicable | presented not applicable
Paused same as playing state

The rendering of live preview data. In this case, the source is a camera (as in the case of a viewfinder). In this
context, the playback states have the following interpretation:

Table 10: Presentation and Playback State for Live Preview

Playback State

Audio Content

Image/Video Content

Presentation

Stopped

not applicable

not presented

not updating

OpenMAX|AL

Playing not applicable | presented updating

Paused not applicable | presented not updating

A application may choose to associate both a media player object and a media recorder object with the same camera
1/0O device object to implement a camcorder or still image camera application. In such a case, if the application
instructs the media recorder to freeze on a snapshot, any media player that shares the camera 1/0 device object will
transition to the paused playback state.

See section F.1, section F.2, section F.3 and section F.5 for examples using this object.

PROFILE NOTES

Creation of objects of this type is mandated in all profiles.

Mandated Interfaces
XAPlayltf [see section 8.25]

This interface controls the playback state of the media player.

This interface is an implicit interface on this object.
XAPrefetchStatusltf [see section 8.27]

This interface enables querying the prefetch status of the audio player.

This interface is a mandated interface on this object.
XASeeklItf [see section 8.31]

This interface controls the position of the playback head and any looping of playback.

This interface is a mandated interface on this object.
XAMetadataExtractionltf [see section 8.20]

This interface exposes methods for retrieving metadata.

This interface is a mandated interface on this object.

This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.
XAMetadataTraversalltf [see section 8.22]

This interface exposes methods for navigating through metadata.

This interface is a mandated interface on this object.

This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.
XAODbjectltf [see section 8.23]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.
XADynamiclnterfaceManagementlitf [see section 8.10]

This interface is used for adding interfaces to the object after creation.

This interface is an implicit interface on this object.

XAVolumeltf [see section 8.38]

OpenMAX|AL 0

This interface exposes volume-related controls.

This interface is a mandated interface on this object for media containing audio.

XAStreamInformation [see section 8.32]
This interface exposes stream property interface and selection.

This interface is a mandated interface on this object.

Applicable Optional Interfaces

XAConfigextensionsltf [see section 8.7]

This interface can be used to get and set parameters for any AL object in a vendor-specific manner.

XADynamicSourceltf [see section 8.11]

This interface enables changing the data source of the player post-creation.

XAEqualizerltf [see section 8.13]

This interface controls a player-specific equalizer effect.

This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

XAlmageControlsitf [see section 8.14]

This interface exposes controls for brightness, contrast and gamma adjustments.

XAlmageEffectsItf [see section 8.16]

This interface controls the image effects.

This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

XAPlaybackRateltf [see section 8.26]

This interface exposes playback rate related controls.

This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

XAVideoPostProcessingltf [see section 8.37]

This interface controls scaling, mirroring, cropping and rotating.

OpenMAX|AL

51

7.5 Media Recorder Object

Description

The media recorder records audio, video or image content to the destination specified by the data sink. The media
recorder captures it from the inputs specified as data sources and performs any specified encoding or processing.

The application may omit the audio source or image/video source when creating a media recorder (that is, by
passing NULL as a parameter) if the application does not intend to capture the corresponding data type.

Media recorders may capture data from a variety of sources. For instance, a media recorder may support the capture
of a segment of audio and/or video data over time and/or instantaneous image data. A media recorder must support
either the record interface or the snapshot interface. A media recorder may support both interfaces.

The capture of a segment of audio and/or video data. This type of capture is controlled via the XARecord I tf
interface. The encoding parameters for audio and video are set using the XAAudioEncoder 1tf and
XAVideoEncoder I tF, respectively.

The capture of a still image. This type of capture is controlled via the XASnapshot1tf interface. The encoding
parameters are set using the XAlmageEncoder1tf.

An application may choose to associate both a media player object and a media recorder object with the same
camera 1/O device object to implement a camcorder or still image camera application. In such a case, if the
application instructs the media recorder to freeze on a snapshot, any media player that shares the camera 1/0O device
object will transition to the paused playback state.

See section F.4 and section F.5 for examples using this object.

PROFILE NOTES
Creation of objects of this type is mandated in the Media Player/Recorder profile.

Mandated Interfaces
XARecordItf [see section 8.30]

This interface controls the recording state of the media recorder, enabling the capture of data over some
segment of time.

This interface is a mandated interface when recording audio or video media.
XAAudioEncoderltf [see section 8.2]

This interface controls the parameters of audio encoding.

This interface is a mandated interface when recording audio media.
XAVideoEncoderlItf [see section 8.36]

This interface controls the parameters of video encoding.

This interface is a mandated interface when recording video media.

OpenMAX|AL g

XASnapshotltf [see section 8.32]

This interface enables the capture of still image data.

This interface is a mandated interface when recording image media.
XAlmageEncoderltf [see section 8.17]

This interface controls the parameters of image encoding.

This interface is a mandated interface when recording image media.
XAMetadatalnsertionltf [see section 8.21]

This interface exposes methods for adding metadata to media.

This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

XAODbjectltf [see section 8.23]
This interface exposes basic object functionality.
This interface is an implicit interface on this object.
XADynamiclnterfaceManagementlitf [see section 8.10]
This interface is used for adding interfaces to the object after creation.

This interface is an implicit interface on this object.

Applicable Optional Interfaces
XAConfigExtensionsltf [see section 8.7]
This interface can be used to get and set parameters for any AL object in a vendor-specific manner.
XADynamicSourceltf [see section 8.11]
This interface enables changing the data source of the recorder post-creation.
XAEqualizerlItf [see section 8.13]
This interface controls a recorder-specific equalizer effect.

This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

XAlmageControlslitf [see section 8.14]

This interface exposes controls for brightness, contrast and gamma adjustments.
XAlmageEffectsltf [see section 8.16]

This interface controls the image effects.

This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

OpenMAX|AL

53

XAMetadataExtractionltf [see section 8.20]

This interface exposes methods for retrieving metadata.

XAMetadataTraversalltf [see section 8.22]

This interface exposes methods for navigating through metadata.

XAVideoPostProcessingltf [see section 8.37]
This interface controls scaling, mirroring, cropping and rotating.

XAVolumeltf [see section 8.38]
This interface exposes volume-related controls.

OpenMAX|AL 2

7.6 Metadata Extractor Object

Description

This object can be used for reading metadata without allocating resources for media playback. Using this object is
recommended particularly when the application is interested only in presenting metadata without playing the content
and when it wants to present metadata of multiple files. The latter is particularly interesting for generation of
playlists for presentation purposes because a media player would unnecessarily allocate playback resources.
Furthermore, players cannot change their data source dynamically; therefore, for metadata extraction from multiple
files, the application needs to create and destroy player objects many times, which is both inefficient, and may result
in fragmentation of the heap.

PROFILE NOTES
Creation of objects of this type is mandated in all profiles.

Mandated Interfaces
XAObjectltf [see section 8.23]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.
XADynamiclnterfaceManagementlItf [see section 8.10]
This interface is used for adding dynamic interfaces (see section 3.1.6) to the object.
This interface is an implicit interface on this object.
XADynamicSourceltf [see section 8.11]

This interface exposes controls for changing the data source during the lifetime of the object, to be able to
read metadata from multiple files without creating a new object for every single file.

This interface is an implicit interface on this object.
XAMetaDataExtractionltf [see section 8.20]

This interface exposes controls for metadata extraction.
This interface is an implicit interface on this object.
XAMetaDataTraversalltf [see section 8.22]

This interface exposes controls for metadata traversal.

This interface is an implicit interface on this object.

XAStreaminformation [see section 8.32]
This interface exposes stream property interface and selection.

This interface is a mandated interface on this object.

Applicable Optional Interfaces

XAConfigextensionsltf [see section 8.7]

OpenMAX|AL ”

This interface can be used to get and set parameters for any AL object in a vendor-specific manner.

56

7.7 Output Mix Object

Description

The output mix object represents a set of audio output devices to which one audio output stream is sent. The
application retrieves an output mix object from the engine and may specify that output mix as the sink for a media
object. The engine must support at least one output mix, though it may support more. The API does not provide a
direct audio output 10-device as a sink for media objects.

An output mix is a logical object; it does not (necessarily) represent a physical mix. Thus the actual implementation
of the mixing defined logically by the mix objects and their association with media objects is an implementation
detail. The output mix does not represent the system’s main mix. Furthermore, a mix object represents the
application’s contribution to the output; the implementation may mix this contribution with output from other
sources.

The engine populates the output mix with the default set of audio output devices. The application may request
rerouting of that mix via calls to add and remove devices, but whether those requests are fulfilled is entirely the
prerogative of the implementation. Furthermore, the implementation may perform its own rerouting of the output
mix. In this case, the implementation makes the application aware of changes to the output mix via a notification.

Manipulation of the output mixes leverages the use of device IDs to specify the device(s) operated on. The engine
includes a special ID, called the default device 1D, which represents a set of one or more devices to which the
implementation deems audio output should go by default. Although the application may use the default device ID
when manipulating an output mix, only the implementation may alter the physical devices this ID represents.
Furthermore, the implementation may change the mapping to physical devices dynamically.

See section F.1 and section F.2 for examples using this object.

PROFILE NOTES

Creation of objects of this type is mandated in all profiles.

Mandated Interfaces

XAODbjectltf [see section 8.23]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.
XADynamiclnterfaceManagementlitf [see section 8.10]
This interface is used for adding dynamic interfaces (see section 3.1.6) to the object.

This interface is an implicit interface on this object.

XAOutputMixItf [see section 8.24]
This interface exposes controls for querying the associated destination output devices.

This interface is an implicit interface on this object.

XAEqualizerlItf [see section 8.13]

OpenMAX|AL i

This interface exposes controls over an equalizer effect.
This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

This interface is a mandated interface on this object.

XAVolumeltf [see section 8.38]
This interface exposes volume-related controls.

This interface is a mandated interface on this object.

Applicable Optional Interfaces

XAConfigextensionsltf [see section 8.7]

This interface can be used to get and set parameters for any AL object in a vendor-specific manner.

OpenMAX|AL

58

7.8 Radio I/O Device

Description

This object represents an radio tuner and maybe used by media objects as a data source. See section F.3 for an
example using this object.

PROFILE NOTES
This object is a standardized extension and consequently optional in all profiles.

Mandated Interfaces
XARadioltf [see section 8.28]

This interface exposes control over the basic tuning-related functionality. This interface is also used for
switching the radio on or off.

This interface is an implicit interface on this object.
XAODbjectltf [see section 8.23]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.
XADynamiclnterfaceManagementlItf [see section 8.10]
This interface is used for adding interfaces to the object after creation.

This interface is an implicit interface on this object.

Applicable Optional Interfaces

XAConfigextensionsltf [see section 8.7]

This interface can be used to get and set parameters for any AL object in a vendor-specific manner.

XARDSItf [see section 8.29]

This interface exposes Radio Data System functionality.

OpenMAX|AL ”

7.9 Vibra I/0O Device

Description

The Vibra 1/0 device object controls device vibration. Its functionality is limited to activate / deactivate the
vibration function of the device, as well as setting its frequency and intensity, if supported.

PROFILE NOTES
This object is a standardized extension and consequently optional in all profiles.

Mandated Interfaces
XAODbjectltf [see section 8.23]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.
XADynamiclnterfaceManagementlItf [see section 8.10]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the object.

This interface is an implicit interface on this object.

XAVibraltf [see section 8.34]
This interface exposes all vibration functionality for a Vibra 1/0O Device.

This interface is an implicit interface on this object.

Applicable Optional Interfaces

XAConfigExtensionsltf [see section 8.7]

This interface can be used to get and set parameters for any AL object in a vendor-specific manner.

OpenMAX|AL °

8 Interface Definitions

This section documents all the interfaces and methods in the API.

Almost all methods generate result codes, whether synchronously or asynchronously. Such methods must return
either one of the explicit result codes listed in the method’s documentation or one of the following result codes:

e XA_RESULT_RESOURCE_ERROR
e XA_RESULT_RESOURCE_LOST

e XA_RESULT_INTERNAL_ERROR

e XA _RESULT_UNKNOWN_ERROR

e XA_RESULT_OPERATION_ABORTED

For a full definition of these result codes see section 9.2.64.

OpenMAX|AL

61

8.1 XAAudioDecoderCapabilities|tf

Description

This interface provides methods for querying the audio decoding capabilities of the media engine.

This interface provides a means of enumerating all audio decoders available on an engine where a decoderld
represents each decoder. It also provides a means to query the capabilities of each decoder. A given decoder may
support several profile/mode pairs each with their own capabilities (such as maximum sample rate or bit rate)
appropriate to that profile and mode pair. Therefore, this interface represents the capabilities of a particular decoder
as a list of capability entries queriable by decoderID and capability entry index.

The set of audio decoders supported by the engine does not change during the lifetime of the engine though dynamic
resource constraints may limit actual availability when an audio decoder is requested.

This interface is a mandated interface of engine objects (see section 7.2).

Prototype

extern const XAlnterfacelD XA 11D_AUDIODECODERCAPABILITIES;

struct XAAudioDecoderCapabilitieslitf_;
typedef const struct XAAudioDecoderCapabilitiesltf_
* const * XAAudioDecoderCapabilitiesltf;

struct XAAudioDecoderCapabilitiesltf_ {

XAresult (*GetAudioDecoders) (
XAAudioDecoderCapabilitiesltf self,
XAuint32 * pNumDecoders,

XAuint32 * pDecoderlds

)

XAresult (*GetAudioDecoderCapabilities) (
XAAudioDecoderCapabilitiesltf self,
XAuint32 decoderlid,

XAuint32 * plndex,
XAAudioCodecDescriptor *pDescriptor

Interface ID

deacOcc0-3995-11dc-8872-0002a5d5¢c51b

Defaults

Not applicable.

OpenMAX|AL g

Methods

GetAudioDecoders

XAresult (*GetAudioDecoders) (
XAAudioDecoderCapabilitiesltf self,
XAuint32 * pNumDecoders,

XAuint32 * pDecoderlds

)s

Description | Retrieves the available audio decoders.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pNumDecoders | [in/out] | If pDecoder Ids is NULL, pNumDecoders returns the
number of decoders available. All implementations must have at
least one decoder.

If pDecoderslds is non-NULL, as an input pNumDecoders
specifies the size of the pDecoder Ids array and as an output it
specifies the number of decoder I1Ds available within the
pDecoderlds array.

pDecoderlds | [out] Array of audio decoders provided by the engine. Refer to
XA_AUDIOCODEC macros.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

Seealso | GetAudioDecoderCapabilities()

OpenMAX|AL 63

GetAudioDecoderCapabilities

XAresult (*GetAudioDecoderCapabilities) (
XAAudioDecoderCapabilitiesltf self,
XAuint32 decoderlid,

XAuint32 * plndex,
XAAudioCodecDescriptor *pDescriptor

);

Description

Queries for the audio decoder’s capabilities.

Pre-conditions

None

Parameters

self [in] Interface self-reference.

decoderld [in] Identifies the supported audio decoder. Refer to
XA_AUD I0CODEC macros.

pIndex [in/out] If pDescriptor is NULL, pIndex returns the number of
capabilities structures (one per profile/mode pair of the
decoder). Each decoder must support at least one profile/mode
pair and therefore have at least one Codec Descriptor.

If pDescriptor is non-NULL, pIndex is an incrementing
value used for enumerating capabilities. Supported index range
is 0 to N-1, where N is the number of capabilities structures,
one for each profile/mode pair of the decoder.

pDescriptor [out] Pointer to structure defining the capabilities of the audio
decoder. There is one structure per profile.mode pair of the
decoder.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

This method outputs a structure that contains one or more pointers to arrays. The memory for
these arrays shall be allocated by the OpenMAX AL implementation and shall not be deallocated
by the application. The OpenMAX AL implementation shall keep the data contained within the
arrays valid for the lifetime of this interface’s host object. (The memaory for the structure itself is
allocated by the application and therefore shall be freed by the application.)

See also

GetAudioDecoders()

OpenMAX|AL .

8.2 XAAudioEncoderltf

Description

This interface is used for setting the parameters to be used by an audio encoder. It is realized on a media object with
audio encoding capabilities, such as a media recorder. Once the supported codecs have been enumerated using
XAAudioEncoderCapabilitiesltf on the engine, the encoding settings can be set using this interface.

This interface is a mandated interface of Media Recorder objects (see section 7.5).

Prototype

extern const XAlnterfacelD XA 11D_AUDIOENCODER;

struct XAAudioEncoderltf ;
typedef const struct XAAudioEncoderltf_ * const * XAAudioEncoderltf;

struct XAAudioEncoderltf_ {

XAresult (*SetEncoderSettings) (
XAAudioEncoderltf self,
XAAudioEncoderSettings * pSettings

);

XAresult (*GetEncoderSettings) (
XAAudioEncoderItf self,
XAAudioEncoderSettings * pSettings

Interface ID

ebbab900-3997-11dc-891f-0002a5d5¢51b

Defaults

No default settings are mandated.

OpenMAX|AL °

Methods

SetEncoderSettings

XAresult (*SetEncoderSettings) (
XAAudioEncoder1tf self,
XAAudioEncoderSettings * pSettings

)s

Description

Set audio encoder settings.

Pre-conditions

Recordltf state shall be in stopped state.

Parameters

self [in] Interface self-reference.

pSettings

[in]

Specifies the audio encoder settings to be applied.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED
XA_RESULT_PRECONDITIONS_VIOLATED

Comments

None

See also

GetEncoderSettings()

GetEncoderSettings

XAresult (*GetEncoderSettings) (
XAAudioEncoder1tf self,
XAAudioEncoderSettings * pSettings

)s;
Description | Get audio encoder settings.
Pre-conditions | None
Parameters | self [in] | Interface self-reference.
pSettings | [out] | Specifies a pointer to the structure that will return the audio encoder
settings.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

See also

SetEncoderSettings()

OpenMAX|AL

8.3 XAAudioEncoderCapabilitiesitf

Description

This interface provides methods for querying the audio encoding capabilities of the media engine.

This interface provides a means of enumerating all audio encoders available on an engine where an encoderld
represents each encoder. It also provides a means to query the capabilities of each encoder. A given encoder may
support several profile/mode pairs, each with their own capabilities (such as maximum sample rate or bit rate)
appropriate to that profile and mode pair. Therefore, this interface represents the capabilities of a particular encoder
as a list of capability entries queriable by encoderID and capability entry index.

The set of audio encoders supported by the engine does not change during the lifetime of the engine though dynamic
resource constraints may limit actual availability when an audio encoder is requested.

This interface is a mandated interface of engine objects (see section 7.2).

Prototype

extern const XAlnterfacelD XA 11D_AUDIOENCODERCAPABILITIES;

struct XAAudioEncoderCapabilitieslitf_;
typedef const struct XAAudioEncoderCapabilitiesltf_
* const * XAAudioEncoderCapabilitiesltf;

struct XAAudioEncoderCapabilitiesltf_ {

XAresult (*GetAudioEncoders) (
XAAudioEncoderCapabilitiesltf self,
XAuint32 * pNumEncoders,

XAuint32 * pEncoderlds

)

XAresult (*GetAudioEncoderCapabilities) (
XAAudioEncoderCapabilitiesltf self,
XAuint32 encoderlid,

XAuint32 * plndex,
XAAudioCodecDescriptor * pDescriptor

Interface ID

83fbc600-3998-11dc-8f6d-0002a5d5¢c51b

Defaults

Not applicable.

OpenMAX|AL g

Methods

GetAudioEncoders

XAresult (*GetAudioEncoders) (

XAAudioEncoderCapabilitiesltf self,
XAuint32 * pNumEncoders,
XAuint32 * pEncoderlds

)
Description | Queries the supported audio encoders.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pNumEncoders | [in/out]
If pEncoderlds is NULL, pNumEncoders returns the
number of encoders available. Returns 0 if there are no encoders.
If pEncoderslds is non-NULL, as an input pNumEncoders
specifies the size of the pEncoder I ds array and as an output it
specifies the number of encoder I1Ds available within the
pEncoderlds array.
pEncoderlds | [out] Array of audio encoders provided by the engine. Refer to

XA _AUDIOCODEC macros

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

PROFILE NOTES
A Media Player/Recorder profile implementation must support at least one encoder.

See also

GetAudioEncoderCapabilities()

OpenMAXIAL

68

GetAudioEncoderCapabilities

XAresult (*GetAudioEncoderCapabilities) (
XAAudioEncoderCapabilitiesltf self,
XAuint32 encoderlid,

XAuint32 * plndex,
XAAudioCodecDescriptor * pDescriptor

);

Description

Queries for the audio encoder’s capabilities.

Pre-conditions

None

Parameters

Self Interface self-reference.

[in]

encoderld | [in] Identifies the supported audio encoder. Refer to XA_AUD I0CODEC

macros.

pIndex [infout] | If pDescriptor is NULL, pIndex returns the number of capabilities
structures (one per profile/mode pair of the decoder). Each encoder
must support at least one profile/mode pair and therefore have at

least one Codec Descriptor.

If pDescriptor is non-NULL, pIndex is an incrementing value used
for enumerating capabilities structures. Supported index range is O
to N-1, where N is the number of capabilities structures, one for
each profile/mode pair of the encoder.

Pointer to structure defining the capabilities of the audio encoder.
There is one structure per profile\mode of the encoder.

pDescriptor [out]

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

This method outputs a structure that contains one or more pointers to arrays. The memory for
these arrays shall be allocated by the OpenMAX AL implementation and shall not be deallocated
by the application. The OpenMAX AL implementation shall keep the data contained within the
arrays valid for the lifetime of this interface’s host object. (The memaory for the structure itself is
allocated by the application and therefore shall be freed by the application.)

See also

GetAudioEncoders()

OpenMAX|AL ”

8.4 XAAudiolODeviceCapabilitiesItf

Description

This interface is for enumerating the audio 1/O devices on the platform and for querying the capabilities and
characteristics of each available audio /O device.

This interface is supported on the engine object (see section 7.2). See section F.2 and section F.4 for examples using
this interface.

Prototype

extern const XAlnterfacelD XA 11D_AUDIOIODEVICECAPABILITIES;

struct XAAudiolODeviceCapabilitiesltf_;
typedef const struct XAAudiolODeviceCapabilitiesltf_
* const * XAAudiolODeviceCapabilitiesltf;

struct XAAudiolODeviceCapabilitiesltf_ {

XAresult (*GetAvailableAudiolnputs) (
XAAudiolODeviceCapabilitiesltf self,
XAInt32 * pNumlnputs,
XAuint32 * plnputDevicelDs

)

XAresult (*QueryAudiolnputCapabilities) (
XAAudiolODeviceCapabilitiesltf self,
XAuint32 devicelD,
XAAudiolnputDescriptor * pDescriptor

)

XAresult (*RegisterAvailableAudiolnputsChangedCallback) (
XAAudiolODeviceCapabilitiesltf self,
xaAvai lableAudiolnputsChangedCal Iback callback,
void * pContext

)

XAresult (*GetAvailableAudioOutputs) (
XAAudiolODeviceCapabilitiesltf self,
XAint32 * pNumOutputs,
XAuint32 * pOutputDevicelDs

)

XAresult (*QueryAudioOutputCapabilities) (
XAAudiolODeviceCapabilitiesltf self,
XAuint32 devicelD,
XAAudioOutputDescriptor * pDescriptor

)

XAresult (*RegisterAvailableAudioOutputsChangedCallback) (
XAAudiolODeviceCapabilitiesltf self,
xaAvai lableAudioOutputsChangedCal lback callback,
void * pContext

OpenMAX|AL k

XAresult (*RegisterDefaultDevicelDMapChangedCallback) (
XAAudiolODeviceCapabilitiesltf self,
xaDefaultDevicelDMapChangedCal lback callback,
void * pContext

)

XAresult (*GetAssociatedAudiolnputs) (
XAAudiolODeviceCapabilitiesltf self,
XAuint32 devicelD,

XAInt32 * pNumAudiolnputs,
XAuint32 * pAudiolnputDevicelDs

)3

XAresult (*GetAssociatedAudioOutputs) (
XAAudiolODeviceCapabilitiesltf self,
XAuint32 devicelD,

XAInt32 * pNumAudioOutputs,
XAuint32 * pAudioOutputDevicelDs

);

XAresult (*GetDefaultAudioDevices) (
XAAudiolODeviceCapabilitiesltf self,
XAuint32 defaultDevicelD,

XAint32 *pNumAudioDevices,
XAuint32 *pAudioDevicelDs

)

XAresult (*QuerySampleFormatsSupported) (
XAAudiolODeviceCapabilitiesltf self,
XAuint32 devicelD,

XAmilliHertz samplingRate,
XAint32 *pSampleFormats,
XAInt32 *pNumOfSampleFormats

3

Interface ID

2b276d00-f775-11db-a963-0002a5d5¢c51b

Defaults

I/0O device capabilities vary widely from system to system. Defaults are not applicable.

OpenMAX|AL

71

Callbacks

xaAvailableAudiolnputsChangedCallback

typedef void (XAAPIENTRY * xaAvailableAudiolnputsChangedCallback) (
XAAudiolODeviceCapabilitiesltf caller,

void * pContext,
XAuint32 devicelD,
XAInt32 numlnputs,

XAboolean isNew

);
Description | This callback executes when the set of available audio input devices changes (as when a new Bluetooth
headset is connected or a wired microphone is disconnected).
Parameters | caller [in] | Interface on which this callback was registered.
pContext [in] | User context data that is supplied when the callback method is registered.
devicelD [in] | ID of the audio input device that has changed (that is, was either removed or
added).

numlnputs | [in] | Updated number of available audio input devices.

isNew [in] | Setto XA_BOOLEAN_TRUE if the change was an addition of a newly available
audio input device; XA_BOOLEAN_FALSE if an existing audio input device is
no longer available.

Comments | The callback does not provide additional detail about the audio input device that has changed. In the
case of an addition, it is up to the application to use QueryAudiolnputCapabilities() to
determine the full characteristics of the newly available audio input device.

See Also

QueryAudiolnputCapabilities()

OpenMAX|AL 7

xaAvailableAudioOutputsChangedCallback

typedef void (XAAPIENTRY * xaAvailableAudioOutputsChangedCallback) (
XAAudiolODeviceCapabilitiesltf caller,
void * pContext,

XAuint32 devicelD,
XAInt32 numOutputs,

XAboolean isNew

)
Description | This callback executes when the set of available audio output devices changes (as when a new
Bluetooth headset is connected or a wired headset is disconnected).
Parameters | cal ler [in] | Interface on which this callback was registered.
pContext [in] | User context data that is supplied when the callback method is registered.
devicelD [in] | ID of the audio output device that has changed (that is, was either removed or
added).

numOutputs | [in] | Updated number of available audio output devices.

isNew [in] | Setto XA _BOOLEAN_TRUE if the change was an addition of a newly
available audio output device; XA_BOOLEAN_FALSE if an existing audio
output device is no longer available.

Comments | The callback does not provide additional details about the audio output device that has changed. In the
case of an addition, it is up to the application to use QueryAudioOutputCapabilities() to
determine the full characteristics of the newly-available audio output device.

See Also

QueryAudioOutputCapabilities()

OpenMAX|AL

73

xaDefaultDevicelDMapChangedCallback

typedef void (XAAPIENTRY * xaDefaultDevicelDMapChangedCallback) (

XAAudiolODeviceCapabilitiesltf caller,
void * pContext,

XAboolean isOutput,

XAiInt32 numDevices

);
Description | This callback executes when the set of audio output devices mapped to
XA _DEFAULTDEVICEID_AUDIOINPUT or XA _DEFAULTDEVICEID_AUDIOOUTPUT changes
Parameters | caller [in] | Interface on which this callback was registered.
pContext [in] | User context data that is supplied when the callback method is registered.
isOutput [in] | If true, then devices mapped to XA DEFAULTDEVICEID_AUDIOOUTPUT
have changed, otherwise the devices mapped to
XA_DEFAULTDEVICEID_AUDIOINPUT have changed.

numDevices | [in] | New number of physical audio output devices to which
XA_DEFAULTDEVICEID_AUDIOOUTPUT or
XA DEFAULTDEVICEID_AUDIOINPUT is now mapped (depending on the
value of isOutput). Is always greater than or equal to 1.

Comments | The callback does not provide additional details about the audio output devices now mapped to the
default device ID. It is up to the application to retrieve the device IDs and to use the device IDs to query
the capabilities of each device.
numDevices is included in the callback for the benefit of those applications who may not wish to
send/receive their audio stream to/from more than one output device. Such applications can examine
numDevices and opt to stop operation immediately if it is greater than 1, without needing to invoke
other methods to get the new number of devices mapped to
XA_DEFAULTDEVICEID_AUDIOOUTPUT or XA DEFAULTDEVICEID_AUDIOINPUT.

See Also

QueryAudioOutputCapabilities()

OpenMAX|AL "

Methods

GetAvailableAudiolnputs

XAresult (*GetAvailableAudiolnputs) (
XAAudiolODeviceCapabilitiesltf self,
XAInt32 * pNumlnputs,

XAuint32 * plnputDevicelDs

)s

Description

Gets the number and IDs of audio input devices currently available.

Pre-conditions | None
Parameters | self [in] Interface self-reference.

pNumlnputs [infout] | As an input, specifies the length of the pInputDevicelDs
array (ignored if plnputDevicelDs is NULL). Asan
output, specifies the number of audio input device IDs
available in the system. Returns 0 if no audio input devices
are available in the system.

pInputDevicelDs | [out] Array of audio input device 1Ds currently available in the

system. This parameter is populated by the call with the array
of input device IDs (provided that pNumInputs is equal to
or greater than the number of actual input device IDs). If
pNumlInputs is less than the number of actual input device
IDs, the error code
XA_RESULT_BUFFER_INSUFFICIENT is returned.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_BUFFER_INSUFFICIENT
XA_RESULT_PARAMETER_INVALID

Comments

Note that “available” implies those audio input devices that are active (that is, can accept input
audio) and this number may be less than or equal to the total number of audio input devices in
the system. For example, if a system has both an integrated microphone and a line-in jack, but
the line-in jack is not connected to anything, the number of available audio inputs is only 1.

Device IDs should not be expected to be contiguous.
Device IDs are unique: the same device ID shall not be used for different device types.

See Also

GetAvailableAudioOutputs(Q)

OpenMAX|AL .

QueryAudiolnputCapabilities

XAresult (*QueryAudiolnputCapabilities) (
XAAudiolODeviceCapabilitiesltf self,
XAuint32 devicelD,
XAAudiolnputDescriptor * pDescriptor

):
Description | Gets the capabilities of the specified audio input device.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
devicelD [in] ID of the audio input device.
pDescriptor [out] Structure defining the capabilities of the audio input
device.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_I10_ERROR

Comments

This method outputs a structure that contains one or more pointers to arrays. The memory for
these arrays shall be allocated by the OpenMAX AL implementation and shall not be deallocated
by the application. The OpenMAX AL implementation shall keep the data contained within the
arrays valid for the lifetime of this interface’s host object. (The memory for the structure itself is
allocated by the application and therefore shall be freed by the application.)

See Also

QueryAudioOutputCapabilities(), QuerySampleFormatsSupported()

RegisterAvailableAudiolnputsChangedCallback

XAresult (*RegisterAvailableAudiolnputsChangedCallback) (
XAAudiolODeviceCapabilitiesltf self,
xaAvai lableAudiolnputsChangedCal lback callback,
void * pContext

):
Description | Sets or clears xaAvai lableAudiolnputsChangedCal lback().
Pre-conditions | None
Parameters | self [in] | Interface self-reference.
callback | [in] | Address of the callback.
pContext | [in] | User context data that is to be returned as part of the callback method.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS.
XA_RESULT_PARAMETER_INVALID

Comments

None

See Also

xaAvai lableAudiolnputsChangedCal lback()

OpenMAX|AL k

GetAvailableAudioOutputs

XAresult (*GetAvailableAudioOutputs) (
XAAudiolODeviceCapabilitiesltf self,
XAInt32 * pNumOutputs,

XAuint32 * pOutputDevicelDs

);

Description

Gets the number and IDs of audio output devices currently available.

Pre-conditions

None

Parameters

self [in] Interface self-reference.

pNumOutputs [infout] | As an input, specifies the size of the
pOutputDevicelDs array (ignored if
pOutputDevicelDs is NULL). As an output, specifies
the number of audio output devices currently available in
the system. Returns 0 if no audio output devices are active
in the system.

pOutputDevicelDs | [out] Array of audio output device IDs that are currently
available in the system. This parameter is populated by the
call with the array of output device I1Ds (provided that
pNumOutputs is equal to or greater than the number of
actual device IDs).

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_BUFFER_INSUFFICIENT
XA_RESULT_PARAMETER_INVALID

Comments

Note that “available” implies those audio output devices that are active (that is, can render audio)
and this number may be less than or equal to the total number of audio output devices on the
system. For example, if a system has both an integrated loudspeaker and a 3.5mm headphone
jack, but if the headphone jack is not connected to anything, the number of available audio
outputs is only 1.

Device IDs should not be expected to be contiguous.
Device IDs are unique: the same device ID shall not be used for different device types.

See Also

GetAvailableAudiolnputs()

OpenMAX|AL 7

QueryAudioOutputCapabilities

XAresult (*QueryAudioOutputCapabilities) (
XAAudiolODeviceCapabilitiesltf self,
XAuint32 devicelD,
XAAudioOutputDescriptor * pDescriptor

D:
Description | Gets the capabilities of the specified audio output device.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
devicelD [in] ID of the audio output device.
pDescriptor [out] Structure defining the characteristics of the audio output
device.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_I10_ERROR

Comments

This method outputs a structure that contains one or more pointers to arrays. The memory for
these arrays shall be allocated by the OpenMAX AL implementation and shall not be deallocated
by the application. The OpenMAX AL implementation shall keep the data contained within the
arrays valid for the lifetime of this interface’s host object. (The memory for the structure itself is
allocated by the application and therefore shall be freed by the application.)

See Also

QueryAudiolnputCapabilities(), QuerySampleFormatsSupported()

RegisterAvailableAudioOutputsChangedCallback

XAresult (*RegisterAvailableAudioOutputsChangedCallback) (
XAAudiolODeviceCapabilitiesltf self,
xaAvai lableAudioOutputsChangedCal lback callback,
void * pContext

):
Description | Sets or clears xaAvai lableAudioOutputsChangedCal lback().
Pre-conditions | None
Parameters | self [in] | Interface self-reference.
callback | [in] | Address of the callback.
pContext | [in] | User context data that is to be returned as part of the callback method.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

See Also

xaAvai lableAudioOutputsChangedCal lback()

OpenMAX|AL k

RegisterDefaultDevicel DMapChangedCallback

XAresult (*RegisterDefaultDevicelDMapChangedCallback) (
XAAudiolODeviceCapabilitiesltf self,
xaDefaultDevicelDMapChangedCal lback callback,
void * pContext

)

Description | Sets or clears xaDefaultDevicelDMapChangedCal Iback().
Pre-conditions | None

Parameters | self [in] | Interface self-reference.

callback | [in] | Address of the callback.

pContext | [in] | User context data that is to be returned as part of the callback method.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

See Also

xaDefaultDevicelDMapChangedCal lback()

OpenMAX|AL

79

GetAssociatedAudiolnputs

XAresult (*GetAssociatedAudiolnputs) (
XAAudiolODeviceCapabilitiesltf self,
XAuint32 devicelD,

XAInt32 * pNumAudiolnputs,
XAuint32 * pAudiolnputDevicelDs

);

Description

This method returns an array of audio input devices physically associated with this audio 1/0
device.

Pre-conditions | None
Parameters | self [in] Interface self-reference.
devicelD [in] ID of the input or output device .
pNumAudiolnputs [infout] | As an input, specifies the length of the

pAudiolnputDevicelDs array (ignored if
pAudiolnputDevicelDs is NULL). Asan
output, specifies the number of audio input device
IDs associated with device ID. Returns zero if
there is no such association.

pAudiolnputDevicelDs | [out] Array of audio input device IDs. Should be ignored if
pNumAudiolnputs is zero — that is, if there are no
associated audio inputs. This parameter is populated
by the call with the array of input device IDs
(provided that pNumInputs is equal to or greater
than the number of actual input device 1Ds).

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_BUFFER_INSUFFICIENT
XA_RESULT_I10_ERROR

Comments

This method can be called on both audio input and audio output devices. It is useful for
determining coupling of audio inputs and outputs on certain types of accessories. For example, it
is helpful to know that microphone 01 is actually part of the same Bluetooth headset as speaker
03. Also, many car kits have multiple speakers and multiple microphones. Hence the need for an
array of associated input devices. For applications that both accept and render audio, this method
helps to determine whether an audio input and an audio output belong to the same physical
accessory.

An audio device cannot be associated with itself. So, in the example above, if this method were
to be called with microphone 01 as the devicelD parameter, it would return an empty array, since
there are no other inputs associated with microphone 01 on that Bluetooth headset.

If this method is called with the special device IDs XA_DEFAULTDEVICEID_AUDIOINPUT
and XA_DEFAULTDEVICEID_AUDIOOUTPUT, the result is undefined.

See also

GetDefaultAudioDevices()

OpenMAX|AL o

GetAssociatedAudioOutputs

XAresult (*GetAssociatedAudioOutputs) (
XAAudiolODeviceCapabilitiesltf self,
XAuint32 devicelD,

XAInt32 * pNumAudioOutputs,
XAuint32 * pAudioOutputDevicelDs

);

Description

This method returns an array of audio output devices physically associated with this audio 1/0
device.

Pre-conditions | None
Parameters | self [in] Interface self-reference.
devicelD [in] ID of the input or output device.
pNumAudioOutputs [infout] | As an input, specifies the length of the

pAudioOutputDevicelDs array (ignored if
pAudioOutputDevicelDs is NULL). As an
output, specifies the number of audio output device
IDs associated with device ID. Returns zero if
there is no such association.

pAudioOutputDevicelDs | [out] Avrray of audio output device IDs. Should be
ignored if pNumAudioOutputs is zero (that is,
there are no associated audio outputs). This
parameter is populated by the call with the array of
output device IDs (provided that
pNumAudioOutputs is equal to or greater than
the number of actual device IDs).

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_BUFFER_INSUFFICIENT
XA_RESULT_I10_ERROR

Comments

This method can be called on both audio input and audio output devices. It is useful for
determining coupling of audio inputs and outputs on certain types of accessories. For example, it
is helpful to know that microphone 01 is actually part of the same Bluetooth headset as speaker
03. Also, many car kits have multiple speakers and multiple microphones. Hence the need for an
array of associated output devices. For applications that both accept and render audio, this
method helps to determe whether an audio input and an audio output belong to the same physical
accessory.

An audio device cannot be associated with itself. So, in the example above, if this method were
to be called with speaker 03 as the devicelD parameter, it would return an empty array, since
there are no other outputs associated with speaker 03 on that Bluetooth headset.

If this method is called with the special device IDs XA DEFAULTDEVICEID_AUDIOINPUT
and XA _DEFAULTDEVICEID_ AUDIOOQOUTPUT, the result is undefined.

See also

GetDefaultAudioDevices()

OpenMAX|AL

81

GetDefaultAudioDevices

XAresult (*GetDefaultAudioDevices) (
XAAudiolODeviceCapabilitiesltf self,
XAuint32 defaultDevicelD,

XAiInt32 *pNumAudioDevices,
XAuint32 *pAudioDevicelDs

)s

Description | Gets the number of audio devices currently mapped to the given default device ID.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

defaultDevicelD [in] ID of the default device (currently defined as
XA_DEFAULTDEVICEID_AUDIOOUTPUT and
XA_DEFAULTDEVICEID_AUDIOINPUT [see
section 9.2.25]).

pNumAudioDevices [in/out] As an input, specifies the length of the
pAudioDevicelDs array (ignored if
pAudioDevicelDs is NULL). As an output,
specifies the number of audio device IDs mapped to
the given defaultDevicelD.

pAudioDevicelDs [out] Array of audio device IDs that are currently mapped
to the given defaul tDevicelD. This parameter
is populated by the call with the array of device IDs
(provided that pNumAudioDevices is equal to or
greater than the number of actual device IDs). If
pNumAudioDevices is less than the number of
actual mapped device IDs, the error code
XA_RESULT_BUFFER_INSUFFICIENT is
returned.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_BUFFER_INSUFFICIENT
XA_RESULT_I10_ERROR
XA_RESULT_PARAMETER_INVALID

Comments | The mapping of defaultDevicelD to the physical audio devices (represented by the
device IDs) is implementation-dependent.

The application can choose to be notified of the implementation-induced changes to this
mapping by registering for the xaDefaultDevice lDMapChangedCal Iback().

See Also | RegisterDefaultDevicelDMapChangedCallback(),
GetAssociatedAudiolnputs(), GetAssociatedAudioOutputs()

OpenMAX|AL

82

QuerySampleFormatsSupported

XAresult (*QuerySampleFormatsSupported) (
XAAudiolODeviceCapabilitiesltf self,
XAuint32 devicelD,

XAmilliHertz samplingRate,
XAInt32 * pSampleFormats,
XAInt32 * pNumOfSampleFormats,

Description | Gets an array of sample formats supported by the audio 1/0 device for the given sampling rate.
The rationale here is that an audio 1/0 device might not support all sample formats at all
sampling rates. Therefore, it is necessary to query the sample formats supported for each
sampling rate of interest.

Pre-conditions | None

Parameters | self [in] Interface self-reference.
devicelD [in] ID of the audio 1/0 device
samplingRate [in] Sampling rate for which the sampling formats are to be
determined.
pSampleFormats [out] Array of sample formats supported, as defined in the

XA_PCMSAMPLEFORMAT macros. This parameter is
populated by the call with the array of supported
sample formats (provided that
pNumOfSampleFormats is equal to or greater than
the number of actual sample formats).

pNumOfSampleFormats | [infout] | As an input, specifies the length of the
pSampleFormats array (ignored if
pSampleFormats is NULL). As an output, specifies
the number of sample formats supported.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_BUFFER_INSUFFICIENT
XA_RESULT_I10_ERROR

Comments | None

See Also | QueryAudiolnputCapabilities(), QueryAudioOutputCapabilities()

OpenMAX|AL "

8.5 XACameraltf

Description

The camera interface is used for querying and changing the settings of a camera 1/0 device.
This interface is implicit on the camera 1/0 device object (see section 7.1).
See XASnapshot1tfF (see section 8.32) for a typical photographing call sequence example.

See section F.5 for an example using this interface.

Prototype

extern const XAlnterfacelD XA 11D_CAMERA;

struct XACameraltf_;
typedef const struct XACameraltf_ * const * XACameraltf;

struct XACameraltf_ {

XAresult (*RegisterCallback) (
XACameraltf self,
xaCameraCal lback callback,
void * pContext

);

XAresult (*SetFlashMode) (
XACameraltf self,

XAuint32 flashMode

)

XAresult (*GetFlashMode) (
XACameraltf self,

XAuint32 * pFlashMode

)

XAresult (*IsFlashReady) (
XACameraltf self,
XAboolean * pReady

)

XAresult (*SetFocusMode) (
XACameraltf self,

XAuint32 focusMode,
XAmillimeter manualSetting,
XAboolean macroEnabled

)

XAresult (*GetFocusMode) (
XACameraltf self,

XAuint32 * pFocusMode,
XAmillimeter * pManualSetting,
XAboolean * pMacroEnabled

OpenMAX|AL

84

XAresult (*SetFocusRegionPattern) (
XACameral tf self,
XAuint32 focusPattern,
XAuint32 activePointsl,
XAuint32 activePoints2

)

XAresult (*GetFocusRegionPattern) (
XACameraltf self,
XAuint32 * pFocusPattern,
XAuint32 * pActivePointsl,
XAuint32 * pActivePoints2

)

XAresult (*GetFocusRegionPositions) (
XACameraltf self,
XAuint32 * pNumPositionEntries,
XAFocusPointPosition * pFocusPosition

);

XAresult (*GetFocusModeStatus) (
XACameraltf self,
XAuint32 * pFocusStatus,
XAuint32 * pRegionStatusl,
XAuint32 * pRegionStatus?2

)

XAresult (*SetMeteringMode) (
XACameraltf self,
XAuint32 meteringMode

)

XAresult (*GetMeteringMode) (
XACameral tf self,
XAuint32 * pMeteringMode

)

XAresult (*SetExposureMode) (
XACameraltf self,
XAuint32 exposureMode,
XAuint32 compensation

)

XAresult (*GetExposureMode) (
XACameraltf self,
XAuint32 * pExposureMode,
XAuint32 * pCompensation

)

XAresult (*SetlSOSensitivity) (
XACameraltf self,
XAuint32 isoSensitivity,
XAuint32 manualSetting

)

XAresult (*GetlSOSensitivity) (
XACameraltf self,
XAuint32 * plsoSensitivity,
XAuint32 * pManualSetting

)

XAresult (*SetAperture) (
XACameraltf self,
XAuint32 aperture,
XAuint32 manualSetting

)

OpenMAX|AL

XAresult (*GetAperture) (
XACameral tf self,
XAuint32 * pAperture,
XAuint32 * pManualSetting

)

XAresult (*SetShutterSpeed) (
XACameral tf self,
XAuint32 shutterSpeed,
XAmicrosecond manualSetting

);

XAresult (*GetShutterSpeed) (
XACameraltf self,
XAuint32 * pShutterSpeed,
XAmicrosecond * pManualSetting

)

XAresult (*SetWhiteBalance) (
XACameraltf self,
XAuint32 whiteBalance,
XAuint32 manualSetting

)

XAresult (*GetWhiteBalance) (
XACameraltf self,
XAuint32 * pWhiteBalance,
XAuint32 * pManualSetting

)

XAresult (*SetAutoLocks) (
XACameraltf self,
XAuint32 locks

)

XAresult (*GetAutoLocks) (
XACameraltf self,
XAuint32 * locks

)

XAresult (*SetzZoom) (
XACameraltf self,
XApermille zoom,
XAboolean digitalEnabled,
XAuint32 speed,

XAboolean async

)

XAresult (*GetzZoom) (
XACameraltf self,
XApermille * pZoom,
XAboolean * pDigital

¥

Interface ID

€7b84d20-df00-11db-ba87-0002a5d5c51b

Defaults

OpenMAX|AL

86

No default settings are mandated.

Callbacks

xaCameraCallback

typedef void (XAAPIENTRY * xaCameraCallback) (
XACameraltf caller,
void * pContext,
XAuint32 eventld,
XAuint32 eventData

);

Description | This method is used for camera event notifications.

Parameters | caller [in] | Interface on which this callback was registered.

pContext | [in] | User context data that is supplied when the callback method is registered.

eventld [in] | Indicates the type of notification callback event being reported.
Refer to XA_ CAMERACBEVENT for a list of available events.

eventData | [in] | Specifies additional information specific to a notification callback event. The
contents of this parameter are dependent on the event being reported.

Comments | None

See Also | RegisterCal lback()

OpenMAX|AL i

Methods

RegisterCallback

XAresult (*RegisterCallback) (
XACameral tf self,
xaCameraCal lback callback,
void * pContext

)s

Description | Sets callback for camera event notifications.

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

callback | [in] | Specifies the callback method.

pContext | [in] | User context data that is to be returned as part of the callback method.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | Refer to XA_ CAMERACBEVENT for the possible callback event notifications

See Also | xaCameraCal lback()

SetFlashMode

XAresult (*SetFlashMode) (
XACameral tf self,
XAuint32 flashMode

)s

Description | Sets the camera flash setting.

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

flashMode | [in] | Specifies the camera flash setting. Refer to XA CAMERA_FLASHMODE.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_FEATURE_UNSUPPORTED

Comments | None

See Also | GetFlashMode()

OpenMAX|AL i

GetFlashMode

XAresult (*GetFlashMode) (
XACameraltf self,
XAuint32 * pFlashMode

)s;
Description | Gets the camera flash setting.
Pre-conditions | None
Parameters | self [in] Interface self-reference.

pFlashMode | [out] | Specifies the camera flash setting. Refer to
XA_CAMERA_FLASHMODE.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None
See Also | SetFlashMode()
IsFlashReady

XAresult (*IsFlashReady) (
XACameraltf self,
XAboolean * pReady

):

Description [Queries whether the flash is ready for use.
Pre-conditions | None

Parameters | self [in] Interface self-reference.

pReady [out] Specifies whether the flash is ready.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

xaCameraCal lback()

OpenMAX|AL

89

SetFocusMode

XAresult (*SetFocusMode) (
XACameraltf self,
XAuint32 focusMode,
XAmillimeter manualSetting,
XAboolean macroEnabled

):
Description | Sets the camera focus mode.
Pre-conditions | None
Parameters | self [in] | Interface self-reference.
focusMode [in] | Specifies the camera focus mode. Refer to
XA_CAMERA_FOCUSMODE.
manualSetting | [in] | If the manual focus mode is enabled, this value specifies the manual
setting. This parameter is ignored if manual focus mode is disabled.
macroEnabled | [in] | Specifics whether macro mode is enabled.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

GetFocusMode(), XA CAMERA_FOCUSMODE,
GetSupportedFocusManualSettings()

OpenMAXIAL

90

GetFocusMode

XAresult (*GetFocusMode) (

XACame

raltf self,

XAuint32 * pFocusMode,
XAmillimeter * pManualSetting,

XAboolean * pMacroEnabled
):
Description | Gets the camera focus mode.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pFocusMode [out] | Specifies the camera focus mode. Refer to

XA_CAMERA_FOCUSMODE.

pManualSetting | [out]

If the manual focus mode is enabled, this value specifies the
manual setting. This parameter is ignored if manual focus mode
is disabled

pMacroEnabled | [out]

Specifics whether the macro mode is enabled.

Returnvalue | The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

SetFocusMode(), XA_CAMERA_FOCUSMODE,
GetSupportedFocusManualSettings()

OpenMAX|AL

91

SetFocusRegionPattern

XAresult (*SetFocusRegionPattern) (
XACameraltf self,
XAuint32 focusPattern,
XAuint32 activePointsl,
XAuint32 activePoints2

);

Description

Sets the camera focus region pattern.

Pre-conditions

None

Parameters

self

[in]

Interface self-reference.

focusPattern

[in]

Specifies the focus region pattern. Refer to
XA_CAMERA_FOCUSPOINTS.

activePointsl

[in]

Specifies the focus points to be used for the custom auto focus
region pattern mode — XA_CAMERA_FOCUSPOINTS_CUSTOM.
This parameter identifies the focus points ranging from 0 to 31.

This parameter is ignored if manual focus mode is selected or non-
custom focus points patterns are selected.

This parameter is a bit-mapped representation of the focus points.
Focus point 0 is identified by bit 0, focus point 1 is identified by bit
1 and so on.

If a bit is set this indicates the point is to be used for autofocus.

For example, to select only the center sixteen points (points 18 to
21, 26 to 29, 34 to 37 and 42 to 45):

e activePointsl will have a value of 0x3C3C0000
e activePoints2 will have a value of 0x00003C3C

activePoints2

[in]

See description of activePointsl.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

GetFocusRegionPattern(), XA CAMERA_FOCUSPOINTS

OpenMAXIAL

92

GetFocusRegionPattern

XAresult (*GetFocusRegionPattern) (
XACameral tf self,

XAuint32 * pFocusPattern,
XAuint32 * pActivePointsl,
XAuint32 * pActivePoints2

);

Description

Gets the camera focus region pattern.

Pre-conditions

None

Parameters

self

[in]

Interface self-reference.

pFocusPattern

[out]

Specifies the focus region pattern. Refer to
XA_CAMERA_FOCUSPOINTS.

pActivePointsl

[out]

Specifies the focus points being used for the custom auto focus
region pattern mode — XA_CAMERA_FOCUSPOINTS_CUSTOM.
This parameter identifies the focus points, ranging from 0 to 31.

This parameter is ignored if manual focus mode is selected or
non-custom focus points patterns are selected.

This parameter is a bit-mapped representation of the focus
points. Focus point O is identified by bit 0, focus point 1 is
identified by bit 1, and so on.

If a bit is set this indicates the point is to be used for autofocus.

For example, to select only the center sixteen points (points 18 to
21, 26 t0 29, 34 to 37 and 42 to 45):

e pActivePointsl will have a value of 0x3C3C0000
e pActivePoints2 will have a value of 0x00003C3C

pActivePoints2

[out]

See description of activePointsl.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA _RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

SetFocusRegionPattern(), XA CAMERA_FOCUSPOINTS

OpenMAXIAL

93

GetFocusRegionPositions

XAresult (*GetFocusRegionPositions) (

XACameral tf self,
XAuint32 * pNumPositionEntries,
XAFocusPointPosition * pFocusPosition

):
Description | Gets the camera focus region pattern’s positioning and size for each point in the active focus
pattern.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pNumPositionEntries | [in/out] As an input, this parameter specifies the size of the
input buffer.
As an output, this parameter specifies the number of
position points being returned.
pFocusPosition [out] Specifies the focus point’s position information.

The application provides this buffer and the buffer
size needs to be a multiple of
XAFocusPointPosition.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

SetFocusRegionPattern(), XA CAMERA_FOCUSPOINTS

OpenMAX|AL

94

GetFocusModeStatus

XAresult (*GetFocusModeStatus) (
XACameraltf self,
XAuint32 * pFocusStatus,

XAuint32 * pRegionStatusl,

XAuint32 * pRegionStatus2

);

Description

Gets the camera focus status.

Pre-conditions

None

Parameters

self

[in]

Interface self-reference.

pFocusStatus

[out]

Specifies the camera focus mode status. Refer to
XA_CAMERA_FOCUSMODESTATUS.

pRegionStatusl

[out]

Specifies the individual focus region status.

pRegionStatusl and pRegionStatus?2 are bit-mapped
representation of the individual focus regions.
pRegionStatusl identifies the focus points ranging from 0
to 31. pRegionStatus?2 identifies the focus points ranging
from 32 to 63.

If a bit is set, this indicates the region contains the focus status as
described by pFocusStatus

Refer to XA_ CAMERA _FOCUSREG IONS for a bit-mapped
representation of each focus region.

pRegionStatus?2

[out]

See description of pRegionStatusl

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA _RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

SetFocusMode(), XA CAMERA_FOCUSMODESTATUS

OpenMAXIAL

95

SetMeteringMode

XAresult (*SetMeteringMode) (
XACameraltf self,
XAuint32 meteringMode

);

Description | Sets the camera metering mode for exposure.

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

meteringMode | [in] | Specifies the camera metering mode. Refer to
XA_CAMERA_METERINGMODE.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_FEATURE_UNSUPPORTED

Comments | None

See Also | GetMeteringMode(), XA_CAMERA_METERINGMODE

GetMeteringMode

XAresult (*GetMeteringMode) (
XACameraltf self,
XAuint32 * pMeteringMode

);

Description | Gets the camera metering mode for exposure.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pMeteringMode | [out] | Specifies the camera metering mode. Refer to
XA_CAMERA_METERINGMODE.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments | None

See Also | SetMeteringMode(), XA_CAMERA_METERINGMODE

OpenMAX|AL .

SetExposureMode

XAresult (*SetExposureMode) (
XACameral tf self,
XAuint32 exposureMode,
XAuint32 compensation

Description | Sets the camera metering mode.
Pre-conditions | None
Parameters | self [in] | Interface self-reference.

exposureMode | [in]

Specifies the camera exposure mode. Refer to
XA_CAMERA_EXPOSUREMODE.

compensation | [in]

If the auto exposure mode setting is enabled, this value specifies the
auto exposure compensation setting. This parameter is ignored if auto
mode setting is not enabled. The parameter is in units of 1/10" of EV

compensation.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

GetExposure(), XA _CAMERA_EXPOSUREMODE

OpenMAX|AL

97

GetExposureMode

XAresult (*GetExposureMode) (
XACameral tf self,
XAuint32 * pExposureMode,
XAuint32 * pCompensation

D:
Description | Gets the camera exposure mode.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pExposureMode | [out] | Specifies the camera exposure mode. Refer to
XA_CAMERA_EXPOSUREMODE
pCompensation | [out] [Ifthe auto exposure mode setting is enabled, this value specifies

the auto exposure compensation setting. The parameter is in units
of 1/10™ of EV compensation.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

SetExposure(), XA _CAMERA_EXPOSUREMODE

OpenMAX|AL

98

SetlISOSensitivity

XAresult (*SetlSOSensitivity) (
XACameral tf self,

XAuint32 isoSensitivity,

XAuint32 manualSetting

D:
Description | Sets the camera ISO sensitivity.
Pre-conditions | None
Parameters | self [in] | Interface self-reference.
sensitivity [in] | Specifies the camera ISO sensitivity mode. Refer to
XA_CAMERA_ISOSENSITIVITYMODE
manualSetting | [in] | If the manual ISO sensitivity mode is enabled, this value specifies

the manual setting. This parameter is ignored if manual 1ISO
sensitivity mode is disabled. The parameter is an I1SO value.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

GetlSOSensitivity(), XA_CAMERA_ISOSENSITIVITYMODE,
GetSupportedlSOSensitivitySettings()

OpenMAX|AL

99

GetlSOSensitivity

XAresult (*GetlSOSensitivity) (

XACameraltf self,

XAuint32 * plsoSensitivity,

XAuint32 * pManualSetting

D:
Description | Gets the camera ISO sensitivity.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pSensitivity [out] | Specifies the camera ISO sensivitity mode. Refer to
XA_CAMERA_1SOSENSITIVITYMODE
pManualSetting | [out] [Ifthe manual ISO sensitivity mode is enabled, this value

specifies the manual setting. If automatic 1SO sensitivity mode is
used, the exposure is locked and the device supports this, this
value specifies the automatically determined 1SO sensitivity; if
exposure is not locked or exposing this value is not supported,
this value is zero. The parameter is an 1SO value.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

SetlSOSensitivity(), XA_CAMERA_ISOSENSITIVITYMODE,
GetSupportedlSOSensitivitySettings()

OpenMAXIAL

100

SetAperture

XAresult (*SetAperture) (
XACameral tf self,
XAuint32 aperture,
XAuint32 manualSetting

D:
Description | Sets the camera aperture.
Pre-conditions | None
Parameters | self [in] | Interface self-reference.
aperture [in] | Specifies the camera aperture mode. Refer to
XA_CAMERA_APERTUREMODE
manualSetting | [in] | If the manual aperature mode is enabled, this value specifies the

manual setting. This parameter is ignored if manual aperature mode

is disabled. A setting of 100 is equal to an f-stop of 1.0.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

GetAperture(), XA _CAMERA_APERTUREMODE,
GetSupportedApertureManualSettings()

OpenMAX|AL

101

GetAperture

XAresult (*GetAperture) (

XACameraltf self,

XAuint32 * pAperture,

XAuint32 * pManualSetting

D:
Description | Gets the camera aperture.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pAperture [out] | Specifies the camera aperture mode. Refer to
XA_CAMERA_APERTUREMODE
pManualSetting | [out] | If the manual aperature mode is enabled, this value specifies the

manual setting. If automatic aperture mode is used, the exposure
is locked and the device supports this, this value specifies the
automatically determined aperture; if the exposure is not locked
or exposing this value is not supported, this value is zero. A
setting of 100 is equal to an f-stop of 1.0.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

SetAperture(), XA _CAMERA_APERTUREMODE,
GetSupportedApertureManualSettings()

OpenMAXIAL

102

SetShutterSpeed

XAresult (*SetShutterSpeed) (

XACameral tf self,
XAuint32 shutterSpeed,
XAmicrosecond manualSetting

D:
Description | Sets the camera shutter speed.
Pre-conditions | None
Parameters | self [in] [Interface self-reference.
shutterSpeed | [in] | Specifies the camera shutter speed mode. Refer to
XA_CAMERA_SHUTTERSPEEDMODE
manualSetting | [in] | If the manual shutter speed mode is enabled, this value specifies the

manual setting. This parameter is ignored if manual shutter speed
mode is disabled. The parameter is in units of microseconds.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

GetShutterSpeed(), XA_CAMERA_SHUTTERSPEEDMODE,
GetSupportedWhiteBalanceManualSettings()

OpenMAX|AL

103

GetShutterSpeed

XAresult (*GetShutterSpeed) (
XACameral tf self,
XAuint32 * pShutterSpeed,
XAmicrosecond * pManualSetting

Description | Gets the camera shutter speed.
Pre-conditions | None
Parameters | self [in] Interface self-reference.

pShutterSpeed | [out]

Specifies the camera shutter speed. Refer to
XA_CAMERA_SHUTTERSPEEDMODE

pManualSetting | [out]

If the manual shutter speed mode is enabled, this value specifies
the manual setting. If automatic shutter speed mode is used, the
exposure is locked and the device supports this, this value
specifies the automatically determined shutter speed; if the
exposure is not locked or exposing this value is not supported,
this value is zero. The parameter is in units of microseconds.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

SetShutterSpeed(), XA_CAMERA_SHUTTERSPEEDMODE,
GetSupportedWhiteBalanceManualSettings()

OpenMAXIAL

104

SetWhiteBalance

XAresult (*SetWhiteBalance) (

XACameraltf self,
XAuint32 whiteBalance,
XAuint32 manualSetting

):
Description | Sets the camera white balance.
Pre-conditions | None
Parameters | self [in] [Interface self-reference.
whiteBalance | [in] | Specifies the camera white balance mode. Refer to
XA_CAMERA_WHITEBALANCEMODE
manualSetting | [in] | If the manual white balance mode is enabled, this value specifies

the manual setting. This parameter is ignored if manual white
balance mode is disabled. Parameter is in units of Kelvins.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

GetWhiteBalance(), XA_CAMERA_WHITEBALANCEMODE,
GetSupportedFocusManualSettings()

OpenMAX|AL

105

GetWhiteBalance

XAresult (*GetWhiteBalance) (
XACameral tf self,
XAuint32 * pWhiteBalance,
XAuint32 * pManualSetting

Description | Gets the camera white balance.
Pre-conditions | None
self [in] Interface self-reference.

Parameters

pWwhiteBalance | [out] | Specifiesthe camera white balance mode. Refer to
XA_CAMERA_WHITEBALANCEMODE

pManualSetting | [out] | If the manual white balance mode is enabled, this value specifies
the manual setting. This parameter is ignored if manual white
balance mode is disabled. Parameter is in units of Kelvins.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA _RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

SetWhiteBalance(), XA_CAMERA_WHITEBALANCEMODE,
GetSupportedFocusManualSettings()

OpenMAX|AL

SetAutolLocks

XAresult (*SetAutoLocks) (
XACameraltf self,
XAuint32 locks

);

Description

This method locks the given automatic camera settings. This method is typically called when the
camera trigger is half-pressed.

Locking is an asynchronous operation and results in related xaCameraCal Iback() calls
with the events XA_ CAMERACBEVENT_FOCUSSTATUS,
XA_CAMERACBEVENT_EXPOSURESTATUS and/or
XA_CAMERACBEVENT_WHITEBALANCELOCKED depending on which locks were requested.

Pre-conditions | None
Parameters | self | [in] | The camera interface.
locks | [in] | A bitwise OR of the settings that will be locked. XA CAMERA_LOCK macros

define different locks. Zero can be used to unlock all the settings.

The value must be one of the values given by
XACameraCapabilitiesltf: :GetSupportedAutoLocks().

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

A lock doesn’t have any effect if the corresponding setting is in manual mode.

See also

GetAutoLocks()

GetAutolLocks

XAresult (*GetAutoLocks) (
XACameraltf self,
XAuint32 * locks

)
Description | This method gets the current state of the automatic camera setting locks.
Pre-conditions | None
Parameters | self | [in] The camera interface.
locks | [out] | A bitwise OR of the settings that are currently locked. See
XA _CAMERA_LOCK macros for different locks.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

See also

SetAutoLocks()

OpenMAX|AL

107

SetZoom

XAresult (*SetzZoom) (
XACameraltf self,
XApermille zoom,
XAboolean digitalEnabled,
XAuint32 speed,
XAboolean async

)
Description | Sets the new zoom factor.
Pre-conditions | None
Parameters | self [in] Interface self-reference.

zoom [in] Specifies the zoom factor.

digitalEnabled [in] If XA_BOOLEAN_TRUE, digital zoom and optical zoom is
used; otherwise only optical zoom is used

speed [in] | Hints the zooming speed. Accepted values are
XA_CAMERA_ZOOM_SLOW,
XA_CAMERA_ZOOM_NORMAL,
XA_CAMERA_ZOOM_FAST and
XA _CAMERA_ZOOM_FASTEST. This parameter is a hint
and the exact actual zooming speed is implementation
dependent. The exact speed might also be different when
shooting video or still images.

async [in] If XA_BOOLEAN_FALSE, the method will block until the
requested zoom is completed. Otherwise, the method will
return XA_RESULT_SUCCESS, and will be executed
asynchronously. However, if the implementation is unable
to initiate the asynchronous call
XA_RESULT_RESOURCE_ERROR will be returned.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments

When this method is executed asynchronously, the event
XA CAMERACBEVENT _ZOOMSTATUS is returned when zoom operation is completed.

See Also

GetZoom() ,GetSupportedZoomSettings()

OpenMAXIAL

108

GetZoom

XAresult (*GetzZoom) (
XACameral tf self,
XApermille * pZoom,
XAboolean * pDigitalEnabled

D:
Description | Gets the current zoom factor.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pZoom [out] | Specifies the zoom factor.
pDigitalEnabled | [out] | Specifies whether digital zoom is being used.

XA _BOOLEAN_TRUE if digital zoom is used,;
XA BOOLEAN_FALSE otherwise.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments

None

See Also

SetZoom() ,GetSupportedZoomSettings()

OpenMAX|AL

109

8.6 XACameraCapabilitiesitf

Description

This interface provides methods for querying the capabilities of camera 1/0 devices.

The set of cameras supported by the engine does not change during the lifetime of the engine, though dynamic
resource constraints may limit actual availability when a camera is requested.

This interface is a mandated interface of engine objects (see section 7.2).

Prototype

OpenMAX|AL

extern const XAlnterfacelD XA 11D_CAMERACAPABILITIES;

struct XACameraCapabilitiesltf_;
typedef const struct XACameraCapabilitiesltf_
* const * XACameraCapabilitiesltf;

struct XACameraCapabilitiesltf_ {

XAresult (*GetCameraCapabilities) (
XACameraCapabilitiesltf self,
XAuint32 * plndex,

XAuint32 * pCameraDevicelD,
XACameraDescriptor * pDescriptor

)

XAresult (*QueryFocusRegionPatterns) (
XACameraCapabilitiesltf self,
XAuint32 cameraDevicelD,
XAuint32 * pPatternliD,

XAuint32 * pFocusPattern,
XAuint32 * pCustomPointsl,
XAuint32 * pCustomPoints?2

)

XAresult (*GetSupportedAutolLocks) (
XACameraCapabilitiesltf self,
XAuint32 cameraDevicelD,
XAuint32 * pNumCombinations,
XAuint32 ** pplLocks

)

XAresult (*GetSupportedFocusManualSettings) (
XACameraCapabilitiesltf self,
XAuint32 cameraDevicelD,
XAboolean macroEnabled,
XAmillimeter * pMinValue,
XAmillimeter * pMaxValue,
XAuint32 * pNumSettings,
XAmillimeter ** ppSettings

)

XAresult (*GetSupportedlSOSensitivitySettings) (
XACameraCapabilitiesltf self,
XAuint32 cameraDevicelD,
XAuint32 * pMinValue,

XAuint32 * pMaxValue,
XAuint32 * pNumSettings,
XAuint32 ** ppSettings

);

XAresult (*GetSupportedApertureManualSettings) (
XACameraCapabilitiesltf self,
XAuint32 cameraDevicelD,
XAuint32 * pMinvalue,

XAuint32 * pMaxValue,
XAuint32 * pNumSettings,
XAuint32 ** ppSettings

OpenMAX|AL

XAresult (*GetSupportedShutterSpeedManualSettings) (
XACameraCapabilitiesltf self,
XAuint32 cameraDevicelD,
XAmicrosecond * pMinValue,
XAmicrosecond * pMaxValue,
XAuint32 * pNumSettings,
XAmicrosecond ** ppSettings

)

XAresult (*GetSupportedWhiteBalanceManualSettings) (
XACameraCapabilitiesltf self,
XAuint32 cameraDevicelD,

XAuint32 * pMinValue,
XAuint32 * pMaxValue,
XAuint32 * pNumSettings,
XAuint32 ** ppSettings

)

XAresult (*GetSupportedZoomSettings) (
XACameraCapabilitiesltf self,
XAuint32 cameraDevicelD,

XAboolean digitalEnabled,
XAboolean macroEnabled,
XApermille * pMaxValue,
XAuint32 * pNumSettings,
XApermille ** ppSettings,
XAboolean * pSpeedSupported

¥

Interface ID

0lcablc0-e86a-11db-a5b9-0002a5d5c51b

Defaults

Not applicable.

Methods

OpenMAX|AL

GetCameraCapabilities

XAresult (*GetCameraCapabilities) (
XACameraCapabilitiesltf self,
XAuint32 * plndex,

XAuint32 * pCameraDevicelD,
XACameraDescriptor * pDescriptor

);

Description | Queries the camera device for its capabilities.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pIndex [in/out] As an input, specifies which camera device to obtain the
capabilities of, the supported range is [0, n-1), where n is
the number of camera devices available (ignored if
pDescriptor is NULL). As an output, specifies the
number of camera devices available in the system. Returns
0 if no camera devices are available.

pCamerabeviceld | [in/out] If pIndex is non-NULL then returns the camera device
ID corresponding to camera device pIndex. If pindex is
NULL then, as an input, specifies which camera device to
obtain the capabilities of
(XA_DEFAULTDEVICEID_CAMERA can be used to
determine the default camera device’s capabilities).

pDescriptor [out] Structure defining the capabilities of the camera.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | An application can determine the number of camera devices by calling this method with
pDescriptor set to NULL and examining pIndex. The application can then determine the
capabilties of all the camera devices by calling this method multiple times with plndex
pointing to each different indexes from 0 up to one less than the number of camera devices.

A camera is selected using the CreateCamerabDevice() method.

This method outputs a structure that contains one or more pointers to arrays. The memory for
these arrays shall be allocated by the OpenMAX AL implementation and shall not be deallocated
by the application. The OpenMAX AL implementation shall keep the data contained within the
arrays valid for the lifetime of this interface’s host object. (The memaory for the structure itself is
allocated by the application and therefore shall be freed by the application.)

seealso | XA_DEFAULTDEVICEID_CAMERA [see section 9.2.25]

OpenMAX|AL

QueryFocusRegionPatterns

XAresult (*QueryFocusRegionPatterns) (
XACameraCapabilitiesltf self,
XAuint32 cameraDevicelD,

XAuint32 * pPatternlD,

XAuint32 * pFocusPattern,
XAuint32 * pCustomPointsl,
XAuint32 * pCustomPoints2

);

Description

Queries the camera device for its capabilities.

Pre-conditions

None

Parameters

self [in] Interface self-reference.

cameraDevicelD | [in] Camera device ID.

pPatternlD [infout] If pFocusPattern is NULL, pPatternlD returns the
number of focus region patterns supported by the camera.
Returns 0 if no focus region patterns are supported.

If pFocusPattern is non-NULL, pPatternlD is an
incrementing value used for enumerating focus region
patterns. Supported index range is O to N-1, where N is the
number of focus region patterns.

pFocusPattern | [out] Focus point pattern used by the camera. See
XA_FOCUSPOINTS macros.

pCustomPointsl | [out] Identifies the focus points available for the custom focus
region pattern — XA_FOCUSPOINTS_CUSTOM.

The parameter returns points that are selectable, and the
points are identified as a bit array.

This parameter is to be ignored if not used to query for the
custom focus points information.

pCustomPoints2 | [out] See description of pCustomPointsl

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

See also

None

GetSupportedAutoLocks

XAresult (*GetSupportedAutolLocks) (
XACameraCapabilitiesltf self,
XAuint32 cameraDevicelD,
XAuint32 * pNumCombinations,
XAuint32 ** pplLocks

)s

Description

This method gets the supported combinations of automatic camera setting locks.

OpenMAX

1‘\1_ 114

Pre-conditions | None
Parameters | self [in] Interface self-reference.

cameraDevicelD [in] Camera Device ID.

pNumCombinations [infout] If pLocks is NULL, pNumCombinations returns
the number of supported lock combinations.
If ppLocks is non-NULL, pNumCombinations is
length of the ppLocks array.

ppLocks [out] Returns an array of supported lock state combinations

(bitwise ORs of XA_CAMERA LOCK macros).
ppLocks may be NULL.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

XA_RESULT_FEATURE_UNSUPPORTED

Comments

If no lock state combinations are supported, the method returns

XA RESULT_FEATURE_UNSUPPORTED. Not all the cameras support locking all these
parameters pre-exposure. Furthermore, some combinations of otherwise supported locks might
not be supported; for example a camera might support only locking focus and exposure together
at once, but not separately, and no other locks. In that example case this method would return just
three (XA_CAMERA_LOCK_AUTOFOCUS | XA_CAMERA_LOCK_AUTOEXPOSURE) and zero.

See also

None

OpenMAXIAL

115

GetSupportedFocusManualSettings

XAresult (*GetSupportedFocusManualSettings) (
XACameraCapabilitiesltf self,
XAuint32 cameraDevicelD,
XAboolean macroEnabled,
XAmillimeter * pMinValue,
XAmillimeter * pMaxValue,
XAuint32 * pNumSettings,
XAmillimeter ** ppSettings

Description | This method gets the supported manual focus settings.

Pre-conditions | None

Parameters | self [in] Interface self-reference.
camerabDevicelD [in] Camera Device ID.
macroEnabled [in] If XA_BOOLEAN_TRUE, returns focus settings for

macro mode. If XA BOOLEAN_FALSE, returns
focus settings for normal mode.

pMinvalue [out] Identifies the minimum manual focus setting
supported.

pMaxValue [out] Identifies the maximum manual focus setting
supported.

A value of OXFFFFFFFF indicates infinity.

pNumSettings [infout] If ppSettings is NULL, pNumSettings returns
the number of supported manual focus settings.

If the available manual settings are continuous from
pMinValue to pMaxValue, pNumSettings
returns O.

If ppSettings isnon-NULL and a non-
continuous range is supported, pNumSettings is
length of the pSettings array.

ppSettings [out] Returns an array of supported focus settings.
ppSettings may be NULL.

The array of values returned must include
pMinValue and pMaxValue.

A value of OXFFFFFFFF indicates infinity.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments | The value of OXFFFFFFFF for infinity should not be used with a continuous range of focus
settings. If manual focus settings are unsupported, the method returns
XA_RESULT_FEATURE_UNSUPPORTED.

Seealso | None

OpenMAX|AL

GetSupportedISOSensitivitySettings

XAresult (*GetSupportedlSOSensitivitySettings) (
XACameraCapabilitiesltf self,
XAuint32 cameraDevicelD,
XAuint32 * pMinValue,
XAuint32 * pMaxValue,
XAuint32 * pNumSettings,
XAuint32 ** ppSettings

Description | This method gets the supported manual 1SO settings.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

cameraDevicelD [in] Camera Device ID.

pMinvalue [out] Identifies the minimum manual 1SO setting
supported in units of 1ISO values.

pMaxValue [out] Identifies the maximum manual 1SO supported in
units of 1SO values.

pNumSettings [in/out] If ppSettings is NULL, pNumSettings returns
the number of supported manual I1SO sensitivity
settings.

If the available manual settings are continuous from
pMinValue to pMaxValue, pNumSettings
returns O.

If ppSettings isnon-NULL and a non-
continuous range is supported, pNumSettings is
length of the ppSettings array.

ppSettings [out] Returns an array of supported 1SO sensitivity
settings. ppSettings may be NULL.

The values identified in the array are in units of ISO
values. The array of values returned must include
pMinValue and pMaxValue.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments | |f manual 1SO settings are unsupported, the method returns
XA_RESULT_FEATURE_UNSUPPORTED.

See also | None

OpenMAX|AL

GetSupportedApertureManualSettings

XAresult (*GetSupportedApertureManualSettings) (
XACameraCapabilitiesltf self,
XAuint32 cameraDevicelD,
XAuint32 * pMinValue,
XAuint32 * pMaxValue,
XAuint32 * pNumSettings,
XAuint32 ** ppSettings

Description | This method gets the supported manual aperture settings.

Pre-conditions | None

Parameters | self [in] Interface self-reference.
cameraDevicelD [in] Camera Device ID.
pMinValue [out] Identifies the minimum manual aperture setting
supported.
A setting of 100 is equal to an f-stop of 1.0.
pMaxValue [out] Identifies the maximum manual aperture setting
supported.

A setting of 100 is equal to an f-stop of 1.0.

pNumSettings [infout] If ppSettings is NULL, pNumSettings returns
the number of supported manual aperture settings.

If the available manual settings are continuous from
pMinValue to pMaxValue, pNumSettings
returns O.

If ppSettings isnon-NULL and a non-
continuous range is supported, pNumSettings is
length of the ppSettings array.

ppSettings [out] Returns an array of supported aperture settings.
ppSettings may be NULL.

The array of values returned must include
pMinValue and pMaxValue.

A setting of 100 is equal to an f-stop of 1.0.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments | |f manual aperture settings are unsupported, the method returns
XA_RESULT_FEATURE_UNSUPPORTED.

Seealso | None

OpenMAX|AL

GetSupportedShutterSpeedManualSettings

XAresult (*GetSupportedShutterSpeedManualSettings) (
XACameraCapabilitiesltf self,
XAuint32 cameraDevicelD,
XAmicrosecond * pMinValue,
XAmicrosecond * pMaxValue,
XAuint32 * pNumSettings,
XAmicrosecond ** ppSettings

Description | This method gets the supported manual shutter speed settings.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

cameraDevicelD [in] Camera Device ID.

pMinValue [out] Identifies the minimum manual shutter speed setting
supported.

pMaxValue [out] Identifies the maximum manual shutter speed setting
supported.

pNumSettings [infout] If ppSettings is NULL, pNumSettings returns
the number of supported manual shutter speed
settings.

If the available manual settings are continuous from
pMinValue to pMaxValue, pNumSettings
returns O.

If ppSettings isnon-NULL and a non-
continuous range is supported, pNumSettings is
length of the ppSettings array.

ppSettings [out] Returns an array of supported shutter speed settings.
ppSettings may be NULL. The array of values
returned must include pMinValue and
pMaxValue.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments | |f manual shutter speed settings are unsupported, the method returns
XA_RESULT_FEATURE_UNSUPPORTED

See also | None

OpenMAX|AL

GetSupportedWhiteBalanceManualSettings

XAresult (*GetSupportedWhiteBalanceManualSettings) (
XACameraCapabilitiesltf self,

XAuint32 cameraDevicelD,

XAuint32 * pMinValue,
XAuint32 * pMaxValue,

XAuint32 * pNumSettings,

XAuint32 ** ppSettings

)
Description | This method gets the supported manual white balance settings.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
cameraDevicelD [in] Camera Device ID.
pMinValue [out] Identifies the minimum manual white balance setting
supported in units of Kelvins.
pMaxValue [out] Identifies the maximum manual white balance setting
supported in units of Kelvins.
pNumSettings [in/out] If ppSettings is NULL, pNumSettings returns
the number of supported manual white balance
settings.
If the available manual settings are continuous from
pMinValue to pMaxValue, pNumSettings
returns O.
If ppSettings isnon-NULL and a non-
continuous range is supported, pNumSettings is
length of the ppSettings array.
ppSettings [out] Returns an array of supported white balance settings.

ppSettings may be NULL.

The values identified in the array are in units of
Kelvins. The array of values returned must include
pMinValue and pMaxValue.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments

If manual white balance settings are unsupported, the method returns
XA_RESULT_FEATURE_UNSUPPORTED.

See also

None

OpenMAX|AL

120

GetSupportedZoomSettings

XAresult (*GetSupportedZoomSettings) (
XACameraCapabilitiesltf self,
XAuint32 cameraDevicelD,

XAboolean digitalEnabled,
XAboolean macroEnabled,
XApermille * pMaxValue,
XAuint32 * pNumSettings,
XApermille ** ppSettings,
XAboolean * pSpeedSupported

Description [This method gets the supported zoom settings.

Pre-conditions | None

Parameters | self [in] Interface self-reference.
cameraDevicelD [in] Camera Device ID.
digitalEnabled [in] If XA_BOOLEAN_TRUE, returns zoom settings when

optical and digital zoom is enabled. If
XA BOOLEAN_FALSE, returns zoom settings when
only optical zoom is enabled.

macroEnabled [in] If XA_BOOLEAN_TRUE, returns zoom settings for
macro mode. If XA BOOLEAN_FALSE, returns
zoom settings for normal mode.

pMaxValue [out] Identifies the maximum zoom setting supported.

pNumSettings [infout] If ppSettings is NULL, pNumSettings returns
the number of supported zoom settings.

If the available settings are continuous from 1000 to
pMaxValue, pNumSettings returns O.

If ppSettings isnon-NULL and a non-
continuous range is supported, pNumSettings is
length of the ppSettings array.

ppSettings [out] Returns an array of supported zoom settings.
ppSettings may be NULL.

The array of values returned must include 1000 and
pMaxValue.

pSpeedSupported | [out] Returns XA_BOOLEAN_TRUE if zoom speed
parameter in XACameral tf: :SetZoom is
supports; returns XA_BOOLEAN_FALSE otherwise.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

XA _RESULT_FEATURE_UNSUPPORTED

Comments [The minimum zoom settings is 1000%o. If zoom is not supported, the method returns
XA_RESULT_FEATURE_UNSUPPORTED.

See also | None

OpenMAX|AL

122

8.7 XAConfigExtensionsl|tf

Description

This interface provides a mechanism for an application to set and query both the codec and non-codec

configurations of the underlying media engine (such as audio/video/image). These configuration parameters are in
the form of key-value pairs. As such, the method signatures do not assume any vendor-specific or platform-specific

knowledge of the underlying media engine or codecs. The methods of this interface have been designed such that

they can be used to get/set the parameters for any OpenMAX AL object in a vendor-specific manner. Therefore, the

usage of this interface is not limited to media engines or codecs. It applicable to all OpenMAX AL objects

This interface can be exposed on any OpenMAX AL object.

Prototype

extern const XAlnterfacelD XA 11D _CONFIGEXTENSION;

struct XAConfigExtensionsltf_;
typedef const struct XAConfigExtensionsltf_
* const * XAConfigExtensionsltT;

struct XAConfigExtensionslitf_ {

XAresult (*SetConfiguration) (
XAConfigExtensionsltf self,
const XAchar * configKey,
XAuint32 valueSize,
const void * pConfigValue

)

XAresult (*GetConfiguration) (
XAConfigExtensionslitf self,
const XAchar * configKey,
XAuint32 * pValueSize,
void * pConfigVvalue

Interface ID

6dc22ea0-df03-11db-bed7-0002a5d5c51b

Defaults

None

OpenMAX|AL

123

Methods

SetConfiguration

XAresult (*SetConfiguration) (
XAConfigExtensionsltf self,

const XAchar * configKey,

XAuint32 valueSize;

const void * pConfigValue

)
Description | Sets the configuration as a key-value pair
Pre-conditions | None
Parameters | self [in] Interface self-reference.
configKey [in] String representing the “key” — the parameter/attribute name
of the configuration.
valueSize [in] The size of the value referenced by pConfigValue, in
bytes.
pConfigValue [in] Address of the parameter/attribute being set.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

The configValue input parameter is passed by reference.

For example, this method could be used to set the RTSP proxy IP address and port number (for
example, 123.213.123.5:80), or the bearer-specific bandwidth limits (for example, 900-1800
MH?z). It is up to the underlying object to appropriately parse the key-value pair and make sense

of the parameter setting.

OpenMAX|AL

124

GetConfiguration

XAresult (*GetConfiguration) (
XAConfigExtensionltf self,
const XAchar * configKey,
XAuint32 * pValueSize,
void * pConfigValue

):
Description | Gets the configuration setting as a key-value pair
Pre-conditions | None
Parameters | self [in] Interface self-reference.
configKey [in] String representing the “key” — the name of the
parameter/attribute being queried. If configKey is not
recognized as a valid parameter/attributes of the
underlying object XA_RESULT_PARAMETER_INVALID
is return.
pvValueSize [infout] | Address of the size of the memory block passed as
pConfigValue.
pConfigValue | [out] Address of the value of the parameter/attribute that is
returned. If the size of the memory block passed as
pConfigValue is too small to return the entire value,
XA_RESULT_PARAMETER_INVALID is returned.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

If the memory area specified by pConfigValue and pValueSize is too small to
receive the entire value, only the first pValueSi ze bytes will be returned in
pConfigValue. pValueSize will be set to the minimum size required for the call to
succeed.

The pConfigValue output parameter is passed by reference.

For example, this method could be used for querying the RTSP proxy IP address and port
number (123.213.123.5:80), or the bearer-specific bandwidth limits (900-1800 MHz). It
is up to the underlying object to appropriately parse the key string and return the
corresponding parameter setting, in the appropriate format. An error is returned if the key
is not recognized by the underlying object.

OpenMAX|AL

125

8.8 XADeviceVolumeltf

Description

This interface exposes controls for manipulating the volume of specific audio input and audio output devices. The
units used for setting and getting the volume can be in millibels or as arbitrary volume steps; the units supported by
the device can be queried with GetVolumeScale method.

Support for this interface is optional but where supported, this interface should be exposed on the engine object.

Prototype

extern const XAlnterfacelD XA 11D _DEVICEVOLUME;

struct XADeviceVolumeltf_;
typedef const struct XADeviceVolumeltf_* const * XADeviceVolumeltf;

struct XADeviceVolumeltf_ {

XAresult (*GetVolumeScale) (
XADeviceVolumeltf self,
XAuint32 devicelD,
XAInt32 * pMinValue,
XAint32 * pMaxValue,
XAboolean * plsMillibelScale

s

XAresult (*SetVolume) (
XADeviceVolumeltf self,
XAuint32 devicelD,
XAInt32 volume

)

XAresult (*GetVolume) (
XADeviceVolumeltf self,
XAuint32 devicelD,
XAiInt32 * pVolume

Interface ID

4bb44020-f775-11db-ad03-0002a5d5¢51b

Defaults

The default volume setting of each device should be audible.

OpenMAX|AL

Methods

GetVolumeScale

XAresult (*GetVolumeScale) (
XADeviceVolumeltf self,
XAuint32 devicelD,
XAiInt32 *pMinvValue,
XAiInt32 *pMaxValue,
XAboolean *plsMillibelScale

D:
Description | Gets the properties of the volume scale supported by the given device.
Pre-conditions | None
Parameters | self [in] | Interface self-reference.
devicelD [in] | Audio input or output device’s identifier.
pMinValue [out] | The smallest supported volume value of the device
pMaxValue [out] | The greatest supported volume value of the device.
pIsMillibelScale | [out] | If true, the volume values used by GetVolume, SetVolume and

this method are in millibel units; if false, the volume values are

in arbitrary volume steps.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

XA_RESULT_CONTROL_LOST

Comments

This method may return XA _RESULT_FEATURE_UNSUPPORTED if the specified device does

not support changes to its volume.

The scale is always continuous and device-specific. It could be, for example, [0, 15] if arbitrary
volume steps are used or [-32768, 0] if millibels are used.

See also

XAAudiolODeviceCapabilitiesltf(), XAOutputMixItFQ

OpenMAX|AL

127

SetVVolume

XAresult (*SetVolume) (
XADeviceVolumeltf self,
XAuint32 devicelD,
XAInt32 volume

);

Description | Sets the device’s volume.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

devicelD [in] Device identifier.

volume [in] The new volume setting. The valid range is continuous and its
boundaries can be queried from GetVolumeScale method.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED
XA_RESULT_CONTROL_LOST

Comments | The minimum and maximum supported volumes are device-dependent.

This method may fail if the specified device does not support changes to its volume or the
volume is outside the range supported by the device.

Seealso | XAAudiolODeviceCapabilitiesltf, XAOutputMixItf

GetVolume

XAresult (*GetVolume) (
XADeviceVolumeltf self,
XAuint32 devicelD,
XAiInt32 * pVolume

);

Description | Gets the device’s volume.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

devicelD | [in] Device identifier.

pVolume | [out] | Pointer to a location to receive the object’s volume setting. This must be
non-NULL.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments | XA RESULT_FEATURE_UNSUPPORTED is returned if the specified device does not support
changes to its volume.

OpenMAX|AL

8.9 XADynamiclnterfaceManagementitf

Description

The XADynamiclnterfaceManagementItf interface provides methods for handling interface exposure on an
object after the creation and realization of the object. The primary method for exposing interfaces on an object is by
listing them in the engine object’s creation methods (see section 8.12).

XADynamiclnterfaceManagementltf is an implicit interface of all object types. Please refer to section 3.1.7
for details about how dynamically exposed interfaces work with the object states and other exposed interfaces.

This interface is supported on all objects (see section 7).

Defaults

No dynamic interfaces are exposed.

No callback is registered.

Prototype

extern const XAlnterfacelD XA 11D _DYNAMICINTERFACEMANAGEMENT ;

struct XADynamiclnterfaceManagementltf_;
typedef const struct XADynamiclnterfaceManagementltf
* const * XADynamiclnterfaceManagementltf;

struct XADynamiclnterfaceManagementltf_ {

XAresult (*AddInterface) (
XADynamiclnterfaceManagementltf self,
const XAlnterfacelD iid,

XAboolean async

)

XAresult (*Removelnterface) (
XADynamiclnterfaceManagementltf self,
const XAlnterfacelD iid

)

XAresult (*Resumelnterface) (
XADynamiclnterfaceManagementltf self,
const XAlnterfacelD iid,

XAboolean async

OpenMAX|AL

XAresult (*RegisterCallback) (
XADynamiclnterfaceManagementltf self,
xaDynamiclInterfaceManagementCal lback callback,
void * pContext

Interface ID

6€2340c0-f775-11db-85da-0002a5d5¢51b

Callbacks

xaDynamiclnterfaceManagementCallback

typedef void (XAAPIENTRY * xaDynamiclnterfaceManagementCallback) (
XADynamiclnterfaceManagementltf caller,
void * pContext,
XAuint32 event,
XAresult result,
const XAlnterfacelD iid

)s

Description | A callback function, notifying of a runtime error, termination of an asynchronous call or change in a
dynamic interface’s resources.

Parameters | cal ler [in] | Interface on which this callback was registered.

pContext | [in] | User context data that is supplied when the callback method is registered.

event [in] | One of the dynamic interface management event macros. See
XA_DYNAMIC_ITF_EVENT macros.

result [in] | Contains either the error code, if event is
XA_DYNAMIC_ITF_EVENT_RUNTIME_ERROR, or the asynchronous function
return code, if event is

XA _DYNAMIC_ITF_EVENT_ASYNC_TERMINATION. The result may be:

XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_MEMORY_FAILURE
XA_RESULT_FEATURE_UNSUPPORTED

iid [in] | Interface type ID that the event affects.

Comments | Please note the restrictions applying to operations performed from within callback context in section
3.3.

Seealso | RegisterCallback()

OpenMAX|AL

Methods

AddInterface

XAresult (*AddInterface) (
XADynamiclnterfaceManagementltf self,
const XAlnterfacelD iid,

XAboolean async

)s

Description | Optionally asynchronous method for exposing an interface on an object. In asynchronous mode
the success or failure of exposing the interface will be sent to the registered callback function.

Pre-conditions | |nterface has not been exposed.

Parameters | self [in] Interface self-reference.
iid [in] Valid interface type ID.
async [in] If XA_BOOLEAN_FALSE, the method will block until

termination. Otherwise, the method will return

XA RESULT_SUCCESS, and will be executed
asynchronously. However, if the implementation is unable
to initiate the asynchronous call
XA_RESULT_RESOURCE_ERROR will be returned.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_MEMORY_FAILURE

XA _RESULT_FEATURE_UNSUPPORTED
XA_RESULT_PRECONDITIONS_VIOLATED

Comments | \When successful, the interface is exposed on the object and the interface pointer can be obtained
by XAObjectltf: :GetlInterface().-

Adding the interface to the object acquires the resources required for its functionality. The
operation may fail if insufficient resources are available. In such a case, the application may wait
until resources become available (XA_DYNAMIC _ITF_EVENT _RESOURCE_AVAILABLE),
and then resume the interface. Additionally, the application may increase the object’s priority,
thus increasing the likelihood that the object will steal another object’s resources.

Adding an interface that is already exposed will result in a return value of
XA_RESULT_PRECONDITIONS_VIOLATED.

Seealso | XAObjectltf: :Getlnterface()

OpenMAX|AL

Removelnterface

XAresult (*Removelnterface) (
XADynamiclnterfaceManagementltf self,

const

);

XAlnterfacelD iid

Description

Synchronous method for removing a dynamically exposed interface on the object. This method is
supported in all object states.

Pre-conditions

Interface has been exposed.

Parameters

self [in] Interface self-reference.

iid [in] Valid interface type ID that has been exposed on this object by use of the
AddInterface() method.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_PRECONDITIONS_VIOLATED

Comments | An object that is in Suspended or Unrealized states waits also for resources for dynamically
managed interfaces before sending a resources available event. By removing a dynamic interface
in Unrealized or Suspended state, the object does not wait for resources for that dynamic
interface.

Removing an interface that is not exposed will result in a return value of
XA_RESULT_PRECONDITIONS_VIOLATED.
Seealso [None

OpenMAX|AL

Resumelnterface

XAresult (*Resumelnterface) (
XADynamiclnterfaceManagementltf self,
const XAlnterfacelD iid,

XAboolean async

):
Description | Optionally asynchronous method for resuming a dynamically exposed interface on the object.
Pre-conditions | None
Parameters | self | [in] Interface self-reference.
iid [in] | Valid interface type ID that has been exposed on this object by use of the
AddInterface() method.
aync | [in] If XA_BOOLEAN_FALSE, the method will block until termination. Otherwise,
the method will return XA_RESULT_SUCCESS, and will be executed
asynchronously. However, if the implementation is unable to initiate the
asynchronous call XA_RESULT_RESOURCE_ERROR will be returned.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

When successful, the interface is exposed on the object and the interface pointer can be obtained
by XAObjectltf: :GetlInterface().-

This method can be used on a Suspended dynamic interface after reception of a resources
available event, XA_DYNAMIC_ITF_EVENT_RESOURCE_AVAILABLE.

See also

None

RegisterCallback

XAresult (*RegisterCallback) (
XADynamiclnterfaceManagementltf self,
xaDynamiclnterfaceManagementCal lback callback,
void * pContext

):
Description | Registers a callback on the object that executes when a runtime error, termination of an
asynchronous call or change in a dynamic interface’s resources occurs.
Parameters | self [in] Interface self-reference.
callback [in] Address of the result callback. If NULL, the callback is disabled.
pContext [in] Userr1 cgntext data that is to be returned as part of the callback
method.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS

Comments

None

See also

xaDynamiclnterfaceManagementCal lback()

OpenMAX|AL

133

8.10 XADynamicSourceltf

Description

This interface exposes a control for changing the data source of the object during the life-time of the object.
Prototype
extern const XAlnterfacelD XA 11D_DYNAMICSOURCE;

struct XADynamicSourceltf_;
typedef const struct XADynamicSourceltf_ * const * XADynamicSourceltf;

struct XADynamicSourceltf {
XAresult (*SetSource) (
XADynamicSourcel tf self,
XADataSource * pDataSource

Interface ID
c88d5480-3a12-11dc-80a2-0002a5d5c51b

Defaults

The data source that was set on object creation.

OpenMAX|AL

Methods

SetSource

XAresult (*SetSource) (
XADynamicSourcel tf self,
XADataSource * pDataSource

)s

Description | Sets the data source for the object.

Pre-conditions | None

Parameters [self [in] | Interface self-reference

pDataSource | [in] | Pointer to the structure specifying the media data source (such as a
container file). Must be non-NULL. In the case of a Metadata Extractor
object, only local data sources are mandated to be supported.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_MEMORY_FAILURE
XA_RESULT_10_ERROR
XA_RESULT_CONTENT_CORRUPTED
XA_RESULT_CONTENT_UNSUPPORTED
XA _RESULT_CONTENT_NOT_FOUND
XA_RESULT_PERMISSION_DENIED

Comments | Setting a source for a Metadata Extractor object will reset its XAMetadataExtractionltf
and XAMetadataTraversal I'tf interfaces to point to the new source and reset those
interfaces to their initial values.

Setting of the new source shall be accepted in any player object state. The
playback of the new source shall start from the beginning of the content.

The player object shall maintain the same player object state upon accepting
the new source. For example, if the player object is currently in XA_PLAYSTATE_PLAYING
state, it shall maintain the XA PLAYSTATE_PLAYING state.

Seealso [None

OpenMAX|AL

8.11 XAEngineltf

Description

This interface exposes creation methods of all the OpenMAX AL object types. See Appendix F: for examples using

this interface.

Prototype

extern const XAlnterfacelD XA 11D _ENGINE;

struct XAEngineltf_;
typedef const struct XAEngineltf_ * const * XAEngineltf;

struct XAEngineltf_ {
XAresult (*CreateCameraDevice) (
XAEngineltf self,
XAObjectltf * pDevice,
XAuint32 devicelD,
XAuint32 numlnterfaces,
const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired
)
XAresult (*CreateRadioDevice) (
XAEngineltf self,
XAObjectltf * pDevice,
XAuint32 numlnterfaces,
const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired
)
XAresult (*CreatelLEDDevice) (
XAEngineltf self,
XAObjectltf * pDevice,
XAuint32 devicelD,
XAuint32 numlnterfaces,
const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired
XAresult (*CreateVibraDevice) (
XAEngineltf self,
XAObjectltf * pDevice,
XAuint32 devicelD,
XAuint32 numlnterfaces,
const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired

OpenMAX|AL

136

XAresult (*CreateMediaPlayer) (
XAEngineltf self,
XAObjectltf * pPlayer,
XADataSource * pDataSrc,
XADataSource * pBankSrc,
XADataSink * pAudioSnk,
XADataSink * plmageVideoSnk,
XADataSink * pVibra,
XADataSink * pLEDArray,
XAuint32 numlnterfaces,
const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired
)
XAresult (*CreateMediaRecorder) (
XAEngineltf self,
XAObjectltf * pRecorder,
XADataSource * pAudioSrc,
XADataSource * plmageVideoSrc,
XADataSink * pDataSnk,
XAuint32 numlnterfaces,
const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired
)
XAresult (*CreateOutputMix) (
XAEngineltf self,
XAObjectltf * pMix,
XAuint32 numlnterfaces,
const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired
)
XAresult (*CreateMetadataExtractor) (
XAEngineltf self,
XAObjectltf * pMetadataExtractor,
XADataSource * pDataSource,
XAuint32 numlnterfaces,
const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired
)
XAResult (*CreateExtensionObject) (
XAEngineltf self,
XAObjectltf * pObject,
void * pParameters,
XAuint32 objectlD,
XAuint32 numlnterfaces,
const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired
)
XAresult (*Getlmplementationlnfo) (
XAEngineltf self,
XAuint32 * pMajor,
XAuint32 * pMinor,
XAuint32 * pStep,
const XAchar * plmplementationText

OpenMAX|AL

XAresult (*QuerySupportedProfiles) (
XAEnginel tf self,
XAintl6 * pProfilesSupported

)

XAresult (*QueryNumSupportedInterfaces) (
XAEngineltf self,
XAuint32 objectlD,
XAuint32 * pNumSupportedinterfaces

)

XAresult (*QuerySupportedInterfaces) (
XAEngineltf self,
XAuint32 objectlD,
XAuint32 index,
XAlnterfacelD * plInterfaceld

)

XAresult (*QueryNumSupportedExtensions) (
XAEngineltf self,
XAuint32 * pNumExtensions

)

XAresult (*QuerySupportedExtension) (
XAEngineltf self,
XAuint32 index,
XAchar * pExtensionName,
XAintl6 * pNamelLength

)

XAresult (*IskExtensionSupported) (
XAEngineltf self,
const XAchar * pExtensionName,
XAboolean * pSupported

)

XAresult (*QueryLEDCapabilities) (
XAEngineltf self,
XAuint32 *plndex,
XAuint32 * pLEDDevicelD,
XALEDDescriptor * pDescriptor

)

XAresult (*QueryVibraCapabilities) (
XAEngineltf self,
XAuint32 *plndex,
XAuint32 * pVibraDevicelD,
XAVibraDescriptor * pDescriptor

¥

Interface ID
45¢58f40-df04-11db-9e76-0002a5d5¢51b

Defaults

None.

OpenMAX|AL

Methods

CreateCameraDevice

XAresult (*CreateCameraDevice) (
XAEngineltf self,
XAObjectltf * pDevice,
XAuint32 devicelD,
XAuint32 numlnterfaces,
const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired

):
Description | Creates a camera device.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pDevice [out] | Newly-created camera device object.
devicelD [in] ID of the camera device.
numlnterfaces [in] Number of interfaces that the object is requested to support
(not including implicit interfaces).
plnterfacelds [in] Array of numInterfaces interface IDs, which the

object should support.
This parameter is ignored if numInterfaces is zero.

pInterfaceRequired | [in] Array of numInterfaces flags, each specifying
whether the respective interface is required on the object or
optional. A required interface will fail the creation of the
object if it cannot be accommodated and the error code
XA_RESULT_FEATURE_UNSUPPORTED will be then
returned.

This parameter is ignored if numInterfaces is zero.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_MEMORY_FAILURE
XA_RESULT_FEATURE_UNSUPPORTED

Comments

If the engine fails to create the object due to lack of memory or resources it will return the
XA_RESULT_MEMORY_FAILURE or the XA_RESULT_RESOURCE_ERROR error,
respectively.

See also

XACameraCapabi litiesItfF (see section 8.6) to determine the capabilities of the camera
device. Camera I/O device object (see section 7.1).

OpenMAX|AL

CreateRadioDevice

XAresult (*CreateRadioDevice) (
XAEngineltf self,
XAObjectltf * pDevice,
XAuint32 numlnterfaces,
const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired

)
Description | Creates a radio device.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pDevice [out] | Newly-created radio device object.
numlnterfaces [in] Number of interfaces that the object is requested to support
(not including implicit interfaces).
plnterfacelds [in] Array of numlInterfaces interface IDs, which the

object should support.
This parameter is ignored if numInterfaces is zero.

pInterfaceRequired | [in] Array of numInterfaces flags, each specifying
whether the respective interface is required on the object or
optional. A required interface will fail the creation of the
object if it cannot be accommodated and the error code
XA_RESULT_FEATURE_UNSUPPORTED will be then
returned.

This parameter is ignored if numInterfaces is zero.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_MEMORY_FAILURE
XA_RESULT_FEATURE_UNSUPPORTED

Comments

If the engine fails to create the object due to lack of memory or resources it will return the
XA_RESULT_MEMORY_FAILURE or the XA_RESULT_RESOURCE_ERROR error,
respectively.

See also

Radio 1/0 device object (see section 7.8).

OpenMAX|AL

CreateLEDDevice

XAresult (*CreatelLEDDevice) (
XAEngineltf self,
XAObjectltf * pDevice,
XAuint32 devicelD,
XAuint32 numlnterfaces,
const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired

)
Description | Creates an LED device.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pDevice [out] | Newly-created LED device object.
devicelD [in] ID of the LED device.
numinterfaces [in] Number of interfaces that the object is requested
to support (not including implicit interfaces).
plnterfacelds [in] Array of numlnterfaces interface IDs, which
the object should support.
This parameter is ignored if numInterfaces is
Zero.
pInterfaceRequired | [in] Array of numlnterfaces flags, each

specifying whether the respective interface is
required on the object or optional. A required
interface will fail the creation of the object if it
cannot be accommodated and the error code
XA _RESULT_FEATURE_UNSUPPORTED will
be then returned.

This parameter is ignored if numlnterfaces is
zero.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

XA_RESULT_MEMORY_FAILURE

XA_RESULT_FEATURE_UNSUPPORTED

Comments

If the engine fails to create the object due to lack of memory or resources it will return
the XA_RESULT_MEMORY_FAILURE or the XA_RESULT_RESOURCE_ERROR error,

respectively.

See also

XAEngine I tf (see section 8.12) to determine the capabilities of the LED device. LED
array 1/0 device object (see section 7.3).

OpenMAX|AL

141

CreateVibraDevice

XAresult (*CreateVibraDevice) (
XAEngineltf self,
XAObjectltf * pDevice,
XAuint32 devicelD,
XAuint32 numlnterfaces,
const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired

)
Description | Creates a vibrator device.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pDevice [out] | Newly-created vibrator device object.
devicelD [in] ID of the vibrator device.
numlnterfaces [in] Number of interfaces that the object is requested to support
(not including implicit interfaces).
plnterfacelds [in] Array of numInterfaces interface IDs, which the

object should support.
This parameter is ignored if numInterfaces is zero.

pInterfaceRequired | [in] Array of numInterfaces flags, each specifying
whether the respective interface is required on the object or
optional. A required interface will fail the creation of the
object if it cannot be accommodated and the error code
XA_RESULT_FEATURE_UNSUPPORTED will be then
returned.

This parameter is ignored if numInterfaces is zero.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_MEMORY_FAILURE
XA_RESULT_FEATURE_UNSUPPORTED

Comments | |f the engine fails to create the object due to lack of memory or resources it will return the
XA_RESULT_MEMORY_FAILURE or the XA_RESULT_RESOURCE_ERROR error,
respectively.

See also

XAEnginel tf (see section 8.12) to determine the capabilities of the LED device. Vibra I/O
device object (see section 7.9).

OpenMAX|AL

CreateMediaPlayer

XAresult (*CreateMediaPlayer) (
XAEngineltf self,

XAObjectltf * pPlayer,
XADataSource
XADataSource
XADataSink
XADataSink
XADataSink * pVibra,

XADataSink * pLEDArray,
XAuint32 numlnterfaces,

* pDataSrc,
* pBankSrc,
* pAudioSnk,
* plmageVideoSnk,

const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired

);

Description

Creates a media player object.

Pre-conditions

If data source’s or data sink’s locator is an object (e.g. camera, radio or output mix) this object

must be in the realized state.

Parameters

self

[in]

Interface self-reference.

pPlayer

[out]

Newly-created media player object.

pDataSrc

[in]

Pointer to the structure specifying the data source (such as
a container file). For MIDI, the data source must be a
Mobile XMF or SP-MIDI file reference.

pBankSrc

[in]

Pointer to the structure specifying the instrument bank in
Mobile DLS format. This is an optional parameter. If
NULL the default bank of instruments definitions is used.
This parameter is ignored for non-MIDI data sources.

pAudioSnk

[in]

Pointer to the structure specifying the audio data sink (such
as an audio output device). This field may be NULL (such
as when the data does not contain audio).

plImageVideoSnk

[in]

Pointer to the structure specifying the image/video data
sink (such as a native window handle). This field may be
NULL (such as when the data does not contain video or an
image).

pVibra

[in]

Pointer to the structure specifying the Vibra I/O device to
which the media player should send vibration data. If
NULL, no Vibra I/O devices will be controlled. Vibra I/0O
devices as data sinks may not be supported for non-MIDI
media.

pLEDArray

[in]

Pointer to the structure specifying the LED array 1/O
device to which the media player should send LED array
data. If NULL, no LED array 1/O devices will be
controlled. LED array 1/O devices as data sinks may not
be supported for non-MIDI media.

numInterfaces

[in]

Number of interfaces that the object is requested to support
(not including implicit interfaces).

OpenMAX|AL

143

CreateMediaPlayer

plnterfacelds [in] Array of numlInterfaces interface IDs, which the
object should support.

This parameter is ignored if numInterfaces is zero.

pInterfaceRequired | [in] Array of numInterfaces flags, each specifying
whether the respective interface is required on the object or
optional. A required interface will fail the creation of the
object if it cannot be accommodated and the error code
XA_RESULT_FEATURE_UNSUPPORTED will be then
returned.

This parameter is ignored if numInterfaces is zero.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PRECONDITIONS_VIOLATED
XA_RESULT_PARAMETER_INVALID
XA_RESULT_MEMORY_FAILURE

XA _RESULT_FEATURE_UNSUPPORTED

Comments | |f the engine fails to create the object due to lack of memory or resources it will return the
XA_RESULT_MEMORY_FAILURE or the XA_RESULT_RESOURCE_ERROR error,
respectively.

Seealso [Media Player Object (see section 7.4).

OpenMAX|AL

CreateMediaRecorder

XAresult (*CreateMediaRecorder) (

XAEngineltf self,

XAObjectltf * pRecorder,
XADataSource * pAudioSrc,
XADataSource * plmageVideoSrc,

XADataSink * pDataSnk,
XAuint32 numlnterfaces,
const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired

);

Description

Creates a media recorder.

Pre-conditions

If data source’s locator is an object (e.g. camera or radio) this object must be in the realized state.

Parameters

self

[in]

Interface self-reference.

pRecorder

[out]

Newly-created media recorder object.

pAudioSrc

[in]

Pointer to the structure specifying the audio data source
(such as a microphone device). If this field is NULL then no
audio source is specified and the recorder only captures
video or image data.

plImageVideoSrc

[in]

Pointer to the structure specifying the video data source
(such as a camera device). If this field is NULL then no
image/video source is specified and the recorder only
captures audio data.

pDataSnk

[in]

Pointer to the structure specifying the audio/video data sink
(such as a container file). This parameter is ignored if
XASnapshotltf (and not XARecordItF) is used since
XASnapshotltf: - InitiateSnapshot() is used to
define the output of the captured image(s).

numlnterfaces

[in]

Number of interfaces that the object is requested to support
(not including implicit interfaces).

pInterfacelds

[in]

Array of numInterfaces interface IDs, which the
object should support.

This parameter is ignored if numInterfaces is zero.

pInterfaceRequired

[in]

Array of numInterfaces flags, each specifying whether
the respective interface is required on the object or
optional. A required interface will fail the creation of the
object if it cannot be accommodated and the error code
XA_RESULT_FEATURE_UNSUPPORTED will be then
returned.

This parameter is ignored if numInterfaces is zero.

OpenMAX|AL

145

CreateMediaRecorder

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PRECONDITIONS_VIOLATED
XA_RESULT_PARAMETER_INVALID
XA_RESULT_MEMORY_FAILURE
XA_RESULT_FEATURE_UNSUPPORTED

Comments | |f the engine fails to create the object due to lack of memory or resources it will return the
XA_RESULT_MEMORY_FAILURE or the XA _RESULT_RESOURCE_ERROR error,
respectively.

Seealso [Media Recorder Object (see section 7.5).

OpenMAX|AL

CreateOutputMix

XAresult (*CreateOutputMix) (
XAEngineltf self, XAObjectltf * pMix,
XAuint32 numlnterfaces,
const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired

);

Description | Creates an output mix.

Pre-conditions | None

Parameters | self [in] Interface self-reference.
pMix [out] | Newly-created output mix object.
numlnterfaces [in] Number of interfaces that the object is requested to support

(not including implicit interfaces).

plnterfacelds [in] Array of numInterfaces interface IDs, which the
object should support.

This parameter is ignored if numInterfaces is zero.

pInterfaceRequired | [in] Array of numInterfaces flags, each specifying
whether the respective interface is required on the object or
optional. A required interface will fail the creation of the
object if it cannot be accommodated and the error code
XA_RESULT_FEATURE_UNSUPPORTED will be then
returned.

This parameter is ignored if numInterfaces is zero.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_MEMORY_FAILURE
XA_RESULT_FEATURE_UNSUPPORTED

Comments | |f the engine fails to create the object due to lack of memory or resources it will return the
XA_RESULT_MEMORY_FAILURE or the XA_RESULT_RESOURCE_ERROR error,
respectively.

Seealso | Qutput Mix Object (see section 7.7).

OpenMAX|AL

CreateMetadataExtractor

XAresult (*CreateMetadataExtractor) (
XAEngineltf self,
XAObjectltf * pMetadataExtractor,
XADataSource * pDataSource,
XAuint32 numlnterfaces,

const XAlnterfacelD * plnterfacelds,
const XAboolean * plnterfaceRequired

);
Description | Creates a Metadata Extractor object.
Pre-conditions | None
Parameters | self [in] Interface self-reference.

pMetadataExtractor | [out]

Newly created metadata extractor object.

pDataSource [in] Pointer to the structure specifying the media data source
(such as a media file). Only local data sources are
mandated to be supported. Must be non-NULL.

numlnterfaces [in] Number of interfaces that the object is requested to support
(not including implicit interfaces).

plnterfacelds [in] Array of numInterfaces interface I1Ds, which the

object should support.
This parameter is ignored if numInterfaces is zero.

pInterfaceRequired | [in]

Array of numInterfaces flags, each specifying
whether the respective interface is required on the object or
optional. A required interface will fail the creation of the
object if it cannot be accommodated and the error code
XA_RESULT_FEATURE_UNSUPPORTED will be then
returned.

This parameter is ignored if numInterfaces is zero.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

XA_RESULT_MEMORY_FAILURE

XA_RESULT_10_ERROR

XA_RESULT_FEATURE_UNSUPPORTED
XA_RESULT_CONTENT_CORRUPTED
XA_RESULT_CONTENT_UNSUPPORTED
XA_RESULT_CONTENT_NOT_FOUND
XA_RESULT_PERMISSION_DENIED

Comments

None

See also

Metadata Extractor Object (see section 7.6).

OpenMAX|AL

148

CreateExtensionObject

XAresult (*CreateExtensionObject) (
XAEngineltf self,
XAObjectltf * pObject,
void * pParameters,
XAuint32 objectlD,
XAuint32 numlnterfaces,

const
const

);

XAlnterfacelD * plnterfacelds,
XAboolean * plnterfaceRequired

Description

Creates an object. This method is used for extension objects defined externally from the
specification. Objects defined by the specification must be created by the specific creation
methods in the engine interface.

Pre-conditions

As documented by extension.

Parameters | self [in] Interface self-reference.

pObject [out] | Newly-created object.

pParameters [in] Pointer to a structure specifying the parameters used for
creating the object.

objectlID [in] A valid object ID.

numinterfaces [in] Number of interfaces that the object is requested to
support (not including implicit interfaces).

plnterfacelds [in] Array of numInterfaces interface IDs, which the

object should support.

This parameter is ignored if numInterfaces is zero.

Array of numlInterfaces flags, each specifying
whether the respective interface is required on the object
or optional. A required interface will fail the creation of
the object if it cannot be accommodated and the error code
XA_RESULT_FEATURE_UNSUPPORTED will be then
returned.

This parameter is ignored if numInterfaces is zero.

pInterfaceRequired | [in]

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PRECONDITIONS_VIOLATED
XA_RESULT_PARAMETER_INVALID
XA_RESULT_MEMORY_FAILURE
XA_RESULT_10_ERROR
XA_RESULT_PERMISSION_DENIED
XA_RESULT_FEATURE_UNSUPPORTED

OpenMAX|AL

CreateExtensionObject

Comments | |f the engine fails to create the object due to lack of memory or resources it will return the
XA_RESULT_MEMORY_FAILURE or the XA_RESULT_RESOURCE_ERROR error,
respectively. The Object1D and the data structure pointed to by pParameters should be
defined by an extension. When Ob jectID is not valid the method will return

XA _RESULT_FEATURE_UNSUPPORTED.

Seealso | Section 3.5

Getlmplementationinfo

XAresult (*Getlmplementationinfo) (
XAEngineltf self,
XAuint32 * pMajor,
XAuint32 * pMinor,
XAuint32 * pStep,
const XAchar * plmplementationText

)s

Description | Queries the OpenMAX AL implementation information.

Pre-conditions | None

Parameters | self [in] Interface self-reference.
pMajor [out] | Major version number.
pMinor [out] | Minor version number.
pStep [out] | Step within the minor version number.

ImplementationText | [out] | Text describing the implementation including. This text
must identify whether the implementation leverages
OpenMAX IL partially, fully, or not at all. Beyond this
requirement, the actual contents of this string is up to the
implementation’s discretion.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | For 1.0.0 implementations of OpenMAX AL this method should return 1, 0, and 0 for the Major,
Minor, and Step fields respectively.

See also | None

OpenMAX|AL

QuerySupportedProfiles

XAresult (*QuerySupportedProfiles) (
XAEngineltf self,

XAintl6 * pProfilesSupported

);
Description | Queries supported profiles of the OpenMAX AL implementation.
Parameters | Self [in] Interface self-reference.
pProfilesSupported [out] | Bitmask containing profiles supported, as defined
in the XA_PROF I LE macros.
Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
Comments

Valid values of pProfi lesSupported are XA PROFILES _MEDIA_ PLAYER
(XA_PROFILES_MEDIA_PLAYER | XA _PROFILES MEDIA_PLAYER_RECORDER),
(XA_PROFILES_MEDIA_PLAYER | XA_PROFILES_PLUS_MIDI) and
(XA_PROFILES_MEDIA_PLAYER | XA PROFILES MEDIA_PLAYER_RECORDER |

XA_PROFILES_PLUS_MIDI).

See also

None

OpenMAX|AL

151

QueryNumsSupportedInterfaces

XAresult (*QueryNumSupportedlnterfaces) (
XAEngineltf self,
XAuint32 objectlD,
XAuint32 * pNumSupportedinterfaces

):
Description | Queries the number of supported interfaces available.
Parameters | self [in] Interface self-reference.
objectliID [in] ID of the object being queried. Refer to
XA_OBJECTID type. If the engine does not
support the identified object this method will return
XA_RESULT_FEATURE_UNSUPPORTED.
pNumSupportedinterfaces | [out] | Identifies the number of supported interfaces

available.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

XA_RESULT_FEATURE_UNSUPPORTED

Comments

The number of supported interfaces will include both mandated and optional interfaces available

for the object.

This method can be used to determine whether or not an object is supported by an implementation

by examining the return value.

See also

QuerySupportedinteraces()

OpenMAX|AL

152

QuerySupportedInterfaces

XAresult (*QuerySupportedlnterfaces) (
XAEngineltf self,
XAuint32 objectlD,
XAuint32 index,
XAlnterfacelD * plnterfaceld

):
Description [Queries the supported interfaces.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
objectlID [in] ID of the object being queried. Refer to XA_OBJECTID type. If
the engine does not support the identified object this method will
return XA_RESULT_FEATURE_UNSUPPORTED
index [in] Incrementing index used to enumerate available interfaces.
Supported index range is 0 to N-1, where N is the number of
supported interfaces.
pInterfaceld | [out] Identifies the supported interface.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments | The number of supported interfaces will include both mandated and optional interfaces available
for the object.
Seealso | QueryNumSupportedlnterfaces()

QueryNumsSupportedExtensions

XAresult (*QueryNumSupportedExtensions) (
XAEngineltf self,
XAuint32 * pNumExtensions

):
Description | Queries the number of supported extensions.
Parameters | self [in] Interface self-reference.
pNumExtensions [out] Identifies the number of supported extensions by

this implementation.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

The number of supported extensions will include both standardized extensions listed in Khronos
registry and vendor-specific extensions.

See also

QuerySupportedextensions()

OpenMAX|AL

153

QuerySupportedExtension

XAresult (*QuerySupportedExtension) (
XAEngineltf self,
XAuint32 index,
XAchar * pExtensionName,

XAintl6 * pNamelLength

):
Description | Gets the name of the extension supported by the implementation based on the given index.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
index [in] The index of the extension. Must be [0, numExtensions-1].
pExtensionName | [out] The name of the supported extension, as defined in the
Khronos registry (http://www.khronos.org/registry/) or in
vendor-specific documentation.
The length of the needed char array should be first figured
out from pNameLength out parameter by calling this
method with pExtensionName as null.
pNameLength [infout] | As an output, specifies the length of the name including the

terminating NULL.

As an input, specifies the length of the given
pExtensionName char array (ignored if
pExtensionName is NULL).

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_BUFFER_INSUFFICIENT

Comments | |f the given length is smaller than the needed size XA RESULT_BUFFER_INSUFFICIENT is
returned and only data of the given size will be written; however, no invalid strings are written.
That is, the null-terminator always exists and multibyte characters are not cut in the middle.
See Also

QueryNumSupportedExtensions(), IsExtensionSupported()

OpenMAX|AL

154

http://www.khronos.org/registry/�

IsExtensionSupported

XAresult (*IsExtensionSupported) (
XAEngineltf self,
const XAchar * pExtensionName,

XAboolean * pSupported

):
Description | Queries if the given extension is supported by the implementation.
Pre-conditions | None
Parameters | self [in] | Interface self-reference.
pExtensionName | [in] | The name of an extension, as defined in the Khronos registry
(http://www.khronos.org/registry/) or in vendor-specific
documentation. Must be null-terminated.
pSupported [out] | XA_BOOLEAN_TRUE if the given extension is supported;

XA BOOLEAN_FALSE if it is not supported.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

This is an alternative method to be used instead of QueryNumSupportedExtensions()
and QuerySupportedExtension() to query the availability of just one known extension.

See Also

None

OpenMAXIAL

155

http://www.khronos.org/registry/�

QueryLEDCapabilities

XAresult (*QueryLEDCapabilities) (
XAEngineltf self,
XAuint32 *pindex,
XAuint32 *pLEDDevicelD,
XALEDDescriptor *pDescriptor

);

Description | Queries the LED device for its capabilities.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pIndex [in/out] As an input, specifies which LED array device to obtain the
capabilities of, the supported range is [0, n), where n is the
number of LED array devices available (ignored if
pDescriptor is NULL). As an output, specifies the number
of LED array devices available in the system. Returns 0 if no
LED array devices are available.

pLEDDeviceld | [in/out] If pIndex is non-NULL then returns the LED array device ID
corresponding to LED array device pIndex. If pIndex is
NULL then, as an input, specifies which LED array device to
obtain the capabilities of (XA_DEFAULTDEVICEID_LED can
be used to determine the default LED array’s capabilities).

pDescriptor | [out] Structure defining the capabilities of the LED array device.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | An application can determine the number of LED array devices by calling this method with

pDescriptor set to NULL and examining pIndex. The application can then determine the
capabilties of all the LED array devices by calling this method multiple times with pIndex
pointing to each different index from 0 up to one less than the number of LED array devices.

An LED array device is selected using the CreateLEDDevice() method.

Seealso | XA_DEFAULTDEVICEID_LED [see section 9.2.25]

OpenMAX|AL

QueryVibraCapabilities

XAresult (*QueryVibraCapabilities) (
XAEngineltf self,
XAuint32 *pindex,
XAuint32 *pVibraDevicelD,
XAVibraDescriptor *pDescriptor

);

Description | Queries the vibration device for its capabilities.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pIndex [in/out] As an input, specifies which vibration device to obtain the
capabilities of, the supported range is [0, n), where n is the
number of vibration devices available (ignored if
pDescriptor is NULL). As an output, specifies the
number of vibration devices available in the system. Returns
0 if no vibration devices are available.

pVibrabeviceld | [in/out] If pIndex is non-NULL then returns the vibration device
ID corresponding to vibration device pIndex. If pindex is
NULL then, as an input, specifies which vibration device to
obtain the capabilities of
(XA_DEFAULTDEVICEID_VIBRA can be used to
determine the default vibration device’s capabilities).

pDescriptor [out] Structure defining the capabilities of the vibration device.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | An application can determine the number of vibration devices by calling this method with
pDescriptor set to NULL and examining pIndex. The application can then determine the
capabilties of all the vibration devices by calling this method multiple times with pIndex
pointing to each different indexes from 0 up to one less than the number of vibration devices.

A vibration device is selected using the CreateVibraDevice() method.

seealso | XA_DEFAULTDEVICEID_VIBRA [see section 9.2.25]

OpenMAX|AL

8.12 XAEqualizerltf

Description

XAEqualizerltf is an interface for manipulating the equalization settings of a media object. The equalizer (EQ)
can be set up in two different ways: by setting individual frequency bands, or by using predefined presets.

The preset settings can be directly taken into use with the method UsePreset(). The current preset can be
queried with the method GetPreset(). If none of the presets is set, XA _EQUAL1ZER_UNDEF INED will be
returned. XA_EQUAL IZER_UNDEFINED will also be returned when a preset has been set, but the equalizer settings
have been altered later with SetBandLevel (). Presets have names that can be used in the user interface.

There are methods for getting and setting individual EQ-band gains (SetBandLevel () and GetBandLevel ()),
methods for querying the number of the EQ-bands available (GetNumberOfBands()) and methods for querying
their center frequencies (GetCenterFreq()).

The gains in this interface are defined in millibels (hundredths of a decibel), but it has to be understood that many
devices contain a Dynamic Range Control (DRC) system that will affect the actual effect and therefore the value in
millibels will affect as a guideline rather than as a strict rule.

This interface affects different parts of the audio processing chain, depending on which object the interface is
exposed. If this interface is exposed on an Output Mix object, the effect is applied to the output mix. If this interface
is exposed on a Player object, it is applied to the Player’s output only.

This interface is supported on the Output Mix (see section 7.7) object. See section F.1 for an example using this
interface.

Prototype

extern const XAlnterfacelD XA 11D _EQUALIZER;

struct XAEqualizerltf_;
typedef const struct XAEqualizerltf_ * const * XAEqualizerltf;

struct XAEqualizeritf_ {

XAresult (*SetEnabled) (
XAEqualizerltf self,
XAboolean enabled

);

XAresult (*IskEnabled) (
XAEqualizerltf self,
XAboolean * pEnabled

);

XAresult (*GetNumberOfBands) (
XAEqualizerltf self,
XAuintl6é * pNumBands

);

XAresult (*GetBandLevelRange) (
XAEqualizerltf self,
XAmillibel * pMin,

OpenMAX|AL

XAmillibel * pMax

)

XAresult (*SetBandLevel) (
XAEqualizerltf self,
XAuintl6 band,
XAmillibel level

)

XAresult (*GetBandLevel) (
XAEqualizerltf self,
XAuintl6 band,
XAmillibel * pLevel

)

XAresult (*GetCenterFreq) (
XAEqualizerltf self,
XAuintl6 band,
XAmilliHertz * pCenter

)

XAresult (*GetBandFreqRange) (
XAEqualizerltf self,
XAuintl6 band,
XAmilliHertz * pMin,
XAmilliHertz * pMax

)

XAresult (*GetBand) (
XAEqualizerltf self,
XAmilliHertz frequency,
XAuintl6é * pBand

E

XAresult (*GetCurrentPreset) (
XAEqualizerltf self,
XAuintl6 * pPreset

E

XAresult (*UsePreset) (
XAEqualizerltf self,
XAuintl6 index

)

XAresult (*GetNumberOfPresets) (
XAEqualizerltf self,
XAuintl6é * pNumPresets

)

XAresult (*GetPresetName) (
XAEqualizerltf self,
XAuintl6 index,
const XAchar ** ppName

):

}:

Interface ID

7ad86d40-f775-11db-bc77-0002a5d5¢51b

Defaults

OpenMAX|AL

Enabled: false (disabled)
All band levels: 0 mB (flat response curve)

Preset: XA EQUALIZER_UNDEFINED (no preset)

Methods

SetEnabled

XAresult (*SetEnabled) (
XAEqualizerltf self,
XAboolean enabled

)s

Description | Enables the effect.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

enabled [in] True to turn on the effect; false to switch it off.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_CONTROL_LOST

Comments | None

IsEnabled

XAresult (*IskEnabled) (
XAEqualizerltf self,
XAboolean * pEnabled

);

Description | Gets the enabled status of the effect.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pEnabled [out] True if the effect is on, otherwise false. This must be non-NULL.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

GetNumberOfBands

XAresult (*GetNumberOfBands) (
XAEqualizerltf self,
XAuintl6é * pNumBands

);

Description

Gets the number of frequency bands that the equalizer supports. A valid equalizer must have at
least two bands.

Pre-conditions | None
Parameters | self [in] Interface self-reference.
pNumBands | [out] Number of frequency bands that the equalizer supports. This must
be non-NULL.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

GetBandLevelRange

XAresult (*GetBandLevelRange) (
XAEqualizerltf self,
XAmillibel * pMin,
XAmillibel * pMax

):
Description | Returns the minimum and maximum band levels supported.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pMin [out] Minimum supported band level in millibels.
pMax [out] Maximum supported band level in millibels.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

The range returned by GetBandLevelRange must at least include OmB.

The application may pass NULL as one of the [out] parameters to find out only the other one’s
value.

OpenMAX|AL

161

SetBandLevel

XAresult (*SetBandLevel) (
XAEqualizerltf self,
XAuintl6é band,
XAmillibel level

);

Description | Sets the given equalizer band to the given gain value.

Pre-conditions | None

Parameters | self | [in] | Interface self-reference.

band | [in] | Frequency band that will have the new gain. The numbering of the bands starts
from 0 and ends at (humber of bands — 1).

level | [in] | New gain in millibels that will be set to the given band.
getBandLevelRange () will define the maximum and minimum values.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_CONTROL_LOST

Comments | None

GetBandLevel

XAresult (*GetBandLevel) (
XAEqualizerltf self,
XAuintl6 band,
XAmillibel * pLevel

)s

Description | Gets the gain set for the given equalizer band.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

band [in] Frequency band whose gain is requested. The numbering of the bands starts
from 0 and ends at (number of bands — 1).

pLevel | [out] | Gain in millibels of the given band. This must be non-NULL.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

GetCenterFreq

XAresult (*GetCenterFreq) (

XAEqualizerltf self,
XAuintl6é band,

XAmilliHertz * pCenter

D:
Description | Gets the center frequency of the given band.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
band [in] Frequency band whose center frequency is requested. The numbering of
the bands starts from 0 and ends at (number of bands — 1).
pCenter | [out] | The center frequency in milliHertz. This must be non-NULL.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

OpenMAX|AL

163

GetBandFregRange

XAresult (*GetBandFreqRange) (
XAEqualizerltf self,
XAuintl6 band,
XAmilliHertz * pMin,
XAmilliHertz * pMax

):
Description | Gets the frequency range of the given frequency band.
Pre-conditions | None
Parameters | self | [in] Interface self-reference.
band | [in] Frequency band whose frequency range is requested. The numbering of the
band that can be used with this method starts from 0 and ends at (number of
bands - 1).

pMin | [out] The minimum frequency in milliHertz.

pMax | [out] The maximum frequency in milliHertz.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

The exposed band ranges do not overlap (physically they many times do, but the virtual numbers
returned here do not) - this is in order to simplify the applications that want to use this
information for graphical representation of the EQ.

If shelving filters are used in the lowest and the highest band of the equalizer, the lowest band
returns 0 mHz as the minimum frequency and the highest band returns the

XA MILLIHERTZ_ MAX as the maximum frequency.

The application may pass NULL as one of the [out] parameters to find out only the other one’s
value.

OpenMAX|AL

GetBand

XAresult (*GetBand) (
XAEqualizerltf self,
XAmilliHertz frequency,
XAuintl6é * pBand

);

Description

Gets the band that has the most effect on the given frequency. If no band has an effect on the
given frequency, XA_EQUAL IZER_UNDEFINED is returned.

Pre-conditions | None
Parameters | self [in] Interface self-reference.
frequency | [in] Frequency in milliHertz which is to be equalized via the returned band
pBand [out] | Frequency band that has most effect on the given frequency or
XA _EQUALIZER_UNDEFINED if no band has an effect on the given
frequency. This must be non-NULL.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

GetCurrentPreset

XAresult (*GetCurrentPreset) (
XAEqualizerltf self,
XAuintl6é * pPreset

)s;
Description | Gets the current preset.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pPreset | [out] | Presetthat is set at the moment. If none of the presets are set,

XA EQUALIZER_UNDEFINED will be returned. This must be non-
NULL.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

OpenMAXIAL

165

UsePreset

XAresult (*UsePreset) (
XAEqualizerltf self,
XAuintl6 index

);

Description | Sets the equalizer according to the given preset.

Pre-conditions | None

Parameters | self | [in] | Interface self-reference.

index | [in] | New preset that will be taken into use. The valid range is [0, number of presets-
1].

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_CONTROL_LOST

Comments | None

GetNumberOfPresets

XAresult (*GetNumberOfPresets) (
XAEqualizerltf self,
XAuintl6é * pNumPresets

)

Description | Gets the total number of presets the equalizer supports. The presets will have indices [0, number
of presets-1].

Pre-conditions | None

Parameters | self [in] Interface self-reference.
pNumPresets [out] Number of presets the equalizer supports. This must be
non-NULL.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

GetPresetName

XAresult (*GetPresetName) (

XAEqualizerltf self,

XAuintl6é index,
const XAchar ** ppName

D:
Description | Gets the preset name based on the index.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
index | [in] Index of the preset. The valid range is [0, number of presets-1].
ppName | [out] | A non-empty, null terminated string containing the name of the given preset.

The character coding is UTF-8.
This must be non-NULL.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

OpenMAX|AL

167

8.13 XAlmageControlsItf

Description

The image and color controls interface is used to apply adjustments to the associated 1/O device. It is realized on a
object that supports image or video content. Changes in brightness, constrast and gamma are applied at the
beginning of a frame.

Prototype

extern const XAlnterfacelD XA 11D _IMAGECONTROLS;

struct XAlmageControlsitf_;
typedef const struct XAlmageControlsltf_ * const * XAlmageControlsltf;

struct XAlmageControlslitf_ {

XAresult (*SetBrightness) (
XAlmageControlsltf self,
XAuint32 brightness

)

XAresult (*GetBrightness) (
XAlmageControlsltf self,
XAuint32 * pBrightness

)

XAresult (*SetContrast) (
XAlmageControlsltf self,
XAInt32 contrast

);

XAresult (*GetContrast) (
XAlmageControlsltf self,
XAint32 * pContrast

)

XAresult (*SetGamma) (
XAlmageControlsltf self,
XApermille gamma

)

XAresult (*GetGamma) (
XAlmageControlsltf self,
XApermille * pGamma

)

XAresult (*GetSupportedGammaSettings) (
XAlmageControlsltf self,
XApermille * pMinValue,
XApermille * pMaxValue,
XAuint32 * pNumSettings,
XApermille ** ppSettings

Interface ID

OpenMAX|AL

f46de3e0-df03-11db-92f1-0002a5d5¢c51b

Defaults

The default values are 50 for brightness, 0 for contrast and 1000 for gamma.

Methods

SetBrightness

XAresult (*SetBrightness) (
XAlmageControlsltf self,
XAuint32 brightness

)s

Description | Sets the brightness level.

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

brightness | [in] | Defines the brightness level. The value for brightness ranges from 0 to
100, where 0 produces all black pixels and 100 produces all white.

XA RESULT_PARAMETER__INVALID is returned if an unsupported
brightness level is requested.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None.

Seealso [GetBrightness()

OpenMAX|AL

GetBrightness

XAresult (*GetBrightness) (
XAlmageControlsltf self,
XAuint32 * pBrightness

);

Description | Gets the current brightness level.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pBrightness | [out] | Current brightness level. The value for brightness ranges from 0 to
100, where 0 produces all black pixels and 100 produces all white.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None.

Seealso [SetBrightness()

SetContrast

XAresult (*SetContrast) (
XAlmageControlsltf self,
XAInt32 contrast

)s

Description | Sets the contrast level.

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

contrast | [in] | Defines the contrast level. The value for contrast ranges from -100 to 100,
where 0 indicates no contrast change.

XA _RESULT_PARAMETER__INVALID is returned if an unsupported
contrast level is requested.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None.

Seealso | GetContrast()

OpenMAX|AL

GetContrast

XAresult (*GetContrast) (
XAlmageControlsltf self,
XAint32 * pContrast

);

Description [Gets the current contrast level.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pContrast | [out] | Current contrast level. The value for contrast ranges from -100 to 100,
where 0 indicates no contrast change.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA _RESULT_PARAMETER_INVALID

Comments | None.

Seealso | SetContrast()

SetGamma

XAresult (*SetGamma) (
XAlmageControlsltf self,
XApermille gamma

)s

Description | Sets the gamma level.

Pre-conditions | None

Parameters | self | [in] | Interface self-reference.

gamma | [in] | Defines the gamma level. XA_RESULT_PARAMETER_INVALID is returned
if an unsupported gamma level is requested.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA _RESULT_PARAMETER_INVALID

Comments | None.

Seealso [GetGamma()

OpenMAX|AL

GetGamma

XAresult (*GetGamma) (
XAlmageControlsltf self,
XApermille * pGamma

D:
Description | Gets the current gamma level.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pGamma [out] Current gamma level.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None.

See also

SetGamma()

OpenMAX|AL

172

GetSupportedGammasSettings

XAresult (*GetSupportedGammaSettings) (
XAlmageControlsltf self,
XApermille * pMinvValue,
XApermille * pMaxValue,
XAuint32 * pNumSettings,
XApermille ** ppSettings

Description | This method gets the supported gamma settings.

Pre-conditions | None

Parameters | self [in] Interface self-reference.
pMinValue [out] Identifies the minimum gamma setting supported.
pMaxValue [out] Identifies the maximum gamma setting supported.
pNumSettings [infout] If ppSettings is NULL, pNumSettings returns

the number of supported gamma settings.

If the available manual settings are continuous from
pMinValue to pMaxValue, pNumSettings
returns O.

If ppSettings isnon-NULL and a non-
continuous range is supported, pNumSettings is
length of the ppSettings array.

ppSettings [out] Returns an array of supported gamma settings.
ppSettings may be NULL.

The array of values returned must include
pMinValue and pMaxValue..

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments | |f gamma settings are unsupported, the method returns
XA_RESULT_FEATURE_UNSUPPORTED.

See also | None

OpenMAX|AL

8.14 XAlmageDecoderCapabilities|tf

Description

This interface provides methods of querying the image decoding capabilities of the media engine.

This interface provides a means of enumerating all image decoders available on an engine where each an decoderld

represents each decoder. It also provides a means to query the capabilities of each decoder.

The set of image decoders supported by the engine does not change during the lifetime of the engine though
dynamic resource constraints may limit actual availability when an image decoder is requested.

This interface is a mandated interface of engine objects (see section 7.2).

Prototype

extern const XAlnterfacelD XA 11D _IMAGEDECODERCAPABILITIES;

struct XAlmageDecoderCapabilitiesltf_;
typedef const struct XAlmageDecoderCapabilitiesltf
* const * XAlmageDecoderCapabilitiesltf;

struct XAlmageDecoderCapabilitiesltf_ {

XAresult (*GetlmageDecoderCapabilities) (
XAlmageDecoderCapabilitiesltf self,
XAuint32 * pDecoderlid,
XAlmageCodecDescriptor * pDescriptor

)

XAresult (*QueryColorFormats) (
const XAlmageDecoderCapabilitiesltf self,
XAuint32 * plndex,

XAuint32 * pColorFormat

Interface ID
c333e7a0-e616-11dc-a93e-0002a5d5c51b

Defaults

Not applicable

OpenMAX|AL

174

Methods

GetlmageDecoderCapabilities

XAresult (*GetlmageDecoderCapabilities) (
XAlmageDecoderCapabilitiesltf self,
XAuint32 * pDecoderld,
XAlmageCodecDescriptor * pDescriptor

):
Description | Retrieves image decoder capabilities.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pDecoderld | [in/out] If pDescriptor is NULL, pDecoderld returns the number of

image decoders. All implementations must have at least one
decoder.

If pDescriptor is non-NULL, pDecoderld is a incrementing

value used to enumerate image decoders. Supported index range
is 0 to N-1, where N is the number of image decoders.

pDescriptor

[out]

Structure defining the capabilities of the image decoder.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | |f XA IMAGECODEC_RAW is one of the image codecs supports, QueryColorFormats()
should be used to determine the color formats supported.
Seealso | QueryColorFormats()

OpenMAX|AL

175

QueryColorFormats

XAresult (*QueryColorFormats
const XAlmageDecoderCapa

XAuint32 * plndex,
XAuint32 * pColorFormat

) (
bilitiesltf self,

):
Description | This method is used to query the color formats supported by the image decoder.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pIndex [infout] If pColorFormats is NULL, pIndex returns the number of
color formats supported. Returns 0O if there are no color
formats are supported. If pColorFormats is non-NULL,
pIndex is an incrementing value used for enumerating the
color formats supported. Supported index range is 0 to N-1,
where N is the number of color format supports.
pColorFormat | [out] Pointer to the color format. May be NULL. See

XA_COLORFORMAT macros.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

This method returns color formats associated with the XA_ IMAGECODEC_RAW codec.

See also

None

OpenMAX|AL

176

8.15 XAlmageEffectsitf

Description

The image effects interface is used to determine which effects are supported, to enable effects and to disable effects.
It is realized on a object that supports image or video content. QuerySupportedEffects() or
EnablelmageEffect() can be called to determine if a specific effect is supported. The image effects supported
by a media object may not change during the lifetime of the media object.

A platform may allow effects to support optional sets of parameters that control that effect, such as supplying a
threshold or strength field. These should be supplied using the configuration extensions interface (see section 8.7).

If XAlmageEffectsltf is implemented, it shall support at least one effect.

Prototype

extern const XAlnterfacelD XA 11D _IMAGEEFFECTS;

struct XAlmageEffectsltf_;
typedef const struct XAlmageEffectsltf_ * const * XAlmageEffectsltf;

struct XAlmageEffectsltf_ {
XAresult (*QuerySupportedlmageEffects) (
XAlmageEffectsItf self,
XAuint32 index,
XAuint32 * plmageEffectld

)

XAresult (*EnablelmageEffect) (
XAlmageEffectslItf self,
XAuint32 imageEffectlID

)

XAresult (*DisablelmageEffect) (
XAlmageEffectslItf self,
XAuint32 imageEffectlID

)3

XAresult (*IslmageEffectEnabled) (
XAlmageEffectslItf self,
XAuint32 imageEffectlID,
XAboolean * pEnabled

¥

Interface ID

b865bca0-df04-11db-bab9-0002a5d5¢51b

OpenMAX|AL

Defaults

Initially all effects are disabled.

Methods

QuerySupportedImageEffects

XAresult (*QuerySupportedlmageEffects) (
XAlmageEffectslItf self,
XAuint32 index,
XAuint32 * plmageEffectld

);
Description | Queries image effects supported.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
index [in] Incrementing index used to enumerate available effects.
Supported index range is 0 to N-1, where N is the number of
effects.
plmageEffectld [out] Identifies the supported image effect. Refer to
XA _IMAGEEFFECT macro (see section 9.2.36).

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments

If XAlmageEffectsItf is implemented, it shall support at least one effect.. The image
effects supported by a media object may not change during the lifetime of the media object.

See also

EnablelmageEffect(), DisablelmageEffect(),

IslmageEffectEnabled()

OpenMAX|AL

178

EnablelmageEffect

XAresult (*EnablelmageEffect) (
XAlmageEffectslItf self,
XAuint32 imageEffectlID

):
Description | Enables an image effect.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
imageEffectld [in] Identifies the supported image effect. Refer to
XA IMAGEEFFECT macro (see section 9.2.36).

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_FEATURE_UNSUPPORTED
XA_RESULT_RESOURCE_ERROR

Comments

Vendor implementations may allow multiple image effects to be enabled simultaneously. If
enabling the requested image effect requires disabling a previously enabled image effect, the
requested image effect will not be enabled and the XA_RESULT_RESOURCE_ERROR will be
returned.

When multiple image effects are enabled, the order for which these image effects are applied is
vendor implementation specific.

See also

QuerySupportedImageEffect(), DisablelmageEffect(),
IslmageEffectEnabled()

DisablelmageEffect

XAresult (*DisablelmageEffect) (
XAlmageEffectsltf self,
XAuint32 imageEffectlID

)
Description | Disable an image effect.
Pre-conditions | None
Parameters | self [in] | Interface self-reference.
imageEffectld | [in] | Identifies the supported image effect. Refer to XA_IMAGEEFFECT
macro (see section 9.2.36).

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_FEATURE_UNSUPPORTED

Comments

If the specified image effect is already disabled, XA _RESULT_SUCCESS will be return.

See also

QuerySupportedlImageEffect(), EnablelmageEffect(),
IsImageEffectEnabled()

OpenMAXIAL

179

IsimageEffectEnabled

XAresult (*IslmageEffectEnabled) (
XAlmageEffectslItf self,
XAuint32 imageEffectlD,
XAboolean * pEnabled

);

Description | Checks to see if an image effect is enabled.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

imageEffectld | [in] Identifies the supported image effect. Refer to
XA _IMAGEEFFECT macro (see section 9.2.36).

pEnabled [out] [Identifies if the image effect is enabled, XA BOOLEAN_TRUE
indicates that the effect is enabled and XA_ BOOLEAN_ _FALSE
indicates that the effect is disabled.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA _RESULT_FEATURE_UNSUPPORTED

Comments | None

seealso | QuerySupportedlImageEffect(), DisablelmageEffect(),
EnablelmageEffect()

OpenMAX|AL

8.16 XAlmageEncoderltf

Description

This interface is used to set the parameters to be used by an image encoder.

This interface is a mandated interface of Media Recorder objects (see section 7.5).

Prototype

extern const XAlnterfacelD XA 11D _IMAGEENCODER;

struct XAlmageEncoderltf_;

typedef const struct XAlmageEncoderltf_ * const * XAlmageEncoderltf;

struct XAlmageEncoderltf_ {

XAresult (*SetlmageSettings) (
XAlmageEncoder1tf self,
const XAlmageSettings * pSettings

)

XAresult (*GetlmageSettings) (
XAlmageEncoderltf self,
XAlmageSettings * pSettings

)

XAresult (*GetSizeEstimate) (
XAlmageEncoder1tf self,
XAuint32 * pSize

¥

Interface ID

cd49f140-df04-11db-8888-0002a5d5c51b

Defaults

The default value for image is JPEG, for image width is 640, for image height is 480, and for compression level is 0.

OpenMAX|AL

181

Methods

SetlmageSettings

XAresult (*SetlmageSettings) (
XAlmageEncoder1tf self,
const XAlmageSettings * pSettings

)s

Description | Set image encoder settings.

Pre-conditions | Settings shall be applied prior to initiating a snapshot request — SnapShotltf::InitiateSnaphot

Parameters | self [in] Interface self-reference.

pSettings [in] Image encoder settings.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED
XA_RESULT_PRECONDITIONS_VIOLATED

Comments | None

Seealso | GetImageSetting()

GetlmageSettings

XAresult (*GetlmageSettings) (
XAlmageEncoder1tf self,
XAlmageSettings * pSettings

):

Description | Get image encoder settings.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pSettings [out] Image encoder settings.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

Seealso | SetImageSetting()

OpenMAX|AL

GetSizeEstimate

XAresult (*GetSizeEstimate) (
XAlmageEncoder1tf self,
XAuint32 * pSize

)s;
Description | Get estimated image size.
Pre-conditions | None
Parameters | self | [in] Interface self-reference.
pSize | [out] | Estimated encoding size, in bytes, of the image based on current settings.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

See also

SetlmageSettings()

OpenMAX|AL

183

8.17 XAlmageEncoderCapabilitiesitf

Description

This interface provides methods of querying the image encoding capabilities of the media engine.

This interface provides a means of enumerating all image encoders available on an engine where an encoderld
represents each encoder. It also provides a means for querying the capabilities of each encoder.

The set of image encoders supported by the engine does not change during the lifetime of the engine, though
dynamic resource constraints may limit actual availability when an image encoder is requested.

This interface is a mandated interface of engine objects (see section 7.2).

Prototype

extern const XAlnterfacelD XA 11D _IMAGEENCODERCAPABILITIES;

struct XAlmageEncoderCapabilitiesltf_;
typedef const struct XAlmageEncoderCapabilitiesltf
* const * XAlmageEncoderCapabilitiesltf;

struct XAlmageEncoderCapabilitiesltf_ {

XAresult (*GetlmageEncoderCapabilities) (
XAlmageEncoderCapabilitiesltf self,
XAuint32 * pEncoderlid,
XAlmageCodecDescriptor * pDescriptor

)

XAresult (*QueryColorFormats) (
const XAlmageEncoderCapabilitiesltf self,
XAuint32 * plndex,

XAuint32 * pColorFormat

Interface ID

€19f0640-e86f-11db-b2d2-0002a5d5c51b

Defaults

Not applicable

OpenMAX|AL

184

Methods

GetlmageEncoderCapabilities

XAresult (*GetlmageEncoderCapabilities) (
XAlmageEncoderCapabilitiesltf self,
XAuint32 * pEncoderld,
XAlmageCodecDescriptor * pDescriptor

)
Description | Retrieves image encoder capabilities.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pEncoderld | [in/out] If pDescriptor is NULL, pEncoder Id returns the number
of image encoders. Returns 0 if the engine does not provide any
image encoders.
If pDescriptor isnon-NULL, pEncoderld is a
incrementing value used to enumerate image encoders. Supported
index range is 0 to N-1, where N is the number of image
encoders.
pDescriptor | [out] Structure defining the capabilities of the image encoder.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | |f XA IMAGECODEC_RAW is one of the image codecs supports, QueryColorFormats()
should be used to determine the color formats supported.
PROFILE NOTES
A Media Player/Recorder profile implementation must support at least one encoder.
Seealso | QueryColorFormats()

OpenMAXIAL

185

QueryColorFormats

XAresult (*QueryColorFormats
const XAlmageEncoderCapa

XAuint32 * plndex,
XAuint32 * pColorFormat

) (
bilitiesltf self,

):
Description | This method is used to query the color formats supported by the image encoder.
Pre-conditions | None
Parameters | Self [in] Interface self-reference.
pIndex [infout] If pColorFormats is NULL, pIndex returns the number of
color formats supported. Returns 0O if there are no color
formats are supported. If pColorFormats is non-NULL,
pIndex is an incrementing value used for enumerating the
color formats supported. Supported index range is 0 to N-1,
where N is the number of color format supports.
pColorFormat | [out] Pointer to the color format. May be NULL. See

XA_COLORFORMAT macros.

Return value

The return value can be one of the following:
XA _RESULT_SUCCESS — Success.

XA _RESULT_PARAMETER_INVALID — One or more of the parameters
passed to the method are invalid.

Comments

This method returns color formats associated with the XA_ IMAGECODEC_RAW codec.

See also

None

OpenMAX|AL

186

8.18 XALEDArrayltf

Description

XALEDArrayltf isused to activate / deactivate the LEDs, as well as to set the color of LEDs, if supported.

XALEDArray I tF uses the following state model per LED, which indicates whether the LED is on or off:

Create_LEDArrayOutputDevice

ActivateLEDArray (XA_BOOLEAN_TRUE)

off | _ ActivateLEDArray (XA_BOOLEAN_FALSE) ~ | ©On
_ _

Destroy \©/ Destroy
/v\

Figure 15: XALEDArrayItf state model

This interface is supported on the LED Array (see section 7.3) object.

Prototype

extern const XAlnterfacelD XA 11D _LED;

struct XALEDArrayltf _;
typedef const struct XALEDArrayltf_* const * XALEDArrayltf;

struct XALEDArrayltf_ {

XAresult (*ActivatelLEDArray) (
XALEDArrayltf self,
XAuint32 lightMask

)

XAresult (*IsLEDArrayActivated) (
XALEDArrayltf self,
XAuint32 * pLightMask

);

XAresult (*SetColor) (
XALEDArrayltf self,
XAuint8 index,
const XAHSL * pColor

);

XAresult (*GetColor) (
XALEDArrayltf self,
XAuint8 index,

XAHSL * pColor

OpenMAX|AL

Interface ID

a534d920-f775-11db-8b70-0002a5d5c51b

Defaults

Initially, all LEDs are in the off state. Default color is undefined.

Methods

ActivateLEDArray

XAresult (*ActivatelLEDArray) (
XALEDArrayltf self,
XAuint32 lightMask

);

Description | Activates or deactivates individual LEDs in an array of LEDs.

Pre-conditions | None.

Parameters | self [in] Interface self-reference.

lightMask [in] Bit mask indicating which LEDs should be activated or
deactivated.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_CONTROL_LOST

Comments | Valid bits in 1ightMask range from the least significant bit, which indicates the first LED in
the array, to bit XALEDDescriptor: : ledCount - 1, which indicates the last LED in the
array. Bits set outside this range are ignored.

Seealso [None.

OpenMAX|AL

IsLEDArrayActivated

XAresult (*IsLEDArrayActivated) (
XALEDArrayltf self,
XAuint32 * pLightMask

);

Description | Returns the state of each LED in an array of LEDs.

Pre-conditions | None.

Parameters | self [in] Interface self-reference.

pLightMask [out] Address to store a bit mask indicating which LEDs are activated
or deactivated.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | Valid bits in pLightMask range from the least significant bit, which indicates the first LED in
the array, to bit XALEDDescriptor: : ledCount - 1, which indicates the last LED in the
array. Bits set outside this range are ignored.

Seealso [None.

SetColor

XAresult (*SetColor) (
XALEDArrayltf self,
XAuint8 index,
const XAHSL * pColor

);

Description | Sets the color of an individual LED.

Pre-conditions | The LED must support setting color, per XALEDDescriptor: :colorMask

Parameters | self [in] | Interface self-reference.

index | [in] | Index of the LED. Range is [0, XALEDDescriptor: : ledCount)

pColor | [in] | Address of a data structure containing an HSL color.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PRECONDITIONS_VIOLATED
XA_RESULT_PARAMETER_INVALID
XA_RESULT_CONTROL_LOST

Comments | None.

Seealso | None.

OpenMAX|AL

GetColor

XAresult (*GetColor) (
XALEDArrayltf self,
XAuint8 index,
XAHSL * pColor

);

Description

Returns the color of an individual LED.

Pre-conditions

The LED must support setting color, per XALEDDescriptor: :colorMask

Parameters

self [in] Interface self-reference.

index | [in] Index of the LED. Range is [0, XALEDDescriptor: : ledCount)

pColor | [out] | Address to store a data structure containing an HSL color.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PRECONDITIONS_VIOLATED
XA_RESULT_PARAMETER_INVALID

Comments

None.

See also

None.

OpenMAX|AL

190

8.19 XAMetadataExtractionltf

Description

The XAMetadataExtractionltf interface allows an application developer to acquire metadata. It is used for
scanning through a file’s metadata, providing the ability to determine how many metadata items are available, to
filter for or against metadata items by key, and to have the engine fill in a data structure containing full metadata
information for a metadata item.

The XAMetadataExtractionltf interface defaults to a simple search: in the case of simple formats (MP3,
ADTS, WAVE, AU, AIFF, etc.), there is only one location for metadata, and this simple method searches it
completely; in the case of advanced formats (MP4/3GP, XMF, SMIL, etc.), there are potentially many locations for
metadata, and the engine searches only the topmost layer of metadata. Used in combination with the
XAMetadataTraversal I tF interface, the XAMetadataExtractionltF interface is able to search all
metadata in any file using a variety of search modes.

This interface is mandated on Media Player objects (see section 7.4) and implicit on Metadata Extractor (see section
7.6) objects. See section F.6 for an example using this interface.

Dynamic Interface Addition

If this interface is added dynamically (using DynamiclnterfaceManagementl tf) the set of exposed
metadata items might be limited compared to the set of exposed items had this interface been requested during
object creation time. Typically, this might be the case in some implementations for efficiency reasons, or when the
interface is added dynamically during playback of non-seakable streamed content and the metadata is located earlier
in the stream than what was the interface addition time.

Khronos Keys

The keys that can be used to access metadata are the keys defined in the metadata specification of the media format
in question. In addition, the OpenMAX AL specification defines a few format-agnostic keys, called “Khronos keys”.
The Khronos keys are for those developers who may not be familiar with the original metadata keys of the various
media formats, but still want to extract metadata using OpenMAX AL and OpenMAX AL. It is the responsibility of
API implementations to map these Khronos keys to the format-specific standard metadata keys. The Khronos keys
are not meant to replace the standard metadata keys or to restrict the number of metadata keys available to the
application. Developers conversant with the standard metadata keys in each format can still specify exactly the keys
they are interested in with the help of the MetadataExtractionltf. The support for these Khronos keys is
format-dependent.

The following table lists the Khronos keys. This list does not purport to be a comprehensive union of the standard
keys in the various media formats. On the contrary, it is deliberately limited to the set of commonly-used metadata
items. It should be considered as a baseline list.

Table 11: Khronos Keys

“KhronosTitle” The title of the low-level entity, such as the name of the song, book chapter, image,
video clip.

“KhronosAlbum” The title of the high-level entity, such as the name of the song/video/image album, the
name of the book.

OpenMAX|AL

“KhronosTrackNumber The number of the track.

“KhronosArtist” The name of the artist, performer.

“KhronosGenre” The genre of the media.

“KhronosYear” The release year.

“KhronosComment” Other comments on the media. For example, for images, this could be the event at
which the photo was taken, etc.

“KhronosArtistURL” A URL pointing to the artist’s site.

“KhronosContentURL” A URL pointing to the site from which (alternate versions of) the content can be
downloaded.

“KhronosRating” A subjective rating of the media.

“KhronosAlbumArtJPEG” | Associated JPEG image, such as album art. The value associated with this key (the
image itself) is in binary, in one of several image formats.

“KhronosAlbumArtPNG” | Associated PNG image, such as album art. The value associated with this key (the
image itself) is in binary, in one of several image formats.

“KhronosCopyright” Copyright text.

“KhronosSeekPoint” Seek points of the media.

In this regard, three important scenarios are worth considering:

Scenario 1: Some of the Khronos keys do not have an equivalent standard metadata key in the media format
under consideration: Only those Khronos keys for which there exists a mapping to the standard keys of the media
are populated; the remaining Khronos keys remain empty, that is, no mapping exists and they are not exposed.

Scenario 2: The application is interested in metadata keys that are not part of the list of Khronos keys: The
application has the option of ignoring the Khronos keys entirely and directly specifying exactly those standard
metadata keys that it is interested in, using XAMetadataExtractionltf.

Scenario 3: The application’s metadata key list of interest is a proper superset of the Khronos key list: The
application has the option of ignoring the Khronos key list entirely (as in Scenario #2) or it can use the Khronos key
list and supplement it by accessing the extra format-specific standard keys directly using the
XAMetadataExtractionltf.

All the Khronos keys are encoded in ASCII. The encoding and the language country code of the associated values
depend on the media content. However, the encoding of the values is in one of the encoded strings with an exception
that the values associated with “KhronosAlbumArtJPEG” and “KhronosAlbumArtPNG” keys have the encoding
XA_CHARACTERENCODING_BINARY.

Seek Points

XAMetadataExtractionltf can be used for querying the seek points of the media. This is done by using the
standard metadata (ASCII) key “KhronosSeekPoint”.

The associated value of Khronos seek points are represented with XAMetadatal nfo structures, which is the case

with all the metadata keys. The character encoding of this XAMetadatalnfo structure is
XA CHARACTERENCODING_BINARY, since the value has special format described in Figure 16.

OpenMAX|AL

character encoding
of the name

1 4 5 8 9 length

time offset name

Figure 16: Fields of “KhronosSeekPoint” XAMetadatalnfo

The data field of the XAMetadatalnfo struct contains in its first 4 bytes the time offset (little endian) of the seek
point as XAmi Il iseconds. (The length of the value is 4 bytes, since XAmi I lisecond is XAuint32.)
SeeklItf::SetPosition() can be used for seeking that seek point.

The bytes from the 5th to the 8th contain the character encoding of the name of the seek point as a
XA_CHARACTERENCODING macro.

Starting from the 9th byte, the data field contains the name of the seek point (for example, the chapter name) in the
character encoding defined in bytes 5 to 8 and the language defined in the XAMetadatalnfo struct. The name is
always null-terminated, which means that even if the name would be empty, the length of the value is always at least
9 bytes.

There can be multiple “KhronosSeekPoint” items for the same seek point to allow multiple language support. That is,
the number of “KhronosSeekPoint” items is the number of seek points times the number of languages supported.

The AddKeyFi I'ter() method can be used for looking at seek points only in specific language by setting the
pKey parameter as “KhronosSeekPoint” and the valueLangCountry parameter to contain the language / country
code of interest.

Mandated Keys

An implementation of XAMetadataExtractionltf must support all methods on the interface. This
specification does not mandate that an implementation support any particular key (Khronos key or otherwise) even
in cases where the interface itself is mandated on an object.

Filtering of Metadata Items

The interface enables filtering of metadata items according to several criteria (see AddKeyFilter()).
Theoretically, the application may never use the filtering functionality and do filtering itself. However, in practice,
an implementation may use the filtering information in order to make extraction more efficient in terms of memory
consumption or computational complexity. For that matter, it is recommended that applications that are not
interested in the entire set of metadata items will use the filtering mechanism.

OpenMAX|AL

Prototype

extern const XAlnterfacelD XA 11D_METADATAEXTRACTION;

struct XAMetadataExtractionltf_;
typedef const struct XAMetadataExtractionltf
* const * XAMetadataExtractionltf;

struct XAMetadataExtractionltf_ {
XAresult (*GetltemCount) (
XAMetadataExtractionltf self,
XAuint32 * pltemCount

)

XAresult (*GetKeySize) (
XAMetadataExtractionltf self,
XAuint32 index,

XAuint32 * pKeySize

)

XAresult (*GetKey) (
XAMetadataExtractionltf self,
XAuint32 index,

XAuint32 keySize,
XAMetadatalnfo * pKey

)

XAresult (*GetValueSize) (
XAMetadataExtractionltf self,
XAuint32 index,

XAuint32 * pValueSize

)

XAresult (*GetValue) (
XAMetadataExtractionltf self,
XAuint32 index,

XAuint32 valueSize,
XAMetadatalnfo * pValue

);

XAresult (*AddKeyFilter) (
XAMetadataExtractionltf self,
XAuint32 keySize,
const void * pKey,

XAuint32 keyEncoding,

const XAchar * pValueLangCountry,
XAuint32 valueEncoding,

XAuint8 filterMask

)

XAresult (*ClearKeyFilter) (
XAMetadataExtractionltf self

)

¥

Interface ID

5df4fda0-f776-11db-abc5-0002a5d5¢51b

OpenMAX|AL

Defaults

The metadata key filter is empty upon realization of the interface. The default metadata scope is the root of the file.

Methods

GetltemCount

XAresult (*GetltemCount) (
XAMetadataExtractionltf self,
XAuint32 * pltemCount

)
Description Returns the number of metadata items within the current scope of the object.
Pre-conditions None
Parameters self [in] Interface self-reference.
pltemCount [out] Number of metadata items. Must be non-
NULL.
Return value The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
Comments itemCount is determined by the current metadata filter. For example, in a situation where four
metadata items exist, and there is no filter, Get 1temCount() will return 4; if there is a filter
that matched only one of the keys, GetltemCount() will return 1.
GetltemCount() returns the number of metadata items for a given metadata scope (active
node). The scope is determined by methods within XAMetadataTraversalltf
See also None

OpenMAX|AL

GetKeySize

XAresult (*GetKeySize) (
XAMetadataExtractionltf
XAuint32 index,
XAuint32 * pKeySize

):

self,

Description | Returns the byte size of a given metadata key.

Pre-conditions | None

Parameters | self [in]

Interface self-reference.

index [in]

Metadata item Index. Range is [0, GetltemCount).

pKeySize | [out]

Address to store key size. size must be greater than 0. Must be non-

NULL.

Returnvalue [The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments | GetKeySize() is used for determining how large a block of memory is necessary to hold the

key returned by GetKey ().

Seealso | GetKey ()

OpenMAX|AL

196

GetKey

XAresult (*GetKey) (
XAMetadataExtractionltf self,

XAuint32 index,

XAuint32 keySize,

XAMetadatalnfo * pKey

);
Description | Returns a XAMetadatal nfo structure and associated data referenced by the structure for a
key.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
index [in] Metadata item Index. Range is [0, GetltemCount()).
keySize | [in] Size of the memory block passed as key. Range is [1, GetKeySize].
pKey [out] Address to store the key. Must be non-NULL.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS

XA _RESULT_PARAMETER_INVALID
XA_RESULT_BUFFER_INSUFFICIENT

Comments

GetKey() fills out the XAMetadatal nfo structure, including data for the key beyond the

size of the structure.

If the given size is smaller than the needed size XA RESULT_BUFFER_INSUFFICIENT is
returned and only data of the given size will be written; however, no invalid strings are written.
That is, the null-terminator always exists and multibyte characters are not cut in the middle.

See also

GetKeySize()

OpenMAX|AL

197

GetValueSize

XAresult (*GetValueSize) (

XAMetadataExtractionltf self,
XAuint32 index,
XAuint32 * pSize

):
Description | Returns the byte size of a given metadata value.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
index [in] Metadata item Index. Range is [0, GetltemCount()).

pSize [out]

Address to store value size. size must be greater than 0. Must be
non-NULL.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

GetValueSize() is used for determining how large a block of memory is necessary to hold
the value returned by GetValue()

See also

GetvValue()

OpenMAX|AL

198

GetValue

XAresult (*GetValue) (
XAMetadataExtractionltf self,

XAuint32 index,
XAuint32 size,
XAMetadatalnfo * pValue

):
Description | Returns a XAMetadatal nfo structure and associated data referenced by the structure for a
value.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
index [in] Metadata item Index. Range is [0, GetltemCount()).
size [in] Size of the memory block passed as value. Range is [0,
GetValueSize].
pvalue [out] Address to store the value. Must be non-NULL.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID
XA_RESULT_BUFFER_INSUFFICIENT

Comments

GetValue() fills out the XAMetadatalnfo structure, including data for the value beyond

the size of the structure.
If the given size is smaller than the needed size XA RESULT_BUFFER_INSUFFICIENT is

returned and only data of the given size will be written; however, no invalid strings are written.

That is, the null-terminator always exists and multibyte characters are not cut in the middle.

See also

GetValueSize()

OpenMAX|AL

199

AddKeyFilter

XAresult (*AddKeyFilter) (
XAMetadataExtractionltf self,
XAuint32 keySize,
const void * pKey,

XAuint32 keyEncoding,

const XAchar * pValueLangCountry,
XAuint32 valueEncoding,

XAuint8 filterMask

);

Description | Adds a filter for a specific key.

Pre-conditions | At least one criteria parameter (key, keyEncoding, pvalueLangCountry,
valueEncoding) must be provided.

Parameters | self [in] | Interface self-reference.

keySize [in] | Size, in bytes, of the pKey parameter. Ignored if filtering
by key is disabled.

pKey [in] | The key to filter by. The entire key must match. Ignored if
filtering by key is disabled.

keyEncoding [in] | Character encoding of the pKey parameter. Ignored if
filtering by key is disabled.

pValueLangCountry [in] | Language / country code of the value to filter by. Ignored if
filtering by language / country is disabled. See
XAMetadatalnfo structure in section 9.1.27.

valueEncoding [in] | Encoding of the value to filter by. Ignored if filtering by
encoding is disabled.

filterMask [in] | Bitmask indicating which criteria to filter by. Should be
one of the XA_METADATA_FILTER macros, see section
9.2.38.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

OpenMAX|AL

AddKeyFilter

Comments

AddKeyFi Iter () adds a key to the metadata key filter. The filter defines which metadata
items are available when asking how many exist (GetltemCount()) and how they are
indexed for calls to GetKeySize(), Getkey(), GetValueSize(), and GetValue().
For example, if a file contains two metadata items, with keys “foo” and “bar” (both ASCII),
calling AddKeyFi 1'ter () for “foo” will cause Getltem to return only the metadata item
“foo”. A subsequent call to AddKeyFi I'ter for “bar” will cause Getltem() to return both
metadata items.

The key filter uses one or more of the following criteria: key data, value encoding, and language
country specification.

Key data filter will consider a metadata item to match when the data in the filter key charset
encoding and filter key value fields are identical to the key charset encoding and key value,
respectively, found in a metadata item in the media. If the filter key charset encoding is different
from the charset encoding that the media metadata item uses, it is optional for the implementation
to convert the values of the filter key and the media metadata item key to the same charset, and
evaluate whether they match.

Language / country filter will consider a metadata item to match the criteria if the item’s value
language / country matches the filter’s language / country code. The value encoding filter will
simply match all items with the same value encoding.

While it is possible to use all three criteria when calling AddKeyFi lter (), itis also possible
to include fewer criteria. ¥ I'terMask is used for defining which criteria should be considered
when calling AddKeyFi l'ter (). Itis constructed by bit-wise ORing of the metadata filter
macros, see section 9.2.38.

Note that AddKeyFi I'ter () treats parameters as if they were ANDed together. For example,
calling AddKeyFi I'ter () with key data and language / country code (but not encoding) means
that the filter will cause metadata that matches both the key and the language / country code to be
returned, but not metadata that matches only one. Further note that subsequent calls to
AddKeyFi lter () are treated as if they were Ored together. For example, if the first call
passed a key (but nothing else) and a second call passed a key and an encoding (but no language /
country code), the interface will return metadata matching the first key and metadata matching
both the second key and the encoding.

For example, to filter for all metadata that uses the ASCII encoding for the value, pass
valueEncoding as XA_CHARACTERENCODING_ASCI 1 and FilterMask as
XA_METADATA_FILTER_ENCODING. To filter for all metadata that uses the ASCII encoding
for the value and uses the language country code “en-us”, pass valueEncoding as
XA_CHARACTERENCODING_ASCI I, valueLangCountry as “en-us”, and Fi I terMask
as XA_METADATA_FILTER_ENCODING | XA_METADATA_FILTER_LANG.

Note that when the filter is clear (that is, when no filter criteria have been added or after they
have been cleared), the filter is defined so that Get1temCount() returns all metadata items (as
if each criteria was set to a wildcard).

See also

ClearKeyFilter()

OpenMAX|AL

ClearKeyFilter

XAresult (*ClearKeyFilter) (
XAMetadataExtractionltf self
);

Description | Clears the key filter.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

Returnvalue [The return value can be one of the following:
XA RESULT_SUCCESS

Comments | Note that when the filter is clear (that is, when no filter criteria have been added or after they
have been cleared), the filter is defined so that Get1temCount() returns all metadata items
(as if each criteria was set to a wildcard).

Seealso | AddKeyFilter()

OpenMAX|AL

8.20 XAMetadatalnsertionltf

Description

This interface is for inserting/overwriting metadata to the media object. The actual inserting will happen once the
output is written, (see XASnapshotltf and XARecord I tf for details regarding exactly when the media is
written to the sink). The metadata should have been set with this interface before the writing takes place.

Metadata Insertion for Tree-based Structures

For tree-based metadata structures (e.g. 3GPP or MP4 files), instead of using CreateChildNode to create the tree
from scratch, the X AMetadatalnsertionltf can be used in conjunction with the (optional) XAMetadataTraversalltf on
the media recorder object to insert metadata items in the appropriate nodes in the tree. This requires that the
implementation of the media recorder object detect the container format of the data sink that was specified at the
time that the object was created (see the CreateMediaRecorder() method in Section 8.11), and create the appropriate
metadata tree structure. The XAMetadataTraversalltf can then be used to traverse this tree structure, with traversal
mode set to XA_ METADATATRAVERSALMODE_NODE to determine the node IDs, and insert metadata items
at the appropriate nodes using XAMetadatalnsertionltf::InsertMetadataltem.

This mechanism has the following advantages: it frees the application developer from the burden of determining the
correct metadata tree structure for a given container format, and ensures a higher-level of accuracy of the tree
structure used (implementers typically have the wherewithal to use the correct structure).

XAMetadataTraversalltf is not needed for inserting metadata into flat metadata lists since XAMetadatalnsertionltf
can be used to insert all metadata items into the root node by just specifying the root note ID,
XA ROOT_NODE_ID. See Appendix D.5 for sample code on flat list metadata insertion.

This interface is a mandated interface of Media Recorder objects (see section 7.5). See section F.5 for an example
using this interface.

Khronos Keys

In general, the keys that can be used to write metadata are the keys defined in the metadata specification of the
media format in question. In addition, the OpenMAX AL specification defines a few format-agnostic keys, called
“Khronos keys”. The Khronos keys are for developers who may not be familiar with the original metadata keys of
the various media formats, but still want to insert metadata using OpenMAX AL. It is the responsibility of the API
implementations to map these Khronos keys to the format-specific standard metadata keys. The Khronos keys are
not meant to replace the standard metadata keys or to restrict the number of metadata keys available to the
application. Developers conversant with the standard metadata keys in each format can still specify exactly the keys
they are interested in with the help of the Metadatalnsertionltf.

Metadatalnsertionltf: :GetKeys() can be used for querying which format-specific keys and Khronos
keys are supported for writing by the implementation.

The support for the Khronos keys is format-dependent.

See MetadataExtractionltf (see section 8.20) for the definitions of the Khronos keys.

In this regard, three important scenarios are worth considering:

Scenario 1: Some of the Khronos keys do not have an equivalent standard metadata key in the media format

under consideration: Just those Khronos keys for which there exists a mapping to the standard keys of the media
can be available for writing and are exposed via method GetKeys.

OpenMAX|AL

Scenario 2: The application is interested in metadata keys that are not part of the list of Khronos keys: The
application has the option of ignoring the Khronos keys entirely and directly specifying exactly those standard
metadata keys that it is interested in, keeping in mind what GetKeys () method lists about their availability.

Scenario 3: The application’s metadata key list of interest is a proper superset of the Khronos key list: The
application has the option of ignoring the Khronos key list entirely (as in Scenario #2) or it can use the Khronos key
list and supplement it by writing by the extra format-specific standard keys directly takin into account what keys
GetKeys () method describes to be available for writing.

The encoding of the associated values to Khronos keys must be in one of the string encodings with an exception that
the values associated with “KhronosAlbumArtJPEG” and “KhronosAlbumArtPNG” keys have to be in encoding
XA CHARACTERENCODING_BINARY. If this rule is not followed when Khronos keys are used for metadata
insertion, the insertion for that node will fail and that will be indicated with
xaMetadatalnsertionCal lback().

Mandated Keys

An implementation of XAMetadatalnsertionltf must merely support all methods on the interface. This
specification does not mandate that an implementation supports writing any particular key (Khronos key or
otherwise) even in cases where the interface itself is mandated on an object. The supported keys for writing can be
queried with methods GetSupportedKeysCount, GetKeySize and GetKeys().

OpenMAX|AL

Prototype

extern const XAlnterfacelD XA 11D_METADATAINSERTION;

struct XAMetadatalnsertionltf_;
typedef const struct XAMetadatalnsertionltf_
* const * XAMetadatalnsertionltf;

typedef struct XAMetadatalnsertionltf_ {

XAresult (*CreateChildNode) (
XAMetadatalnsertionltf self,
XAInt32 parentNodelD,
XAuint32 type,

XAchar * mimeType,
XAiInt32 * pChildNodelD

)

XAresult (*GetSupportedKeysCount) (
XAMetadatalnsertionltf self,
XAint32 nodelD,

XAboolean * pFreeKeys,
XAuint32 * pKeyCount,
XAuint32 * pEncodingCount

)

XAresult (*GetKeySize) (
XAMetadatalnsertionltf self,
XAInt32 nodelD,

XAuint32 keylndex,
XAuint32 * pKeySize

)

XAresult (*GetKey) (
XAMetadatalnsertionltf self,
XAInt32 nodelD,

XAuint32 keylndex,
XAuint32 keySize,
XAMetadatalnfo * pKey

);

XAresult (*GetFreeKeysEncoding) (
XAMetadatalnsertionltf self,
XAInt32 nodelD,

XAuint32 encodinglndex,
XAuint32 * pEncoding

)

XAresult (*InsertMetadataltem) (
XAMetadatalnsertionltf self,
XAint32 nodelD,
XAMetadatalnfo * pKey,
XAMetadatalnfo * pvalue,
XAboolean overwrite

);

XAresult (*RegisterCallback) (
XAMetadatalnsertionltf self,
xaMetadatalnsertionCal lback callback,
void * pContext

OpenMAX|AL

Interface ID

49a14d60-df05-11db-9191-0002a5d5¢c51b

Defaults

Not applicable.

Callback

xaMetadatalnsertionCallback

typedef void (XAAPIENTRY * xaMetadatalnsertionCallback) (
XAMetadatalnsertionltf caller,
void * pContext,
XAMetadatalnfo * pKey,
XAMetadatalnfo * pvalue,
XAInt32 nodelD,
XAboolean result
)

Description | Callback function called on completion of actual writing of a metadata key/value pair.

Parameters | calller [in] | Interface on which this callback was registered.

pContext | [in] | User context data that is supplied when the callback method is registered.

pKey [in] | The key that was written (or that was tried to be written in case of failure).
The application can now free the memory allocated for this struct.

pvalue [in] | The value that was written (or that was tried to be written in case of failure).
The application can now free the memory allocated for this struct.

nodelD [in] | ID of the node where this key/value pair is (or would be in case of failure).

result [in] | True, if writing of the metadata key/value pair was successful; false otherwise.

Comments | This is not a method of the interface but is the callback description and prototype.

See Also | RegisterCal lback()

OpenMAX|AL

Methods

CreateChildNode

XAresult (*CreateChildNode) (
XAMetadatalnsertionltf self,
XAInt32 parentNodelD,
XAuint32 type,

XAchar * mimeType,
XAint32 * pChildNodelD

Description

Creates a new child node for the given parent. This child can be utilized with
InsertMetadataltem() method. This method does not actually write yet anything on
media object. The actual writing and creation of the node will happen only if the node id is given
to InsertMetadataltem() method as argument.

Pre-conditions | none
Parameters | self [in] Interface self-reference.

parentNodelD [in] ID of the parent node for this new child node.

type [in] Type of the new node. See XA _NODETYPE
macros.

mimeType [in] Suggested MIME-type for this new child node. The
given MIME-type is a hint only and the
implementation might override it.
The application is allowed to provide a zero-length
string here if the application doesn’t want to specify
the MIME-type.

pChildNodelD [out] ID of the created child node.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA _RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED
XA _RESULT_CONTENT_UNSUPPORTED

Comments

XA RESULT_FEATURE_UNSUPPORTED is returned if the media object does not support tree-
like metadata. That is, writing metadata only to the root is supported and therefore creating new
nodes is not supported.

XA _RESULT_CONTENT_UNSUPPORTED is returned if the media object does not support the
given node type.

OpenMAX|AL

GetSupportedKeysCount

XAresult (*GetSupportedKeysCount) (
XAMetadatalnsertionltf self,
XAInt32 nodelD,

XAboolean * pFreeKeys,
XAuint32 * pKeyCount,
XAuint32 * pEncodingCount

Description

A query method to tell if the metadata keys (for writing metadata) can be freely chosen by the
application or if they are fixed (for the given node).

If the implementation supports only fixed set of keys for metadata writing for the format and
node in question, this query method gives the number of the supported fixed keys and
GetKeySize and GetKey can then be used to query those keys.

On the other hand, if the implementation supports free keys for metadata writing for the format
and node in question, this query method gives the number of supported character encodings and
GetFreeKeysEncoding can then be used to query those encodings.

Pre-conditions

None

Parameters

self [in] Interface self-reference.

nodelD [in] ID of the node whose supported keys are queried.

XA ROOT_NODE_ID is used to refer to the root node
of the container.

pFreeKeys [out] True if keys can be freely chosen by the application; false
if the keys are fixed.

pKeyCount [out] If pFreeKeys is false, this is the number of keys
available for writing; if pFreeKeys is true, this is the
number of commonly used keys for this node.

Please use GetKeySize and GetKey methods to query the
keys one at a time.

pEncodingCount [out] If pFreeKeys is false, this value should be ignored; if
pFreeKeys is true, this is the number of supported
character encodings for this node. Please use
GetFreeKeysEncoding method to query them one at
a time.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

none

OpenMAX|AL

GetKeySize

XAresult (*GetKeySize) (
XAMetadatalnsertionltf self,
XAint32 nodelD,
XAuint32 index,
XAuint32 * pKeySize

)
Description | Returns the byte size required for a supported metadata key pointed by the given index.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
nodelD [in] ID of the node whose supported keys are queried.
index [in] Index for supported metadata keys. Range is [0, KeyCount-1].
pKeySize | [out] Address to store key size. size must be greater than 0. Must be

non-NULL.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments

GetKeySize() is used for determining how large a block of memory is necessary to hold the
key returned by GetKey ().

See also

GetKey()

OpenMAXIAL

209

GetKey

XAresult (*GetKey) (
XAMetadatalnsertionltf self,
XAint32 nodelD,

XAuint32 index,
XAuint32 keySize,
XAMetadatalnfo * pKey

)s

Description | Returns a XAMetadatalnfo structure and associated data referenced by the structure for a
supported key.

Pre-conditions | None

Parameters | self [in] Interface self-reference.
nodelD [in] ID of the node whose supported keys are queried.
index [in] Index for supported metadata keys. Range is [0, KeyCount-1].
keySize | [in] Size of the memory block passed as key. Range is [1, GetKeySize].
pKey [out] Address to store the key. Must be non-NULL.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_BUFFER_INSUFFICIENT

Comments | GetKey () fills out the XAMetadatalnfo structure, including data for the key beyond the
size of the structure.

If the given size is smaller than the needed size XA _RESULT_BUFFER_INSUFFICIENT is
returned and only data of the given size will be written; however, no invalid strings are written.
That is, the null-terminator always exists and multibyte characters are not cut in the middle.

Seealso | GetSupportedKeysCout(), GetKeySize()

OpenMAX|AL

GetFreeKeysEncoding

XAresult (*GetFreeKeysEncoding) (
XAMetadatalnsertionltf self,
XAInt32 nodelD,
XAuint32 * pEncodinglndex,
XAuint32 * pEncoding,

);

Description

A method to be used in case implementation supports free keys for metadata insertion. This
method tells supported character encodings for those free keys.

Pre-conditions

pFreeKeys (in GetSupportedKeysCount) should be true.

Parameters

self [in] Interface self-reference.

nodelD [in] ID of the node whose supported keys are queried.

pEncodinglndex [in] Metadata insertion free keys encodings Index. Range is
[0, EncodingCount-1].

pEncoding [out] | A supported character encoding for free keys to be

written. See
XA_CHARACTERENCODING macros.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID
XA_RESULT_PRECONDITIONS_VIOLATED

Comments

none

See also

GetSupportedKeysCount()

OpenMAX|AL

211

InsertMetadataltem

XAresult (*InsertMetadataltem) (
XAMetadatalnsertionltf self,

XAInt32 nodelD,
XAMetadatalnfo * pKey,

XAMetadatalnfo * pVvalue,
XAboolean overwrite

Description

Inserts the key/value pair to the specified node of the metadata tree. (If the specified node does
not exist in media object, the key/value pair cannot be written.) Giving XA_ROOT_NODE_ ID as
the node, writes the key/value pair to the root. overwrite flag tells what to do if the there is
already a value set for the given key in the given node. (For example, camera device might write
automatically some metadata to the resulting image.)

Please note that in some formats, the langCountry field of XAMetadatal nfo structs will be

ignored.
Pre-conditions | none
Parameters | self [in] [Interface self-reference.

nodelD [in] | ID of the node whereto the metadata is to be written.
ID given by XAMetadataTraversalltf: :GetChildInfo() can
be used here, if XAMetadataTraversal 1 tf is available and the
node exists already. Otherwise, CreateChi ldNode () should be used
to get the node ID.

pKey [in] | Key to be written.
The application should not deallocate or change the content of this struct
before receiving the corresponding
xaMetadatalnsertionCal Iback or destroying the object.

pvalue [in] | Value to be written.
The application should not deallocate or change the content of this struct
before receiving the corresponding
xaMetadatalnsertionCal Iback or destroying the object.

overwrite | [in] | This flag is used to coordinate the insertion of the same metadata

information being provided by both the source and application.

If true, the information provided by the application shall be used.
If false, the information provided by the source shall be used.

Note: This parameter is only applicable when the same metadata
information will be available from both the source and application.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS

Comments

none

OpenMAX|AL

212

RegisterCallback

XAresult (*RegisterCallback) (
struct XAMetadatalnsertionltf * self,
xaMetadatalnsertionCallback callback,
void * pContext

);

Description | Registers a callback on the object that executes after each of the actual writings of metadata
key/value pairs takes place.

Parameters | self [in] Interface self-reference.

callback [in] Address of the result callback. If NULL then the callback is disabled.

pContext [in] User context data that is to be returned as part of the callback method.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS

Comments | none

Seealso | xaMetadatalnsertionCallback()

OpenMAX|AL

8.21 XAMetadataTraversalltf

Description

The XAMetadataTraversal 1 tF interface is used in order to support advanced metadata extraction. It allows
developers to traverse a file using a variety of modes, which determine how to traverse the metadata and define how
the methods within the interface behave.

The interface provides the ability to set the traversal mode, to determine how many child nodes exist within a given
scope and what their type is, and to set the scope.

This interface is a mandated interface of Media Player objects (see section 7.4) and implicit on Metadata Extractor
(see section 7.6) objects.

Dynamic Interface Addition

If this interface is added dynamically (using XADynamicInterfaceManagementltf) the set of exposed
metadata nodes might be limited compared to the set of exposed nodes had this interface been requested during
object creation time. Typically, this might be the case in some implementations for efficiency reasons, or when the
interface is added dynamically during playback of non-seakable streamed content and the metadata is located earlier
in the stream than what was the interface addition time.

Prototype

extern const XAlnterfacelD XA 11D_METADATATRAVERSAL;

struct XAMetadataTraversalltf_;
typedef const struct XAMetadataTraversalltf_
* const * XAMetadataTraversalltf;

struct XAMetadataTraversalltf_ {
XAresult (*SetMode) (
XAMetadataTraversalltf self,
XAuint32 mode

);

XAresult (*GetChildCount) (
XAMetadataTraversalltf self,
XAuint32 * pCount

s

XAresult (*GetChildMIMETypeSize) (
XAMetadataTraversalltf selT,
XAuint32 index,

XAuint32 * pSize

);

XAresult (*GetChildInfo) (
XAMetadataTraversalltf self,
XAuint32 index,

XAiInt32 * pNodelD,
XAuint32 * pType,
XAuint32 size,
XAchar * pMimeType

);

OpenMAX|AL

XAresult (*SetActiveNode) (
XAMetadataTraversalltf selT,
XAuint32 index

Interface ID

73ffb0e0-f776-11db-a00e-0002a5d5¢c51b

Defaults

The metadata traversal mode defaults to XA_METADATATRAVERSALMODE_NODE. The default metadata scope is
the root of the file. The active node is root.

Methods

SetMode

XAresult (*SetMode) (
XAMetadataTraversalltf self,
XAuint32 mode

)s

Description | Sets the metadata traversal mode.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

mode [in] Mode of metadata traversal.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | Metadata traversal mode determines how a file is parsed for metadata. It is possible to traverse
the file either by iterating through the file in tree fashion - by node
(XA_METADATATRAVERSALMODE_NODE, the default mode), or by scanning through the file
as if it were a flat list of metadata items (XA_METADATATRAVERSALMODE_ALL). The optimal
mode is largely determined by the file format.

Seealso | XA_METADATATRAVERSALMODE

OpenMAX|AL

GetChildCount

XAresult (*GetChildCount) (
XAMetadataTraversalltf self,
XAuint32 * pCount

):
Description | Returns the number of children (nodes, streams, etc.) within the current scope.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pCount [out] Number of children.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

Child count is determined by the metadata traversal mode:
If the mode is set to XA METADATATRAVERSALMODE_ALL, GetChildCount() will always
return 0.

If the mode is set to XA METADATATRAVERSALMODE_NODE, GetChildCount() will return the
number of nodes within the current scope. For example, in a Mobile XMF file with one SMF
node and one Mobile DLS node, GetChildCount() will return 2 from the root.

See also

SetMode(), XA_METADATATRAVERSALMODE

GetChildMIMETypeSize

XAresult (*GetChildMIMETypeSize) (
XAMetadataTraversalltf self,
XAuint32 index,

XAuint32 * pSize

):
Description | Returns the size in bytes needed to store the MIME type of a child.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
index | [in] Child index. Range is [0, GetChi IdCount()).
pSize | [out] Size of the MIME type in bytes.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

See also

GetChildCount()

OpenMAX|AL

216

GetChildInfo

XAresult (*GetChildInfo) (
XAMetadataTraversalltf selT,

XAuint32 index,

XAiInt32 * pNodelD,
XAuint32 * pType,
XAuint32 size,
XAchar * mimeType

):
Description | Returns information about a child.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
index [in] Child index. Range is [0, GetChi IdCount()).
pNodelD | [out] | Unique identification number of the child.
pType [out] | Node type. See XA NODETYPE macro.
size [in] Size of the memory block passed as mimeType. Range is (0, max
GetChildMIMETypeSize(Q)].
mimeType | [out] | Address to store the MIME type.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

To ignore MIME type, set size to 0 and mimeType to NULL.

See also

GetChildCount()

OpenMAX|AL

217

SetActiveNode

XAresult (*SetActiveNode) (

XAMetadataTraversalltf selT,

XAuint32 index
)s;
Description | Sets the scope to a child index.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
index [in] Child index. Range is special (see below).

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments

SetActiveNode() causes the current scope to descend or ascend to the given index. To
descend, set index to [0, GetChi IdCount()). To ascend to the parent scope, set index to
XA_NODE_PARENT. Calling SetActiveNode () with index set to XA_NODE_PARENT
will return XA_RESULT_PARAMETER__INVALID if the active node is root.

See also

GetChildCount(), XA_NODE_PARENT

OpenMAX|AL

218

8.22 XAODbjectitf

Description

The XAObjectltf interface provides essential utility methods for all objects. Such functionality includes the
destruction of the object, realization and recovery, acquisition of interface pointers, a callback for runtime errors,
and asynchronous operation termination.

A maximum of one asynchronous operation may be performed by an object at any given time. Trying to invoke an
asynchronous operation when an object is already processing an asynchronous call is equivalent to aborting the first
operation, then invoking the second one.

XAObjectlItf is an implicit interface of all object types and is automatically available upon creation of every
object.

Please refer to section 3.1.1 for details on the object states.

This interface is supported on all objects (see section 7).

Priority

This interface exposes a control for setting an object’s priority relative to the other objects under control of the same
instance of the engine. This priority provides a hint that the implementation can use when there is resource
contention between objects.

Given resource contention between objects, an implementation will give preference to the object with the highest
priority. This may imply that the implementation takes resources from one object to give to another if the two
objects are competing for the same resources and the latter has higher priority. Given two objects of identical
priority competiting for resources, the implementation, by default, leaves the resources with the object that acquired
them first. However, an application may override this behavior by setting the preemptable flag on an object. The
implementation may steal resources from a “pre-emptable” object to give to another object of the same priority even
when the second object is realized after the first. If both objects have the preemptable flag set, the implementation
observes the default resource allocation behavior, that is, it leaves resources with the object that acquired them first.

Different objects may require entirely different resources. For this reason, it is possible that an object of high priority
may have its resources stolen before an object of low priority. For example, a high-priority object may require
access to dedicated hardware on the device while the low-priority object does not. If this dedicated hardware is
demanded by the system, the resources may need to be stolen from the higher priority object, leaving the low
priority object in the Realized state.

Loss of Control

This interface also contains a notification mechanism (via xaOb jectCal Iback()) to tell the current application
A that another entity (such as another application B or the system) has taken control of a resource, but the
application A is still allowed to use it (without being able to control it). See the related object event macros
(XA_OBJECT_EVENT_ITF_CONTROL_TAKEN, XA_OBJECT_EVENT_ITF_CONTROL_RETURNED and
XA_OBJECT_EVENT_ITF_PARAMETERS_CHANGED) and the error code XA_RESULT_CONTROL_LOST for
details.

Prototype

extern const XAlnterfacelD XA 11D_OBJECT;

struct XAObjectltf_;
typedef const struct XAObjectltf_* const * XAObjectltf;

COpenMAX|AL

struct XAObjectltf_ {

XAresult (*Realize) (
XAObjectltf self,
XAboolean async

)

XAresult (*Resume) (
XAObjectltf self,
XAboolean async

);

XAresult (*GetState) (
XAObjectltf self,
XAuint32 * pState

)

XAresult (*Getlnterface) (
XAObjectltf self,
const XAlnterfacelD iid,
void * plnterface

)

XAresult (*RegisterCallback) (
XAObjectltf self,
xaObjectCal lback callback,
void * pContext

)

void (*AbortAsyncOperation) (
XAObjectltf self

)

void (*Destroy) (
XAObjectltf self
)

XAresult (*SetPriority) (
XAObjectltf self,
XAInt32 priority,
XAboolean preemptable

)

XAresult (*GetPriority) (
XAObjectltf self,
XAInt32 * pPriority,
XAboolean * pPreemptable

)

XAresult (*SetLossOfControlInterfaces) (
XAObjectltf self,
XAiIntl6 numlnterfaces,
XAlnterfacelD * plnterfacelDs,
XAboolean enabled

Interface ID

82f5a5a0-f776-11db-9700-0002a5d5c51b

Defaults

OpenMAX|AL

The object is in Unrealized state.

No callback is registered.

Priority: XA_PRIORITY_NORMAL

Preemptable by object of same priority that is realized later than this object: XA _BOOLEAN_FALSE

Callbacks

xaObjectCallback

typedef void (XAAPIENTRY * xaObjectCallback) (
XAObjectltf caller,

const void * pContext,

XAuint32 event,

XAresult result,

XAuint32 param,

void * plnterface

)
Description | A callback function, notifying of a runtime error, termination of an asynchronous call or change in the
object’s resource state.
Parameters | caller [in] | Interface on which this callback was registered.
pContext [in] | User context data that is supplied when the callback method is registered.
event [in] | One of the XA OBJECT_EVENT macros.
result [in] | Ifeventis XA_OBJECT EVENT_RUNTIME_ERROR, result contains the
error code. If event is XA_ OBJECT_EVENT_ASYNC_TERMINATION
result contains the asynchronous function return code. For other values of
event, this parameter should be ignored.
param [in] | If eventis XA_OBJECT_EVENT_RUNTIME_ERROR
XA_OBJECT_EVENT_RESOURCES_LOST or
XA_OBJECT_EVENT_ASYNC_TERMINATION, param contains the state of
the object after the event. For other values of event, this parameter should be
ignored.
pInterface | [in] | If event is XA_OBJECT_EVENT_ITF_CONTROL_TAKEN,
XA_OBJECT_EVENT_ITF_CONTROL_RETURNED or
XA_OBJECT_EVENT_ITF_PARAMETERS_CHANGED, pInterface
contains the interface affected. For other values of event, this parameter
should be ignored.
Comments | Please note the restrictions applying to operations performed from within callback context, in section
3.3.
Seealso | RegisterCal lback()

OpenMAX|AL

Methods

Realize

XAresult (*Realize) (
XAObjectltf self,
XAboolean async

)s

Description

Transitions the object from Unrealized state to Realized state, either synchronously or
asynchronously.

Pre-conditions

The object must be in Unrealized state.

Parameters

self [in] | Interface self-reference.

async | [in] | If XA BOOLEAN_FALSE, the method will block until termination. Otherwise,
the method will return XA_RESULT_SUCCESS, and will be executed
asynchronously. On termination, the xaObjectCal Iback() will be
invoked, if registered, with the

XA _OBJECT_EVENT_ASYNC_TERMINATION. The result parameter of
the xaObjectCal Iback() will contain the result code of the function.
However, if the implementation is unable to initiate the asynchronous call
XA_RESULT_RESOURCE_ERROR will be returned.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_RESOURCE_ERROR
XA_RESULT_PRECONDITIONS_VIOLATED
XA _RESULT_MEMORY_FAILURE
XA_RESULT_I10_ERROR
XA_RESULT_CONTENT_CORRUPTED
XA_RESULT_CONTENT_UNSUPPORTED
XA_RESULT_CONTENT_NOT_FOUND
XA_RESULT_PERMISSION_DENIED

Comments

Realizing the object acquires the resources required for its functionality. The operation may fail if
insufficient resources are available. In such a case, the application may wait until resources
become available and a XA_OBJECT_EVENT_RESOURCES_AVAILABLE event is received,
and then retry the realization. Another option is to try and increase the object’s priority, thus
increasing the likelihood that the object will steal another object’s resources.

See also

None.

OpenMAX|AL

Resume

XAresult (*Resume) (
XAObjectltf self,
XAboolean async

);

Description

Transitions the object from Suspended state to Realized state, either synchronously or
asynchronously.

Pre-conditions

The object must be in Suspended state.

Parameters

self [in] | Interface self-reference.

async | [in] If XA_BOOLEAN_FALSE, the method will block until termination.
Otherwise, the method will return XA_RESULT _SUCCESS and will be
executed asynchronously. On termination, the xaObjectCal Iback() will
be invoked, if registered, with the
XA_OBJECT_EVENT_ASYNC_TERMINATION. The result parameter of
the xaObjectCal Iback() will contain the result code of the function.
However, if the implementation is unable to initiate the asynchronous call
XA_RESULT_RESOURCE_ERROR will be returned.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_RESOURCE_ERROR
XA_RESULT_PRECONDITIONS_VIOLATED

Comments

Resuming the object acquires the resources required for its functionality. The operation may fail
if insufficient resources are available. In such a case, the application may wait until resources
become available and a XA _OBJECT_EVENT_RESOURCES_AVAILABLE event is received,
and then retry the resumption. Another option is to try and increase the object’s priority, thus
increasing the likelihood that the object will steal another object’s resources.

See also

None.

OpenMAX|AL

GetState

XAresult (*GetState) (
XAObjectltf self,
XAuint32 * pState

);

Description | Retrieves the current object state.

Preconditions | None.

Parameters | self [in] | Interface self-reference.

pState | [out] | Pointer to the current state of the object. One of the object state macros,
XA OBJECT_STATE, will be written as result. This must be non-NULL.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None.

See also | None.

Getlnterface

XAresult (*Getlnterface) (
XAObjectltf self,
const XAlnterfacelD iid,
void * plnterface

);

Description | Obtains an interface exposed by the object

Preconditions | The object is in the Realized state.

Parameters | self [in] Interface self-reference.

iid [in] The interface type ID.

pInterface | [out] | This should be a non-NULL pointer to a variable of the interface’s
type — for example, if a XAObjectItf is retrieved, this parameter
should be of type XAObjectltf * type.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED
XA_RESULT_PRECONDITIONS_VIOLATED

Comments | |f the object does not expose the requested interface type, the return code will be
XA_RESULT_FEATURE_UNSUPPORTED.

Seealso [None.

OpenMAX|AL

RegisterCallback

XAresult (*RegisterCallback) (
XAObjectltf self,
xaObjectCal lback callback,
void * pContext

);

Description

Registers a callback on the object that executes when a runtime error occurs or an asynchronous
operation terminates.

Preconditions | None.
Parameters | self [in] Interface self-reference.
callback [in] Address of the result callback. If NULL, the callback is disabled.
pContext [in] User context data that is to be returned as part of the callback method.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | The callback will report only runtime errors and results of calls to asynchronous functions.
Seealso | xaObjectCallback()
AbortAsyncOperation

void (*AbortAsyncOperation) (
XAObjectltf self

);

Description

Aborts asynchronous call currently processed by the object. This method affects asynchronous
calls initiated from XAObjectltf or XADynamiclnterfaceManagementltf only. If no
such call is being processed, the call is ignored.

If a callback is registered, it will be invoked, with a
XA_OBJECT_EVENT_ASYNC_TERMINATION as event and
XA RESULT_OPERATION_ABORTED as return code.

Preconditions | None.
Parameters | self [in] Interface self-reference.
Comments | The method is meant for graceful timeout or user-initiated abortion of asynchronous calls.
Seealso | None.

OpenMAXIAL

225

Destroy

void (*Destroy) (
XAObjectltf self
)

Description | Destroys the object.

Preconditions | None.

Parameters | self [in] Interface self-reference.

Comments | Destroy implicitly transfers the object through Unrealized state, thus freeing any resources
allocated to the object prior to freeing it. All references to interfaces belonging to this object
become invalid and may cause undefined behavior if used.

All pending asynchronous operations are aborted, as if AbortAsyncOperations() has
been called.

Seealso | None.

SetPriority

XAresult (*SetPriority) (
XAObjectltf self,
XAInt32 priority,
XAboolean preemptable

)s

Description | Set the object’s priority.

Pre-conditions | None.

Parameters | self [in] | Interface self-reference.

priority [in] | The priority. The valid range for this parameter is [INT_MIN,
INT_MAX]. The larger the number, the higher the priority: zero is the
default priority; negative numbers indicate below normal priority; and
positive numbers indicate above normal priority.

preemptable | [in] | True indicates that objects of identical priority that are realized after
this object may be given resource allocation priority.

False indicates that the object should have resource allocation
preference over objects of the same priority realized after this object.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | Although it is possible to set any priority within the specified range, XA_PRIORITY (see section
9.2.54) defines a fixed set of priorities for use with this method.

See also | None.

OpenMAX|AL

GetPriority

XAresult (*GetPriority) (
struct XAObjectltf self,
XAInt32 * pPriority,
XAboolean * pPreemptable

):

Description | Gets the object’s priority.

Pre-conditions | None.

Parameters | self [in]

Interface self-reference.

pPriority [out]

Pointer to a location to receive the object’s priority. This must be
non-NULL.

pPreemptable | [out]

Pointer to a location to receive the object’s preemtable status. This
must be non-NULL.

Returnvalue [The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments | None.

Seealso | None.

OpenMAX|AL

227

SetlLossOfControllnterfaces

XAresult (*SetLossOfControlInterfaces) (
XAObjectltf self,

XAintl6 numlnterfaces,

XAlnterfacelD * plnterfacelDs,
XAboolean enabled

):
Description | Sets/unsets loss of control functionality for a list of interface 1Ds. The default value of the
enabled flag is determined by the global setting (see XA_ENGINEOPT ION_LOSSOFCONTROL
9.2.31).
Pre-conditions | None
Parameters | self [in] | Interface self-reference.
numinterfaces [in] The length of the pinterfacelDs array (ignored if pInterfacelDs is
NULL).
pInterfacelDs [in] | Array of interface IDs representing the interfaces impacted by
the enabled flag.
enabled [in] | !fXA_BOOLEAN_TRUE, loss of control functionality is enabled

for all interfaces represented by pInterfacelDs.

If XA_BOOLEAN_FALSE, loss of control functionality is
disabled for all interfaces represented by pInterfacelDs.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

A call to this method overrides the global setting for loss of control functionality for the specified

list of interfaces.

OpenMAX|AL

228

8.23 XAOutputMixItf

Description

XAOutputMixItf is an interface for interacting with an output mix, including querying for the associated
destination output devices, registering for the notification of changes to those outputs, and requesting changes to an
output mix’s associated devices.

This interface is supported on the Output Mix (see section 7.7) object.

Prototype

extern const XAlnterfacelD XA 11D_OUTPUTMIX;

struct XAOutputMixItf_;
typedef const struct XAOutputMixIltf_ * const * XAOutputMixItf;

struct XAOutputMixItf_ {

XAresult (*GetDestinationOutputDevicelDs) (
XAOutputMixItf self,

XAInt32 * pNumDevices,
XAuint32 * pDevicelDs

)

XAresult (*RegisterDeviceChangeCallback) (
XAOutputMixItf self,
xaMixDeviceChangeCallback callback,
void * pContext

)

XAresult (*ReRoute) (

XAOutputMixItf self,
XAiInt32 numOutputDevices,
XAuint32 * pOutputDevicelDs

¥

Interface ID

b25b6fa0-f776-11db-b86b-0002a5d5¢51b

Defaults

An output mix defaults to device ID values specific to the implementation.

OpenMAX|AL

Callbacks

xaMixDeviceChangeCallback

typedef void (XAAPIENTRY * xaMixDeviceChangeCallback) (
XAOutputMixItf caller,
void * pContext

)s

Description | Executes whenever an output mix changes its set of destination output devices. Upon this notification,
the application may query for the new set of devices via the XAOutputMix1tf interface.

Parameters | caller [in] Interface on which this callback was registered.

pContext [in] User context data that is supplied when the callback method is registered.

Comments | none

See Also | RegisterDeviceChangeCal lback()

OpenMAX|AL

Methods

GetDestinationOutputDevicelDs

XAresult (*GetDestinationOutputDevicelDs) (
XAOutputMixItf self,
XAiInt32 * pNumDevices,
XAuint32 * pDevicelDs

)
Description | Retrieves the device IDs of the destination output devices currently associated with the output
mix.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pNumDevices | [in/out] As an input, specifies the length of the pDevicelDs array (ignored
if pDevicelDs is NULL). As an output, specifies the number of
destination output device IDs associated with the output mix.
pDevicelDs | [out] Populated by the call with the list of devicelDs (provided that

pNumDevices is equal to or greater than the number of actual
device IDs). If pNumDevices is less than the number of actual

device IDs, the error code
XA_RESULT BUFFER_INSUFFICIENT is returned. Note:
IDs may include XA DEFAULTDEVICEID_AUDIOOUTPUT.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_BUFFER_INSUFFICIENT

Comments

None

See also

None

OpenMAX|AL

231

RegisterDeviceChangeCallback

XAresult (*RegisterDeviceChangeCallback) (
XAOutputMixItf self,
xaMixDeviceChangeCal lback callback

void *

);

pContext,

Description

Registers a callback to notify the application when there are changes to the device IDs associated
with the output mix.

Pre-conditions | None
Parameters | self [in] Interface self-reference.
callback [in] Callback to receive the changes in device IDs associated with the output
mix.
pContext [in] User context data that is to be returned as part of the callback method.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None
See also | None
ReRoute

XAresult (*ReRoute) (
XAOutputMixItf self,
XAiInt32 numOutputDevices,
XAuint32 * pOutputDevicelDs

)
Description | Requests a change to the specified set of output devices on an output mix.
Pre-conditions | None.
Parameters | self [in] Interface self-reference.
numOutputDevices [in] Number of output devices specified.
pOutputDevicelDs [in] List of the devices specified. (Note: IDs may include
XA_DEFAULTDEVICEID_AUDIOOUTPUT)

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

This method simply requests for a change in routing. The implementation may choose not to
fulfill the request. If it does not fulfill the request, the method returns
XA_RESULT_FEATURE_UNSUPPORTED.

OpenMAX|AL

232

8.24 XAPlayltf
Description

Play I tf is an interface for controlling the playback state of an object. The playback state machine is as follows:

Table 12: Play Head Position in Different Play States

Play State | Head forced to beginning | Prefetching | Head trying to move
Stopped X

Paused X

Playing X X

This interface an implicit interface of Media Player objects (see section 7.4). See section F.2 for an example using

this interface.

Prototype

extern const XAlnterfacelD XA 11D_PLAY;

struct XAPlayltf_;

typedef const struct XAPlayltf_* const * XAPlayltf;

struct XAPlayltf_ {

XAresult (*SetPlayState) (
XAPlayltf self,
XAuint32 state

)

XAresult (*GetPlayState) (
XAPlayltf self,
XAuint32 * pState

s

XAresult (*GetDuration) (
XAPlayltf self,

XAmillisecond
);
XAresult (*GetPosi

* pMsec

tion) (

XAPlayltf self,

XAmillisecond

);

* pMsec

XAresult (*RegisterCallback) (
XAPlayltf self,
xaPlayCal lback callback,
void * pContext

);

XAresult (*SetCallbackEventsMask) (
XAPlayltf self,
XAuint32 eventFlags

OpenMAX|AL

233

XAresult (*GetCallbackEventsMask) (
XAPlayltf self,
XAuint32 * pEventFlags

)

XAresult (*SetMarkerPosition) (
XAPlayltf self,
XAmillisecond mSec

)

XAresult (*ClearMarkerPosition) (
XAPlayltf self

s

XAresult (*GetMarkerPosition) (
XAPlayltf self,
XAmillisecond * pMsec

);

XAresult (*SetPositionUpdatePeriod) (
XAPlayltf self,
XAmillisecond mSec

)

XAresult (*GetPositionUpdatePeriod) (
XAPlayltf self,
XAmillisecond * pMsec

Interface ID

b9c293e0-f776-11db-80df-0002a5d5c51b

Defaults

Initially, the playback state is XA_ PLAYSTATE_STOPPED, the position is at the beginning of the content, the
update period is one second, and there are no markers set nor callbacks registered and the callback event flags are
cleared.

OpenMAX|AL

Callbacks

xaPlayCallback

typedef void (XAAPIENTRY * xaPlayCallback) (
XAPlayltf caller,
void * pContext,
XAuint32 event

)
Description | Notifies the player application of a playback event
Parameters | cal ler [in] | Interface on which this callback was registered.
pContext | [in] | User context data that is supplied when the callback method is registered.
event [in] | Indicates which event has occurred (see XA_PLAYEVENT macros).
Comments | None
Seealso | RegisterCal lback()

OpenMAX|AL

235

Methods

SetPlayState

XAresult (*SetPlayState) (
XAPlayltf self,
XAuint32 state

)s

Description

Requests a transition of the player into the given play state.

Pre-conditions

None. The player may be in any state.

Parameters

self [in] Interface self-reference.

state [in] Desired playback state.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_PERMISSION_DENIED
XA_RESULT_CONTENT_CORRUPTED
XA_RESULT_CONTENT_UNSUPPORTED

Comments

All state transitions are legal. The state defaults to XA_PLAYSTATE_STOPPED. Note that
although the state change is immediate, there may be some latency between the execution of this
method and its effect on behavior. In this sense, a player’s state technically represents the
application’s intentions for the player. Note that the player’s state has an effect on the player’s
prefetch status (see XAPrefetchStatus|tf for details). The player may return
XA_RESULT_PERMISSION_DENIED, XA_RESULT_CONTENT_CORRUPTED or

XA RESULT_CONTENT_UNSUPPORTED respectively if, at the time a state change is
requested, it detects insufficient permissions, corrupted content, or unsupported content.

When the player reaches the end of content, the play state will transition to paused and the play
cursor will remain at the end of content.

OpenMAX|AL

GetPlayState

XAresult (*GetPlayState) (
XAPlayltf self,
XAuint32 * pState

);

Description | Gets the player’s current play state.

Pre-conditions | None.

Parameters | self [in] Interface self-reference.

pState | [out] | Pointer to a location to receive the current play state of the player. This must
be non-NULL.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None.

GetDuration

XAresult (*GetDuration) (
XAPlayltf self,
XAmillisecond * pMsec

)s

Description | Gets the duration of the current content, in milliseconds.

Pre-conditions | None.

Parameters | self | [in] Interface self-reference.

pMsec | [out] | Pointer to a location to receive the number of milliseconds corresponding to
the total duration of this current content. If the duration is unknown, this
value shall be XA _TIME_UNKNOWN. This must be non-NULL.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None.

OpenMAX|AL

GetPosition

XAresult (*GetPosition) (
XAPlayltf self,
XAmillisecond * pMsec

);

Description | Returns the current position of the playback head relative to the beginning of the content.

Pre-conditions | None.

Parameters | self [in] Interface self-reference.
pMsec | [out] Pointer to a location to receive the position of the playback head relative to
the beginning of the content, and is expressed in milliseconds. This must be
non-NULL.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | The returned value is bounded between 0 and the duration of the content. Note that the position
is defined relative to the content playing at 1x forward rate; positions do not scale with changes
in playback rate.

RegisterCallback

XAresult (*RegisterCallback) (
XAPlayltf self,
xaPlayCal lback callback,
void * pContext

)s

Description | Sets the playback callback function.

Pre-conditions | None.

Parameters | self [in] | Interface self-reference.

) Callback function invoked when one of the specified events occurs. A
callback | [in] | NULL value indicates that there is no callback.

) User context data that is to be returned as part of the callback method.
pContext | [in]

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | The callback function defaults to NULL.
The context pointer can be used by the application to pass state to the callback function.

OpenMAX|AL

SetCallbackEventsMask

XAresult (*SetCallbackEventsMask) (
XAPlayltf self,
XAuint32 eventFlags

);

Description | Enables/disables notification of playback events.

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

eventFlags | [in] | Bitmask of play event flags indicating which callback events are
enabled. The presence of a flag enables notification for the
corresponding event. The absence of a flag disables notification for the
corresponding event. See XA_PLAYEVENT macros.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | The callback event flags default to all flags cleared.

GetCallbackEventsMask

XAresult (*GetCallbackEventsMask) (
XAPlayltf self,
XAuint32 * pEventFlags

)s

Description | Queries for the notification state (enabled/disabled) of playback events.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pEventFlags | [out] | Pointer to a location to receive the bitmask of play event flags
indicating which callback events are enabled. This must be non-
NULL. See XA_PLAYEVENT macros.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

SetMarkerPosition

XAresult (*SetMarkerPosition) (
XAPlayltf self,
XAmillisecond mSec

);
Description | Sets the position of the playback marker.
Pre-conditions | None
Parameters | sel ¥ | [in] | Interface self-reference.
mSec | [in] | Position of the marker expressed in milliseconds and relative to the beginning of
the content. Must be between 0 and the reported duration of the content.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

The player will notify the application when the playback head passes through the marker via a
callback with a XA_PLAYEVENT_HEADATMARKER event. By default, there is no marker
position defined.

When a marker position coincides with a periodic position update (as specified by
SetPositionUpdatePeriod), then both the marker position callback and the periodic
position update callback shall be posted next to each other. The order of the two callbacks is
insignificant.

See Also

ClearMarkerPosition(), SetPositionUpdatePeriod()

ClearMarkerPosition

XAresult (*ClearMarkerPosition) (
XAPlayltf self

);

Description

Clears marker.

Pre-conditions

None

Parameters

self Interface self-reference.

[in]

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

This function succeeds even if the marker is already clear.

See Also

SetMarkerPosition()

OpenMAXIAL

240

GetMarkerPosition

XAresult (*GetMarkerPosition) (
XAPlayltf self,
XAmillisecond * pMsec

);

Description

Queries the position of playback marker.

Pre-conditions

A marker has been set (using SetMarkerPosition(Qwith no intervening
ClearMarkerPosition()).

Parameters

selT | [in] | Interface self-reference.

pMsec | [out] | Pointer to a location to receive the position of the marker expressed in

milliseconds, relative to the beginning of the content.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_PRECONDITIONS_VIOLATED

Comments

None

See Also

SetMarkerPosition(), ClearMarkerPosition()

SetPositionUpdatePeriod

XAresult (*SetPositionUpdatePeriod) (
XAPlayltf self,
XAmillisecond mSec

)s;
Description | Sets the interval between periodic position notifications.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
mSec [in] Period between position notifications in milliseconds.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

The player will notify the application when the playback head passes through the positions
implied by the specified period. Those positions are defined as the whole multiples of the period
relative to the beginning of the content. By default, the update period is 1000 milliseconds.

When a periodic position update coincides with a marker position (as specified by
SetMarkerPosition), then both the update period callback and the marker position callback
shall be posted next to each other. The order of the two callbacks is insignificant.

See Also

SetMarkerPosition()

OpenMAX|AL

241

GetPositionUpdatePeriod

XAresult (*GetPositionUpdatePeriod) (
XAPlayltf self,
XAmillisecond * pMsec

);

Description | Queries the interval between periodic position notifications.

Pre-conditions | None

Parameters | self | [in] Interface self-reference.

pMsec | [out] | Pointer to a location to receive the period between position notifications in
milliseconds. This must be non-NULL.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

8.25 XAPlaybackRateltf

Description

XAPlaybackRate I tf is an interface for controlling setting and retrieving the rate at which an object presents
data. Rates are expressed as a permille type (namely, parts per thousand):

Negative values indicate reverse presentation.

A value of 0 indicates paused presentation.

Positive values less than 1000 indicate slow forward rates.
A value of 1000 indicates normal 1X forward playback.
Positive values greater than 1000 indicate fast forward rates.

Defaults

The rate value defaults to 1000 (that is, normal 1X forward playback).

Prototype

extern const XAlnterfacelD XA 11D_PLAYBACKRATE;

struct XAPlaybackRateltf _;
typedef const struct XAPlaybackRateltf_ * const * XAPlaybackRateltf;

struct XAPlaybackRateltf {

XAresult (*SetRate) (
XAPlaybackRateltf self,
XApermille rate

s

XAresult (*GetRate) (
XAPlaybackRateltf self,
XApermille * pRate

)

XAresult (*SetPropertyConstraints) (
XAPlaybackRateltf self,
XAuint32 constraints

)

XAresult (*GetProperties) (
XAPlaybackRateltf self,
XAuint32 * pProperties

)

XAresult (*GetCapabilitiesOfRate) (
XAPlaybackRateltf self,
XApermille rate,
XAuint32 * pCapabilities

OpenMAX|AL

XAresult (*GetRateRange) (
XAPlaybackRateltf self,
XAuint8 index,
XApermille * pMinRate,
XApermille * pMaxRate,
XApermille * pStepSize,
XAuint32 * pCapabilities

Interface ID

c36f1440-f776-11db-ac48-0002a5d5c51b

Methods

SetRate

XAresult (*SetRate) (
XAPlaybackRateltf self,
XApermille rate

)s

Description | Sets the rate of presentation.

Pre-conditions | None.

Parameters | self [in]

Interface self-reference.

rate [in]

Desired rate.

Returnvalue | The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments | 1000 is the default rate. The application may query supported rates via the getRateRange ()

method. The XA_RESULT_ FEATURE_UNSUPPORTED return value accommodates the
circumstance where the content being played does not afford adjustments of the playback rate.

OpenMAXIAL

244

GetRate

XAresult (*GetRate) (

XAPlaybackRateltf self,

XApermille * pRate

)s;
Description | Gets the rate of presentation.
Pre-conditions | None.
Parameters | self | [in] Interface self-reference.
pRate | [out] | Pointer to a location to receive the rate of the player. This must be non-NULL.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

OpenMAX|AL

245

SetPropertyConstraints

XAresult (*SetPropertyConstraints) (
XAPlaybackRateltf self,
XAuint32 constraints

);

Description | Sets the current rate property constraints.
Pre-conditions | None.

Parameters | self [in] | Interface self-reference.

constraints | [in] | Bitmask of the allowed rate properties requested. An implementation
may choose any of the given properties to implement rate and none of
the excluded properties. See XA_RATEPROP macros.

All video properties (and their corresponding bits) are mutually
exclusive. All audio properties (and their corresponding bits) are
mutually exclusive.

If the bitmask is not well-formed,,this method returns
XA_RESULT_PARAMETER_INVALID.

If the constraints cannot be satisfied, this method returns
XA_RESULT_FEATURE_UNSUPPORTED.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments

Note that rate property capabilities may vary from one rate to another. This implies that a setting
supported for one rate may be unsupported for another.

Implementations controlling the rate of both video and audio will always have exactly one video
property set (exactly one bit in the least significant byte) and one audio property set (exactly one
bit in the second least significant byte). Implementations controlling the rate only of audio will
have only an audio property set. The default video and audio properties are
XA_RATEPROP_SMOOTHVIDEO and XA_RATEPROP_NOPITCHCORAUDIO, respectively.

OpenMAX|AL

GetProperties

XAresult (*GetProperties) (
XAPlaybackRateltf self,
XAuint32 * pProperties

);

Description | Gets the current properties.

Pre-conditions | None.

Parameters | self [in] Interface self-reference.

pProperties | [out] | Pointer to a location to receive the bitmask expressing the current
rate properties. This must be non-NULL. See XA RATEPROP
macros.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

GetCapabilitiesOfRate

XAresult (*GetCapabilitiesOfRate) (
XAPlaybackRateltf self,
XApermille rate,

XAuint32 * pCapabilities

)

Description | Gets the capabilities of the specified rate.

Pre-conditions | None.

Parameters | self [in] Interface self-reference.

rate [in] Rate for which the capabilities are being queried.

pCapabilities | [out] | Pointerto a location to receive the bitmask expressing capabilities
of the given rate in terms of rate properties. See XA RATEPROP
macros.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | An application may also leverage this method to verify that a particular rate is supported.

OpenMAX|AL

GetRateRange

XAresult (*GetRateRange) (
XAPlaybackRateltf self,
XAuint8 index,
XApermille * pMinRate,
XApermille * pMaxRate,
XApermille * pStepSize,
XAuint32 * pCapabilities

);

Description

Retrieves the ranges of rates supported.

Pre-conditions

None.

Parameters

self [in] Interface self-reference.

index [in] Index of the range being queried. If an implementation supports n
rate ranges, this value is between 0 and (n-1) and all values
greater than n cause the method to return
XA_RESULT_PARAMETER_INVALID.

pMinRate [out] | Pointer to a location to receive the minimum rate supported. May
be negative or positive. Must be equal to or less than maxRate.
This must be non-NULL.

pMaxRate [out] | Pointer to a location to receive the maximum rate supported. May
be negative or positive. Must be equal to or greater than minRate.
This must be non-NULL.

pStepSize [out] Pointer to a location to receive the distance between one rate and
an adjacent rate in the range. A value of zero denotes a
continuous range. This must be non-NULL.

pCapabilities | [out] [Pointerto a location to receive the bitmask of supported rate
properties in the given range. This must be non-NULL. See
XA_RATEPROP macros.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

An implementation expresses the set of supported rates as one or more ranges. Each range is
defined by the lowest and highest rates in the range, the step size between these bounds, and the
rate properties of this range.

If all rates an implementation supports are evenly spaced and have same capabilities,
GetRateRange () method may return a single range.

If not, the GetRateRange () method will return as many ranges as necessary in order to
adequately express the set of rates (and associated properties) supported. In this case, the
application must call GetRateRange () multiple times to query all the ranges;
GetRateRange () returns only one range per call.

OpenMAX|AL

Rate range 1

A
(III
I |
-4X

Rate range 2 Rate range 3

d
<«

I I I I I I
3X -2X <IX 0 X 2X

Rate range examples: Range 1 has a min of -4000, a max of -2000 and a
step of 500. Range 2 has a min of -2000, a max of 2000, and a step of 0.
Range 3 has a min of 2000, a max of 4000 and a step of 500.

[17.
mIyurc 1r.

= J +
CAAITIPIC TAtT TdAdlTyto

OpenMAX|AL

8.26 XAPrefetchStatusltf

Description

XAPrefetchStatusltf isan interface for querying the prefetch status of a player.

The prefetch status is a continuum ranging from no data prefetched to the maximum amount of data prefetched. It
includes a range where underflow may occur and a range where there is a sufficient amount of data present. The
underflow and sufficient data ranges may not relate to fixed fill level positions, but be implementation dependent

and dynamically vary based on factors as e.g. buffering length, consumption rate, communication latency, hysteresis,
etc. The prefetch status interface allows an application to query for prefetch status or register prefetch status
callbacks. The latency of status and fill level callbacks are implementation dependent.

One example usage of the XAPrefetchStatusltf isto order the player into paused state when receiving an
underflow event and into play state when receiving a sufficient data event when playing network stored media
sources. Another example usage is to display fill level percentage to the end user by using the callback and the
GetFillLevel method.

Underflow i Sufficient Data i Overflow
] 1
0 permille 1000 permille

Figure 18: Prefetch continuum range

This interface is an implicit interface of Media Player objects (see section 7.4).

Prototype

extern const XAlnterfacelD XA 11D_PREFETCHSTATUS;

struct XAPrefetchStatusltf _;
typedef const struct XAPrefetchStatusltf
* const * XAPrefetchStatusltf;

struct XAPrefetchStatusltf_ {

XAresult (*GetPrefetchStatus) (
XAPrefetchStatusltf self,
XAuint32 * pStatus

)3

XAresult (*GetFillLevel) (
XAPrefetchStatusltf self,
XApermille * pLevel

OpenMAX|AL

XAresult (*RegisterCallback) (
XAPrefetchStatusltf self,
xaPrefetchCallback callback,
void * pContext

);

XAresult (*SetCallbackEventsMask) (
XAPrefetchStatusltf self,
XAuint32 eventFlags

);

XAresult (*GetCallbackEventsMask) (
XAPrefetchStatusltf self,
XAuint32 * pEventFlags

);

XAresult (*SetFillUpdatePeriod) (
XAPrefetchStatusltf self,
XApermille period

);

XAresult (*GetFillUpdatePeriod) (
XAPrefetchStatusltf self,
XApermille * pPeriod

Interface ID

cceac0a0-f776-11db-bb9c-0002a5d5¢51b

Defaults

Initially, there is no callback registered, the fill update period is 100 permille, and the event flags are clear.

Callbacks

xaPrefetchCallback

typedef void (XAAPIENTRY * xaPrefetchCallback) (
XAPrefetchStatusltf caller,
void * pContext,
XAuint32 event

)s

Description [Notifies the player application of a prefetch event

Parameters [caller [in] | Interface on which this callback was registered.

pContext | [in] | User context data that is supplied when the callback method is registered.

event [in] | Event that has occurred. See XA PREFETCHEVENT macros in section 9.2.52.

Comments | None

Seealso | RegisterCal lback()

OpenMAX|AL

Methods

GetPrefetchStatus

XAresult (*GetPrefetchStatus) (
XAPrefetchStatusltf self,
XAuint32 * pStatus

)s

Description | Gets the player’s current prefetch status.

Pre-conditions | None.

Parameters | self [in] Interface self-reference.

pStatus | [out] | Pointer to a location to receive the current prefetch status of the player.
The status returned is of the XA _PREFETCHSTATUS defines, see section
9.2.53. This must be non-NULL.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

GetFillLevel

XAresult (*GetFillLevel) (
XAPrefetchStatusltf self,
XApermille * pLevel

);

Description | Queries the fill level of the prefetch.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pLevel [out] Pointer to a location to receive the data fill level in parts per thousand.
This must be non-NULL.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | The fill level is not tied to specific buffer within a player, but indicates more abstractly the
progress a player has made in preparing data for playback.

OpenMAX|AL

RegisterCallback

XAresult (*RegisterCallback) (
XAPrefetchStatusltf self,
xaPrefetchCal lback callback,
void * pContext

);

Description | Sets the prefetch callback function.

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

callback | [in] | Callback function invoked when one of the specified events occurs. A
NULL value indicates that there is no callback.

pContext | [in] | User context data that is to be returned as part of the callback method.

Returnvalue [The return value can be the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | Callback function defaults to NULL.
The context pointer can be used by the application to pass state to the callback function.

See Also | XA PREFETCHEVENT macros (see section 9.2.52)

SetCallbackEventsMask

XAresult (*SetCallbackEventsMask) (
XAPrefetchStatusltf self,
XAuint32 eventFlags

);

Description | Sets the notification state of the prefetch events.

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

eventFlags | [in] | Bitmask of prefetch event flags indicating which callback events are
enabled. See XA_ PREFETCHEVENT macros in section 9.2.52.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | Event flags default to all flags cleared.

OpenMAX|AL

GetCallbackEventsMask

XAresult (*GetCallbackEventsMask) (
XAPrefetchStatusltf self,
XAuint32 * pEventFlags

);

Description | Queries the notification state of the prefetch events.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pEventFlags | [out] | Pointer to a location to receive the bitmask of prefetch event flags
indicating which callback events are enabled. This must be non-
NULL. See XA PREFETCHEVENT macros, see section 9.2.52.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

SetFillUpdatePeriod

XAresult (*SetFillUpdatePeriod) (
XAPrefetchStatusltf self,
XApermille period

)s

Description | Sets the notification period for fill level updates. This period implies the set discrete fill level
values that will generate notifications from the player.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

period [in] Non-zero period between fill level notifications in permille.
Notifications will occur at 0 permille (i.e. empty) and at whole
number increments of the period from 0. For instance, if the period is
200 permille (i.e. 20%), then the player will generate a notification
when 0%, 20%, 40%, 60%, 80%, or 100% full. The default period is
100 permille.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

GetFillUpdatePeriod

XAresult (*GetFillUpdatePeriod) (
XAPrefetchStatusltf self,

XApermille * pPeriod

);

Description

Queries the natification period for fill level updates.

Pre-conditions | None
Parameters | self [in] Interface self-reference.
pPeriod | [out] | Pointer to a location to receive the period between fill level notifications in

permille. This must be non-NULL.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

OpenMAX|AL

255

8.27 XARadioltf
Description

XARadiol tf is for controlling the basic functionality of the analog audio radio. The interface contains methods for
selecting the frequency range and modulation used by the tuner (SetFreqRange()), for tuning to a certain
frequency manually (SetFrequency()) or by automatically seeking (Seek()), for using the tuner presets of the
device and for accessing squelching functionality, stereo mode and the signal strength.

Please note that Hertz (Hz) is used as the unit of the frequency. For example, 100,000,000 Hz equals 100.0 MHz.

This interface an implicit interface of Radio 1/0 device objects, see section 7.8. See section F.3 for an example using
this interface.

Prototype

extern const XAlnterfacelD XA 11D_RADIO;

struct XARadioltf_;
typedef const struct XARadioltf_ * const * XARadioltf;

struct XARadioltf_{

XAresult (*SetFregRange) (
XARadioltf self,
XAuint8 range

)

XAresult (*GetFregRange) (
XARadioltf self,
XAuint8 * pRange

)

XAresult (*IsFregRangeSupported) (
XARadioltf self,
XAuint8 range,
XAboolean * pSupported

)

XAresult (*GetFregRangeProperties) (
XARadioltf self,
XAuint8 range,
XAuint32 * pMinFreq,
XAuint32 * pMaxFreq,
XAuint32 * pFreqlnterval

)

XAresult (*SetFrequency) (
XARadioltf self,
XAuint32 freq

)

XAresult (*CancelSetFrequency) (
XARadioltf self

)

XAresult (*GetFrequency) (

XARadioltf self,
XAuint32 * pFreq

OpenMAX|AL

XAresult (*SetSquelch) (
XARadioltf self,
XAboolean squelch

);

XAresult (*GetSquelch) (
XARadioltf self,
XAboolean * pSquelch

)

XAresult (*SetStereoMode) (
XARadioltf self,
XAuint32 mode

)

XAresult (*GetStereoMode) (
XARadioltf self,
XAuint32 * pMode

)

XAresult (*GetSignalStrength) (
XARadioltf self,
XAuint32 * pStrength

);

XAresult (*Seek) (
XARadioltf self,
XAboolean upwards

)

XAresult (*StopSeeking) (
XARadioltf self

);

XAresult (*GetNumberOfPresets) (
XARadioltf self,

XAuint32 * pNumPresets

)

XAresult (*SetPreset) (
XARadioltf self,

XAuint32 preset,
XAuint32 freq,
XAuint8 range,
XAuint32 mode,

const XAchar * pName

)

XAresult (*GetPreset) (
XARadioltf self,

XAuint32 preset,
XAuint32 * pFreq,
XAuint8 * pRange,
XAuint32 * pMode,
XAchar * pName,
XAuintl6é * pNamelLength

)

XAresult (*RegisterRadioCallback) (
XARadioltf self,
xaRadioCal lback callback,
void * pContext

OpenMAX|AL

Interface ID

b316ad80-df05-11db-b5b6-0002a5d5¢51b

Defaults

No callback registered.

Callbacks

xaRadioCallback

typedef void (XAAPIENTRY * xaRadioCallback) (
XARadioltF caller,
void * pContext,

XAuint32 event,

XAuint32 eventlntData,
XAboolean eventBooleanData

)
Description | Notifies the application about radio event.
Parameters | caller [in] | Interface on which this callback was registered.
pContext [in] | User context data that is supplied when the callback method is registered.
event [in] | One of the radio event codes, see section 9.2.55 XA _RADIO_EVENT
macros.
eventintData | [in] | Event specific integer parameter. Specifies additional notification callback
event specific information. The contents of this parameter are dependent on
the event being reported.
See section 9.2.55 XA _RADIO_EVENT macros.
eventBooleanData | [in] | Event specific Boolean argument. Specifies additional notification callback
event specific information. The contents of this parameter are dependent on
the event being reported.
See section 9.2.55 XA _RADIO_EVENT macros.
Comments | None
See Also [None

OpenMAX|AL

258

Methods

SetFreqRange

XAresult (*SetFregRange) (
XARadioltf self,
XAuint8 range

)s

Description | Sets the frequency range. Asynchronous — xaRadioCal Iback() callback with
XA RADIO_EVENT_FREQUENCY_RANGE_CHANGED event is used for notifying of the result.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

range | [in] New frequency range. See XA_FREQRANGE macros section for ranges. Use
IsFreqRangeSupported() to query supported ranges.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

GetFregRange

XAresult (*GetFregRange) (
XARadioltf self,
XAuint8 * pRange

)

Description | Gets the current frequency range.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pRange | [out] | Current frequency range. See XA FREQRANGE macros section for ranges.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

IsFregRangeSupported

XAresult (*IsFregRangeSupported) (
XARadioltf self,
XAuint8 range,
XAboolean * pSupported

)s;
Description | Queries if the given frequency range is supported.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
range [out] | Frequency range whose availability is queried. See XA_FREQRANGE

macro section for ranges.

pSupported | [out]

True if the range is supported, false otherwise.

Return value

The return value can be on
XA RESULT_SUCCESS

e of the following:

XA_RESULT_PARAMETER_INVALID

Comments

None

OpenMAX|AL

260

GetFreqRangeProperties

XAresult (*GetFregRangeProperties) (
XARadioltf self,
XAuint8 range,

XAuint32 * pMinFreq,
XAuint32 * pMaxFreq,

XAuint32 * pFreglnterval

)s

Description

Returns the minimum and maximum supported frequencies and the modulation of the given

frequency range.

Pre-conditions | None
Parameters | self [in] Interface self-reference.

range [in] Frequency range whose properties are queried. See
XA_FREQRANGE macros section for ranges. Use
IsFregRangeSupported to query supported ranges first.

pMinFreq [out] | Minimum frequency of the given frequency range in Hertz.

pMaxFreq [out] | Maximum frequency of the given frequency range in Hertz.

pFreqlnterval | [out] | Interval between supported frequencies on the given frequency

range. That is, the frequency accuracy of the device.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA _RESULT_PARAMETER_INVALID

Comments

None

OpenMAX|AL

261

SetFrequency

XAresult (*SetFrequency) (
XARadioltf self,
XAuint32 freq

);

Description | Sets the frequency asynchronously — xaRadioCal Iback() callback with
XA _RADIO_EVENT_FREQUENCY_CHANGED event is used for notifying of the result.

The implementation rounds the given value to the nearest supported one. See pFreglnterval
parameter of GetFregRangeProperties() method.

Pre-conditions | None

Parameters | self | [in] | Interface self-reference.

freq | [in] | New frequency in Hertz. Must be between pMinFreq and pMaxFreq
parameters of GetFreqRangeProperties method.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

CancelSetFrequency

XAresult (*CancelSetFrequency) (
XARadioltf self

);

Description | Cancels an outstanding SetFrequency() request. The method blocks while canceling the
outstanding request. Has not effect if no set frequency operation is ongoing.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

Returnvalue [The return value can be the following:
XA_RESULT_SUCCESS

Comments | None

OpenMAX|AL

GetFrequency

XAresult (*GetFrequency) (
XARadioltf self,
XAuint32 * pnFreq

);

Description | Gets the current frequency.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pnFreq [out] Current frequency in Hertz.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

SetSquelch

XAresult (*SetSquelch) (
XARadioltf self,
XAboolean squelch

);

Description | Toggles the squelch (muting in frequencies without broadcast).

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

squelch | [in] | True to switch on squelch and false to switch it off.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS

Comments | None

OpenMAX|AL

263

GetSquelch

XAresult (*GetSquelch) (
XARadioltf self,
XAboolean * pSquelch

)s;
Description | Queries the squelch setting (muting in frequencies without broadcast).
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pSquelch [out] True when squelch is on and false if it is off.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

SetStereoMode

XAresult (*SetStereoMode) (
XARadioltf self,
XAuint32 mode

);
Description | Sets the current stereo mode.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
mode [in] New stereo mode. See XA STEREOMODE_STEREO macros.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_FEATURE_UNSUPPORTED
XA_RESULT_PARAMETER_INVALID

Comments

XA RESULT_FEATURE_UNSUPPORTED is returned if the given mode is not supported for the
current content. The supported modes are dependent on the broadcast content and some modes
cannot be selected if not appropriate. For example, XA_STEREOMODE_STEREO mode is not
possible if the broadcast is mono.

OpenMAX|AL

264

GetStereoMode

XAresult (*GetStereoMode) (
XARadioltf self,
XAuint32 * pMode

Description | Queries the current stereo mode.
Pre-conditions | None
Parameters | self | [in] Interface self-reference.

pMode | [out]

Current stereo mode. See XA_STEREOMODE_ STEREO macros.

Return value

The return value can be the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

GetSignalStrength

XAresult (*GetSignalStrength) (
XARadioltf self,
XAuint32 * pStrength

):
Description | Returns the signal strength in per cents.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pStrength [out] Signal strength in per cents.

Return value

The return value can be the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

OpenMAX|AL

265

Seek

XAresult (*Seek) (
XARadioltf self,
XAboolean upwards

);

Description | Starts the seek from the current frequency to the given direction. Asynchronous —

xaRadioCal Iback() callback with XA _RADIO_EVENT_SEEK COMPLETED event is used
for notifying of the result.

If the end of the tuner’s frequency band is reached before a signal was found, the scan continues
from the other end until a signal is found or the original frequency is reached.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

upwards [in] If true the seek progresses towards higher frequencies and if false the
seek progresses towards lower frequencies.

Returnvalue [The return value can be the following:
XA_RESULT_SUCCESS

Comments | None

StopSeeking

XAresult (*StopSeeking) (
XARadioltf self

);

Description | Cancels an outstanding seek request. The method blocks while canceling the outstanding request.
After cancellation, the frequency is the one where seeking stopped.

Has not effect if no seek operation is ongoing.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

Returnvalue [The return value can be the following:
XA_RESULT_SUCCESS

Comments | None

OpenMAX|AL

GetNumberOfPresets

XAresult (*GetNumberOfPresets) (

XARadioltf self,

XAuint32 * pNumPresets

);
Description | Returns the number of preset slots the device has for storing the presets.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pNumPresets [out] Number of presets.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments

The presets are persistent and therefore all the preset slots contain always values. Please note that
in some devices it is possible to change the preset values also by using other mechanism than
OpenMAX AL. The initial values in a brand new device are implementation dependent.

OpenMAX|AL

267

SetPreset

XAresult (*SetPreset) (

XARadioltf self,
XAuint32 preset,

XAuint32 freq,
XAuint8
XAuint32 mode,

range,

const XAchar * pName

)
Description | Sets the preset.
Pre-conditions | None
Parameters | self [in] | Interface self-reference.
preset | [in] | Index number of the preset. Should be between 1 and the amount of presets
(returned by GetNumberOfPresets()).
freq [in] | Frequency to be stored to the preset. Use GetFreqRangeProperties()
to query supported ranges first.
range [in] | Frequency range to be stored to the preset. See XA_ FREQRANGE macros
section for ranges. Use 1sFregRangeSupported() to query supported
ranges first.
mode [in] | Stereo mode to be stored to the preset.
pName [in] | Name for the preset.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

The presets are persistent and therefore all the preset slots contain always values. Please note that
in some devices it is possible to change the preset values also by using other mechanism than
OpenMAX AL. The initial values in a brand new device are implementation dependent.

OpenMAX|AL

268

GetPreset

XAresult (*GetPreset) (
XARadioltf self,
XAuint32 preset,
XAuint32 * freq,
XAuint8 * range,
XAuint32 * mode,
XAchar * pName,
XAuintl6é * pNamelLength

):
Description | Gets the settings stored into a preset.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
preset [in] Index number of the preset. Should be between 1 and the amount of
presets (returned by GetNumberOfPresets()).
freq [out] Frequency in Hertz stored to the preset
range [out] Frequency range stored to the preset. See XA FREQRANGE macros
section for ranges.
mode [out] Stereo mode stored to the preset.
pName [out] Name of the preset. If this parameter is NULL the required length
of the buffer is returned in the pNameLength parameter.
pNameLength | [in/out] | As an output, specifies the length of the name including the
terminating NULL.
As an input, specifies the length of the given pName char array
(ignored if pName is NULL).

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_BUFFER_INSUFFICIENT

Comments

The presets are persistent and therefore all the preset slots contain always values. Please note that
in some devices it is possible to change the preset values also by using other mechanism than
OpenMAX AL. The initial values in a brand new device are implementation dependent.

If the char array passed in the pName parameter is of insufficient length the pName parameter is
filled to its maximum, the pNameLength parameter is updated to the needed length and a

XA RESULT_BUFFER_INSUFFICIENT return value is returned. The returned string is always
valid. That is, the null-terminator always exists and multibyte characters are not cut in the middle.

OpenMAXIAL

269

RegisterRadioCallback

XAresult (*RegisterRadioCallback) (
XARadioltf self,
xaRadioCal Iback callback,
void * pContext

Description | Sets or clears the xaRadioCallback.
Pre-conditions | None
Parameters | self [in] | Interface self-reference.

callback | [in] | Address of the callback.

pContext | [in] | User context data that is to be returned as part of the callback method.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

OpenMAX|AL

270

8.28 XARDSItf

Description

This interface is for accessing the Radio Data System for VHF/FM sound broadcasting (RDS) (IEC 62106) features.
This interface can also be used with Radio Broadcast Data System (RBDS) (United States RBDS Standard, NRSC-
4-A), but RDS terminology (Glossary of RDS Terms) is used in this APl documentation.

This interface can be exposed on the Radio I/O device object, if RDS is supported.

Please note that right after setting a new frequency, the RDS fields might contain empty or default values and it can
take (in order of seconds) time until RDS data is received; these callbacks will be called then.

See section F.3 for an example using this interface.

Prototype

extern const XAlnterfacelD XA 11D _RDS;

struct XARDSItF_;
typedef const struct XARDSItf_ * const * XARDSItfF;

struct XARDSItf_ {

XAresult (*QueryRDSSignal) (
XARDSI1tf self,
XAboolean * isSignal

)

XAresult (*GetProgrammeServiceName) (
XARDSI1tf self,
XAchar * ps

)

XAresult (*GetRadioText) (
XARDSI1tf self,
XAchar * rt

)

XAresult (*GetRadioTextPlus) (
XARDSItf self,
XAuint8 contentType,
XAchar * informationElement,
XAchar * descriptor,
XAuint8 * descriptorContentType

)

XAresult (*GetProgrammeType) (
XARDSItF self,
XAuint32 * pty

)

XAresult (*GetProgrammeTypeString) (
XARDSItF self,
XAboolean isLengthMax16,
XAchar * pty

)

OpenMAX|AL

XAresult (*GetProgrammeldentificationCode) (
XARDSItF self,
XAIntl6 * pi

);

XAresult (*GetClockTime) (
XARDSItF self,
XAtime * dateAndTime

)

XAresult (*GetTrafficAnnouncement) (
XARDSItF self,
XAboolean * ta

)

XAresult (*GetTrafficProgramme) (
XARDSItf self,
XAboolean * tp

)

XAresult (*SeekByProgrammeType) (
XARDSI1tf self,
XAuint32 pty,
XAboolean upwards

);

XAresult (*SeekTrafficAnnouncement) (
XARDSI1tf self,
XAboolean upwards

);

XAresult (*SeekTrafficProgramme) (
XARDSItf self,
XAboolean upwards

)

XAresult (*SetAutomaticSwitching) (
XARDSItF self,
XAboolean automatic

)

XAresult (*GetAutomaticSwitching) (
XARDSI1tf self,
XAboolean * automatic

)

XAresult (*SetAutomaticTrafficAnnouncement) (
XARDSItF self,
XAboolean automatic

)

XAresult (*GetAutomaticTrafficAnnouncement) (
XARDSItF self,
XAboolean * automatic

)

XAresult (*GetODAGroup) (
XARDSI1tf self,
XAuintl6é AID,
xaGetODAGroupCallback callback,
void * pContext

)

XAresult (*SubscribeODAGroup) (
XARDSItF self,
XAintl6 group,
XAboolean useErrorCorrection

);

OpenMAX|AL

XAresult (*UnsubscribeODAGroup) (
XARDSItF self,

XAIntl6 group

);

XAresult (*ListODAGroupSubscriptions) (
XARDSItF self,

XAIntl6* pGroups,
XAuint32* pLength

)

XAresult (*RegisterRDSCallback) (
XARDSItF self,
xaRDSCal lback callback,
void * pContext

)

XAresult (*RegisterODADataCallback) (
XARDSItF self,
xaNewODADataCal Iback callback,
void * pContext

¥

Interface ID

b80f42c0-df05-11db-92a5-0002a5d5¢c51b

Defaults

No callback registered.

OpenMAX|AL

Callbacks

xaGetODAGroupCallback

typedef void (XAAPIENTRY * xaGetODAGroupCallback) (
XARadioltf caller,
void * pContext,
XAboolean success,

XAIntl6 group,

XAuintl6é message

):
Description | Callback of the XARDS 1t f: :GetODAGroup() method. Gives asynchronously the application
Group and the message bits concerning the given ODA (Open Data Application).
Parameters | caller [in] | Interface on which this callback was registered.
pContext [in] | User context data that is supplied when the callback method is registered.
success [in] | True if the query was successful; false if there is no data available with the
given ODA Application ID.
group [in] | Group. (0A=0, 0B=1, 1A=2, 1B=3...). -1 if there is no data available with
the given ODA Application ID.
message [in] | Message bits of the given ODA. (16 bits)
Comments | |f the ODA uses both type A and B groups, the callback will be executed twice, once for each
group type.
See Also [None

xaNewODADataCallback

typedef void (XAAPIENTRY * xaNewODADataCallback) (
XARDSItF caller,
void * pContext,

XAintl6 group,
XAuint64 data

):

Description | New data from a subscribed ODA group has been received.

Parameters | caller [in] | Interface on which this callback was registered.
pContext | [in] | User context data that is supplied when the callback method is registered.
group [in] | Group. (0A=0, 0B=1, 1A=2, 1B=3..))
data [in] | Payload data. (37 (least significant) bits for type A groups and 21 (least

significant) bits for type B groups; the rest of the bits will be zeros)
Comments | None
See Also | None

OpenMAX‘AL

274

xaRDSCallback

typedef void (XAAPIENTRY * xaRDSCallback) (
XARDSI1tf caller,
void * pContext,
XAuintl6é event,
XAuint8 eventData

);

Description | This callback executes whenever at least one of the RDS fields changes. The application should use
XARDS Itf to query the new field values.

Parameters | caller [in] | Interface on which this callback was registered.
pContext [in] | User context data that is supplied when the callback method is registered.
event [in] | Bitwise OR of the RDS Event macros, which tells which of the RDS fields

have changed their value.

eventData [in] | Event specific integer parameter. Specifies additional notification callback
event specific information. The contents of this parameter are dependent on
the event being reported.

See 9.2.58 RDS Event macros.

Comments | Please note that after changing the frequency it might take a couple of seconds before all the RDS fields
are received. Typically not all the fields are received at same time. Therefore, typically after changing
the frequency, multiple xaRDSCal Iback () will take place, each containing only the events for the
new fields received at time.

See Also | Note: use xaRadioCal lback() and XA_RADIO_EVENT_SEEK_COMPLETED callback from
tuning callbacks also RDS-based seeks.

Methods

QueryRDSSignal

XAresult (*QueryRDSSignal) (
XARDSItF self,
XAboolean * isSignal

);

Description | Returns the status of the RDS reception.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

isSignal [out] True if RDS signal is received, false otherwise.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

GetProgrammeServiceName

XAresult (*GetProgrammeServiceName) (
XARDSItF self,
XAchar * ps

);

Description | Gets the current Programme Service name (PS).

Pre-conditions | None

Parameters | self | [in] Interface self-reference.

ps [out] | Name of the Programme Service or a zero-length string if unknown. The length
of the name is 8 characters. Therefore, the application needs to pass here an
array of length 17 (since each character used in RDS can take two UTF-8
encoded words and the string is null-terminated).

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

GetRadioText

XAresult (*GetRadioText) (
XARDSItF self,
XAchar * rt

);

Description | Gets the current Radio Text (RT).

Pre-conditions | None

Parameters | self | [in] Interface self-reference.

rt [out] | Radio Text or zero-length string if unknown. The length of the Radio Text is 64
characters maximum and it is null-terminated. Therefore, the application needs
to pass here an array of length 129 (since each character used in RDS can take
two UTF-8 encoded words and the string is null-terminated).

Returnvalue [The return value can be the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

GetRadioTextPlus

XAresult (*GetRadioTextPlus) (
XARDSItF self,
XAuint8 contentType,

XAchar * informationElement,

XAchar * descriptor,
XAuint8 * descriptorContentType

)s

Description

Gets the current Radio Text+ (RT+) information element based on the given class code.

Pre-conditions

None

Parameters

self

[in]

Interface self-reference.

contentType

[in]

Radio Text+ class code of the information element that
is queried. See [9.2.61] XA_RDSRTPLUS macros.

informationElement

[out]

Radio Text+ information element or zero-length string
if unknown. The length of the Radio Text+
information element is 64 characters maximum.
Therefore, the application needs to pass here an array
of length 129 (since each character used in RDS can
take two UTF-8 encoded words and the string is null-
terminated).

descriptor

[out]

Descriptor associated with the Radio Text+
information element that was queried. The length of
the descriptor element is also 64 characters maximum.
Therefore, the application needs to pass here an array
of length 129 (since each character used in RDS can
take two UTF-8 encoded words and the string is null-
terminated).

Should be ignored if descriptorContentType is
zero.

descriptorContentType

[out]

The Radio Text+ class of the descriptor. (One of the
classes XA_RDSRTPLUS_ PLACE,

XA _RDSRTPLUS_APPOINTMENT,
XA_RDSRTPLUS_IDENTIFIER,

XA_RDSRTPLUS_PURCHASE or
XA_RDSRTPLUS_GETDATA.)

If this is zero, no associated descriptor is available for
the queried RT+ information element.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments

A RT+ information element can be complemented by another information element,
descriptor. Therefore, this method has also descriptor and
descriptorContentType as additional [out] parameters. The descriptor itself belongs to
PLACE, APPOINTMENT, PURCHASE or GETDATA class.

OpenMAX|AL

277

GetProgrammeType

XAresult (*GetProgrammeType) (
XARDSItF self,
XAuint32 * pty

):

Description | Gets the current Programme TYpe (PTY) as short. The return value zero corresponds to No
Programme Type or to undefined type.

Please note that PTY's in RBDS differ from the ones in RDS.

Pre-conditions | None

Parameters | selT | [in] Interface self-reference.
pty | [out] Programme TYpe or zero (XA_RDSPTYNONE or XA_RBDSPTYNONE) for
undefined type.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

GetProgrammeTypeString

XAresult (*GetProgrammeTypeString) (
XARDSItF self,
XAboolean isLengthMax16,
XAchar * pty

);

Description | Gets the current Programme TYpe (PTY) as a String with the maximum of 8 or 16 characters in
English (char set TBD) as defined in RDS and RBDS specifications.

Please note that PTY's in RBDS differ from the ones in RDS.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

isLengthMax16 [in] True for the maximum length of 16 characters, false for the
maximum length of 8 characters.

pty [out] Programme TYpe or “None” for an undefined type. The
application needs to pass here an array of length 17 or 33
depending on the isLengthMax16 parameter (since each
character used in RDS can take two UTF-8 encoded words
and the string is null-terminated).

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

GetProgrammeldentificationCode

XAresult (*GetProgrammeldentificationCode) (
XARDSItF self,
XAINntl6 * pi

):

Description | Gets the current Programme Identification code (PI). The Pl is not intended for directly
displaying to the end user, but instead to identify uniquely a programme. This can be used to
detect that two frequencies are transmitting the same programme.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pi [out] Programme Identification code or zero for an undefined PI code.

Returnvalue [The return value can be the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

GetClockTime

XAresult (*GetClockTime) (
XARDSI1tf self,
XAtime * dateAndTime

);

Description | Gets the current Clock Time and date (CT).

Pre-conditions | None

Parameters | self [in] Interface self-reference.

dateAndTime [out] Current time and date.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

GetTrafficAnnouncement

XAresult (*GetTrafficAnnouncement) (

XARDSI1tf self,
XAboolean * ta

)s;
Description | Gets the current status of the Traffic Announcement (TA) switch.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
ta [out] True if TA is on, false otherwise

Return value

The return value can be the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments

None

GetTrafficProgramme

XAresult (*GetTrafficProgramme) (

XARDSItF self,
XAboolean * tp

)s;
Description | Gets the current status of the Traffic Programme (TP) switch.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
tp [out] True if TP is on, false otherwise

Return value

The return value can be the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments

None

OpenMAX|AL

280

SeekByProgrammeType

XAresult (*SeekByProgrammeType) (

XARDSI1tf self,

XAuint32 pty,
XAboolean upwards

);

Description

Seeks for the frequency sending the given Programme TYpe (PTY). If the end of the tuner’s
frequency band is reached before the given Programme TYpe is found, the scan continues from
the other end until the given Programme TYpe is found or the original frequency is reached.
Asynchronous - tuner callback xaRadioCal Iback() and

XA RADIO_EVENT_SEEK COMPLETED is used for notifying of the result.

StopSeeking() method of XARadioltf can be used to abort an ongoing seek.

Pre-conditions | None
Parameters | self [in] Interface self-reference.
pty [in] Programme TYpe to seek for. XA_RESULT_PARAMETER_INVALID is
returned if pty parameter is not following the RDS specification.
upwards | [in] If true the seek progresses towards higher frequencies and if false the seek

progresses towards lower frequencies.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

OpenMAXIAL

281

SeekTrafficAnnouncement

XAresult (*SeekTrafficAnnouncement) (
XARDSItF self,
XAboolean upwards

);

Description

Seeks for a frequency sending Traffic Announcement (TA). If the end of the tuner’s frequency
band is reached before a Traffic Announcement is found, the scan continues from the other end
until a Traffic Announcement is found or the original frequency is reached.

Asynchronous - tuner callback xaRadioCal Iback() and
XA RADIO_EVENT_SEEK_ COMPLETED is used for notifying of the result.

StopSeeking() method of XARadioltf can be used to abort an ongoing seek.

Pre-conditions | None
Parameters | self [in] Interface self-reference.
upwards [in] If true the seek progresses towards higher frequencies and if false the
seek progresses towards lower frequencies.

Return value

The return value can be the following:
XA_RESULT_SUCCESS

Comments

None

SeekTrafficProgramme

XAresult (*SeekTrafficProgramme) (
XARDSItF self,
XAboolean upwards

)s

Description

Seeks for a frequency sending Traffic Programme (TP). If the end of the tuner’s frequency band
is reached before a Traffic Programme is found, the scan continues from the other end until a
Traffic Programme is found or the original frequency is reached.

Asynchronous - tuner callback xaRadioCal Iback() and
XA _RADIO_EVENT_SEEK_COMPLETED is used for notifying of the result.

StopSeeking() method of XARadioltf can be used to abort an ongoing seek.

Pre-conditions | None
Parameters [self [in] Interface self-reference.
upwards [in] If true the seek progresses towards higher frequencies and if false the
seek progresses towards lower frequencies.

Return value

The return value can be the following:
XA_RESULT_SUCCESS

Comments

None

OpenMAXIAL

282

SetAutomaticSwitching

XAresult (*SetAutomaticSwitching) (
XARDSItF self,
XAboolean automatic

);

Description | Sets the automatic switching of the transmitter in the case of a stronger transmitter with the same
Pl presence. Based on AF and/or EON fields.

Please note that NOT ALL IMPLEMENTATIONS SUPPORT THIS FUNCTIONALITY.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

automatic [in] True to turn on the automatic switching, false to turn it off.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_FEATURE_UNSUPPORTED

Comments | None

GetAutomaticSwitching

XAresult (*GetAutomaticSwitching) (
XARDSItf self,
XAboolean * automatic

)s

Description | Gets the mode of the automatic switching of the transmitter in case of a stronger transmitter with
the same PI presence.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

automatic [out] True if the automatic switching is on, false otherwise.

Returnvalue [The return value can be the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

SetAutomaticTrafficAnnouncement

XAresult (*SetAutomaticTrafficAnnouncement) (
XARDSItF self,
XAboolean automatic

);

Description | Sets the automatic switching of the program in case of the presence of Traffic Announcement in
another program. Based on TP and TA fields.

Please note that NOT ALL IMPLEMENTATIONS SUPPORT THIS FUNCTIONALITY.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

automatic [in] True to turn on the automatic switching, false to turn it off.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_FEATURE_UNSUPPORTED

Comments | None

GetAutomaticTrafficAnnouncement

XAresult (*GetAutomaticTrafficAnnouncement) (
XARDSItf self,
XAboolean * automatic

)s

Description | Gets the mode of the automatic switching of the program in case of the presence of Traffic
Announcement in another program. Based on TP and TA fields.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

automatic [out] True if the automatic switching is on, false otherwise.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

GetODAGroup

XAresult (*GetODAGroup) (
XARDSItF self,
XAuintl6é AID,
xaGetODAGroupCallback callback,

void * pContext

);

Description

Returns asynchronously via callback (xaGetODAGroupCal Iback()) the application Group
and the message bits concerning the given ODA (Open Data Application).

ODA is a mechanism that a broadcaster can use to transfer data that is not explicitly specified in
the RDS standard. Open Data Applications are subject to a registration process. Transmission
protocols used by ODAs may be public or private. See RDS Forum web page
(http://www.rds.org.uk/)for details.

Pre-conditions | None
Parameters | self [in] Interface self-reference.
AID [in] ODA Application ID. (4 hex characters as short)
callback [in] Address of the callback.
pContext [in] User context data that is to be returned as part of the callback

method.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments

None

OpenMAX|AL

285

SubscribeODAGroup

XAresult (*SubscribeODAGroup) (
XARDSItf self,
XAIntl6 group,
XAboolean useErrorCorrection

);

Description

Subscribes the given ODA group. If the given group was already subscribed, this call doesn’t do
anything.
Only new data in groups that have been subscribed will cause a newODA callback.

Pre-conditions | None
Parameters | self [in] | Interface self-reference.
group [in] | Group to subscribe. (0A=0, 0B=1, 1A=2, 1B=3..))
useErrorCorrection | [in] | True to use the following error correction: if the same data
arrives twice within three data arrivals it is correct. False not
to use error correction.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

See also

GetODAGroup() can be used to find out which group to subscribe, if the AID (Application
Identification) is known.

UnsubscribeODAGroup

XAresult (*UnsubscribeODAGroup) (
XARDSItF self,
XAIntl6 group

);

Description

Unsubscribes the given ODA group. If the given group has not been subscribed, this doesn’t do
anything.
Only new data in groups that have been subscribed will cause a newODA callback.

Pre-conditions | None
Parameters | self [in] Interface self-reference.
group [in] Group to unsubscribe. (0A=0, 0B=1, 1A=2, 1B=3..)

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

OpenMAX|AL

286

ListODAGroupSubscriptions

XAresult (*ListODAGroupSubscriptions) (
XARDSItF self,
XAIntl6* pGroups,
XAunit32* plLength

);

Description | |ists ODA groups that are currently subscribed.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pGroups | [out] An array of the groups that are subscribed. (0A=0, 0B=1, 1A=2, 1B=3...)

The length of the needed array should be first figured out from pLength
out parameter by calling this method with pGroups as null.

pLength | [in/out] | As an output, specifies the length of the groups array. That is, the number
of subscribed groups.

As an input, specifies the length of the given pGroups array (ignored if
pGroups is NULL).

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_BUFFER_INSUFFICIENT

Comments | |f the given length is smaller than the needed size XA RESULT_BUFFER_INSUFFICIENT is
returned and only data of the given size will be written.

RegisterODADataCallback

XAresult (*RegisterODADataCallback) (
XARDSItf self,
xaNewODADataCal Iback callback,
void * pContext

);

Description | Sets or clears the xaNewODADataCal Iback (). xaNewODADataCal lback() is used
tranfer the actual ODA data to the application.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

callback [in] Address of the callback.

pContext [in] User context data that is to be returned as part of the callback method.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

RegisterRDSCallback

XAresult (*RegisterRDSCallback) (
XARDSItF self,
xaRDSCal Iback callback,
void * pContext

);

Description | Sets or clears the xaRDSCal Iback (). xaRDSCal Iback() is used to monitor changes in
RDS fields.

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

callback | [in] | Address of the callback.

pContext | [in] | User context data that is to be returned as part of the callback method.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

8.29 XARecordItf

Description

XARecordItf is an interface for controlling the recording state of an object. The record state machine is as

follows:

<End of Stream or Error>>

_____ -| Recording
A\)

_____ _l(Paused

Figure 19: Record state machine

In case the disc gets full while recording to a file, XA_OBJECT_EVENT_RUNTIME_ERROR will be posted via
xaObjectCallback with XA _RESULT_10_ERROR as this callback’s result parameter. The recorder will in that case

autotransition into XA RECORDSTATE_STOPPED state.

Table 13: Data Status and Recording State

Recording State

Destination® closed

Head? moving (sending data to
destination)

Stopped

X

Paused?

Recording

! “Destination” denotes the sink of the recording process (for example, a file being written to).

2 “Head” denotes the position of the recording process relative in time to the duration of the entire recording (for

example, if the five seconds of video have been sent to the destination, the head is at five seconds).

3 If a recorder transitions from Paused to Recording (without an intervening transition to Stopped), the newly
captured data is appended to data already sent to the destination.

This interface is a mandated interface of Media Recorder objects (see section 7.5). See section F.4 for an example

using this interface.

OpenMAX|AL

289

Prototype

extern const XAlnterfacelD XA 11D_RECORD;

struct XARecordItf _;
typedef const struct XARecordltf_ * const * XARecordltf;

struct XARecordltf_ {

XAresult (*SetRecordState) (
XARecordI tf self,

XAuint32 state

);

XAresult (*GetRecordState) (
XARecordItf self,

XAuint32 * pState

)

XAresult (*SetDurationLimit) (
XARecordItf self,
XAmillisecond msec

);

XAresult (*GetPosition) (
XARecordIltf self,
XAmillisecond * pMsec

)

XAresult (*RegisterCallback) (
XARecordItf self,
xaRecordCallback callback,
void * pContext

)

XAresult (*SetCallbackEventsMask) (
XARecordItf self,

XAuint32 eventFlags

)

XAresult (*GetCallbackEventsMask) (
XARecordItf self,

XAuint32 * pEventFlags

)

XAresult (*SetMarkerPosition) (
XARecordIltf self,
XAmillisecond mSec

)

XAresult (*ClearMarkerPosition) (
XARecordIltf self

s

OpenMAX|AL

XAresult (*GetMarkerPosition) (
XARecordItf self,
XAmillisecond * pMsec

);

XAresult (*SetPositionUpdatePeriod) (
XARecordItf self,
XAmillisecond mSec

)

XAresult (*GetPositionUpdatePeriod) (
XARecordIltf self,
XAmillisecond * pMsec

¥

Interface ID

d7948cc0-f776-11db-8a3b-0002a5d5¢c51b

Defaults

A recorder defaults to the XA_RECORDSTATE_STOPPED state, with no marker, no duration limit, and an update
period of 1000 milliseconds, there are no markers set nor callbacks registered and the callback event flags are
cleared.

Callbacks

xaRecordCallback

typedef void (XAAPIENTRY * xaRecordCallback) (
XARecordItf caller,
void * pContext,
XAuint32 event

);

Description | Notifies the recorder application of a recording event.

Parameters | caller [in] | Interface on which this callback was registered.

pContext | [in] | User context data that is supplied when the callback method is registered.

event [in] | Event that has occurred (see XA_RECORDEVENT macro).

Comments | None

See Also | RegisterCal lback()

OpenMAX|AL

Methods

SetRecordState

XAresult (*SetRecordState) (
XARecordl tf self,
XAuint32 state

)s

Description | Transitions recorder into the given record state.

Pre-conditions | None. The recorder may be in any state.

Parameters | self [in] Interface self-reference.

state [in] Desired recorder state.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | All state transitions are legal.

GetRecordState

XAresult (*GetRecordState) (
XARecordIltf self,
XAuint32 * pState

)s

Description | Gets the recorder’s current record state.

Pre-conditions | None.

Parameters | self [in] Interface self-reference.

pState | [out] | Pointer to a location to receive the current record state of the recorder. This
must be non-NULL.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

SetDurationLimit

XAresult (*SetDurationLimit) (
XARecordltf self,
XAmillisecond msec

);

Description | Sets the duration of current content in milliseconds.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

msec [in] Non-zero limit on the duration of total recorded content in milliseconds.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | \When the recorder reaches the limit, it automatically transitions to the
XARECORDSTATE_STOPPED state and notifies the application via the
XARECORDEVENT_HEADATLIMIT event.

GetPosition

XAresult (*GetPosition) (
XARecordItf self,
XAmillisecond * pMsec

);

Description | Returns the current position of the recording head relative to the beginning of content.

Pre-conditions | None

Parameters | self | [in] Interface self-reference.

pMsec | [out] | Pointer to a location to receive the position of the recording head relative to
the beginning of the content, expressed in milliseconds. This must be non-
NULL.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | The position is synonymous with the amount of recorded content.

OpenMAX|AL

RegisterCallback

XAresult (*RegisterCallback) (
XARecordItf self,
xaRecordCal Iback callback,
void * pContext

);

Description | Registers the record callback function.

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

callback | [in] | Callback function invoked when one of the specified events occurs. A
NULL value indicates that there is no callback.

pContext | [in] | User context data that is to be returned as part of the callback method.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

SetCallbackEventsMask

XAresult (*SetCallbackEventsMask) (
XARecordItf self,
XAuint32 eventFlags

)

Description | Sets the notification state of record events.

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

eventFlags | [in] | Combination record event flags indicating which callback events are
enabled. See XA RECORDEVENT macros.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | The callback event flags default to all flags cleared.

OpenMAX|AL

GetCallbackEventsMask

XAresult (*GetCallbackEventsMask) (
XARecordItf self,
XAuint32 * pEventFlags

);

Description | Queries the notification state of record events.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pEventFlags | [out] | Pointer to a location to receive the combination of record event flags
indicating which callback events are enabled. This must be non-
NULL. See XA_RECORDEVENT macros.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

SetMarkerPosition

XAresult (*SetMarkerPosition) (
XARecordl tf self,
XAmillisecond mSec

)s

Description | Sets the position of the recording marker.

Pre-conditions | None

Parameters | self | [in] | Interface self-reference.

mSec | [in] | Position of the marker expressed in milliseconds and relative to the beginning of
the content. Must be between 0 and the specified duration limit.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | The player will notify the application when the recording head passes through the marker via a
callback with a XARECORDEVENT_HEADATMARKER event.

OpenMAX|AL

ClearMarkerPosition

XAresult (*ClearMarkerPosition) (
XARecordItf self

Description | Clears marker.
Pre-conditions | None
Parameters | self [in] Interface self-reference.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments | This function succeeds even if the marker is already clear.
See Also | SetMarkerPosition()
GetMarkerPosition

XAresult (*GetMarkerPosition) (
XARecordItf self,

XAmillisecond * pMSec

Description | Queries the position of the recording marker.
Pre-conditions | None
Parameters | self | [in] Interface self-reference.

pMSec | [out]

Pointer to a location to receive the position of the marker expressed in

milliseconds and relative to the beginning of the content. Must be between 0

and the specified duration limit. This must be non-NULL.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments

None

OpenMAXIAL

296

SetPositionUpdatePeriod

XAresult (*SetPositionUpdatePeriod) (
XARecordItf self,
XAmillisecond mSec

);

Description | Sets the interval between periodic position notifications.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

mSec [in] Non-zero period between position notifications in milliseconds.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | The recorder will notify the application when the recording head passes through the positions
implied by the specified period. Those positions are defined as the whole multiples of the period
relative to the beginning of the content.

GetPositionUpdatePeriod

XAresult (*GetPositionUpdatePeriod) (
XARecordItf self,
XAmillisecond * pMSec

);

Description | Queries the interval between periodic position notifications.

Pre-conditions | None

Parameters | self | [in] Interface self-reference.

pMSec | [out] | Pointer to a location to receive the period between position notifications in
milliseconds. This must be non-NULL.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

OpenMAX|AL

8.30 XASeekItf

Description

XASeekItf isan interface for manipulating a playback head, including setting its position and looping
characteristics. When supported, seeking may be used, regardless of playback state or rate.

This interface is an implicit interface of Media Player objects (see section 7.4).

Prototype

extern const XAlnterfacelD XA 11D_SEEK;

struct XASeekltf ;
typedef const struct XASeekltf_ * const * XASeekltf;

struct XASeekltf_ {

XAresult (*SetPosition) (
XASeekltf self,
XAmillisecond pos,
XAuint32 seekMode

);

XAresult (*SetLoop) (
XASeekltf self,

XAboolean loopEnable,
XAmillisecond startPos,
XAmillisecond endPos

)

XAresult (*GetLoop) (
XASeeklItf self,

XAboolean * pLoopEnabled,
XAmillisecond * pStartPos,
XAmillisecond * pEndPos

Interface ID

ee6a3120-f776-11db-b518-0002a5d5¢51b

Defaults

The playback position defaults to 0 milliseconds (the beginning of the current content). Global and local looping are

disabled by default.

OpenMAX|AL

298

Methods

SetPosition

XAresult (*SetPosition) (
XASeekltf self,
XAmillisecond pos,
XAuint32 seekMode

)s

Description | Sets the position of the playback head.

Pre-conditions | None.

Parameters | sellf [in] | Interface self-reference.
pos [in] | Desired playback position in milliseconds, relative to the beginning of
content.

seekMode | [in] | Inherent seek mode. See the seek mode definition (see section 9.2.68) for
details. If the seek mode is not supported, this method will return
XA_RESULT_FEATURE_UNSUPPORTED.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS

XA _RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments | The implementation may set the position to the nearest discrete sample or frame. Note that the
position is defined relative to the content playing at 1x forward rate; positions do not scale with
changes in playback rate.

OpenMAX|AL

SetLoop

XAresult (*SetLoop) (
XASeekltf self,
XAboolean loopEnable,
XAmillisecond startPos,
XAmillisecond endPos

);

Description

Enables or disables looping and sets the start and end points of looping. When looping is enabled
and the playback head reaches the end position, the player automatically sets the head to the start
position and remains in the XA_PLAYSTATE_PLAY ING state. Setting a loop does not otherwise
have any effect on the playback head even if the head is outside the loop at the time the loop is
set.

Pre-conditions

Specified end position is greater than specified start position.

Parameters

self [in] | Interface self-reference.

loopEnable | [in] | Specifies whether looping is enabled (true) or disabled (false).

startPos [in] | Position in milliseconds relative to the beginning of content specifying
the start of the loop.

endPos [in] | Position in milliseconds relative to the beginning of content specifying
the end the loop. endPos must be greater than startPos. A value of
XA _TIME_UNKNOWN denotes the end of the stream

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments

If local looping is not supported, this method returns XA RESULT FEATURE_UNSUPPORTED.

OpenMAX|AL

300

GetLoop

XAresult (*GetLoop) (
XASeekltf self,

XAboolean * pLoopEnabled,
XAmillisecond * pStartPos,

XAmillisecond * pEndPos

):
Description | Queries whether looping is enabled or disabled, and retrieves loop points.
Pre-conditions | None.
Parameters | self [in] Interface self-reference.
pLoopEnabled | [out] | Pointer to a location to receive the flag indicating whether looping
is enabled (true) or disabled (false). This must be non-NULL.
pStartPos [out] | Pointer to a location to receive the position in milliseconds relative
to the beginning of content specifying the start of the loop. This
must be non-NULL
pEndPos [out] | Pointer to a location to receive the postion in milliseconds relative

to the beginning of content specifying the end the loop. A value of
XA _TIME_UNKNOWN denotes the end of the stream. This must be
non-NULL.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

OpenMAXIAL

301

8.31 XASnapshotltf

Description

This interface is for controlling the photographing of still images with a camera device. It contains the
InitiateSnapshot() method for prefetching the shooting for minimizing the delay with the actual taking of
the photo which is done by the TakeSnapshot() method. There are also mechanisms for controlling the shutter
feedback (sound) and for querying for burst shooting capabilities.

Snapshots can be stored to a file system specified by the XADataSink parameter of the InitiateSnapshot()
method, or if the XADataSink specified is NULL, the application gets the image data directly as a memory buffer
via the xaSnapshotTakenCal Iback() callback. This direct passing of the memory buffer is not supported
with burst shooting. Please see the documentation of the methods below for details.

This is a mandated interface of Media Recorder objects (see section 7.5). See section F.5 for an example using this
interface.

Call Sequence

The following is the typical call sequence for taking a photo.
1. Set-up:
e XAlmageEncoderltf: :SetlmageSettings() (for choosing the codec and the resolution)

o XACameraltf::SetAutoLocks(self, 0) (freeall locks)

e XACameraltf (use various methods to set up flash, zoom, exposure, focus, white balance etc.)

2. Memory allocation:
e XASnapshotltf::InitiateSnapshot()
= xaSnapshotlnitiatedCallback

3. Halfway press (for locking the automatic settings that can be locked pre-exposure):

e XACameraltf::SetAutoLocks(self, XA CAMERA_AUTO_LOCK FOCUS |
XA CAMERA_AUTO_LOCK EXPOSURE) (an example to lock auto focus and auto exposure)

= xaCameraCal lback(context, XA CAMERACBEVENT_ FOCUSSTATUS,
XA_CAMERA_FOCUSMODESTATUS_REACHED)

= xaCameraCallback(context, XA CAMERACBEVENT_ EXPOSURESTATUS,
XA_CAMERA_AUTOEXPOSURESTATUS_SUCCESS)

4. Full press:

e XASnapshotltf::TakeSnapshot()

OpenMAX|AL

= xaSnapshotTakenCal lback

Prototype

extern const XAlnterfacelD XA 11D _SNAPSHOT;

struct XASnapshotltf_;
typedef const struct XASnapshotltf_* const * XASnapshotltf;

struct XASnapshotltf_ {

XAresult (*InitiateSnapshot) (
XASnapshotltf self,
XAuint32 numberOfPictures,
XAuint32 fps,
XAboolean freezeViewFinder,
XADataSink sink,
xaSnapshotinitiatedCallback initiatedCallback,
xaSnapshotTakenCal lback takenCallback,
void * pContext

)

XAresult (*TakeSnapshot) (
XASnapshotltf self

);

XAresult (*CancelSnapshot) (
XASnapshotltf self

)

XAresult (*ReleaseBuffers) (
XASnapshotltf self,
XADataSink * image

)

XAresult (*GetMaxPicsPerBurst) (
XASnapshotltf self,

XAuint32 * maxNumberOfPictures

);

XAresult (*GetBurstFPSRange) (
XASnapshotltf self,

XAuint32 * minFPS,
XAuint32 * maxFPS

)

XAresult (*SetShutterFeedback) (
XASnapshotltf self,
XAboolean enabled

)

XAresult (*GetShutterFeedback) (
XASnapshotltf self,
XAboolean * enabled

);

Interface ID

db1b6dc0-df05-11db-8c01-0002a5d5¢51b

OpenMAX|AL

Defaults

No callback registered.

Callbacks

xaSnapshotlnitiatedCallback

typedef void (XAAPIENTRY * xaSnapshotlnitiatedCallback) (
XASnapshotltf caller,
void * context

)
Description | This method is called when the snapshot shooting has been initiated.
Parameters | caller [in] | Interface on which this callback was registered.
context | [in] | User context data that is supplied when the callback method is registered.
Comments | None
Seealso | None

OpenMAX‘AL

304

xaSnapshotTakenCallback

typedef void (XAAPIENTRY * xaSnapshotTakenCallback) (

XASnapshotltf caller,

void * context,

XAuint32 numberOfPicsTaken,
const XADataSink * image

);

Description | This method is called when the snapshot has been taken.

Parameters | cal ler [in] | Interface on which this callback was registered.
context [in] | Callback context passed to

XASnapshotltf: :InitiateSnapshot()
numberOfPicsTaken | [in] | The number of snapshots taken if the shooting was successful; zero
if snapshots couldn’t be taken because some reason, including out
of memory situations and situations when forced flash wasn’t
loaded.
image [in] | A memory address data sink the picture that was taken. The
application should use ReleaseBuffer () to free the allocated
memory after the application has completed processing with the
image data.
Please note that if a data sink was specified with
InitiateSnapshot() method, the picture(s) is/are stored in
the location defined by the XADataSink instead.

Comments | A hint: remember to unfreeze the viewfinder by changing the viewfinder player to the playing state
after some time if the viewfinder was frozen. Or, you might want to ask the end user if he or she wants
to save the image before unfreezing. In some implementations, the saving (to the XADataSink
specified by InitiateSnapshot() method) can be cancelled by calling CancelSnapshot()
method while the viewfinder is frozen; if CancelSnapshot() is not called, the picture will by
stored automatically once the viewfinder is unfrozen. See Cance lSnapshot () method for details.

Seealso | None

OpenMAX|AL

305

Methods

InitiateSnapshot

XAresult (*InitiateSnapshot) (
XASnapshotltf self,
XAuint32 numberOfPictures,
XAuint32 fps,
XAboolean freezeViewFinder,
XADataSink sink,
xaSnapshotiInitiatedCallback initiatedCallback,
xaSnapshotTakenCal lback takenCallback,
void * pContext

Description

This method prepares the device for snapshot to shorten the actual shooting delay with
TakeSnapshot() method. The various settings for snapshot are set with this method: the
specified number of snapshots, the output location either to the XADataSink (if it is specified)
or to memory (if no XADataSink is specified) and then calls

xaSnapshotlnitiatedCal Iback() method. Asynchronous.

Second call of this method before the call to TakeSnapshot () method will reinitialize the
shooting with the new parameter values.

Pre-conditions

The image settings need to be set with XAIlmageEncoder 1tf: :SetlmageSettings()
method prior calling this method (unless the default image settings will be used).

Parameters

self

[in]

Interface self-reference.

numberOfPictures

[in]

Number of pictures that will be taken. If the number is larger
than one, camera will take snapshots in a burst mode
consequently as fast as it cans. Zero value here cancels the
shooting. This cannot be smaller than zero or larger than
GetMaxPicsPerBurst().

fps

[in]

Hint to the device that how many pictures per second should
be taken in burst mode. This parameter is ignored if
numberOfPictures is one.

freezeViewfinder

[in]

If true, freezes the viewfinder (for preview) once the picture
has been taken by changing the viewfinder player’s state to
paused. If multiple pictures are about to be taken only the last
picture shot will be frozen on the viewfinder. If false, does not
freeze the viewfinder once the picture has been taken.

Please note that in some implementations it is still possible to
cancel the saving of the picture once the viewfinder is frozen
by calling CancelSnapshot() method. If
CancelSnapshot() has not been called once the
viewfinder is unfrozen again, the picture will be then stored.
See CancelSnapshot() for details.

OpenMAX|AL

306

InitiateSnapshot

sink

[in]

XADataSink where to store the resulting images. If sink is
NULL, the resulting image will be stored instead into memory
(reserved by the implementation) and the address of that
memory buffer will be given with the
xaSnapshotTakenCal Iback() in a new
implementation generated data sink of the type
XA_DATALOCATOR_ADDRESS. If this option is used,
numberOfPicture parameter must be 1.

The XADataSink should be of type

XA DATALOCATOR_URI and the URI should specify
(besides of protocol and (optional) path) the filename prefix.
The structure of the generated file name is
<prefix><number><file_extension>. prefixisa
user given prefix taken from the URI. number is a string
generated automatically by the implementation. The generated
string is a zero padded four digit running number starting
from 0. Therefore, the sequence of generated strings is
“0000”, “0001”, “0002”, etc. The length of the string
increases if more digits are needed to represent the number so
“9999” will be followed by “10000”. If a file with the same
name exists in the file system (directory) already the next
number will be used. File_extension is a system
generated extension to the file. It could be for example “.jpg.”
The system should use the extension corresponding to the
chosen encoding.

initiatedCal lback

[in]

Address of the callback.

takenCal lback

[in]

Address of the callback.

pContext

[in]

User context data that is to be returned as part of the callback
method.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments

None

See also

XADataSink documentation for details, for example, on specifying a file system directory
using an URL. TakeSnapshot().

OpenMAX|AL

307

TakeSnapshot

XAresult (*TakeSnapshot) (
XASnapshotltf self

);

Description

This method takes the specified number of snapshots, stores them either to the XADataSink (if
it is specified by InitiateSnapshot()) or to memory (if no XADataSink is specified)
and then calls xaSnapshotTakenCal Iback() method. Asynchronous.

Pre-conditions

xaSnapshotlnitiatedCal Iback() must have been called before this method is called.

Parameters

self [in] Interface self-reference.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PRECONDITIONS_VIOLATED

Comments

None

See also

InitiateSnapshot(), CancelSnapshot()

CancelSnapshot

XAresult (*CancelSnapshot) (
XASnapshotltf self

);

Description

This method cancels an ongoing shooting session. Snapshooting needs to be initiated again after
calling this method with InitiateSnapshot method.

Synchronous.

Pre-conditions

Shooting session must be going on.

Parameters

self [in] Interface self-reference.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PRECONDITIONS_VIOLATED

Comments

Please note that in some implementations it is still possible to cancel the saving of the picture
once the viewfinder is frozen (for preview) by calling this Cance l Snapshot() method. Some
implementations save the picture directly to XADataSink already immediately once it is shot;
in that case Cancel Snapshot() returns XA_RESULT_PRECONDITIONS_VIOLATED
during freezing (previewing).

See also

None

OpenMAXIAL

308

ReleaseBuffer

XAresult (*ReleaseBuffers) (
XASnapshotltf self,
XADataSink * image

);

Description | This method releases the given buffer.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

image [in] Memory address data sink to be released.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

Seealso | xaSnapshotTakenCal lback()

GetMaxPicsPerBurst

XAresult (*GetMaxPicsPerBurst) (
XASnapshotltf self,
XAuint32 * maxNumberOfPictures

)s

Description | This method tells how many pictures it is possible to be taken during single burst.

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

maxNumberOfPictures | [in] | Maximum number of pictures that the device supports to
be taken in a single burst.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

See also | None

OpenMAX|AL

GetBurstFPSRange

XAresult (*GetBurstFPSRange) (
XASnapshotltf self,
XAuint32 * minFPS,
XAuint32 * maxFPS

);

Description

This method tells the range of shooting rates possible in burst shooting mode. Please note that
these rates might be different depending on which encoder and which resolution has been
chosen; not all the rates can necessarily be reached with every resolution or encoder.

Pre-conditions | None
Parameters | self [in] Interface self-reference.
minFPS [out] Minimum rate supported in frames per second.
maxFPS [out] Maximum rate supported in frames per second. This is zero if burst
mode is not supported by the device.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None
See also | None
SetShutterFeedback

XAresult (*SetShutterFeedback) (
XASnapshotltf self,
XAboolean enabled

);

Description

Toggles the shutter feedback (such as shutter sound or some visual feedback while taking a
snapshot).

Pre-conditions | None
Parameters | self [in] Interface self-reference.
enabled [in] True to enable shutter feedback; false to disable it.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_FEATURE_UNSUPPORTED

Comments

Some implementations will return XA _RESULT _FEATURE_UNSUPPORTED when trying to
switch off the feedback in case shutter feedback is mandatory because of legislative reasons.

See also

None

OpenMAX|AL

310

GetShutterFeedback

XAresult (*GetShutterFeedback) (
XASnapshotltf self,
XAboolean* enabled

);

Description

This method tells if the shutter feedback (such as shutter sound or some visual feedback while
taking a snapshot) is enabled.

Pre-conditions | None
Parameters | self [in] Interface self-reference.
enabled [out] True if shutter feedback is enabled; false if it is disabled.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments

None

See also

None

OpenMAX|AL

311

8.32 XAStreaminformationltf
Description

XAStreamInformationltf is used to query a stream’s properties.

This interface is a mandatory interface of Media Player (see section 7.4) and Metadata Extractor objects (see section
7.6).

OpenMAX|AL

Prototype

extern const XAlnterfacelD XA 11D_STREAMINFORMATION;

struct XAStreamlnformationltf_;
typedef const struct XAStreamlnformationltf_ * const *
XAStreamInformationltf;

struct XAStreamInformationltf_ {
XAresult (*QueryMediaContainerInformation) (
XAStreamInformationltf self,
XAMediaContainerInformation * info

);

XAresult (*QueryStreamType) (
XAStreamInformationltf self,
XAuint32 streamlndex,
XAuint32 *domain

);

XAresult (*QueryStreamlnformation) (
XAStreamInformationltf self,
XAuint32 streamlndex,
void * info

);

XAresult (*QueryStreamName) (
XAStreamInformationltf self,
XAuint32 streamlndex,
XAuintl6é * pNameSize,

XAchar * pName

);

XAresult (*RegisterStreamChangeCallback) (
XAStreamInformationltf self,
xaStreamEventChangeCal lback callback,
void * pContext

);

XAresult (*QueryActiveStreams) (
XAStreamInformationltf self,
XAuint32 *numStreams,
XAboolean *activeStreams

);

XAresult (*SetActiveStream) (
XAStreamInformationltf self,
XAuint32 streamNum,
XAboolean active,

XAboolean commitNow

Interface ID

3a628fe0-1238-11de-ad9f-0002a5d5¢51b

OpenMAX|AL

Callbacks

xaStreamEventChangeCallback

typedef void (XAAPIENTRY * xaStreamkEventChangeCallback) (
XAStreaminformationltf caller,

XAuint32 eventld,
XAuint32 streamlndex,

void * pEventData,

void * pContext

):
Description | Executes whenever a stream event has changed. Upon this notification, the application may query for
the new stream information via QueryStreamInformation().
Parameters | cal ler [in] | Interface on which this callback was registered.
eventlD [in] | Identifies the type of notification callback being report.
Refer to XA_ STREAMCBEVENT for a list of available events.
streamlndex [in] | Identifies the stream with the property change.
pEventData [in] | Specifies additional information specific to a notification callback event.
The contents of this parameter is depedent on the event being reported.
pContext [in] | User context data that is supplied when the callback method is registered.
Comments | \When the streamlndex parameter returns the reserved value of 0 (Media Container Identification) it
indicates that a change in the number of available streams has been detected within the media container.
QueryMediaContainerInformation() shall be used to determine the new number of available
streams within the media container.
See Also | RegisterStreamChangeCal Iback(),

QueryStreaminformation(),QueryMediaContainerInformation()

OpenMAX|AL

314

Methods

QueryMediaContainerInformation

XAresult (*QueryMediaContaineriInformation) (

XAStreamInformationltf self,

XAMediaContainerInformation * info

);
Description | Queries information about the media container.
Pre-conditions | None.
Parameters | self [in] Interface self-reference.
info [out] Structure containing the media container information.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_CONTENT_CORRUPTED
XA_RESULT_CONTENT_UNSUPPORTED

Comments

None

OpenMAX|AL

315

QueryStreamType

XAresult (*QueryStreamType) (

XAStreamInformationltf self,
XAuint32 streamlndex,

XAuint32 *domain

):
Description | Queries the individual streams to determine which domain they are based with.
Pre-conditions | None.
Parameters | self [in] Interface self-reference.
streamlndex [in] Incrementing index used to query the available streams
Supported index range is 1 to N, where N is the number
of streams available.
The value 0 is a reserved value that shall always
represent the Media Container.
domain [out] Identifies the stream domain.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_CONTENT_CORRUPTED
XA_RESULT_CONTENT_UNSUPPORTED

Comments

None

See Also

QueryMediaContainerInformation()

OpenMAX|AL

316

QueryStreamlInformation

XAresult (*QueryStreamlnformation) (
XAStreamInformationltf self,
XAuint32 streamlndex,
void * info

):
Description | Queries information about the stream.
Pre-conditions | None.
Parameters | self [in] Interface self-reference.
streamlndex [in] Index identifying the stream within the
container that is being queried.
The stream index value is same stream
index indentifer that is obtained via
QueryStreamType
info [out] Structure containing the stream information.
The structure type definition is associated as
per the domain parameter setting — refer to
Table 14.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_CONTENT_CORRUPTED
XA_RESULT_CONTENT_UNSUPPORTED

It is not possible to query Information for streams identified as XA _DOMAINTYPE_UNKNOWN,
any attempt to do so shall return a result of XA_RESULT_CONTENT_UNSUPPORTED.

Comments

None

Table 14 : Stream Information Structures vs Domain Types

Value

Associated Structure

XA_DOMAINTYPE_AUDIO

XAAudioStreamInformation

XA_DOMAINTYPE_VIDEO

XAVideoStreamInformation

XA_DOMAINTYPE_ IMAGE

XAlmageStreamlInformation

XA_DOMAINTYPE_TIMEDTEXT

XATimedTextStreamInformation

XA_DOMAINTYPE_VENDOR

XAVendorStreamInformation

XA_DOMAINTYPE_MIDI

XAMIDIStreamInformation

XA_DOMAINTYPE_UNKNOWN

Unknown type

OpenMAX|AL

317

QueryStreamName

XAresult (*QueryStreamName) (
XAStreamInformationltf self,
XAuint32 streamlndex,
XAuintl6é * pNameSize,

XAchar * pName

):
Description | Queries information about the media container.
Pre-conditions | None.
Parameters | self [in] Interface self-reference.
streamlndex [in] Index identifying the stream within the container that is
being queried.
The stream index value is same stream index indentifer
that is obtained via QueryStreamType
pNameSize [in/out] This is used both as input and output. On input it bounds
the size of the stream’s string name buffer. On output it
specifies the size of the stream’s string name.
Returns 0 is a stream name is not available.
pName [out] This is a string buffer containing the name of the stream.
If this pointer is NULL, the pNameSize parameter
identifies the length of the stream’s name. This allows the
application to properly size the buffer that will contain the
stream name.
The character coding is UTF-8.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_CONTENT_CORRUPTED
XA_RESULT_CONTENT_UNSUPPORTED

Comments

For streams identified as XA_DOMAINTYPE_UNKNOWN, it may still be possible to retrieve
the stream name (if any exists). If the method is not able to retrieve the stream name, it will
identify this by returning a value of 0 via the pNameSize parameter (refer to the pNameSize
parameter for more information).

Obtaining the stream specific names may be useful for content that contain multiple alternative
tracks. For example, DVD content can contain multiple audio language tracks, the application
may utilize the stream names - if present — to enumerate and populate the selection list for the
user.

OpenMAX|AL

RegisterStreamChangeCallback

XAresult (*RegisterStreamChangeCallback) (
XAStreamInformationltf self,
xaStreameventChangeCal lback callback,
void * pContext

)s;

Description | Sets the callback for stream property change event notifications.
Pre-conditions | None

Parameters | self [in] | Interface self-reference.

callback | [in] | Specifies the callback method.

pContext | [in] | User context data that is to be returned as part of the callback method.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

See Also

xaStreamEventChangeCal lback()

QueryActiveStreams

XAresult (*QueryActiveStreams) (
XAStreamInformationltf self,
XAuint32 *numStreams,
XAboolean *activeStreams

);

Description

Returns the active state for all streams.

Pre-conditions

Must not be called on a Metadata Extractor object.

Parameters

self [in] Interface self-reference.

numStreams [in/out] Size of the ‘activeStreams’ array. If ‘activeStreams’ is
null, QueryActiveStreams will fill in the desired size of
the array. This will be equal to the total number of
streams.

activeStreams | [out] An array of XAboolean values indicating which streams
are active.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_PRECONDITIONS_VIOLATED

Comments

If “numStreams’ is less than the total number of streams, the implementation may elect to return
XA_RESULT_PARAMETER_INVALID.

This function shall not be called on a metadata extractor object, and shall return
XA_RESULT_PRECONDITIONS_VIOLATED in this case.

OpenMAX|AL

SetActiveStream

XAresult (*SetActiveStream) (
XAStreamInformationltf self,
XAuint32 streamNum,
XAboolean active,
XAboolean commitNow

);

Description | Set/unset the active state for a specified stream. The commitNow parameter allows a number of
changes to be deferred and then committed at once.

Pre-conditions | Must not be called on a Metadata Extractor object.

Parameters | self [in] Interface self-reference.
streamNum [in] The stream on which to set the active state.
active [in] Active state to set on the stream.
commitNow [in] Perform change immediately.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED
XA_RESULT_PRECONDITIONS_VIOLATED

Comments | |t is implementation specific if multiple active streams per-domain type are allowed.

No changes will be made to the active state of any stream until this function is called with a
commitNow value of XA BOOLEAN_TRUE.

The implementation may return XA_RESULT _FEATURE_UNSUPPORTED if it does not
support selecting multiple active streams, if the specified stream type is unsupported, or if the
current set of selected streams cannot be made active.

This function shall not be called on a metadata extractor object, and shall return
XA_RESULT_PRECONDITIONS_VIOLATED in this case.

OpenMAX|AL

8.33 XAThreadSyncltf

Description

Registered callbacks can be invoked concurrently to application threads and even concurrently to other callbacks.
The application cannot assume anything about the pContext from which registered callbacks are invoked, and thus
using the native synchronization mechanisms for synchronization of callback contexts is not guaranteed to work.

For this purpose, a critical section mechanism is introduced. There is one critical section per engine object.
Applications that require more flexibility can implement such a mechanism on top of this critical section mechanism.

The semantics of the critical section mechanism are specified as follows:

® The engine is said to be in a critical section state during the time between when a call to
EnterCriticalSection() has returned successfully and until the time when a call to
ExitCriticalSection() is made.

® When the engine is in a critical section state, any call to EnterCriticalSection() will block until
the engine exited the critical section state, or until an error has occurred (the return code of the
EnterCriticalSection() call will reflect which of the conditions has occurred).

One important point is worth mentioning: when the engine is operating in non-thread-safe mode, the
EnterCriticalSection() and ExitCriticalSection() methods are not thread safe, in the sense that
their behavior is undefined, should the application call them from within multiple applicaton contexts concurrently.
These methods will, however, work properly when invoked from a single application context in concurrency with
one or more callback contexts.

This interface is supported on the engine object (see section 7.2).

Prototype

extern const XAlnterfacelD XA 11D_THREADSYNC;

struct XAThreadSyncltf_;
typedef const struct XAThreadSyncltf_ * const * XAThreadSyncltf;

struct XAThreadSyncltf_{
XAresult (*EnterCriticalSection) (
XAThreadSyncltf self
)

XAresult (*ExitCriticalSection) (
XAThreadSyncltf self
)

¥

Interface ID

f3599ea0-f776-11db-b3ea-0002a5d5c51b

OpenMAX|AL

Defaults

Not in critical section state.

Methods

EnterCriticalSection

XAresult (*EnterCriticalSection) (
XAThreadSyncltf self

)s

Description

Blocks until the engine is not in critical section state, then transitions the engine into critical
section state.

Pre-conditions

The calling context must not already be in critical section state.

Parameters

self [in]

Synchronization interface.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PRECONDITIONS_VIOLATED

Comments | Use this method to achieve synchronization between application context and callback context(s),
or between multiple callback contexts.
See comments in the description section regarding thread-safety of this method.
Seealso | ExitCriticalSection()

ExitCriticalSection

XAresult (*ExitCriticalSection) (
XAThreadSyncltf self

);

Description

Transitions the engine from critical section state to non-critical section state.

Pre-conditions

The engine must be in critical section state. The call must be made from the same context that
entered the critical section.

Parameters

self [in]

Synchronization interface.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PRECONDITIONS_VIOLATED

Comments | Use this method to achieve synchronization between client application context and callback
context(s), or between multiple callback contexts.
See comment in description section regarding thread-safety of this method.
Seealso | EnterCriticalSection()

OpenMAX|AL

322

8.34 XAVibraltf

Description

XAVibral tf interface is used to activate and deactivate the Vibra 1/0 device object, as well as to set its frequency
and intensity, if supported.

XAVibral tF uses the following state model, which indicates whether the vibration device is vibrating or not:

CreateVibraOutputDevice

Vibrate (XxA_BOOLEAN_TRUE)

Off Vibrate (XA_BOOLEAN_FALSE) Vibrating

Destroy \/‘\/ Destroy
/v\

Figure 20: Vibra 1/O device state model

This interface is supported on the Vibra 1/0 device object (see section 7.9).

Prototype

extern const XAlnterfacelD XA 11D _VIBRA;

struct XAVibraltf_;
typedef const struct XAVibraltf_ * const * XAVibraltf;

struct XAVibraltf_ {

XAresult (*Vibrate) (
XAVibraltf self,
XAboolean vibrate

)

XAresult (*IsVibrating) (
XAVibraltf self,
XAboolean * pVibrating

)

XAresult (*SetFrequency) (
XAVibraltf self,
XAmilliHertz frequency

);

XAresult (*GetFrequency) (
XAVibraltf self,
XAmilliHertz * pFrequency

);

OpenMAX|AL

XAresult (*Setintensity) (
XAVibraltf self,
XApermille intensity

);

XAresult (*GetlIntensity) (
XAVibraltf self,
XApermille * plntensity

¥

Interface ID

fe374c00-f776-11db-a8f0-0002a5d5¢c51b

Defaults

Initially, the object is in the off state. Default frequency and intensity are undefined.

Methods

Vibrate

XAresult (*Vibrate) (
XAVibraltf self,
XAboolean vibrate

Description | Activates or deactivates vibration for the 1/0 device.

Pre-conditions | None.

Parameters | self [in] Pointer to a XAVibral tf interface.

vibrate [in] Boolean indicating whether to vibrate.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_I10_ERROR
XA_RESULT_CONTROL_LOST

Comments | None.

See also | None.

OpenMAX|AL

324

IsVibrating

XAresult (*IsVibrating) (
XAVibraltf self,
XAboolean * pVibrating

);

Description | Returns whether the 1/0 device is vibrating.

Pre-conditions | None.

Parameters | self [in] Pointer to a XAVibral tf interface.

pVibrating | [out] | Address to store a Boolean indicating whether the 1/0 device is
vibrating.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None.

Seealso | None.

SetFrequency

XAresult (*SetFrequency) (
XAVibraltf self,
XAmilliHertz frequency

)s

Description | Sets the vibration frequency of the 1/0 device.

Pre-conditions | The Vibra I/O device must support setting intensity, per
XAVibraDescriptor: :supportsFrequency.

Parameters | self [in] | Pointer to a XAVibraltf interface.

frequency | [in] | Frequency of vibration. Range is
[XAVibraDescriptor: :minFrequency,
XAVibraDescriptor: :maxFrequency]

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PRECONDITIONS_VIOLATED
XA_RESULT_PARAMETER_INVALID
XA_RESULT_RESOURCE_LOST
XA_RESULT_CONTROL_LOST

Comments | None.

Seealso [None.

OpenMAX|AL

GetFrequency

XAresult (*GetFrequency) (
XAVibraltf self,
XAmilliHertz * pFrequency

);

Description

Returns the vibration frequency of the 1/0O device.

Pre-conditions

The Vibra 1/0 device must support setting intensity, per
XAVibraDescriptor: :supportsFrequency.

Parameters

self [in] Pointer to a XAVibral tf interface.

pFrequency | [out] | Address to store the vibration frequency. Range is
[XAVibraDescriptor: :minFrequency,
XAVibraDescriptor: :maxFrequency]

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PRECONDITIONS_VIOLATED
XA_RESULT_PARAMETER_INVALID

Comments | None.
See also | None.
SetIntensity

XAresult (*Setintensity) (
XAVibraltf self,
XApermille intensity

)s

Description

Sets the vibration intensity of the Vibra 1/0 device.

Pre-conditions

The Vibra 1/0 device must support setting intensity, per
XAVibraDescriptor: :supportsintensity.

Parameters

self [in] Pointer to a XAVibral tf interface.

intensity [in]

Intensity of vibration. Range is [0, 1000]

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PRECONDITIONS_VIOLATED
XA_RESULT_PARAMETER_INVALID
XA_RESULT_CONTROL_LOST

Comments

None.

See also

None.

OpenMAX|AL

326

Getlntensity

XAresult (*Getlntensity) (
const XAVibraltf self,
XApermille * plntensity

);

Description | Returns the vibration intensity of the Vibra I/O device.

Pre-conditions | The Vibra I/O device must support setting intensity, per

XAVibraDescriptor: :supportsintensity.

Parameters | self

[in]

Pointer to a XAVibral tf interface.

plntensity

[out]

Address to store the vibration intensity of the Vibra I/O device. Range

is [0, 1000].

Returnvalue [The return value can be one of the following:

XA_RESULT_SUCCESS
XA_RESULT_PRECONDITIONS_VIOLATED
XA_RESULT_PARAMETER_INVALID

Comments | None.

Seealso [None.

OpenMAX|AL

327

8.35 XAVideoDecoderCapabilitieslitf

Description

This interface provides methods of querying the video decoding capabilities of the media engine.

This interface provides a means of enumerating all video decoders available on an engine where each an decoderld
represents each decoder. It also provides a means to query the capabilities of each decoder. A given decoder may
support several profile/level pairs each with their own capabilities (such as maximum resolution) appropriate to that
profile and level pair. Therefore, this interface represents the capabilities of a particular decoder as a list of
capability entries queriable by decoderID and capability entry index.

The set of video decoders supported by the engine does not change during the lifetime of the engine though dynamic
resource constraints may limit actual availability when an video decoder is requested.

This interface is a mandated interface of engine objects (see section 7.2).

Prototype

extern const XAlnterfacelD XA 11D_VIDEODECODERCAPABILITIES;

struct XAVideoDecoderCapabilitiesltf_;
typedef const struct XAVideoDecoderCapabilitiesltf_
* const * XAVideoDecoderCapabilitiesltf;

struct XAVideoDecoderCapabilitiesltf_ {

XAresult (*GetVideoDecoders) (
XAVideoDecoderCapabilitiesltf self,
XAuint32 * pNumDecoders,

XAuint32 * pDecoderlds

)

XAresult (*GetVideoDecoderCapabilities) (
XAVideoDecoderCapabilitiesltf self,
XAuint32 decoderlid,

XAuint32 * plndex,
XAVideoCodecDescriptor * pDescriptor

¥

Interface ID

d18ch200-e616-11dc-ab01-0002a5d5¢c51b

Defaults

Not applicable.

Methods

OpenMAX|AL

GetVideoDecoders

XAresult (*GetVideoDecoders) (

XAVideoDecoderCapabilitiesltf self,
XAuint32 * pNumDecoders,
XAuint32 * pDecoderlds

Description | Retrieves available video decoders.
Pre-conditions | None
Parameters | self [in] Interface self-reference.

pNumDecoders | [in/out]

If pDecoderlds is NULL, pNumDecoders returns the
number of decoders available. All implementations must have at
least one decoder.

If pDecoderslds is non-NULL, as an input pNumDecoders
specifies the size of the pDecoder 1ds array and as an output
it specifies the number of decoder IDs available within the
pDecoder lds array.

pDecoderlds | [out]

Array of video decoders provided by the engine. Refer to
XA_VIDEOCODEC macros.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments

None

See also

GetVideoDecoderCapabilities()

OpenMAXIAL

329

GetVideoDecoderCapabilities

XAresult (*GetVideoDecoderCapabilities) (
XAVideoDecoderCapabilitiesltf self,

XAuint32 decoderld,
XAuint32 * plndex,

XAVideoCodecDescriptor * pDescriptor

);
Description | Retrieves video decoder capabilities.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
decoderld [in] Specifies video decoder. Refer to XA_VIDEOCODEC macros.
pIndex [in/out] If pDescriptor is NULL, plndex returns the number of video
decoders capability descriptions. Each decoder must support at
least one profile/mode pair and therefore have at least one Codec
Descriptor.
If pDescriptor is non-NULL, pIndex is a incrementing value
used to enumerate capability descriptions. Supported index range
is 0 to N-1, where N is the number of video decoders capability
descriptions.
pDescriptor | [out] Structure defining the capabilities of the video decoder.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

See also

GetVideoDecoders()

OpenMAX|AL

330

8.36 XAVideoEncoderltf

Description

This interface is used to set the parameters to be used by an video encoder.

This interface is a mandated interface of Media Recorder objects (see section 7.5).

Prototype

extern const XAlnterfacelD XA 11D _VIDEOENCODER;

struct XAVideoEncoderltf_;

typedef const struct XAVideoEncoderltf_ * const * XAVideoEncoderltf;

struct XAVideoEncoderltf_ {
XAresult (*SetVideoSettings) (
XAVideoEncoderltf self,
XAVideoSettings * pSettings

)

XAresult (*GetVideoSettings) (
XAVideoEncoderItf self,
XAVideoSettings * pSettings

);
¥

Interface ID

9444db60-df06-11db-b311-0002a5d5¢51b

Defaults

No default settings are mandated.

OpenMAXIAL

331

Methods

SetVideoSettings

XAresult (*SetVideoSettings) (
XAVideoEncoderItf self,
XAVideoSettings * pSettings

)s

Description

Set video encoder settings.

Pre-conditions

Recordltf shall be in stopped state.

Parameters

self [in] Interface self-reference.

pSettings [in] Video encoder settings.
XA_RESULT_FEATURE_UNSUPPORTED is returned if

the requested encoder is not supported.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED
XA_RESULT_PRECONDITIONS_VIOLATED

Comments

None

See also

GetlImageSetting()

GetVideoSettings

XAresult (*GetVideoSettings) (
XAVideoEncoderItf self,
XAVideoSettings * pSettings

)
Description | Get video encoder settings.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pSettings [out] Video encoder settings.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

The getter returns the exact value that was set by the previous call to the setter. That is, the
keyFramelnterval field of the returned XAVideoSettings struct is zero if the
frequency of keyframes is set to be determined automatically.

See also

SetlImageSetting()

OpenMAX|AL

332

8.37 XAVideoEncoderCapabilities|tf

Description

This interface provides methods of querying the video decoding capabilities of the media engine.

This interface provides a means of enumerating all video encoders available on an engine where each an encoderld
represents each encoder. It also provides a means to query the capabilities of each encoder. A given encoder may
support several profile/level pairs each with their own capabilities (such as maximum resolution) appropriate to that
profile and level pair. Therefore, this interface represents the capabilities of a particular encoder as a list of
capability entries queriable by encoderID and capability entry index.

The set of video encoders supported by the engine does not change during the lifetime of the engine though dynamic
resource constraints may limit actual availability when an video encoder is requested.

This interface is a mandated interface of engine objects (see section 7.2).

Prototype

extern const XAlnterfacelD XA 11D_VIDEOENCODERCAPABILITIES;

struct XAVideoEncoderCapabilitiesltf_;
typedef const struct XAVideoEncoderCapabilitiesltf_
* const * XAVideoEncoderCapabilitiesltf;

struct XAVideoEncoderCapabilitiesltf_ {

XAresult (*GetVideoEncoders) (
XAVideoEncoderCapabilitiesltf self,
XAuint32 * pNumEncoders,

XAuint32 * pEncoderlds

)

XAresult (*GetVideoEncoderCapabilities) (
XAVideoEncoderCapabilitiesltf self,
XAuint32 encoderlid,

XAuint32 * plndex,
XAVideoCodecDescriptor * pDescriptor

¥

Interface ID

5aef2760-e872-11db-849f-0002a5d5¢c51b

Defaults

Not applicable.

Methods

OpenMAX|AL

GetVideoEncoders

XAresult (*GetVideoEncoders) (

XAVideoEncoderCapabilitiesltf self,
XAuint32 * pNumEncoders,
XAuint32 * pEncoderlds

);
Description | Retrieves available video encoders.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
pNumEncoders | [in/out]
If pEncoderlds is NULL, pNumEncoders returns the
number of encoders available. Returns O if there are no
encoders.
If pEncoderslds is non-NULL, as an input pNumEncoders
specifies the size of the pEncoder 1ds array and as an output
it specifies the number of encoder IDs available within the
pEncoderlds array.
pEncoderlds | [out] Array of video encoders provided by the engine. Refer to

XA_VIDEOCODEC macros.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

C t
MM | PROFILE NOTES
A Media Player/Recorder profile implementation must support at least one encoder.
Seealso | GetVideoEncoderCapabilities()

OpenMAXIAL

334

GetVideoEncoderCapabilities

XAresult (*GetVideoEncoderCapabilities) (
XAVideoEncoderCapabilitiesltf self,

XAuint32 encoderld,
XAuint32 * plndex,

XAVideoCodecDescriptor * pDescriptor

):
Description | Retrieves video encoder capabilities.
Pre-conditions | None
Parameters | self [in] Interface self-reference.
encoderld [in] Specifies video encoder. Refer to XA_VIDEOCODEC macros.
pIndex [in/out] If pCapabilities is NULL, pIndex returns the number of
capabilities. Each encoder must support at least one profile/mode
pair and therefore have at least one Codec Descriptor.
If pCapabilities is non-NULL, pIndex is an incrementing value
used for enumerating profiles. Supported index range is 0 to N-1,
where N is the number of capabilities of the encoder.
pDescriptor | [out] Structure defining the capabilities of the video encoder.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

See also

GetVideoEncoders()

OpenMAX|AL

335

8.38 XAVideoPostProcessingltf

Description

The video post-processing interface provides operations on video data. It is realized on an object that supports image
or video content. Post-processing operations are carried out in the following order:

1. Cropping
2. Rotating
3. Mirroring
4. Scaling

All the changes will only be committed once Commit() is called. This allows clients to apply a group of changes
to the video stream in one shot.

How to position the image data on the output screen is out of scope of this interface.
Scaling

Scaling is defined in this API by using three methods: SetSourceRectangle,
SetDestinationRectangle and SetScaleOptions. SetSourceRectangle defines the rectangle in
the original frame that is to be used for further processing. SetDestinationRectangle defines then the size
of the processed output frame. The amount of scaling applied is then determined by the size difference between the
source rectangle and destination rectangle together with the scaleOptions parameter of the SetScaleOptions method.
Figure 21 shows examples of scaling between source and destination rectangles of different sizes by using each of
the three scale options (STRETCH, FIT and CROP).

OpenMAX|AL

169 |—» 4:3 4:3 | > 4:3 4:3 [16:9

Stretch

4:3 4:3 16:9
Fit |

16:9 4:3 4:3

|

Qop

16:9 4:3 4:3

Figure 21. Scaling examples using the three scale options.

Figure 22 is an example of cropping and scaling. Figure 22 (a) is the original video frame with aspect ratio 4:3.
Figure 22 (b) is the cropped video with aspect ratio 1:1. It would be the result of calling SetSourceRectangle
with a 1:1 rectangle (i.e. a square) as the input parameter. Figure 22 (c) is the scaled frame with the scale option ‘Fit’
to the destination rectangle which has the aspect ratio 16:9. It would be the result of calling SetScaleOptions with
XA_VIDEOSCALE_FIT, 0 (for black) and XA_RENDERINGHINT_NONE as input parameters, followed by
SetDestinationRectangle with a 16:9 rectangle as the input parameter.

43 1:1

(@) (b) ()

Figure 22. Example of cropping and scaling

OpenMAX|AL

Prototype

extern const XAlnterfacelD XA 11D _VIDEOPOSTPROCESSING;

struct XAVideoPostProcessingltf_;
typedef const struct XAVideoPostProcessingltf_ * const *
XAVideoPostProcessingltf;

struct XAVideoPostProcessingltf_ {
XAresult (*SetRotation) (
XAVideoPostProcessingltf self,
XAmillidegree rotation

)

XAresult (*IsArbitraryRotationSupported) (
XAVideoPostProcessingltf self,
XAboolean *pSupported

)

XAresult (*SetScaleOptions) (
XAVideoPostProcessingltf self,
XAuint32 scaleOptions,
XAuint32 backgroundColor,
XAuint32 renderingHints

)

XAresult (*SetSourceRectangle) (
XAVideoPostProcessingltf self,
const XARectangle *pSrcRect

)

XAresult (*SetDestinationRectangle) (
XAVideoPostProcessingltf self,
const XARectangle *pDestRect

)

XAresult (*SetMirror) (
XAVideoPostProcessingltf self,
XAuint32 mirror

)

XAresult (*Commit) (
XAVideoPostProcessingltf self

)

Interface ID
898h6820-7e6e-11dd-8caf-0002a5d5c51b

Defaults

The default behavior is no rotation, no scaling, no cropping and no mirroring. Therefore, both the source and
destination rectangles are, by default, of the original frame size. The default scale options are:

e scaleOptions: XA_VIDEOSCALE_FIT

e backgroundColor: 0 (black and not transparent)

OpenMAX|AL

e renderingHints: XA_RENDERINGHINT_NONE (no hint)

Methods

SetRotation()

XAresult (*SetRotation) (

XAVideoPostProcessingltf self,

XAmillidegree rotation

)
Description | Sets post-processing options for rotation.
Pre-conditions | None
Parameters | self [in] | Interface self-reference.
rotation [in]

Defines the clock-wise rotation angle.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID
XA_RESULT_FEATURE_UNSUPPORTED

Comments

The change will only be committed once Commit() is called.

Not all implementations will be able to support arbitrary rotation angles. If
IsArbitraryRotationSupported() tells false and the application tries an angle other
than an integer multiple of 90 degrees, XA_ RESULT FEATURE_UNSUPPORTED will be
returned. All implementations are mandated to support angles that are integer multiples of 90
degrees. Those angles include, but are not limited to 0, 90000, 180000 and 270000 millidegrees.

See also

IsArbitraryRotationSupported()

OpenMAX|AL

339

IsArbitraryRotationSupported()

XAresult (*IsArbitraryRotationSupported) (
XAVideoPostProcessingltf self,
XAboolean *pSupported

);
Description | Determines if arbitrary rotation angles are supported by the implementation.
Pre-conditions | None
Parameters | self [in] | Interface self-reference.
pSupported | [out]

Is set to XA_BOOLEAN_TRUE if arbitrary rotation angles are
supported, set to XA_ BOOLEAN_FALSE otherwise.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

See also

SetRotation()

SetSourceRectangle()

XAresult (*SetSourceRectangle) (
XAVideoPostProcessingltf self,
const XARectangle * pSrcRect

)s;
Description | Defines the rectangle in the original frame that is to be used for further processing.
Pre-conditions | None
Parameters | self [in] | Interface self-reference.
pSrcRect [in] | Define the source rectangle to use.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA _RESULT_PARAMETER_INVALID
XA_RESULT_MEMORY_FAILURE
XA_RESULT_FEATURE_UNSUPPORTED

Comments

The change will only be committed once Commit() is called.

See also

SetDestinationRectangle()

OpenMAX|AL

340

SetDestinationRectangle()

XAresult (*SetDestinationRectangle) (
XAVideoPostProcessingltf self,
XARectangle * pDestRect

const

);

Description

Defines the destination rectangle for the processed frame. This rectangle, in conjunction with the
scaling options used (fit, crop, stretch) determines the scaling applied to the frame.

Pre-conditions | None
Parameters | self [in] | Interface self-reference.
pDestRect | [in] [Define the destination rectangle to use.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA _RESULT_PARAMETER_INVALID
XA_RESULT_MEMORY_FAILURE
XA _RESULT_FEATURE_UNSUPPORTED

Comments | The change will only be committed once Commit() is called.
The method works with SetSourceRectangle() to do cropping and scaling. If
SetSourceRectangle() is not called, by default, the original frame size will be used as the source
rectangle.
Seealso | SetSourceRectangle() and SetScaleOptions()-

OpenMAX|AL

341

SetScaleOptions ()

XAresult (*SetScaleOptions) (

XAVideoPostProcessingltf self,

XAuint32 scaleOptions

XAuint32 backgroundColor,
XAuint32 renderingHints

);

Description

Sets the options for scaling.

Pre-conditions

None

Parameters

self

[in]

Interface self-reference.

scaleOptions

[in]

Defines the scale option. There are three options:

XA _VIDEOSCALE_STRETCH - The source and destination
rectangle’s width and height parameters are used to calculate the
scaling factors independently. Aspect ratio is ignored.

XA _VIDEOSCALE_FIT - The minimum scale factor between
the destination rectangle’s width over the source rectangle’s
width and the destination rectangle’s height over the source
rectangle’s height is used. Aspect ratio is maintained. Frame is
centered.

XA_VIDEOSCALE_CROP - The maximum scale factor between
the destination rectangle’s width over the source rectangle’s
width and the destination rectangle’s height over the source
rectangle’s height is used. Aspect ratio is maintained. Frame is
centered.

Figure 21 illustrates these three options.

backgroundColor

[in]

32-bit RGBA color value with 8 bits each for red, green, blue
and alpha. This color will be used to fill the borders when
scaleOptions is set to XA_VIDEOSCALE_FIT. As an example,
the cell in Figure 21 “Fit’ row and 16:9->4:3 column has black
borders on its top and bottom parts. The alpha value specifies the
transparency level of those borders only and does not affect the
alpha value of the actual video frame.

renderingHints

[in]

Defines the rendering hints to use during scaling. Refer to
XA_RENDERINGHINT macros.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

None

See also

SetDestinationRectangle().

OpenMAXIAL

342

SetMirror

XAresult (*SetMirror) (
XAVideoPostProcessingltf self,
XAuint32 mirror

);

Description | Sets post-processing options for mirroring.

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

mirror [in]
Defines the mirroring type for video post-processors.

XA _RESULT_PARAMETER__INVALID is returned if an unsupported
mirroring type is requested. Refer to XA_VIDEOMIRROR macro.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | The change will only be committed once Commit() is called.

Seealso | XA_VIDEOMIRROR.

Commit

XAresult (*Commit) (
XAVideoPostProcessingltf self
)

Description | Commit all video post-processing changes since the last Commit().

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_FEATURE_UNSUPPORTED

Comments | All the changes will only be committed once Commit() is called. This ensures that (a) all the
changes are applied to the same video frame, and (b) there are no intermediate or orphan frames
created during this post-processing.

Seealso | None.

OpenMAX|AL

8.39 XAVolumeltf

Description

This interface exposes controls for manipulating the object’s audio volume properties.

This interface additionally exposes a stereo position control. Its exact effect is determined by the object’s format; if
the object’s format is mono, a pan effect is applied, and if the object’s format is stereo, a balance effect is applied.

This interface is supported on the Media Player (see section 7.4) and Output Mix objects (see section 7.7), and may
be optionally supported on other objects such as the Media Recorder object (see section 7.5).

Prototype

extern const XAlnterfacelD XA 11D _VOLUME;

struct XAVolumeltf_;
typedef const struct XAVolumeltf_ * const * XAVolumeltf;

struct XAVolumeltf_ {

XAresult (*SetVolumelLevel) (
XAVolumel tf selT,
XAmillibel level

)

XAresult (*GetVolumelLevel) (
XAVolumeltf self,
XAmillibel * pLevel

)

XAresult (*GetMaxVolumelLevel) (
XAVolumeltf self,
XAmillibel * pMaxLevel

)3

XAresult (*SetMute) (
XAVolumeltf self,

XAboolean mute

);

XAresult (*GetMute) (
XAVolumeltf self,

XAboolean * pMute

)

XAresult (*EnableStereoPosition) (
XAVolumeltf self,

XAboolean enable

)

XAresult (*IskEnabledStereoPosition) (
XAVolumeltf self,

XAboolean * pEnable

)

XAresult (*SetStereoPosition) (
XAVolumeltf self,
XApermille stereoPosition

OpenMAX|AL

XAresult (*GetStereoPosition) (
XAVolumel tf self,
XApermille * pStereoPosition

3

Interface ID
088bab520-f777-11db-a5e3-0002a5d5¢c51b

Defaults

Volume level: 0 mB
Mute: disabled (not muted)

Stereo position: disabled, 0 %o (center)

Methods

SetVVolumelLevel

XAresult (*SetVolumelLevel) (
XAVolumel tf self,
XAmillibel level

):
Description | Sets the object’s volume level.
Pre-conditions | None
Parameters | self | [in] | Interface self-reference.
level | [in] | Volume level in millibels. The valid range is [XA_MILLIBEL_MIN, maximum

supported level], where maximum supported level can be queried with the
method GetMaxVolumeLevel (). The maximum supported level is always
at least 0 mB.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | |f the object is muted, calls to SetVolumeLevel () will still change the internal volume level,
but this will have no audible effect until the object is unmuted.
Seealso | SetMute()

OpenMAX|AL

GetVolumelevel

XAresult (*GetVolumelLevel) (
XAVolumel tf self,
XAmillibel * pLevel

);

Description | Gets the object’s volume level.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pLevel | [out] | Pointer to a location to receive the object’s volume level in millibels. This
must be non-NULL.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

See also | None

GetMaxVolumeLevel

XAresult (*GetMaxVolumelLevel) (
XAVolumeltf self,
XAmillibel * pMaxLevel

)s

Description | Gets the maximum supported level.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pMaxLevel | [out] | Pointer to a location to receive the maximum supported volume level in
millibels. This must be non-NULL.

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | The maximum supported level is implementation-dependent, but will always be at least 0 mB.

See also | None

OpenMAX|AL

SetMute

XAresult (*SetMute) (
XAVolumeltf self,
XAboolean mute

);

Description | Mutes or unmutes the object.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

mute [in] If true, the object is muted. If false, the object is unmuted.

Returnvalue [The return value can be the following:
XA_RESULT_SUCCESS

Comments | Muting the object does not change the volume level reported by GetVolumeLevel ().

Calling SetMute () with mute set to true when the object is already muted is a valid operation
that has no effect.

Calling SetMute () with mute set to false when the object is already unmuted is a valid
operation that has no effect.

Seealso | GetVolumeLevel ()

GetMute

XAresult (*GetMute) (
XAVolumel tf self,
XAboolean * pMute

);

Description | Retrieves the object’s mute state.

Pre-conditions | None

Parameters | self | [in] Interface self-reference.

pMute | [out] | Pointer to a Boolean to receive the object’s mute state. This must be non-
NULL.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

Seealso | None

OpenMAX|AL

EnableStereoPosition

XAresult (*EnableStereoPosition) (
XAVolumel tf self,
XAboolean enable

);

Description | Enables or disables the stereo positioning effect.

Pre-conditions | None

Parameters | self [in] | Interface self-reference.

enable | [in] | Iftrue, enables the stereo position effect. If false, disables the stereo
positioning effect (no attenuation due to stereo positioning is applied to the
left or right channels).

Returnvalue | The return value can be one of the following:
XA_RESULT_SUCCESS
XA _RESULT_PARAMETER_INVALID

Comments | None.

Seealso | None.

IsEnabledStereoPosition

XAresult (*IskEnabledStereoPosition) (
XAVolumel tf self,
XAboolean * pEnable

);

Description | Returns the enabled state of the stereo positioning effect.

Pre-conditions | None

Parameters | self [in] Interface self-reference.

pEnable | [out] | Pointer to a location to receive the enabled state of the stereo positioning
effect.

Returnvalue [The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments | None

Seealso | None

OpenMAX|AL

SetStereoPosition

XAresult (*SetStereoPosition) (
XAVolumel tf self,

XApermille stereoPosition

);

Description

Sets the stereo position of the object; For mono objects, this will control a constant energy pan
effect, and for stereo objects, this will control a balance effect.

Pre-conditions | None
Parameters [self [in] | Interface self-reference.
stereoPosition | [in] | Stereo position in the range [-1000 %o, 1000 %o].

A stereo position of 0 %o indicates the object is in the center. That
is, in the case of balance, no attenuation is applied to the left and
right channels; and in the case of pan, 3 dB attenuation is applied
to the left and right channels.

A stereo position of —1000 %o pans the object fully to the left; the
right channel is silent.

A stereo position of 1000 %o pans the object fully to the right; the
left channel is silent.

Return value

The return value can be one of the following:
XA_RESULT_SUCCESS
XA_RESULT_PARAMETER_INVALID

Comments

The exact pan and balance curves used for this method are implementation-dependent, subject to
satisfying the parameter description.

For objects whose format is mono, this method controls a constant energy pan effect.
For objects whose format is stereo, this method controls a balance effect.

See also

None

OpenMAX|AL

349

GetStereoPosition

XAresult (*GetStereoPosition) (
XAVolumel tf self,

XApermille * pStereoPosition

);

Description

Gets the object’s stereo position setting.

Pre-conditions

None

Parameters

self [in]

Interface self-reference.

pStereoPosition | [out]

Pointer to a location to receive the current stereo position
setting. This must be non-NULL.

Return value

The return value can be one of the following:

XA_RESULT_SUCCESS

XA_RESULT_PARAMETER_INVALID

Comments

None

See also

None

OpenMAX|AL

350

9 Macros and Typedefs

9.1 Structures
9.1.1 XAAudioCodecDescriptor

typedef struct XAAudioCodecDescriptor_ {
XAuint32 maxChannels;
XAuint32 minBitsPerSample;
XAuint32 maxBitsPerSample;
XAmilliHertz minSampleRate;
XAmilliHertz maxSampleRate;
XAboolean isFregRangeContinuous;
XAmilliHertz * pSampleRatesSupported;
XAuint32 numSampleRatesSupported;
XAuint32 minBitRate;
XAuint32 maxBitRate;
XAboolean isBitrateRangeContinuous;
XAuint32 * pBitratesSupported;
XAuint32 numBitratesSupported;
XAuint32 profileSetting;
XAuint32 modeSetting;

} XAAudioCodecDescriptor;

OpenMAX|AL

This structure is used for querying the capabilities of an audio codec.

Field Description

maxChannels Maximum number of audio channels.
minBitsPerSample Minimum bits per sample of PCM data.
maxBitsPerSample Maximum bits per sample of PCM data.
minSampleRate Minimum sampling rate supported.
maxSampleRate Maximum sampling rate supported.

isFregRangeContinuous

Returns XA_BOOLEAN_TRUE if the device supports a continuous range of
sampling rates between minSampleRate and maxSampleRate;
otherwise returns XA BOOLEAN_FALSE.

pSampleRatesSupported

Indexed array containing the supported sampling rates. Ignored if
isFregRangeContinuous is XA_BOOLEAN_TRUE. If
pSampleRatesSupported is NULL, the number of supported sample
rates is returned in numSamp leRatesSupported.

numSamp leRatesSupported

Size of the pSampl ingRatesSupported array. Ignored if
isFregRangeContinuous is XA_BOOLEAN_TRUE

minBitRate

Minimum bitrate.

maxBitRate

Maximum bitrate.

isBitrateRangeContinuous

Returns XA_BOOLEAN_TRUE if the device supports a continuous range of
bitrates between minBitRate and maxB i tRate; otherwise returns
XA BOOLEAN_FALSE.

pBitratesSupported

Indexed array containing the supported bitrates. Ignored if
isBitrateRangeContinuous is XA _BOOLEAN_TRUE. If
pBitratesSupported is NULL, the number of supported bitrates is
returned in numBitratesSupported.

numBitratesSupported

Size of the pBitratesSupported array. Ignored if
isBitrateRangeContinuous is XA_BOOLEAN_TRUE

profileSetting

Profile supported. See XA_AUDIOPROFILE defines [see section 9.2.3].

modeSetting

Level supported. See XA_AUDIOMODE defines [see section 9.2.3].

OpenMAX|AL

352

9.1.2

XAAudioEncoderSettings

typedef struct XAAudioEncoderSettings_ {

XAuint32
XAuint32
XAuint32

encoderld;
channelsin;
channelsOut;

XAmilliHertz sampleRate;

XAuint32
XAuint32
XAuint32
XAuint32
XAuint32
XAuint32
XAuint32
XAuint32
XAuint32

bitRate;
bitsPerSample;
rateControl;
profileSetting;
levelSetting;
channelMode;
streamFormat;
encodeOptions;
blockAlignment;

} XAAudioEncoderSettings;

This structure is used to set the audio encoding parameters.

Field Description

encoderld Identifies the supported audio encoder. Refer to XA_AUD I00CODEC macros.

channelslin Number of input audio channels.

channelsOut Number of output channels in encoded data. In case of contradiction between this field and
the channe IMode field, the channe IMode field overrides.

sampleRate Audio samplerate of input audio data.

bitRate Bitrate of encoded data.

bitsPerSample | Bits per sample of input data.

rateControl Encoding rate control mode. See XA_RATECONTROLMODE macros

profileSetting

Profile to use for encoding. See XA_AUDI0PROFILE macros.

levelSetting Level to use for encoding. See XA_AUD IOMODE macros.

channelMode Channel mode for encoder. See XA_AUD 10CHANMODE macros.

streamFormat Format of encoded bit-stream. For example, AMR encoders use this to select between IF1,
IF2, or RTPPAYLOAD bit-stream formats. Refer to XA_AUDIOSTREAMFORMAT XXX
defines in section 9.2.3

encodeOptions | Codec specific encoder options. For example, WMA encoders use it to specify codec

version, framesize, frequency extensions, and other options. See the relevant encoder
documentatation for format. This is typically a bitfield specifying encode options. . Use a
value of zero to specify use of the default encoder settings for the encoder.

blockAlignment

Block alignment in bytes of an audio sample.

OpenMAX|AL

353

9.1.3 XAAudiolnputDescriptor

typedef struct XAAudiolnputDescriptor_ {
XAchar * deviceName;
XAintl6 deviceConnection;
XAiIntl6 deviceScope;
XAintl6 devicelocation;
XAboolean isForTelephony;
XAmilliHertz minSampleRate;
XAmilliHertz maxSampleRate;
XAboolean isFreqRangeContinuous;
XAmilliHertz * samplingRatesSupported;
XAintl6 numOfSamplingRatesSupported;
XAintl6 maxChannels;

} XAAudiolnputDescriptor;

This structure is used for returning the description of audio input device capabilities. The deviceConnection,
deviceScope and devicelLocation fields collectively describe the type of audio input device in a
standardized way, while still allowing new device types to be added (by vendor-specific extensions of the
corresponding macros), if necessary. For example, on a mobile phone, the integrated microphone would have the
following values for each of these three fields, respectively: XA_ DEVCONNECT ION_INTEGRATED,

XA DEVSCOPE_USER and XA _DEVLOCATION_HANDSET, while a Bluetooth headset microphone would have
the following values: XA_DEVCONNECTION_ATTACHED_WIRELESS, XA_DEVSCOPE_USER and
XA_DEVLOCATION_HEADSET.

Field Description

deviceName Human-readable string representing the name of the device, such as
“Bluetooth microphone” or “wired microphone”.

deviceConnection One of the device connection types listed in the XA_ DEVCONNECT ION
macros.

deviceScope One of the device scope types listed in the XA DEVSCOPE macros.

devicelocation One of the device location types listed in the XA_DEVLOCATION
macros

isForTelephony Returns XA_BOOLEAN_TRUE if the audio input device is deemed

suitable for telephony uplink audio; otherwise returns

XA BOOLEAN_FALSE. For example: a line-in jack would not be
considered suitable for telephony, as it is difficult to determine what can
be connected to it.

minSampleRate Minimum sampling rate supported
maxSampleRate Maximum sampling rate supported.
isFregRangeContinuous Returns XA_BOOLEAN_TRUE if the input device supports a continuous

range of sampling rates between minSampleRate and
maxSamp leRate; otherwise returns XA_BOOLEAN_FALSE

sampl ingRatesSupported Indexed array containing the supported sampling rates, as defined in the
XA SAMPLING_RATE macros. Ignored if
isFregRangeContinuous is XA_BOOLEAN_TRUE

numOfSamplingRatesSupported | Size of the sampl ingRatesSupported array. Ignored if
isFregRangeContinuous is XA_BOOLEAN_TRUE

OpenMAX|AL

Field

Description

maxChannels

Maximum number of channels supported; for mono devices, value would

be 1.

The table below shows examples of the first five fields of the XAAudiol nputDescriptor struct for various

audio input devices. For the sake of brevity and clarity, the full names of the XA_DEV macros have been abbreviated

to include just the distinct portion of the names (such as XA_DEVCONNECTION_ INTEGRATED appears as

INTEGRATED and XA_DEVSCOPE_PRIVATE as PRIVATE).

Table 15: Examples of Audio Input Devices.

deviceName

Handset microphone
Bluetooth microphone

Wired headset
microphone

Carkit microphone

Carkit handset
microphone

System line-in jack

Networked media Server

device-Connection device-Scope

INTEGRATED USER
WIRELESS USER

WIRED USER

WIRED ENVIRON-
MENT

WIRED USER

INTEGRATED UNKNOWN
NETWORK UNKNOWN

device-
Location

HANDSET
HEADSET
HEADSET

CARKIT

CARKIT

HANDSET
REMOTE

isForTelephony

TRUE
TRUE
TRUE

TRUE

TRUE

FALSE
FALSE

OpenMAX|AL

355

9.1.4 XAAudioOutputDescriptor

typedef struct XAAudioOutputDescriptor_ {
XAchar *pDeviceName;
XAintl6 deviceConnection;
XAiIntl6 deviceScope;
XAintl6 devicelocation;
XAboolean isForTelephony;
XAmilliHertz minSampleRate;
XAmilliHertz maxSampleRate;
XAboolean isFreqRangeContinuous;
XAmilliHertz *samplingRatesSupported;
XAintl6 numOfSamplingRatesSupported;
XAintl6 maxChannels;

} XAAudioOutputDescriptor;

This structure is used for returning the description of audio output device capabilities. The deviceConnection,
deviceScope and devicelLocation fields collectively describe the type of audio output device in a
standardized way, while still allowing new device types to be added (by vendor-specific extensions of the
corresponding macros), if necessary. For example, on a mobile phone, the earpiece would have the following values
for each of these three fields, respectively: XA_DEVCONNECT ION_INTEGRATED, XA_DEVSCOPE_USER and
XA _DEVLOCATION_HANDSET, while a pair of speakers that are part of a music dock would have the following:
XA DEVCONNECTION_ATTACHED_ WIRED, XA DEVSCOPE_ENVIRONMENT and XA DEVLOCATION_DOCK.

Field Description

deviceName Human-readable string representing the name of the output device, such
as “integrated loudspeaker” or “Bluetooth headset”.

deviceConnection One of the device connection types listed in the XA DEVCONNECT ION
macros.

deviceScope One of the device scope types listed in the XA_DEVSCOPE macros.

devicelLocation One of the device location types listed in the XA_DEVLOCATION
macros.

isForTelephony Returns XA_BOOLEAN_TRUE if the audio output device is deemed

suitable for telephony downlink audio; otherwise returns
XA _BOOLEAN_FALSE. For example, a line-out jack would not be a
suitable for telephony downlink audio.

minSampleRate Minimum sampling rate supported.
maxSampleRate Maximum sampling rate supported.
isFregRangeContinuous Returns XA_BOOLEAN_TRUE if the output device supports a continuous

range of sampling rates between minSampleRate and
maxSamp leRate; otherwise returns XA BOOLEAN_ FALSE

samplingRatesSupported Indexed array containing the supported sampling rates, as defined in the
XA_SAMPL INGRATE macros. Ignored if isFreqgRangeContinuous
is XA_BOOLEAN_TRUE

numOfSamp Il ingRatesSupported | Size of the sampl ingRatesSupported array. Ignored if
isFregRangeContinuous is XA_BOOLEAN_TRUE

OpenMAX|AL

Field

Description

maxChannels

Maximum number of channels supported; for mono devices, value would
be 1.

The table below shows examples of the first six fields of the XAAud i oOutputDescriptor struct for various
audio output devices. For the sake of brevity and clarity, the full names of the XA_DEV macros have been
abbreviated to include just the distinct portion of the names (such as XA_DEVCONNECTION_ INTEGRATED
appears as INTEGRATED and XA DEVSCOPE_USER as USER).

Table 16: Examples of Audio Output Devices

deviceName Device- device- device- isFor-
Connection Scope Location Telephony

Earpiece INTEGRATED USER HANDSET TRUE

Loudspeaker INTEGRATED ENVIRON- HANDSET TRUE
MENT

Bluetooth headset WIRELESS USER HEADSET TRUE

speaker

Wired headset speaker ~ WIRED USER HEADSET TRUE

Carkit loudspeaker WIRED ENVIRON- CARKIT TRUE
MENT

Carkit handset speaker ~ WIRED USER CARKIT TRUE

System line-out jack INTEGRATED UNKNOWN HANDSET FALSE

Dock loudspeaker WIRED ENVIRON- DOCK FALSE
MENT

FM radio Transmitter WIRED ENVIRON- DOCK FALSE
MENT

Networked media NETWORK UNKNOWN REMOTE FALSE

renderer

9.1.5

XAAudioStreamInformation

typedef struct XAAudioStreamlnformation_ {
XAuint32 codecld;
XAuint32 channels;
XAmillHertz sampleRate;
XAuint32 bitRate;
XAchar langCountry[16];
XAmillisecond duration;
} XAAudioStreamInformation;

OpenMAX|AL

This structure is used for querying the information about an audio stream.

Field Description

codecld Identifies the stream’s codec format ID (Refer to XA _AUDIOCODEC)

channels Identifies the number of audio channels within the stream.

sampleRate Identifies the audio stream’s sample rate. If the sample rate is unknown, this value shall
be 0.

bitRate Identies the audio stream’s bit rate in units of bits per second. If the bit rate is
unknown, this value shall be 0.

langCountry Language/country code of the stream. (see note below);

duration Identifies the total duration of the audio stream. If the duration is unknown, this value

shall be XA_TIME_UNKNOWN.

The language / country code may be a language code, a language / country code, or a country code.
Formatting of language codes and language / country codes is defined by IETF RFC 3066 [RFC3066] (which incorporates underlying 1ISO
specifications 639 [1ISO639] and 3166 [1ISO3166] and a syntax). Formatting of country codes is defined by ISO 3166 [1ISO3166].

9.1.6 XACameraDescriptor

typedef struct XACameraDescriptor_ {
XAchar * name;
XAuint32 maxWidth;
XAuint32 maxHeight;
XAuint32 orientation;
XAuint32 featuresSupported;
XAuint32 exposureModesSupported;
XAuint32 flashModesSupported;
XAuint32 focusModesSupported;
XAuint32 meteringModesSupported;
XAuint32 whiteBalanceModesSupported;
} XACameraDescriptor;

Structure used to query the camera capabilities. Zoom factor ranges will vary from 1 to the value specified:

Field Description

name Human readable string representing the name of the device.

maxWidth Maximum supported width in units of pixels.

maxHeight Maximum supported height in units of pixels.

orientation Camera mounting orientation. See XA_ORIENTAT 10N macros.

featureSupported A bitwise OR of camera features supported. See XA CAMERACAP macros.

exposureModesSupported A bitwise OR of exposure modes supported. See
XA_CAMERA_EXPOSUREMODE macros.

flashModesSupported A bitwise OR of flash modes supported. See XA CAMERA_FLASHMODE
macros.

OpenMAX|AL

Field Description

focusModesSupported A bitwise OR of focus modes supported. See XA CAMERA_FOCUSMODE
macros.

meter ingModesSupported A bitwise OR of metering modes supported. See

XA_CAMERA_METERINGMODE macros.

whiteBalanceModesSupported | A bitwise OR of white balance modes supported. See

XA_CAMERA_WHITEBALANCEMODE macros.

9.1.7 XADataFormat_MIME

typedef struct XADataFormat MIME_ {
XAuint32 formatType;
XAchar * mimeType;
XAuint32 containerType;

} XADataFormat_MIME;

Fields include:

Field Description

formatType The format type, which must always be XA_DATAFORMAT _MIME for this structure.
mimeType The mime type of the data expressed as a string.

containerType | The container type of the data.

When an application uses this structure to specify the data source for a player use case, the
application may leave the containerType unspecified (for example
XA_CONTAINERTYPE_UNSPECIFIED) or may provide a specific value as a hint to the
player.

When an application uses this structure to specify the data sink for a recorder use case, the
application is dictating the container type of the captured content.

OpenMAXIAL

359

9.1.8

XADataFormat_PCM

typedef struct XADataFormat_PCM_ {

XAuint32
XAuint32
XAuint32
XAuint32
XAuint32
XAuint32
XAuint32

formatType;
numChannels;
samplesPerSec;
bitsPerSample;
containerSize;
channelMask;
endianness;

} XADataFormat_PCM;

Fields include:

Field Description

formatType The format type, which must always be XA DATAFORMAT _PCM for this structure.

numChannels Numbers of audio channels present in the data. Multi-channel audio is always interleaved in
the data buffer.

samplesPerSec | The audio sample rate of the data.

bitsPerSample | Number of actual data bits in a sample.

containerSize | The container size for PCM data in bits, for example 24 bit data in a 32 bit container. Data is
left-justified within the container. For best performance, it is recommended that the container
size be the size of the native data types.

channelMask Channel mask indicating mapping of audio channels to speaker location.
The channelMask member specifies which channels are present in the multichannel stream.
The least significant bit corresponds to the front left speaker (XA_SPEAKER_FRONT_LEFT),
the next least significant bit corresponds to the front right speaker
(XA_SPEAKER_FRONT_RIGHT), and so on. The full list of valid speaker locations is
defined in section 9.2.69. The channels specified in channelMask must be present in the
prescribed order (from least significant bit up). For example, if only
XA_SPEAKER_FRONT_LEFT and XA_SPEAKER_FRONT_RIGHT are specified, the
samples for the front left speaker must come first in the interleaved stream. The number of bits
set in channelMask should be the same as the number of channels specified in numChannels.

endianness Endianness of the audio data. See XA_BYTEORDER macro for definition.

9.1.9 XADataFormat_Rawlmage

typedef struct XADataFormat_Rawlmage {
XAuint32 formatType;
XAuint32 colorFormat;
XAuint32 height;
XAuint32 width;
XAuint32 stride;
} XADataFormat_Rawlmage;

Structure used to describe the raw image data:

OpenMAX|AL

360

Field

Description

formatType The format type, which must always be XA_DATAFORMAT_RAWIMAGE for this structure.
colorFormat | Raw image color format. Refer to XA_COLORFORMAT macros.

height Frame height (vertical) resolution.

width Frame width (horizontal) resolution.

stride Number of bytes in a line of the image.

9.1.10 XADatalLocator_ Address

typedef struct XADatalLocator Address_ {
XAuint32 locatorType;
void * pAddress;
XAuint32 length;

} XADatalLocator_ Address;

Fields include:

Field Description

locatorType Locator type, which must always be XA_DATALOCATOR_ADDRESS for this structure.
pAddress Address of the first byte of data.

length Length of the data in bytes.

9.1.11 XADatalLocator_lODevice

typedef struct XADatalocator_ IODevice_{
XAuint32 locatorType;
XAuint32 deviceType;
XAuint32 devicelD;
XAObjectltf device;
} XADatalLocator_Il0Device;

Fields include:

Field Description

locatorType Locator type, which must be XA DATALOCATOR_ I0ODEV ICE for this structure.
deviceType Type of I/O device. See XA_10DEV I CE macros.

devicelD ID of the device. Ignored if device is not NULL

device I/0 device object itself. Must be NULL if device ID parameter is to be used.

OpenMAX|AL

9.1.12 XADatalLocator NativeDisplay

typedef struct XADatalLocator_ NativeDisplay {
XAuint32 locatorType;
XANativeHandle hWindow;
XANativeHandle hDisplay;

} XADatalLocator NativeDisplay;

Fields include:

Field Description

locatorType Locator type, which must be XA _DATALOCATOR_NATIVEDISPLAY for this structure.

hWindow Handle of the native display window.

hDisplay Handle of the native display.

9.1.13 XADatalLocator_ OutputMix

typedef struct XADatalLocator OutputMix {
XAuint32 locatorType;
XAObjectltf outputMix;

} XADatalocator_OutputMix;

Fields include:

Field Description

locatorType Locator type, which must be XA_DATALOCATOR_OUTPUTMI X for this structure.

outputMix The OutputMix object as retrieved from the engine.

9.1.14 XADatalLocator_ URI

typedef struct XADatalLocator URI_ {
XAuint32 locatorType;
XAchar * URI;

} XADatalLocator_URI;

Fields include:

Field Description

locatorType Locator type, which must always be XA_DATALOCATOR_URI for this structure.

URI URI expressed as a string.

OpenMAX|AL

9.1.15 XADataSink

typedef struct XADataSink_ {
void * plLocator;
void * pFormat;

} XADataSink;

Fields include:

Field Description

pLocator | Pointer to the specified data locator structure. This may point to any of the following structures.
XADatalocator_ AddressXADatalLocator_ 10Device
XADatalLocator_NativeDisplay

XADatalLocator_ OutputMix

XADatalLocator_URI

The first field of each of these structures includes the 32 bit locatorType field, which identifies
the locator type (See XA DATALOCATOR definitions) and hence the structure pointed to.

pFormat | A pointer to the specified format structure. This may point to any of the following structures.
XADataFormat_PCM

XADataFormat_MIME

XADataFormat_Rawlmage

The first field of each of these structures includes the 32 bit formatType field, which identifies the
format type (XA_DATAFORMAT definitions) and hence the structure pointed to. pFormat is ignored
if pLocator is XADatalLocator_10Device, XADatalLocator_OutputMix or
XADatalLocator_ NativeDisplay.

9.1.16 XADataSource

typedef struct XADataSource_ {
void * plLocator;
void * pFormat;

} XADataSource;

Fields include:

Field Description

pLocator | Pointer to the specified data locator structure. This may point to any of the following structures.
XADatalLocator_ AddressXADatalocator_ I0Device
XADatalLocator_URI

The first field of each of these structures includes the 32 bit locatorType field, which identifies
the locator type (see XA_DATALOCATOR definitions) and hence the structure pointed to.

pFormat | A pointer to the specified format structure. This may point to any of the following structures.
XADataFormat_PCM

XADataFormat_MIME

XADataFormat_Rawlmage

The first field of each of these structures includes the 32 bit formatType field, which identifies the
format type (XA_DATAFORMAT definitions) and hence the structure pointed to. pFormat is ignored
if pLocator is XADatalLocator_10Device.

OpenMAX|AL

9.1.17 XAEngineOption

typedef struct XAEngineOption_ {
XAuint32 feature;
XAuint32 data;

} XAEngineOption;

Structure used for specifying different options during engine creation:

Field Description
feature Feature identifier. See XA_ENGINEOPT ION macros.
data Value to use for feature.

9.1.18 XAFocusPointPosition

typedef struct XAFocusPointPosition_ {
XAuint32 left;
XAuint32 top;
XAuint32 width;
XAuint32 height;
} XAFocusPointPosition;

This structure is used to specify the camera focus region point position and size.

Field Description

left The leftmost coordinate of the focus point.
top The topmost coordinate of the focus point.
width The width of the focus point.

height The height of the focus point.

9.1.19 XAHSL

typedef struct XAHSL_ {
XAmillidegree hue;
XApermille saturation;
XApermille lightness;
} XAHSL;

XAHSL represents a color defined in terms of the HSL color space.

Field Description
hue Hue. Range is [0, 360000] in millidegrees. (Refers to the range between 0 and 360 degrees).
saturation | Saturation of the color. Range is [0, 1000] in permille. (Refers to the range between 0.0% and
100.0%).
lightness Il_cl)%hg;/e)ss of the color. Range is [0, 1000] in permille. (Refers to the range between 0.0% and
. 0).

OpenMAX|AL

9.1.20 XAlmageCodecDescriptor

typedef struct XAlmageCodecDescriptor_ {
XAuint32 codecld;
XAuint32 maxWidth;
XAuint32 maxHeight;

} XAlmageCodecDescriptor;

This structure is used to query the capabilities of image encoders and decoders.

Field Description

codecld Identifies the supported image codec. Refer to XA_IMAGECODEC macros
maxWidth Maximum frame width (horizontal) resolution.

maxHeight Maximum frame height (vertical) resolution.

9.1.21 XAlmageSettings

typedef struct XAlmageSettings_ {
XAuint32 encoderlid;
XAuint32 width;
XAuint32 height;
XApermille compressionLevel;
XAuint32 colorFormat;

} XAlmageSettings;

This structure is used for setting the encoding parameters.

Field Description

encoderld Identifies the supported image encoder. Refer to XA_IMAGECODEC macros.
width Frame width (horizontal) resolution.

height Frame height (vertical) resolution.

compressionLevel | Compression level is in the range of 0 to 1000. A value of 0 indicates implementation
default. A level of 1000 produces the highest compression and a level of 1 produces the
lowest compression. Note: This parameter is to be ignored if the encoder does not support
this capability.

colorFormat Color format to use if XA__IMAGECODEC_RAW is specified. Refer to XA_COLORFORMAT
macros.

9.1.22 XAlmageStreaminformation

typedef struct XAlmageStreamlnformation_ {
XAuint32 codecld;
XAuint32 width;
XAuint32 height;
XAmillisecond presentationDuration;
} XAlmageStreamlnformation;

OpenMAX|AL

This structure is used for querying the information about an image stream.

Field Description

codecld Identifies the stream’s codec format ID (Refer to XA _IMAGECODEC)
width Identifies the image stream’s horizontal resolution (width).

height Identifies the image stream’s vertical resolution (height).

presentationDuration

Identifies the total duration of the image stream. If the duration is unknown, this
value shall be XA _TIME_UNKNOWN.

For images, this means the total duration that the image should be presented.

For image streams that contain multiple images, an event notification will be issued
when the next image stream is processed by the object and the presentation duration
has changed. This will allow the allocation to query for the updated image
presentation duration that is associated with the new image.

OpenMAX|AL

9.1.23 XAlnterfacelD

typedef const struct XAlnterfacelD_ {
XAuint32 time_low;
XAuintl6é time_mid;
XAuintl6é time_hi_and version;
XAuintl6 clock_seq;
XAuint8 node[6];

} * XAlnterfacelD;

The interface ID type.

Field Description

time_low Low field of the timestamp.

time_mid Middle field of the timestamp.

time_hi_and_version High field of the timestamp multiplexed with the version number.
clock_seq Clock sequence.

node Spatially unique node identifier.

9.1.24 XALEDDescriptor

typedef struct XALEDDescriptor_ {
XAuint8 ledCount;
XAuint8 primaryLED;
XAuint32 colorMask;

} XALEDDescriptor;

XALEDDescriptor represents the capabilities of the LED array 1/0 Device.

Field Description

ledCount Number of LEDs in the array. Range is [1, 32].

primaryLED | Index of the primary LED, which is the main status LED of the device. Range is [0, ledCount-
1].

colorMask | Bitmask indicating which LEDs support color. Valid bits range from the least significant bit,
which indicates the first LED in the array, to bit ledCount—1, which indicates the last LED in
the array.

9.1.25 XAMediaContainerinformation

typedef struct XAMediaContainerInformation_ {
XAuint32 containerType;
XAmillisecond mediaDuration;
XAuint32 numStreams;

} XAMediaContainerInformation;

OpenMAX|AL

XAMediaContainer Information isused for querying information about a media container.

Field Description
containerType Identifies the media container type (Refer to XA_CONTAINERTYPE).
mediaDuration Identifies the total duration of the content. If the duration is unknown, this value shall

be XA_TIME_UNKNOWN.

numStreams Identifies the number of streams (tracks) available within the media container.

9.1.26 XAMetadatalnfo

typedef struct XAMetadatalnfo_ {
XAuint32 size;
XAuint32 encoding;
XAchar langCountry[16];
XAuint8 data[1l];

} XAMetadatalnfo;

XAMetadatalnfo represents a key or a value from a metadata item key/value pair.

Field Description

size Size of the data in bytes. size must be greater than 0.
encoding Character encoding of the data.

langCountry Language / country code of the data (see note below).
data Key or value, as represented by the encoding.

The language / country code may be a language code, a language / country code, or a country code. When specifying
the code, note that a partially-specified code will match fully-specified codes that match the part that is specified.
For example, “en” will match “en-us” and other “en” variants. Likewise, “us” will match “en-us” and other “us”
variants.

Formatting of language codes and language / country codes is defined by IETF RFC 3066 [RFC3066] (which
incorporates underlying 1SO specifications 639 [1SO639] and 3166 [1SO3166] and a syntax). Formatting of country
codes is defined by 1SO 3166 [ISO3166].

9.1.27 XAMIDIStreamInformation

typedef struct XAMIDIStreamInformation_ {
XAuint32 channels;
XAuint32 tracks;
XAuint32 bankType;
XAchar langCountry[16];
XAmillisecond duration;
} XAMIDIStreamInformation;

OpenMAX|AL

This structure is used for querying the information about a MIDI stream.

Field Description

channels Number of MIDI channels. If the number of channels is unknown, the value shall be
XA _MIDI_UNKNOWN.

tracks Number of MIDI tracks. If the number of tracks is unknown, the value shall be
XA _MIDI_UNKNOWN.

bankType Identifies the type of MIDI sound bank(s) used, as defined in XA_MIDIBANK . If the

bank information is unknown, the value shall be XA MIDI_UNKNOWN.

langCountry Language/country code of the stream. Will be an empty (null-terminated)
string in case it is not known or applicable. Also, see note below.

duration Identifies the total duration of the MIDI stream. If the duration is unknown, this value
shall be XA TIME_UNKNOWN.

The language / country code may be a language code, a language / country code, or a country code.
Formatting of language codes and language / country codes is defined by IETF RFC 3066 [RFC3066] (which incorporates underlying ISO
specifications 639 [1SO639] and 3166 [1ISO3166] and a syntax). Formatting of country codes is defined by ISO 3166 [1ISO3166].

9.1.28 XANativeHandle

typedef void * XANativeHandle;

An opaque handle native to the platform that represents a display or window.

9.1.29 XARectangle

typedef struct XARectangle {
XAuint32 left;
XAuint32 top;
XAuint32 width;
XAuint32 height;
} XARectangle;

This structure is used to specify a rectangle.

Field Description

left Horizontal position of the leftmost column of pixels.
top Vertical position of the topmost row of pixels.
width The rectangle’s width in pixels.

height The rectangle’s height in pixels.

OpenMAX|AL

9.1.30 XATimedTextStreaminformation

typedef struct XATimedTextStreamInformation_ {
XAuintl6 layer;
XAuint32 width;
XAuint32 height;
XAuintl6 tx;
XAuintl6 ty;
XAuint32 bitrate;
XAchar langCountry[16];
XAmillisecond duration;
} XATimedTextStreamInformation;

This structure is used for querying the information about a timed text stream. These values represent the default
settings described within the stream and may be overwritten with updated settings within the stream as the stream is
processed.

Field Description

layer Specifies the layering depth (similar to z-index in SMIL) of the text in relation to other
rendered video content from this container. A greater negative value represents a
distance closer to the viewer.

width Specifies the width of the text region in the original video coordinates.

height Specifies the height of the text region in the original video coordinates.

tx Specifies the X position value for the text region in relation to the original video area.
ty Specifies the Y position value for the text region in relation to the original video area.
bitrate Specifies the bitrate of the stream, in units of bits per second.

langCountry Language/country code of the stream. (see note below);

duration Identifies the total duration of the audio stream. If the duration is unknown, this value

shall be XA_TIME_UNKNOWN.

The language / country code may be a language code, a language / country code, or a country code.
Formatting of language codes and language / country codes is defined by IETF RFC 3066 [RFC3066] (which incorporates underlying ISO
specifications 639 [1ISO639] and 3166 [1ISO3166] and a syntax). Formatting of country codes is defined by ISO 3166 [1ISO3166].

9.1.31 XAVendorStreaminformation

typedef struct XAVendorStreamlnformation_ {
void *VendorStreaminfo;
} XAVendorStreamlnformation;

This structure is used for querying the information about a vendor-specific stream.

Field Description

VendorStreamlnfo Information about this vendor-specific stream

OpenMAX|AL

9.1.32 XAVibraDescriptor

typedef struct XAVibraDescriptor_ {
XAboolean supportsFrequency;
XAboolean supportsintensity;
XAmilliHertz minFrequency;
XAmilliHertz maxFrequency;

} XAVibraDescriptor;

XAVibraDescriptor represents the capabilities of the Vibra 1/O device.

Field Description

supportsFrequency | Boolean indicating whether the Vibra I/O device supports setting the frequency of
vibration.

supportsintensity | Boolean indicating whether the Vibra 1/O device supports setting the intensity of
vibration.

minFrequency Minimum frequency supported by the Vibra I/O device. Range is [1,
XA MILLIHERTZ_MAX]. If supportsFrequency is set to
XA BOOLEAN_FALSE, this will be set to 0.

maxFrequency Maximum frequency supported by the Vibra I/O device. Range is [minFrequency,

max XAmilliHertz]. If supportsFrequency is set to XA_ BOOLEAN_FALSE, this
will be set to 0.

9.1.33 XAVideoCodecDescriptor

typedef struct XAVideoCodecDescriptor_ {
XAuint32 codecld;
XAuint32 maxWidth;
XAuint32 maxHeight;
XAuint32 maxFrameRate;
XAuint32 maxBitRate;
XAuint32 rateControlSupported;
XAuint32 profileSetting;
XAuint32 levelSetting;
} XAVideoCodecDescriptor;

This structure is used to query the capabilities of video encoders and decoders.

Field Description
codecld Identifies the supported video codec. Refer to XA_VIDEOCODEC macros.
maxWidth Maximum frame width (horizontal) resolution.
maxHeight Maximum frame height (vertical) resolution.
maxFrameRate Maximum encoding frame rate in units of frames per second.
This value is represented in Q16 format, where the upper 16 bits represent the
integer value and the lower 16 bits represent the fractional value.
maxBitRate Maximum encoding bitrate in units of bits per second.

rateControlSupported | Encoding rate control modes supported. See XA_RATECONTROLMODE macros.

OpenMAX|AL

This field is only valid for encoders, otherwise it is reserved.

profileSetting

Profile supported by codec. See XA _VIDEOPROF ILE macros.

levelSetting

Level supported by codec. See XA_VIDEOLEVEL macros.

9.1.34 XAVideoSettings

typedef struct XAVideoSettings_ {

XAuint32
XAuint32
XAuint32
XAuint32
XAuint32
XAuint32
XAuint32
XAuint32
XAuint32

encoderld;

width;

height;
frameRate;
bitRate;
rateControl;
profileSetting;
levelSetting;
keyFramelnterval;

} XAVideoSettings;

This structure is used to set the video encoding parameters.

Field Description

encoderld Identifies the supported video encoder. Refer to XA_VIDEOCODEC macros.

width Frame width (horizontal) resolution.

height Frame height (vertical) resolution.

frameRate Encoding frame rate in units of frames per second.
This value is represented in Q16 format, where the upper 16 bits represent the integer
value and the lower 16 bits represent the fractional value.

bitRate Encoding bitrate in units of bits per second.

rateControl Encoding rate control mode. See XA_RATECONTROLMODE macros.

profileSetting

Profile to use for encoding. See XA _VIDEOPROFILE macros.

levelSetting

Level to use for encoding. See XA_VIDEOLEVEL macros.

keyFramelnterval

Number of frames between keyframes. A value of 0 indicates that frequency of keyframes
to be determined automatically.

9.1.35 XAVideoStreamInformation

typedef struct XAVideoStreamInformation_ {

XAuint32

codecld;

XAuint32 width;

XAuint32

height;

XAuint32 frameRate;

XAuint32

bitRate;

XAmillisecond duration;
} XAvVideoStreamlnformation;

OpenMAX|AL

This structure is used for querying the information about a video stream.

Field Description

codecld Identifies the stream’s codec format ID (Refer to XA VIDEOCODEC)

width Identifies the video stream’s horizontal resolution (width).

height Identifies the video stream’s vertical resolution (height).

frameRate Identifies the video stream’s frame rate in units of frames per second. If the frame rate
is unknown, this value shall be 0.
This value is represented in Q16 format, where the upper 16 bits represent the integer
value and the lower 16 bits represent the fractional value.

bitRate Identifies the video stream’s bit rate in units of bits per second. If the bit rate is
unknown, this value shall be 0.

duration Identifies the total duration of the video stream. If the duration is unknown, this value

shall be XA_TIME_UNKNOWN.

OpenMAX|AL

9.2
9.2.1

Macros
XAAPIENTRY

#define XAAPIENTRY <system dependent>

A system-dependent API entry point macro. This may be used to indicate the required calling conventions for global

functions.

9.2.2 XA AUDIOCODEC
#define XA AUDIOCODEC_PCM ((XAuint32) 0x00000001)
#define XA AUDIOCODEC_MP3 ((XAuint32) 0x00000002)
#define XA AUDIOCODEC_ AMR ((XAuint32) 0x00000003)
#define XA _AUDIOCODEC AMRWB ((XAuint32) 0x00000004)
#define XA _AUDIOCODEC_AMRWBPLUS ((XAuint32) 0x00000005)
#define XA AUDIOCODEC_AAC ((XAuint32) 0x00000006)
#define XA AUDIOCODEC_WMA ((XAuint32) 0x00000007)
#define XA _AUDIOCODEC REAL ((XAuint32) 0x00000008)
#define XA_AUDIOCODEC VORBIS ((XAuint32) 0x00000009)

These macros are used for setting the audio encoding type.

Value

Description

XA_AUDIOCODEC_PCM

PCM audio data.

XA_AUDIOCODEC_MP3

MPEG Layer Il encoder.

XA_AUDIOCODEC_AMR

Adaptive Multi-Rate (AMR) speech encoder.

XA_AUDI0OCODEC_AMRWB

Adaptive Multi-Rate Wideband (AMR-WB) speech encoder.

XA_AUDI0OCODEC_AMRWBPLUS

Adaptive Multi-Rate Wideband Extended (AMR-WB+) speech encoder.

XA_AUDIOCODEC_AAC

MPEG4 Advanced Audio Coding.

XA_AUDIOCODEC_WMA

Windows Media Audio.

XA_AUDIOCODEC_REAL

Real Audio.

XA_AUDIOCODEC_VORBIS

Vorbis Audio.

9.2.3

XA_AUDIOPROFILE and XA_AUDIOMODE

PCM Profiles and Modes

#define XA_AUDIOPROFILE_PCM

The macros are used for defining the PCM audio profiles.

((XAuint32) 0x00000001)

Value

Description

XA _AUDIOPROFILE_PCM Default Profile for PCM encoded Audio

374

OpenMAX|AL

MP3 Profiles and Modes

#define XA_AUDIOPROFILE_MPEG1_L3 ((XAuint32) 0x00000001)
#define XA_AUDIOPROFILE_MPEG2_L3 ((XAuint32) 0x00000002)
#define XA_AUDIOPROFILE_MPEG25 L3 ((XAuint32) 0x00000003)
#define XA_AUDIOCHANMODE MP3_MONO ((XAuint32) 0x00000001)
#define XA_AUDIOCHANMODE_MP3_STEREO ((XAuint32) 0x00000002)
#define XA_AUDIOCHANMODE_MP3_JOINTSTEREO ((XAuint32) 0x00000003)
#define XA_AUDIOCHANMODE_MP3_DUAL ((XAuint32) 0x00000004)

The macros are used for defining the MP3 audio profiles and modes.

Value Description
XA_AUDIOPROFILE_MPEG1_L2 MPEG-1 Layer IlI.
XA_AUDIOPROFILE_MPEGZ2_L3 MPEG-2 Layer IlI.
XA_AUDIOPROFILE_MPEG25_L3 MPEG-2.5 Layer IlI.
XA_AUDI10CHANMODE_MP3_MONO MP3 Mono mode.
XA_AUDI10CHANMODE_MP3_STEREO MP3 Stereo Mode.
XA_AUDI0CHANMODE_MP3_JOINTSTEREO MP3 Joint Stereo mode.
XA_AUDI10CHANMODE_MP3_DUAL MP3 Dual Stereo mode.

OpenMAX|AL

AMR Profiles and Modes

#define XA_AUDIOPROFILE_AMR ((XAuint32) 0x00000001)
#define XA_AUDIOSTREAMFORMAT CONFORMANCE ((XAuint32) 0x00000001)
#define XA_AUDIOSTREAMFORMAT IF1 ((XAuint32) 0x00000002)
#define XA_AUDIOSTREAMFORMAT _IF2 ((XAuint32) 0x00000003)
#define XA_AUDIOSTREAMFORMAT FSF ((XAuint32) 0x00000004)
#define XA_AUDIOSTREAMFORMAT RTPPAYLOAD ((XAuint32) 0x00000005)
#define XA_AUDIOSTREAMFORMAT _ITU ((XAuint32) 0x00000006)

The macros are used for defining the AMR audio profiles and modes.

Value Description

XA _AUDIOPROFILE_AMR Adaptive Multi-Rate audio codec.
XA AUDIOSTREAMFORMAT _CONFORMANCE Standard test-sequence format.
XA AUDIOSTREAMFORMAT _IF1 Interface format 1.

XA AUDIOSTREAMFORMAT _IF2 Interface format 2.

XA AUDIOSTREAMFORMAT _FSF File Storage format.
XA_AUDIOSTREAMFORMAT _RTPPAYLOAD RTP payload format.
XA_AUDIOSTREAMFORMAT_ITU ITU frame format.

AMR-WB Profiles and Modes

#define XA_AUDIOPROFILE_AMRWB ((XAuint32) 0x00000001)

The macros are used for defining the AMR-WB audio profiles.

Value Description

XA_AUDIOPROFILE_AMRWB Adaptive Multi-Rate - Wideband.

AMR-WB+ Profiles and Modes

#define XA_AUDIOPROFILE_AMRWBPLUS ((XAuint32) 0x00000001)

The macros are used for defining the AMR-WB+ audio profiles.

Value Description

XA _AUDIOPROFILE_AMRWBPLUS Extended Adaptive Multi-Rate — Wideband.

OpenMAX|AL

AAC Profiles and Modes

#define XA_AUDIOPROFILE_AAC_AAC ((XAuint32) 0x00000001)
#define XA_AUDIOMODE_AAC_MAIN ((XAuint32) 0x00000001)
#define XA_AUDIOMODE_AAC_LC ((XAuint32) 0x00000002)
#define XA_AUDIOMODE_AAC_SSR ((XAuint32) 0x00000003)
#define XA_AUDIOMODE_AAC_LTP ((XAuint32) 0x00000004)
#define XA_AUDIOMODE_AAC_HE ((XAuint32) 0x00000005)
#define XA_AUDIOMODE_AAC_SCALABLE ((XAuint32) 0x00000006)
#define XA_AUDIOMODE_AAC_ERLC ((XAuint32) 0x00000007)
#define XA_AUDIOMODE_AAC_LD ((XAuint32) 0x00000008)
#define XA_AUDIOMODE_AAC_HE_PS ((XAuint32) 0x00000009)
#define XA_AUDIOMODE_AAC_HE_MPS ((XAuint32) 0x0000000A)
#define XA_AUDIOSTREAMFORMAT MP2ADTS ((XAuint32) 0x00000001)
#define XA_AUDIOSTREAMFORMAT MP4ADTS ((XAuint32) 0x00000002)
#define XA_AUDIOSTREAMFORMAT MP4LOAS ((XAuint32) 0x00000003)
#define XA_AUDIOSTREAMFORMAT MP4LATM ((XAuint32) 0x00000004)
#define XA_AUDIOSTREAMFORMAT ADIF ((XAuint32) 0x00000005)
#define XA_AUDIOSTREAMFORMAT MP4FF ((XAuint32) 0x00000006)
#define XA_AUDIOSTREAMFORMAT _RAW ((XAuint32) 0x00000007)

The macros are used for defining the AAC audio profiles and modes.

Value

Description

XA_AUDIOPROFILE_AAC_AAC

Advanced Audio Coding.

XA_AUDIOMODE_AAC_MAIN

AAC Main Profile.

XA_AUDIOMODE_AAC_LC

AAC Low Complexity.

XA_AUDIOMODE_AAC_SSR

AAC Scalable Sample Rate.

XA_AUDIOMODE_AAC_LTP

ACC Long Term Prediction.

XA_AUDIOMODE_AAC_HE

AAC High Efficiency.

XA_AUDIOMODE_AAC_SCALABLE AAC Scalable.
XA_AUDIOMODE_AAC_ERLC AAC Error Resilient LC.
XA_AUDIOMODE_AAC_LD AAC Low Delay.

XA_AUDIOMODE_AAC_HE_PS

AAC High Efficiency with Parametric Stereo Coding.

XA_AUDIOMODE_AAC_HE_MPS

AAC High Efficiency with MPEG Surround Coding.

XA_AUDIOSTREAMFORMAT_MP2ADTS

MPEG-2 AAC Audio Data Transport Stream format.

XA_AUDIOSTREAMFORMAT_MP4ADTS

MPEG-4 AAC Audio Data Transport Stream format.

XA_AUDI0OSTREAMFORMAT_MP4LOAS

Low Overhead Audio Stream format.

XA_AUDIOSTREAMFORMAT_MP4LATM

Low Overhead Audio Transport Multiplex.

XA_AUDIOSTREAMFORMAT_ADIF

Audio Data Interchange Format.

XA_AUDI0OSTREAMFORMAT_MP4FF

AAC inside MPEG-4/ISO File Format.

XA_AUDIOSTREAMFORMAT_RAW

AAC Raw Format (access units).

OpenMAX|AL

377

Windows Media Audio Profiles and Modes

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

XA_AUDIOPROFILE_WMA7
XA_AUDIOPROFILE_WMA8
XA_AUDIOPROFILE_WMA9
XA_AUDIOPROFILE_WMA10

XA_AUDIOMODE_WMA_LEVEL1
XA_AUDIOMODE_WMA_LEVEL2
XA_AUDIOMODE_WMA_LEVELS3
XA_AUDIOMODE_WMA_LEVEL4
XA_AUDIOMODE_WMAPRO_LEVELMO
XA_AUDIOMODE_WMAPRO_LEVELM1
XA_AUDIOMODE_WMAPRO_LEVELM2
XA_AUDIOMODE_WMAPRO_LEVELM3

((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)

((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)

The macros are used for defining the WMA audio profiles and modes.

0x00000001)
0x00000002)
0x00000003)
0x00000004)

0x00000001)
0x00000002)
0x00000003)
0x00000004)
0x00000005)
0x00000006)
0x00000007)
0x00000008)

Value

Description

XA_AUDIOPROFILE_WMA7

Windows Media Audio Encoder V7.

XA_AUDIOPROFILE_WMAS8

Windows Media Audio Encoder V8.

XA_AUDIOPROFILE_WMA9

Windows Media Audio Encoder V9.

XA_AUDIOPROFILE_WMA10

Windows Media Audio Encoder V10.

XA_AUDIOMODE_WMA_LEVEL1 WMA Level 1.
XA_AUDIOMODE_WMA_LEVEL2 WMA Level 2.
XA_AUDIOMODE_WMA_LEVEL3 WMA Level 3.
XA_AUDIOMODE_WMA_LEVEL3 WMA Level 4.

XA_AUDIOMODE_WMAPRO_LEVELMO

WMA Pro Level MO.

XA_AUDIOMODE_WMAPRO_LEVELM1

WMA Pro Level M1.

XA_AUDIOMODE_WMAPRO_LEVELM2

WMA Pro Level M2.

XA_AUDIOMODE_WMAPRO_LEVELM3

WMA Pro Level M3.

OpenMAX|AL

RealAudio Profiles and Levels

#define XA_AUDIOPROFILE_REALAUDIO ((XAuint32) 0x00000001)
#define XA_AUDIOMODE_REALAUDIO_G2 ((XAuint32) 0x00000001)
#define XA_AUDIOMODE_REALAUDIO_8 ((XAuint32) 0x00000002)
#define XA_AUDIOMODE_REALAUDIO_10 ((XAuint32) 0x00000003)
#define XA_AUDIOMODE_REALAUDIO_SURROUND ((XAuint32) 0x00000004)

The macros are used for defining the Real Audio audio profiles and modes.

Value

Description

XA_AUDIOPROFILE_REALAUDIO

Real Audio Encoder.

XA_AUDIOMODE_REALAUDIO_G2 RealAudio G2.
XA_AUDIOMODE_REALAUDIO_8 RealAudio 8.
XA_AUDIOMODE_REALAUDIO_10 RealAudio 10.

XA_AUDI1OMODE_REALAUDI10_SURROUND

Real Audio Surround.

OpenMAX|AL

379

Vorbis Profiles and Levels
#define XA AUDIOPROFILE_VORBIS

#define XA_AUDIOMODE_VORBIS

((XAuint32) 0x00000001)

((XAuint32) 0x00000001)

The macros are used for defining the Vorbis audio profiles and modes.

Value

Description

XA_AUDIOPROFILE_VORBIS

Vorbis Encoder.

XA_AUDIOMODE_VORBIS

Default mode for Vorbis encoded audio.

9.2.4 XA_BOOLEAN

#define XA BOOLEAN_FALSE ((XAboolean) 0x00000000)
#define XA BOOLEAN_TRUE ((XAboolean) 0x00000001)

Canonical values for Boolean type.

Value

Description

XA_BOOLEAN_FALSE

False value for XAboolean.

XA_BOOLEAN_TRUE

True value for XAboolean.

OpenMAX|AL

380

9.2.5 XA_BYTEORDER

#define XA_BYTEORDER_BIGENDIAN ((XAuint32) 0x00000001)
#define XA_BYTEORDER_LITTLEENDIAN ((XAuint32) 0x00000002)

XA BYTEORDER represents the byte order of a block of 16-bit, 32-bit or 64-bit data.

Value Description
XA _BYTEORDER_BIGENDIAN Big-endian data
XA _BYTEORDER_LITTLEENDIAN Little-endian data

9.2.6 XA_CAMERA_APERTUREMODE

#define XA_CAMERA_APERTUREMODE_MANUAL ((XAuint32) 0x00000001)
#define XA_CAMERA_APERTUREMODE_AUTO ((XAuint32) 0x00000002)

These values are used to set camera aperture setting.

Value Description
XA_CAMERA _APERTUREMODE_MANUAL Manual aperture mode
XA_CAMERA_APERTUREMODE_AUTO Auto aperture mode

9.2.7 XA_CAMERA_AUTOEXPOSURESTATUS

#define XA_CAMERA_AUTOEXPOSURESTATUS_SUCCESS ((XAuint32) 0x00000001)
#define XA_CAMERA_AUTOEXPOSURESTATUS_UNDEREXPOSURE ((XAuint32) 0x00000002)
#define XA_CAMERA_AUTOEXPOSURESTATUS_OVEREXPOSURE ((XAuint32) 0x00000003)

These values represent different statuses of the automatic exposure.

Value Description

XA CAMERA AUTOEXPOSURESTATUS_ SUCCESS Auto exposure has been successfully locked.

XA_CAMERA_AUTOEXPOSURESTATUS_UNDEREXPOSURE | Auto exposure has been locked, but the photo will
we underexposed in the current lighting
conditions. Consider changing manually the
exposure settings or freeing the lock and trying the
locking again.

XA_CAMERA_AUTOEXPOSURESTATUS_OVEREXPOSURE | Auto exposure has been locked, but the photo will
we overexposed in the current lighting conditions.
Consider changing manually the exposure settings
or freeing the lock and trying the locking again.

9.2.8 XA_CAMERACBEVENT

OpenMAX|AL

#define XA_CAMERACBEVENT ROTATION ((XAuint32) 0x00000001)

#define XA_CAMERACBEVENT FLASHREADY ((XAuint32) 0x00000002)
#define XA_CAMERACBEVENT FOCUSSTATUS ((XAuint32) 0x00000003)
#define XA_CAMERACBEVENT EXPOSURESTATUS ((XAuint32) 0x00000004)
#define XA_CAMERACBEVENT WHITEBALANCELOCKED ((XAuint32) 0x00000005)
#define XA_CAMERACBEVENT ZOOMSTATUS ((XAuint32) 0x00000006)

These values are used to identify the callback event type.

Value Description

XA CAMERACBEVENT_ROTATION This event indicates that a change in the camera’s
rotation setting has occurred. The eventData
parameter will specify the new rotation setting. A
rotation value of O degrees indicates the camera is un-
rotated. A value of OXFFFFFFFF will be returned if the
camera rotation can not be determined

XA_CAMERACBEVENT_FLASHREADY This event indicates that the flash is ready for use. The
eventData parameter for this event is not used and
shall be ignored.

XA_CAMERACBEVENT_FOCUSSTATUS This event indicates that focusing is completed. The
eventData parameter contains the focus status, see
XA CAMERA_FOCUSMODESTATUS.

XA _CAMERACBEVENT_EXPOSURESTATUS This event indicates that locking of the auto exposure is
completed. The eventData parameter contains the
exposure status, see
XA_CAMERA_AUTOEXPOSURESTATUS.

XA _CAMERACBEVENT_WHITEBALANCELOCKED | This event indicates that locking of the automatic white
balance is completed. The eventData parameter for this
event is not used and shall be ignored.

XA CAMERACBEVENT_ZOOMSTATUS This event indicates that zooming is completed. The
eventData parameter contains the zoom setting in
permille units.

OpenMAX|AL

9.2.9

XA_CAMERACAP

#define XA_CAMERACAP_FLASH ((XAuint32) 0x00000001)
#define XA_CAMERACAP_AUTOFOCUS ((XAuint32) 0x00000002)
#define XA_CAMERACAP_CONTINUOUSAUTOFOCUS ((XAuint32) 0x00000004)
#define XA_CAMERACAP_MANUALFOCUS ((XAuint32) 0x00000008)
#define XA_CAMERACAP_AUTOEXPOSURE ((XAuint32) 0x00000010)
#define XA_CAMERACAP_MANUALEXPOSURE ((XAuint32) 0x00000020)
#define XA_CAMERACAP_AUTOISOSENSITIVITY ((XAuint32) 0x00000040)
#define XA_CAMERACAP_MANUAL ISOSENSITIVITY ((XAuint32) 0x00000080)
#define XA_CAMERACAP_AUTOAPERTURE ((XAuint32) 0x00000100)
#define XA_CAMERACAP_MANUALAPERTURE ((XAuint32) 0x00000200)
#define XA _CAMERACAP_AUTOSHUTTERSPEED ((XAuint32) 0x00000400)
#define XA _CAMERACAP_MANUALSHUTTERSPEED ((XAuint32) 0x00000800)
#define XA_CAMERACAP_AUTOWHITEBALANCE ((XAuint32) 0x00001000)
#define XA_CAMERACAP_MANUALWHITEBALANCE ((XAuint32) 0x00002000)
#define XA_CAMERACAP_OPTICALZOOM ((XAuint32) 0x00004000)
#define XA_CAMERACAP_DIGITALZOOM ((XAuint32) 0x00008000)
#define XA _CAMERACAP_METERING ((XAuint32) 0x00010000)
#define XA_CAMERACAP_BRIGHTNESS ((XAuint32) 0x00020000)
#define XA_CAMERACAP_CONTRAST ((XAuint32) 0x00040000)
#define XA_CAMERACAP_GAMMA ((XAuint32) 0x00080000)

The XA_CAMERACAP macros are used for camera capabilities. See XACameral tF (see section 8.5) and
XAlmageControl 1tf (see section 8.14) for more information on individual features.

Value

Description

XA_CAMERACAP_FLASH

Flash supported.

XA_CAMERACAP_AUTOFOCUS

One-shot auto focus modes supported.

XA_CAMERACAP_CONT INUOUSAUTOFOCUS

Continuous auto focus mode supported.

XA_CAMERACAP_MANUALFOCUS

Manual focus supported.

XA_CAMERACAP_AUTOEXPOSURE

Auto exposure algorithms supported.

XA_CAMERACAP_MANUALEXPOSURE

Manual exposure setting supported.

XA_CAMERACAP_AUTOSENSITIVITY

Auto sensitivity mode supported.

XA_CAMERACAP_MANUALSENSITIVITY

Manual sensitivity setting supported.

XA_CAMERACAP_AUTOAPERTURE

Auto aperature mode supported.

XA_CAMERACAP_MANUALAPERTURE

Manual aperature setting supported.

XA_CAMERACAP_AUTOSHUTTERSPEED

Auto shutter speed mode supported.

XA_CAMERACAP_MANUALSHUTTERSPEED

Manual shutter speed supported.

XA_CAMERACAP_AUTOWHITEBALANCE

Auto white balance modes supported.

XA_CAMERACAP_MANUALWHITEBALANCE

Manual white balance des supported.

XA_CAMERACAP_OPT ICALZOOM

Camera supports optical zoom.

XA_CAMERACAP_DIGITALZOOM

Camera supports digital zoom.

XA_CAMREACAP_METERING

Exposure metering supported.

XA_CAMERACAP_BRIGHTNESS

Camera supports brightness controls.

OpenMAX|AL

383

Value

Description

XA_CAMERACAP_CONTRAST

Camera supports contrast controls.

XA_CAMERACAP_GAMMA

Camera supports gamma controls.

9.2.10 XA_CAMERA_EXPOSUREMODE
#define XA_CAMERA_EXPOSUREMODE_MANUAL ((XAuint32) 0x00000001)
#define XA_CAMERA_EXPOSUREMODE_AUTO ((XAuint32) 0x00000002)
#define XA_CAMERA_EXPOSUREMODE_NIGHT ((XAuint32) 0x00000004)
#define XA_CAMERA_EXPOSUREMODE_BACKLIGHT ((XAuint32) 0x00000008)
#define XA_CAMERA_EXPOSUREMODE_SPOTLIGHT ((XAuint32) 0x00000010)
#define XA_CAMERA_EXPOSUREMODE_SPORTS ((XAuint32) 0x00000020)
#define XA_CAMERA_EXPOSUREMODE_SNOW ((XAuint32) 0x00000040)
#define XA _CAMERA_EXPOSUREMODE_BEACH ((XAuint32) 0x00000080)
#define XA CAMERA_EXPOSUREMODE_LARGEAPERTURE ((XAuint32) 0x00000100)
#define XA_CAMERA_EXPOSUREMODE_SMALLAPERTURE ((XAuint32) 0x00000200)
#define XA_CAMERA_EXPOSUREMODE_PORTRAIT ((XAuint32) 0x00000400)
#define XA CAMERA EXPOSUREMODE_NIGHTPORTRAIT ((XAuint32) 0x00000800)

These values are used to set camera exposure.

Value Description

XA_CAMERA_EXPOSUREMODE_MANUAL

Manual exposure.

XA_CAMERA_EXPOSUREMODE_AUTO

Auto exposure mode.

XA_CAMERA_EXPOSUREMODE_NIGHT

Night exposure mode.

XA_CAMERA_EXPOSUREMODE_BACKLIGHT

Backlight exposure mode.

XA_CAMERA_EXPOSUREMODE_SPOTLIGHT

Spotlight exposure mode.

XA_CAMERA_EXPOSUREMODE_SPORTS

Spots exposure mode.

XA_CAMERA_EXPOSUREMODE_SNOW

Snow exposure mode.

XA_CAMERA_EXPOSUREMODE_BEACH

Beach exposure mode.

XA_CAMERA_EXPOSUREMODE_LARGEAPERTURE

Large aperture exposure mode.

XA_CAMERA_EXPOSUREMODE_SMALLAPERTURE

Small aperture exposure mode.

XA_CAMERA_EXPOSUREMODE_PORTRAIT

Portrait exposure mode.

XA_CAMERA_EXPOSUREMODE_NIGHTPORTRAIT

Night time portrait exposure mode.

OpenMAX|AL

384

9.2.11

#define
#define
#define
#define
#define
#define
#define

XA_CAMERA_FLASHMODE

XA_CAMERA_FLASHMODE_OFF
XA_CAMERA_FLASHMODE_ON
XA_CAMERA_FLASHMODE_AUTO
XA_CAMERA_FLASHMODE_REDEYEREDUCTION

((XAuint32) 0x00000001)
((XAuint32) 0x00000002)
((XAuint32) 0x00000004)
((XAuint32) 0x00000008)

XA_CAMERA_FLASHMODE_REDEYEREDUCTION_AUTO ((XAuint32) 0x00000010)

XA_CAMERA_FLASHMODE_FILLIN
XA_CAMERA_FLASHMODE_TORCH

These values are used to set camera flash mode.

((XAuint32) 0x00000020)
((XAuint32) 0x00000040)

Value

Description

XA_CAMERA_FLASHMODE_OFF

Flash disabled.

XA_CAMERA_FLASHMODE_ON

Flash enabled.

XA_CAMERA_FLASHMODE_AUTO

Auto flash mode.

XA_CAMERA_FLASHMODE_REDEYEREDUCT ION

Red eye reduction flash.

XA_CAMERA_FLASHMODE_REDEYEREDUCTION_AUTO

Red eye reduction flash automatic.

XA_CAMERA_FLASHMODE_FILLIN

Use flash to fill-in dimly lit areas.

XA_CAMERA_FLASHMODE_TORCH

Flash is always on.

OpenMAX|AL

385

9.2.12 XA_CAMERA_FOCUSMODE

#define XA _CAMERA_FOCUSMODE_MANUAL ((XAuint32) 0x00000001)
#define XA_CAMERA_FOCUSMODE_AUTO ((XAuint32) 0x00000002)
#define XA_CAMERA_FOCUSMODE_CENTROID ((XAuint32) 0x00000004)
#define XA_CAMERA_FOCUSMODE_CONTINUOUS_AUTO ((XAuint32) 0x00000008)

#define XA_CAMERA_FOCUSMODE_CONTINUOUS_CENTROID ((XAuint32) 0x00000010)

These values are used to set camera focus mode.

Value Description
XA CAMERA FOCUSMODE_MANUAL Manual focus mode.
XA CAMERA FOCUSMODE_AUTO One-shot auto focus mode.

This mode, sometimes called also as “single auto
focus”, automatically adjusts the focus once when it
has been activated. Use XACameraltf::SetAutoLocks
with parameter XA CAMERA_LOCK_AUTOFOCUS to
activate and lock the auto focusing. The lock is freed
by clearing the XA_CAMERA_LOCK_AUTOFOCUS bit.

XA CAMERA FOCUSMODE_CENTROID One-shot centroid auto focus mode.

XA CAMERA FOCUSMODE_CONTINUOUS_ AUTO Continuous auto focus mode.

This mode, sometimes called also as “AF Servo”,
continually adjusts the focus as long as the mode is
active. When this mode is selected, use
XACameraltf::SetAutoLocks with parameter
XA_CAMERA_LOCK_AUTOFOCUS to activate the
continuous focusing. The continuous focusing
deactivates once XA_CAMERA LOCK_AUTOFOCUS
bit is cleared.

XA_CAMERA_FOCUSMODE_CONT INUOUS_CENTROID | Continuous centroid focus mode.

It is to be noted that not all cameras will be able to provide focus status events in continuous focusing mode. But this
feature is quite useful for those cameras that do have this capability.

OpenMAX|AL

9.2.13 XA_CAMERA_FOCUSMODESTATUS

#define XA _CAMERA_FOCUSMODESTATUS_OFF ((XAuint32) 0x00000001)
#define XA_CAMERA_FOCUSMODESTATUS_REQUEST ((XAuint32) 0x00000002)
#define XA_CAMERA_FOCUSMODESTATUS_REACHED ((XAuint32) 0x00000003)
#define XA_CAMERA_FOCUSMODESTATUS_UNABLETOREACH ((XAuint32) 0x00000004)
#define XA_CAMERA_FOCUSMODESTATUS_LOST ((XAuint32) 0x00000005)

These values are used to set camera focus mode.

Value Description

XA CAMERA FOCUSMODESTATUS_ OFF Manual focus mode is in use, focus status is not
available.

XA CAMERA_FOCUSMODESTATUS REQUEST Focus request is in progress.

XA CAMERA_FOCUSMODESTATUS REACHED Focus has been reached.

XA_CAMERA_FOCUSMODESTATUS_UNABLETOREACH | Unable to achieve focus.

XA CAMERA_FOCUSMODESTATUS_ LOST Focus has been lost.

9.2.14 XA_CAMERA_ISOSENSITIVITYMODE

#define XA _CAMERA_ISOSENSITIVITYMODE _MANUAL ((XAuint32) 0x00000001)
#define XA _CAMERA_ISOSENSITIVITYMODE_AUTO ((XAuint32) 0x00000002)

These values are used to set camera SO sensitivity.

Value Description
XA CAMERA ISOSENSITIVITYMODE MANUAL Manual sensitivity mode.
XA_CAMERA_ISOSENSITIVITYMODE_AUTO Auto sensitivity mode.

9.2.15 XA_CAMERA_LOCK

#define XA_CAMERA_LOCK_AUTOFOCUS ((XAuint32) 0x00000001)
#define XA_CAMERA_LOCK_AUTOEXPOSURE ((XAuint32) 0x00000002)
#define XA_CAMERA_LOCK_AUTOWHITEBALANCE ((XAuint32) 0x00000004)

These values are used to refer to various locks of the automatic camera settings.

Value Description

XA CAMERA_LOCK_AUTOFOCUS Lock for the automatic focus.

XA CAMERA_LOCK_AUTOEXPOSURE Lock for the automatic exposure settings.
XA CAMERA_LOCK_AUTOWHITEBALANCE Lock for the automatic white balance.

OpenMAX|AL

9.2.16 XA_CAMERA_METERINGMODE

#define XA_CAMERA_METERINGMODE_AVERAGE ((XAuint32) 0x00000001)
#define XA_CAMERA_METERINGMODE_SPOT ((XAuint32) 0x00000002)
#define XA_CAMERA_METERINGMODE_MATRIX ((XAuint32) 0x00000004)

These values are used to set camera metering mode for exposure.

Value Description

XA _CAMERA_METERINGMODE_AVERAGE Center weighted average metering mode.
XA_CAMERA_METERINGMODE_SPOT Spot (partial) metering mode.

XA CAMERA METERINGMODE_MATRIX Matrix or evaluative metering mode.

9.2.17 XA_CAMERA_SHUTTERSPEEDMODE

#define XA _CAMERA_SHUTTERSPEEDMODE_MANUAL ((XAuint32) 0x00000001)
#define XA_CAMERA_SHUTTERSPEEDMODE_AUTO ((XAuint32) 0x00000002)

These values are used to set camera shutter speed.

Value Description
XA CAMERA_SHUTTERSPEEDMODE_MANUAL Manual shutter speed mode.
XA CAMERA_SHUTTERSPEEDMODE_AUTO Auto shutter speed mode.

OpenMAX|AL

388

9.2.18

XA_CAMERA_WHITEBALANCEMODE

#define XA CAMERA WHITEBALANCEMODE_ MANUAL ((XAuint32) 0x00000001)
#define XA CAMERA WHITEBALANCEMODE_AUTO ((XAuint32) 0x00000002)
#define XA CAMERA WHITEBALANCEMODE SUNLIGHT ((XAuint32) 0x00000004)
#define XA CAMERA WHITEBALANCEMODE CLOUDY ((XAuint32) 0x00000008)
#define XA _CAMERA WHITEBALANCEMODE SHADE ((XAuint32) 0x00000010)
#define XA CAMERA WHITEBALANCEMODE_ TUNGSTEN ((XAuint32) 0x00000020)
#define XA CAMERA WHITEBALANCEMODE FLUORESCENT ((XAuint32) 0x00000040)
#define XA_CAMERA WHITEBALANCEMODE INCANDESCENT ((XAuint32) 0x00000080)
#define XA CAMERA WHITEBALANCEMODE FLASH ((XAuint32) 0x00000100)
#define XA CAMERA WHITEBALANCEMODE SUNSET ((XAuint32) 0x00000200)

These values are used to set camera white balance.

Value Description

XA _CAMERA_WHITEBALANCEMODE_MANUAL White balance off.

XA_CAMERA_WHITEBALANCEMODE_AUTO

Auto white balance mode.

XA_CAMERA_WHITEBALANCEMODE_SUNLIGHT

Sunlight white balance mode.

XA_CAMERA_WHITEBALANCEMODE_CLOUDY

Cloudy white balance mode.

XA_CAMERA_WHITEBALANCEMODE_SHADE

Shade white balance mode.

XA_CAMERA_WHITEBALANCEMODE_TUNGSTEN

Tungsten white balance mode.

XA_CAMERA_WHITEBALANCEMODE_FLUORESCENT

Fluorescent white balance mode.

XA_CAMERA_WHITEBALANCEMODE_ INCANDESCENT

Incandescent white balance mode.

XA_CAMERA_WHITEBALANCEMODE_FLASH

Flash white balance mode.

XA_CAMERA_WHITEBALANCEMODE_SUNSET

Sunset white balance mode.

OpenMAX|AL

389

9.2.19

#define
#define
#define
#define

XA_CAMERA_ZOOM

XA_CAMERA_ZOOM_SLOW
XA_CAMERA_ZOOM_NORMAL
XA_CAMERA ZOOM_FAST
XA_CAMERA ZOOM_FASTEST

((XAuint32) 50)
((XAuint32) 100)
((XAuint32) 200)
((XAuint32) OXFFFFFFFF)

These values are used to hint camera zooming speed with method XACameraltf::SetZoom.

Value

Description

XA_CAMERA_ZOOM_SLOW

Slow zooming speed.

XA_CAMERA_ZOOM_NORMAL

Normal zooming speed.

XA_CAMERA_ZOOM_FAST

Fast zooming speed.

XA_CAMERA_ZOOM_FASTEST

Fastest zooming speed to be used if the application prefers immediate action.

9.2.20

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

XA_CHARACTERENCODING

XA_CHARACTERENCOD ING_UNKNOWN
XA_CHARACTERENCOD ING_BINARY
XA_CHARACTERENCODING_ASCI 1
XA_CHARACTERENCODING_BI1G5

XA_CHARACTERENCOD ING_CODEPAGE1252

XA_CHARACTERENCODING_GB2312
XA_CHARACTERENCODING_HZGB2312
XA_CHARACTERENCODING_GB12345
XA_CHARACTERENCODING_GB18030
XA_CHARACTERENCODING_GBK
XA_CHARACTERENCOD ING_ IMAPUTF7
XA_CHARACTERENCODING_1502022JP

XA_CHARACTERENCODING_1S02022JP1

XA_CHARACTERENCODING_1S088591
XA_CHARACTERENCODING_ 150885910
XA_CHARACTERENCODING_ 150885913
XA_CHARACTERENCODING_ 150885914
XA_CHARACTERENCODING_1S0885915
XA_CHARACTERENCOD ING_ 15088592
XA_CHARACTERENCODING_ 1S088593
XA_CHARACTERENCODING_ 15088594
XA_CHARACTERENCODING_ 15088595
XA_CHARACTERENCOD ING_ 1S088596
XA_CHARACTERENCOD ING_1S088597
XA_CHARACTERENCODING_ 15088598
XA_CHARACTERENCODING_ 15088599
XA_CHARACTERENCODING_ ISOEUCJP
XA_CHARACTERENCODING_SHIFTJIS
XA_CHARACTERENCODING_SMS7BIT
XA_CHARACTERENCODING_UTF7
XA_CHARACTERENCODING_UTF8

XA_CHARACTERENCOD ING_JAVACONFORMANTUTF8

XA_CHARACTERENCODING_UTF16BE
XA_CHARACTERENCODING_UTF16LE

((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)

XA _CHARACTERENCOD ING represents a character encoding for metadata keys and values.

OpenMAX‘AL

0x00000000)
0x00000001)
0x00000002)
0x00000003)
0x00000004)
0x00000005)
0x00000006)
0x00000007)
0x00000008)
0x00000009)
0Xx0000000A)
0x0000000B)
0x0000000B)
0x0000000C)
0x0000000D)
0Xx0000000E)
0x0000000F)
0x00000010)
0x00000011)
0x00000012)
0x00000013)
0x00000014)
0x00000015)
0x00000016)
0x00000017)
0x00000018)
0x00000019)
0x0000001A)
0x0000001B)
0x0000001C)
0x0000001D)
0x0000001E)
0x0000001F)
0x00000020)

390

Value

Description

XA_CHARACTERENCOD ING_UNKNOWN

Unknown character encoding.

XA_CHARACTERENCOD ING_BINARY Binary data.
XA_CHARACTERENCODING_ASCI I ASCILI.
XA_CHARACTERENCODING_BIG5 Big 5.

XA_CHARACTERENCOD ING_CODEPAGE1252

Microsoft Code Page 1252.

XA_CHARACTERENCODING_GB2312

GB 2312 (Chinese).

XA_CHARACTERENCODING_HZGB2312

HZ GB 2312 (Chinese).

XA_CHARACTERENCODING_GB12345

GB 12345 (Chinese).

XA_CHARACTERENCODING_GB18030

GB 18030 (Chinese).

XA_CHARACTERENCODING_GBK

GBK (CP936) (Chinese).

XA_CHARACTERENCODING_1S02022JP

1ISO-2022-JP (Japanese).

XA_CHARACTERENCODING_1S02022JP1

1ISO-2022-JP-1 (Japanese).

XA_CHARACTERENCODING_ 15088591

1ISO-8859-1 (Latin-1).

XA_CHARACTERENCODING_ 15088592

1SO-8859-1 (Latin-2).

XA_CHARACTERENCODING_ 15088593

1SO-8859-1 (Latin-3).

XA_CHARACTERENCODING_ 15088594

1ISO-8859-1 (Latin-4).

XA_CHARACTERENCODING_ 15088595

ISO-8859-1 (Latin/Cyrillic).

XA_CHARACTERENCODING_ 15088596

1ISO-8859-1 (Latin/Arabic).

XA_CHARACTERENCODING_ 15088597

1ISO-8859-1 (Latin/Greek).

XA_CHARACTERENCODING_ 15088598

ISO-8859-1 (Latin/Hebrew).

XA_CHARACTERENCODING_ 15088599

ISO-8859-1 (Latin-5).

XA_CHARACTERENCODING_ 150885910

1SO-8859-1 (Latin-6).

XA_CHARACTERENCODING_ 150885913

1ISO-8859-1 (Latin-7).

XA_CHARACTERENCODING_ 150885914

1SO-8859-1 (Latin-8).

XA_CHARACTERENCODING_ 150885915

1SO-8859-1 (Latin-9).

XA_CHARACTERENCODING_ 1 SOEUCJP ISO EUC-JP.
XA_CHARACTERENCODING_SHIFTJIS Shift-JIS (Japanese).
XA_CHARACTERENCODING_SMS7BIT SMS 7-bit.

XA_CHARACTERENCODING_UTF7

Unicode UTF-7.

XA_CHARACTERENCODING_ IMAPUTF7

Unicode UTF-7 per IETF RFC 2060.

XA_CHARACTERENCODING_UTF8

Unicode UTF-8.

XA_CHARACTERENCOD ING_JAVACONFORMANTUTF8

Unicode UTF-8 (Java Conformant).

XA_CHARACTERENCODING_UTF16BE

Unicode UTF-16 (Big Endian).

XA_CHARACTERENCODING_UTF16LE

Unicode UTF-16 (Little Endian).

OpenMAX|AL

391

9.2.21

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

XA_COLORFORMAT

XA_COLORFORMAT_UNUSED
XA_COLORFORMAT_MONOCHROME
XA_COLORFORMAT_8BITRGB332
XA_COLORFORMAT_12BITRGB444
XA_COLORFORMAT_16B1TARGB4444
XA_COLORFORMAT_16BITARGB1555
XA_COLORFORMAT_16BITRGB565
XA_COLORFORMAT_16B1TBGR565
XA_COLORFORMAT_18B1TRGB666
XA_COLORFORMAT_18BITARGB1665
XA_COLORFORMAT_19BITARGB1666
XA_COLORFORMAT_24BI1TRGB888
XA_COLORFORMAT_24BITBGR888
XA_COLORFORMAT_24BITARGB1887
XA_COLORFORMAT_25BITARGB1888
XA_COLORFORMAT_32B1TBGRA8888
XA_COLORFORMAT_32BI1TARGB8888
XA_COLORFORMAT_YUV411PLANAR
XA_COLORFORMAT_YUV420PLANAR
XA_COLORFORMAT_YUV420SEMIPLANAR
XA_COLORFORMAT_YUV422PLANAR
XA_COLORFORMAT_YUV422SEMIPLANAR
XA_COLORFORMAT_YCBYCR
XA_COLORFORMAT_YCRYCB
XA_COLORFORMAT_CBYCRY
XA_COLORFORMAT_CRYCBY
XA_COLORFORMAT_YUV444INTERLEAVED
XA_COLORFORMAT_RAWBAYER8BIT
XA_COLORFORMAT_RAWBAYER10BIT
XA_COLORFORMAT_RAWBAYER8B I TCOMPRESSED
XA_COLORFORMAT_L2
XA_COLORFORMAT_L4
XA_COLORFORMAT_LS8
XA_COLORFORMAT_L16
XA_COLORFORMAT_L24
XA_COLORFORMAT_L32
XA_COLORFORMAT_18BITBGR666
XA_COLORFORMAT_24BI1TARGB6666
XA_COLORFORMAT_24BI1TABGR6666

These values are used to set pixel color formats.

((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)

0x00000000)
0x00000001)
0x00000002)
0x00000003)
0x00000004)
0x00000005)
0x00000006)
0x00000007)
0x00000008)
0x00000009)
0x0000000A)
0x0000000B)
0x0000000C)
0x0000000D)
0x0000000E)
0x0000000F)
0x00000010)
0x00000011)
0x00000013)
0x00000015)
0x00000016)
0x00000018)
0x00000019)
0x0000001A)
0x0000001B)
0x0000001C)
0x0000001D)
0x0000001E)
0x0000001F)
0x00000020)
0x00000021)
0x00000022)
0x00000023)
0x00000024)
0x00000025)
0x00000026)
0x00000029)
0x0000002A)
0x0000002B)

Value

Description

XA_COLORFORMAT_UNUSED

Value used when color format is not used or applicable.

XA_COLORFORMAT_MONOCHROME

1 bit per pixel monochrome

XA_COLORFORMAT_8BITRGB332

8 bits per pixel RGB format with colors stored as Red 7:5,
Green 4:2, and Blue 1:0.

XA_COLORFORMAT_12BITRGB444

12 bits per pixel RGB format with colors stored as Red
11:8, Green 7:4, and Blue 3:0.

XA_COLORFORMAT_16BITARGB4444

16 bits per pixel ARGB format with colors stored as
Alpha 15:12, Red 11:8, Green 7:4, and Blue 3:0.

OpenMAX|AL

392

Value

Description

XA_COLORFORMAT_16BITARGB1555

16 bits per pixel ARGB format with colors stored as
Alpha 15, Red 14:10, Green 9:5, and Blue 4:0.

XA_COLORFORMAT_16BITRGB565

16 bits per pixel RGB format with colors stored as Red
15:11, Green 10:5, and Blue 4:0.

XA_COLORFORMAT_16BITBGR565

16 bits per pixel BGR format with colors stored as Blue
15:11, Green 10:5, and Red 4:0.

XA_COLORFORMAT_18BITRGB666

18 bits per pixel RGB format with colors stored as Red
17:12, Green 11:6, and Blue 5:0.

XA_COLORFORMAT_18BITARGB1665

18 bits per pixel ARGB format with colors stored as
Alpha 17, Red 16:11, Green 10:5, and Blue 4:0.

XA_COLORFORMAT_19BITARGB1666

19 bits per pixel ARGB format with colors stored as
Alpha 18, Red 17:12, Green 11:6, and Blue 5:0.

XA_COLORFORMAT_24BITRGB888

24 bits per pixel RGB format with colors stored as Red
23:16, Green 15:8, and Blue 7:0.

XA_COLORFORMAT_24BITBGR888

24 bits per pixel BGR format with colors stored as Blue
23:16, Green 15:8, and Red 7:0.

XA_COLORFORMAT_24BITARGB1887

24 bits per pixel ARGB format with colors stored as
Alpha 23, Red 22:15, Green 14:7, and Blue 6:0.

XA_COLORFORMAT_25BITARGB1888

25 bits per pixel ARGB format with colors stored as
Alpha 24, Red 23:16, Green 15:8, and Blue 7:0.

XA_COLORFORMAT_32BI1TBGRA8888

32 bits per pixel ARGB format with colors stored as
Alpha 31:24 Red 23:16, Green 15:8, and Blue 7:0.

XA_COLORFORMAT_32BI1TARGB8888

24 bits per pixel ABGR format with colors stored as
Alpha 31:24, Blue 23:16, Green 15:8, and Red 7:0.

XA_COLORFORMAT_YUV411PLANAR

YUV planar format, organized with three separate planes
for each color component, namely Y, U, and V. U and V
pixels are sub-sampled by a factor of four both
horizontally and vertically.

XA_COLORFORMAT_YUV420PLANAR

YUV planar format, organized with three separate planes
for each color component, namely Y, U, and V. U and V
pixels are sub-sampled by a factor of two both
horizontally and vertically.

XA_COLORFORMAT_YUV420SEMIPLANAR

YUV planar format, organized with a first plane
containing Y pixels, and a second plane containing
interleaved U and V pixels. U and V pixels are sub-
sampled by a factor of two both horizontally and
vertically.

XA_COLORFORMAT_YUV422PLANAR

YUV planar format, organized with three separate planes
for each color component, namely Y, U, and V.

XA_COLORFORMAT_YUV422SEMIPLANAR

YUV planar format, organized with a first plane
containing Y pixels and a second plane containing
interleaved U and V pixels.

XA_COLORFORMAT_YCBYCR

16 bits per pixel YUV interleaved format organized as

OpenMAX|AL

393

Value Description
YUYV (i.e.,, YCbYCr).

XA_COLORFORMAT_YCRYCB 16 bits per pixel YUV interleaved format organized as
YVYU (i.e., YCrYCb).

XA _COLORFORMAT_CBYCRY 16 bits per pixel YUV interleaved format organized as
UYVY (i.e., CbYCrY).

XA_COLORFORMAT_CRYCBY 16 bits per pixel YUV interleaved format organized as
VYUY (i.e., CrYChY).

XA_COLORFORMAT_YUV444INTERLEAVED 12 bits per pixel YUV format with colors stores as Y 11:8,
U7:4,and V 3:0.

XA COLORFORMAT_RAWBAYER8BIT SMIA 8-bit raw Bayer pattern camera format.

XA COLORFORMAT_RAWBAYER10BIT SMIA 10-bit raw Bayer pattern camera format.

XA_COLORFORMAT_RAWBAYER8BITCOMPRESSED | SMIA compressed 8-bit camera output format.

XA COLORFORMAT_L2 2 bit per pixel luminance.

XA COLORFORMAT L4 4 bit per pixel luminance.

XA COLORFORMAT_L8 8 bit per pixel luminance.

XA COLORFORMAT_L16 16 bit per pixel luminance.

XA COLORFORMAT_L24 24 bit per pixel luminance.

XA COLORFORMAT_L32 32 bit per pixel luminance.

XA_COLORFORMAT_18BITBGR666 18 bits per pixel BGR format with colors stored as Blue
17:12, Green 11:6, and Red 5:0.

XA_COLORFORMAT_24BITARGB6666 24 bits per pixel ARGB format with colors stored as
Alpha 23:18, Red 17:12, Green 11:6, and Blue 5:0

XA_COLORFORMAT_24BITABGR6666 24 bits per pixel ARGB format with colors stored as
Alpha 23:18, Blue 17:12, Green 11:6, and Red 5:0

OpenMAX|AL

9.2.22

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

XA _CONTAINERTYPE represents the container type of the data source or sink.

XA_CONTAINERTYPE

XA_CONTAINERTYPE_UNSPECIFIED
XA_CONTAINERTYPE_RAW
XA_CONTAINERTYPE_ASF
XA_CONTAINERTYPE_AVI
XA_CONTAINERTYPE_BMP
XA_CONTAINERTYPE_JPG
XA_CONTAINERTYPE_JPG2000
XA_CONTAINERTYPE_M4A
XA_CONTAINERTYPE_MP3
XA_CONTAINERTYPE_MP4
XA_CONTAINERTYPE_MPEG_ES
XA_CONTAINERTYPE_MPEG_PS
XA_CONTAINERTYPE_MPEG_TS
XA_CONTAINERTYPE_QT
XA_CONTAINERTYPE_WAV
XA_CONTAINERTYPE_XMF_O
XA_CONTAINERTYPE_XMF_1
XA_CONTAINERTYPE_XMF_2
XA_CONTAINERTYPE_XMF_3
XA_CONTAINERTYPE_XMF_GENERIC
XA_CONTAINERTYPE_AMR
XA_CONTAINERTYPE_AAC
XA_CONTAINERTYPE_3GPP
XA_CONTAINERTYPE_3GA
XA_CONTAINERTYPE_RM
XA_CONTAINERTYPE_DMF
XA_CONTAINERTYPE_SMF
XA_CONTAINERTYPE_MOBILE_DLS
XA_CONTAINERTYPE_0GG

((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)

0x00000001)
0x00000002)
0x00000003)
0x00000004)
0x00000005)
0x00000006)
0x00000007)
0x00000008)
0x00000009)
0x0000000A)
0x0000000B)
0x0000000C)
0x0000000D)
0x0000000E)
0x0000000F)
0x00000010)
0x00000011)
0x00000012)
0x00000013)
0x00000014)
0x00000015)
0x00000016)
0x00000017)
0x00000018)
0x00000019)
0x0000001A)
0x0000001B)
0x0000001C)
0x0000001D)

Value

Description

XA_CONTAINERTYPE_UNSPECIFIED

The container type is not specified.

XA_CONTAINERTYPE_RAW

There is no container. Content is in raw form.

XA_CONTAINERTYPE_ASF

The container type is ASF.

XA_CONTAINERTYPE_AVI

The container type is AVI.

XA_CONTAINERTYPE_BMP

The container type is BMP.

XA_CONTAINERTYPE_JPG

The container type is JPEG.

XA_CONTAINERTYPE_JPG2000

The container type is JPEG 2000.

XA_CONTAINERTYPE_M4A

The container type is M4A.

XA_CONTAINERTYPE_MP3

The container type is MP3.

XA_CONTAINERTYPE_MP4

The container type is MP4.

XA_CONTAINERTYPE_MPEG_ES

The container type is MPEG Elementary Stream.

XA_CONTAINERTYPE_MPEG_PS

The container type is MPEG Program Stream.

OpenMAX|AL

395

Value

Description

XA_CONTAINERTYPE_MPEG_TS

The container type is MPEG Transport Stream.

XA_CONTAINERTYPE_QT

The container type is QuickTime.

XA_CONTAINERTYPE_WAV

The container type is WAV.

XA_CONTAINERTYPE_XMF_O

The container type is XMF Type 0.

XA_CONTAINERTYPE_XMF_1

The container type is XMF Type 1.

XA_CONTAINERTYPE_XMF_2

The container type is Mobile XMF (XMF Type 2).

XA_CONTAINERTYPE_XMF_3

The container type is Mobile XMF with Audio Clips (XMF Type 3).

XA_CONTAINERTYPE_XMF_GENERIC

The container type is the XMF Meta File Format (no particular XMF
File Type)

XA_CONTAINERTYPE_AMR

This container type is the file storage format variant of AMR (the magic
number in the header can be used to disambiguate between AMR-NB
and AMR-WB).

XA_CONTAINERTYPE_AAC

This container type is for ADIF and ADTS variants of AAC. This refers
to AAC in .aac files.

XA_CONTAINERTYPE_3GPP

The container type is 3GPP.

XA_CONTAINERTYPE_3GA

This container type is an audio-only variant of the 3GPP format, mainly
used in 3G phones.

XA_CONTAINERTYPE_RM

This container type is Real Media.

XA_CONTAINERTYPE_DMF

This container type is Divx media format.

XA_CONTAINERTYPE_SMF

This container type is a standard MIDI file (SMF) [SP-MIDI].

XA_CONTAINERTYPE_MOBILE_DLS

This container type is a Mobile DLS file [mDLS].

XA_CONTAINERTYPE_OGG

This container type is a OGG.

9.2.23

#define XA_DATAFORMAT_PCM

#define XA_DATAFORMAT_RAWIMAGE

XA_DATAFORMAT

#define XA_DATAFORMAT_MIME

((XAuint32) 0x00000001)
((XAuint32) 0x00000002)
((XAuint32) 0x00000003)

These values represent the possible data locators:

Value

Description

XA_DATAFORMAT_MIME

Data format is the specified as a MIME type.

XA_DATAFORMAT_PCM

Data format is PCM.

XA_DATAFORMAT_RAWIMAGE

Data format is raw image.

OpenMAX|AL

396

9.2.24 XA _DATALOCATOR

#define XA _DATALOCATOR_URI ((XAuint32) 0x00000001)
#define XA _DATALOCATOR_ADDRESS ((XAuint32) 0x00000002)
#define XA _DATALOCATOR_IODEVICE ((XAuint32) 0x00000003)
#define XA _DATALOCATOR_OUTPUTMIX ((XAuint32) 0x00000004)
#define XA _DATALOCATOR_NATIVEDISPLAY ((XAuint32) 0x00000005)
#define XA _DATALOCATOR_RESERVEDG ((XAuint32) 0x00000006)
#define XA _DATALOCATOR_RESERVED7 ((XAuint32) 0x00000007)

These values represent the possible data locators.

Value Description

XA_DATALOCATOR_URI Data resides at the specified URI.

XA_DATALOCATOR_ADDRESS Data is stored at the specified memory-mapped address.

XA_DATALOCATOR_I10DEVICE Data will be generated or consumed by the specified 10 device. Note:

for audio output use the output mix.

XA _DATALOCATOR_OUTPUTMIX Data will be consumed by the specified audio output mix.

XA_DATALOCATOR_NATIVEDISPLAY | Data will be rendered to the specified native display.

XA DATALOCATOR_RESERVEDG6 Reserved value.

XA DATALOCATOR_RESERVED7 Reserved value.

9.2.25 XA _DEFAULTDEVICEID
#define XA_DEFAULTDEVICEID_AUDIOINPUT ((XAuint32) OxFFFFFFFF)
#define XA_DEFAULTDEVICEID_AUDIOOUTPUT ((XAuint32) OxFFFFFFFE)
#define XA_DEFAULTDEVICEID_LED ((XAuint32) OxFFFFFFFD)
#define XA_DEFAULTDEVICEID_VIBRA ((XAuint32) OXFFFFFFFC)
#define XA_DEFAULTDEVICEID_CAMERA ((XAuint32) OxFFFFFFFB)

This macro may be used with any method that manipulates device IDs.

Value Description

XA_DEFAULTDEVICEID_AUDIOINPUT | Identifier denoting the set of input devices that the implementation

receives audio from by default.

XA_DEFAULTDEVICEID_AUDIOOUTPUT | Identifier denoting the set of output devices that the implementation

sends audio to by default.

XA_DEFAULTDEVICEID_LED Identifier denoting default LED array device.

XA _DEFAULTDEVICEID_VIBRA Identifier denoting default vibra device.

XA _DEFAULTDEVICEID_CAMERA Identifier denoting default camera device.

397

OpenMAX|AL

9.2.26 XA_DEVICECONNECTION

#define XA_DEVCONNECTION_INTEGRATED ((XAint16) 0x0001)
#define XA_DEVCONNECTION_ATTACHED_WIRED ((XAint16) 0x0100)
#define XA _DEVCONNECTION_ATTACHED WIRELESS ((XAint16) 0x0200)

#define XA_DEVCONNECTION_NETWORK

((XAint16) 0x0400)

These macros list the various types of 1/0 device connections possible. These connections are mutually exclusive for

a given 1/0O device.

Value

Description

XA_DEVCONNECT ION_INTEGRATED

I/0 device is integrated onto the system (that is, mobile phone,
music player, etc.).

XA_DEVCONNECTION_ATTACHED_WIRED

I/0 device is connected to the system via a wired connection.
Additional macros might be added if more granularity is
needed for each wired connection (such as USB, proprietary,
etc.).

XA_DEVCONNECTION_ATTACHED_WIRELESS

I/0 device is connected to the system via a wireless
connection. Additional macros might be added if more
granularity is needed for each wireless connection (such as
Bluetooth, etc.).

XA_DEVCONNECT ION_NETWORK

1/O device is connected to the system via some kind of
network connection (either wired or wireless). This is different
from the above connections (such as Bluetooth headset or
wired accessory) in the sense that this connection could be to a
remote device that could be quite distant geographically
(unlike a Bluetooth headset or a wired headset that are in close
proximity to the system). Also, a network connection implies
going through some kind of network routing infrastructure that
is not covered by the attached macros above. A Bluetooth
headset or a wired headset represents a peer-to-peer
connection, whereas a network connection does not. Examples
of such network audio 1/0O devices include remote content
servers that feed audio input to the system or a remote media
renderer that plays out audio from the system, transmitted to it
across a network.

OpenMAX|AL

398

9.2.27 XA _DEVICELOCATION

#define XA _DEVLOCATION_HANDSET ((XAint16) 0x0001)
#define XA _DEVLOCATION _HEADSET ((XAint16) 0x0002)
#define XA _DEVLOCATION_CARKIT ((XAint16) 0x0003)
#define XA _DEVLOCATION_DOCK ((XAint16) 0x0004)
#define XA_DEVLOCATION_REMOTE ((XAint16) 0x0005)

These macros list the location of the 1/0 device.

Value Description

XA_DEVLOCATION_HANDSET | 1/O device is on the handset.

XA _DEVLOCATION_HEADSET | 1/0 device is on a headset.

XA_DEVLOCATION_CARKIT | 1/O device is on a carkit.

XA DEVLOCATION_DOCK 1/0 device is on a dock.
XA DEVLOCATION_REMOTE I/O device is in a remote location, most likely connected via some kind of a
network.

Although it might seem like XA_DEVLOCAT ION_REMOTE is redundant since it is currently used with only
XA DEVCONNECTION_NETWORK, it is needed since none of the other device location macros fit a device whose
connection type is XA_ DEVCONNECT ION_NETWORK.

9.2.28 XA _DEVICESCOPE

#define XA_DEVSCOPE_UNKNOWN ((XAint16) 0x0001)
#define XA _DEVSCOPE_ENVIRONMENT ((XAint16) 0x0002)
#define XA _DEVSCOPE_USER ((XAint16) 0x0003)

These macros list the scope of the 1/0 device with respect to the end user. These macros help the application to
make routing decisions based on the type of content (such as audio) being rendered. For example, telephony
downlink will always default to a “user” audio output device unless specifically changed by the user.

Value Description

XA DEVSCOPE_UNKNOWN I/0O device can have either a user scope or an environment scope or an as-yet-
undefined scope.

Good examples of audio 1/0O devices with such a scope would be line-in and
line-out jacks. It is difficult to tell what types of devices will be plugged into
these jacks. 1/0 devices connected via a network connection also fall into this
category.

XA_DEVSCOPE_ENVIRONMENT | I/O device allows environmental (public) input or playback of content (such as
audio). For example, an integrated loudspeaker is an “environmental” audio
output device, since audio rendered to it can be heard by multiple people.
Similarly, a microphone that can accept audio from multiple people is an
“environmental” audio input device.

XA DEVSCOPE_USER I/0O device allows input from or playback of content (such as audio) to a single
user. For example, an earpiece speaker is a single-user audio output device
since audio rendered to it can be heard only by one person. Similarly, the
integrated microphone on a mobile phone is a single-user input device — it
accepts input from just one person.

OpenMAX|AL

9.2.29 XADomainType

#define XA_DOMAINTYPE_AUDIO 0x00000001
#define XA_DOMAINTYPE_VIDEO 0x00000002
#define XA_DOMAINTYPE_IMAGE 0x00000003
#define XA_DOMAINTYPE_TIMEDTEXT 0x00000004
#define XA_DOMAINTYPE_MIDI 0x00000005
#define XA_DOMAINTYPE_VENDOR OxXFFFFFFFE
#define XA_DOMAINTYPE_UNKNOWN OXFFFFFFFF

These values are used to determine which domain the functionality is associated with.

Value Description

XA DOMAINTYPE_AUDIO Audio domain based functionality.

XA DOMAINTYPE_VIDEO Video domain based functionality.

XA_DOMAINTYPE_ IMAGE Imaging domain based functionality.

XA_DOMAINTYPE_TIMEDTEXT | Timed Text domain based functionality.

XA _DOMAINTYPE_MIDI MIDI domain based functionality.

XA DOMAINTYPE_VENDOR Custom domain based functionality. Functionality associated with this domain
is implementation specific.

XA DOMAINTYPE_UNKNOWN Unknown stream domain.
This domain type represents an unrecognizeable stream type.

9.2.30 XA _DYNAMIC_ITF_EVENT

#define XA _DYNAMIC_ITF_EVENT_RUNTIME_ERROR \
((XAuint32) 0x00000001)

#define XA _DYNAMIC_ITF_EVENT_ASYNC_TERMINATION \
((XAuint32) 0x00000002)

#define XA_DYNAMIC_ITF_EVENT_RESOURCES_LOST \
((XAuint32) 0x00000003)

#define XA_DYNAMIC_ITF_EVENT RESOURCES_LOST PERMANENTLY \
((XAuint32) 0x00000004)

#define XA _DYNAMIC_ITF_EVENT_RESOURCES_AVAILABLE \
((XAuint32) 0x00000005)

These values are used for identifying events used for dynamic interface managerment.

Value Description
XA _DYNAMIC_ITF_EVENT_RUNTIME_ERROR Runtime error.
XA DYNAMIC_ITF_EVENT_ASYNC_TERMINATION An asynchronous operation has terminated.

OpenMAX|AL

XA DYNAMIC_ITF_EVENT_RESOURCES LOST Resources have been stolen from the
dynamically managed interface, causing it
to become Suspended.

XA_DYNAMIC_ITF_EVENT_RESOURCES_LOST_PERMANENTLY | Resources have been stolen from the
dynamically managed interface, causing it
to become unrecoverable.

XA DYNAMIC_ITF_EVENT_RESOURCES_ AVAILABLE Resources have become available, which
may enable the dynamically managed
interface to resume.

9.2.31 XA _ENGINEOPTION

#define XA_ENGINEOPTION_THREADSAFE ((XAuint32) 0x00000001)
#define XA_ENGINEOPTION_LOSSOFCONTROL ((XAuint32) 0x00000002)

Engine object creation options (see section 6.1).

Value Description

XA_ENGINEOPTION_THREADSAFE Thread safe engine creation option used with XAEngineOption
structure (see section 9.1.19). If the data field of the
XAEngineOption structure is set to XA_BOOLEAN_TRUE, the
engine object is created in thread-safe mode. Otherwise the engine
object is created a non-thread-safe mode (see section 4.1.1).

XA_ENGINEOPTION_LOSSOFCONTROL | Global loss-of-control setting used with XAEngineOption structure
(see section 9.1.19). If the data field of the XAEngineOption
structure is set to XA_BOOLEAN_TRUE, the engine object allows
loss-of-control notifications to occur on interfaces. Otherwise, none of
the interfaces exhibits loss-of-control behavior.

This global setting is best suited for applications that are interested in
coarse-grained loss-of-control functionality - either it is allowed for
that instance of the engine object or not.

See XAObjectl tf for details on loss-of-control.

9.2.32 XA _EQUALIZER

#define XA _EQUALIZER_UNDEFINED ((XAuintl6) OXFFFF)

This value is used when equalizer setting is not defined.

Value Description

XA EQUALIZER_UNDEFINED The setting is not defined.

OpenMAX|AL

9.2.33

XA_FOCUSPOINTS

#define XA_FOCUSPOINTS_ONE ((XAuint32) 0x00000001)
#define XA_FOCUSPOINTS_THREE_3X1 ((XAuint32) 0x00000002)
#define XA_FOCUSPOINTS_FIVE_CROSS ((XAuint32) 0x00000003)
#define XA_FOCUSPOINTS_SEVEN_CROSS ((XAuint32) 0x00000004)
#define XA_FOCUSPOINTS_NINE_SQUARE ((XAuint32) 0x00000005)
#define XA_FOCUSPOINTS_ELEVEN CROSS ((XAuint32) 0x00000006)
#define XA_FOCUSPOINTS_TWELVE_3X4 ((XAuint32) 0x00000007)
#define XA_FOCUSPOINTS_TWELVE_4X3 ((XAuint32) 0x00000008)
#define XA_FOCUSPOINTS_SIXTEEN_SQUARE ((XAuint32) 0x00000009)
#define XA_FOCUSPOINTS_CUSTOM ((XAuint32) 0x0000000A)

These macros are used to describe the camera’s focus point pattern. The patterns are used to set the active focus
points and to retrieve which points are in focus. The focus points are represented using as bits of a XAuint32 value.
The focus point pattern is the pattern of available focus points particular to a camera. For a given camera with a
given pattern, the application may set the active focus by some subset of points within the camera’s pattern.

Likewise the application may query the subset of points in focus for a given camera with a given pattern. A 32 bit
mask represents such a subset of points where each bit position in the mask corresponds to a point in the pattern.
Each pattern definition below specifies the point to bit correspondence by labelling each point with the appropriate
bit position.

Value Description

XA_FOCUSPOINTS_ONE Single focus point positioned in the center.

XA FOCUSPOINTS_THREE_3X1 Three focus points positioned in a horizontal line.

XA _FOCUSPOINTS_FIVE_CROSS Five focus points positioned in a cross pattern.

XA_FOCUSPOINTS_SEVEN_CROSS Seven focus points positioned in a cross pattern.

XA _FOCUSPOINTS_NINE_SQUARE Nine focus points positioned in a square pattern.

XA_FOCUSPOINTS_ELEVEN_CROSS Eleven focus points positioned in a cross pattern.

XA _FOCUSPOINTS_TWELVE_3X4 Twelve focus points positioned in a three wide by four tall pattern.

XA _FOCUSPOINTS_TWELVE_4X3 Twelve focus points positioned in a four wide by three tall pattern.

XA_FOCUSPOINTS_SIXTEEN_SQUARE | Sixteen focus points positioned in square pattern.

XA_FOCUSPOINTS_CUSTOM Custom focus points, allows for a use-selectable pattern.

XA_FOCUSPOINTS_ONE

Focus point pattern for XA_FOCUSPOINTS_ONE.

XA_FOCUSPOINTS_THREE_3X1

Focus point pattern for XA_FOCUSPOINTS_THREE_3X1.

OpenMAX|AL

XA_FOCUSPOINTS_FIVE_CROSS

Focus point pattern for XA _FOCUSPOINTS_FIVE_CROSS.

XA_FOCUSPOINTS_SEVEN_CROSS

Focus point pattern for XA_FOCUSPOINTS_SEVEN_CROSS.

XA_FOCUSPOINTS_NINE_SQUARE

Focus point pattern for XA_FOCUSPOINTS_NINE_SQUARE.

XA_FOCUSPOINTS_ELEVEN_CROSS

Focus point pattern for XA_FOCUSPOINTS_ELEVEN_CROSS.

OpenMAX|AL

0

2

4

0

3

6

0

1

3

4

6

7

403

XA_FOCUSPOINTS_TWELVE_3X4

10

Focus point pattern for XA_FOCUSPOINTS_TWELVE_3X4.

XA_FOCUSPOINTS_TWELVE_4X3

0

1

3

4

6

7

9

10

11

Focus point pattern for XA_FOCUSPOINTS_TWELVE_4Xa3.

0

1

2

4

5

6

8

9

10

11

XA_FOCUSPOINTS_SIXTEEN_4X4

Focus point pattern for XA_FOCUSPOINTS_SIXTEEN_4X4.

0

1

2

4

5

6

8

9

10

11

12

13

14

15

OpenMAX‘AL

404

XA_FOCUSPOINTS_CUSTOM

Focus point pattern for XA_FOCUSPOINTS_CUSTOM.

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

9.2.34 XA _FREQRANGE

#define XA_FREQRANGE_FMEUROAMERICA ((XAuint8) 0x01)
#define XA_FREQRANGE_FMJAPAN ((XAuint8) 0x02)
#define XA_FREQRANGE_AMLW ((XAuint8) 0x03)
#define XA_FREQRANGE_AMMW ((XAuint8) 0x04)
#define XA_FREQRANGE_AMSW ((XAuint8) 0x05)

These macros are used to specify the frequency range and the modulation.

Value Description

XA FREQRANGE_FMEUROAMERICA European and American FM frequency range.
XA _FREQRANGE_FMJAPAN Japanese FM frequency range.
XA_FREQRANGE_AMLW AM Long Wave.

XA_FREQRANGE_AMMW AM Medium Wave.
XA_FREQRANGE_AMSW AM Short Wave.

9.2.35 XA_IMAGECODEC

#define XA_IMAGECODEC_JPEG ((XAuint32) 0x00000001)
#define XA_IMAGECODEC_GIF ((XAuint32) 0x00000002)
#define XA_IMAGECODEC_BMP ((XAuint32) 0x00000003)
#define XA_IMAGECODEC_PNG ((XAuint32) 0x00000004)
#define XA_IMAGECODEC_TIFF ((XAuint32) 0x00000005)
#define XA_IMAGECODEC_RAW ((XAuint32) 0x00000006)

These macros are used to set the image encoding format.

OpenMAX|AL

Value

Description

XA_IMAGECODEC_JPEG

JPEG/JFIF image format.

XA_IMAGECODEC_GIF

GIF (Graphics Interchange Format) image format.

XA_IMAGECODEC_BMP

BMP (Windows Bitmap) image format.

XA_IMAGECODEC_PNG

PNG (Portable Network Graphics) image format.

XA_IMAGECODEC_TIFF

TIFF (Tagged Image File Format) image format.

XA_IMAGECODEC_RAW

RAW image format. Use XA_COLORFORMAT to set color format.

9.2.36 XA IMAGEEFFECT
#define XA _IMAGEEFFECT_MONOCHROME ((XAuint32) 0x00000001)
#define XA_IMAGEEFFECT_NEGATIVE ((XAuint32) 0x00000002)
#define XA_IMAGEEFFECT_SEPIA ((XAuint32) 0x00000003)
#define XA _ IMAGEEFFECT_EMBOSS ((XAuint32) 0x00000004)
#define XA IMAGEEFFECT_PAINTBRUSH ((XAuint32) 0x00000005)
#define XA IMAGEEFFECT_SOLARIZE ((XAuint32) 0x00000006)
#define XA_IMAGEEFFECT_CARTOON ((XAuint32) 0x00000007)

These macros are used to set the image effect type.

Value Description

XA_IMAGEEFFECT_MONOCHROME

Monochrome image effect.

XA_IMAGEEFFECT_NEGATIVE

Negative image effect.

XA_IMAGEEFFECT_SEPIA

Sepia image effect.

XA_IMAGEEFFECT_EMBOSS

Emboss image effect.

XA_IMAGEEFFECT_PAINTBRUSH

Paintbrush image effect.

XA_IMAGEEFFECT_SOLARIZE

Solarize image effect.

XA_IMAGEEFFECT_CARTOON

Cartoon image effect.

9.2.37 XA_IODEVICE

#define XA_IODEVICE_AUDIOINPUT
#define XA_IODEVICE_LEDARRAY
#define XA_IODEVICE_VIBRA
#define XA_IODEVICE_CAMERA
#define XA_IODEVICE_RADIO

These macros are used when creating 1/0O device data sources and sinks.

((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)

0x00000001)
0x00000002)
0x00000003)
0x00000004)
0x00000005)

Value

Description

XA_IODEVICE_AUDIOINPUT

Device for audio input such as microphone or line-in.

XA_IODEVICE_LEDARRAY Device

for LED arrays.

XA_IODEVICE_VIBRA Device

for vibrators.

XA_I10DEVICE_CAMERA

Device for camera used for capturing images.

OpenMAX|AL

406

XA _I0DEVICE_RADIO Device for tuning radio signals.

9.2.38 XA _METADATA_FILTER

#define XA _METADATA_FILTER_KEY ((XAuint8) 0x01)
#define XA _METADATA_FILTER_LANG ((XAuint8) 0x02)
#define XA _METADATA_FILTER_ENCODING ((XAuint8) 0x04)

Bit-masks for metadata filtering criteria.

Value Description

XA METADATA_FILTER_KEY Enable filtering by key.

XA METADATA_ FILTER_LANG Enable filtering by language / country code.
XA METADATA_FILTER_ENCODING Enable filtering by value encoding.

9.2.39 XA _METADATATRAVERSALMODE

#define XA_METADATATRAVERSALMODE_ALL ((XAuint32) 0x00000001)
#define XA_METADATATRAVERSALMODE_NODE ((XAuint32) 0x00000002)

XA _METADATATRAVERSALMODE represents a method of traversing metadata within a file.

Value Description

XA_METADATATRAVERSALMODE_ALL | Search the file linearly without considering its logical organization.

XA_METADATATRAVERSALMODE_NODE | Search by individual nodes, boxes, chunks, etc. within a file. (This is
the default mode, with the default active node being the root node.)

9.2.40 XA_MIDIBANK

#define XA_MIDIBANK_DEVICE 0x00000001
#define XA_MIDIBANK_CUSTOM 0x00000002

These values specify the MIDI instrument bank(s) used. It is worth nothing that multiple soundbanks might be used
to play content in a single MIDI file.

Value Description

XA_MIDIBANK_DEVICE | Used to indicate that only the default MIDI instrument bank(s) that are part of the
implementation on the device are used.

XA_MIDIBANK_CUSTOM | Used to indicate that custom MIDI instrument bank(s) in addition to or instead of
those specified by XA MIDIBANK_DEVICE are used. Includes Mobile DLS
soundbanks. Example: This macro would be used for a MIDI stream from a Mobile
XMF file that uses both the default MIDI instrument banks as well as Mobile DLS.

9.2.41 XA_MIDI_UNKNOWN

OpenMAX|AL

#define XA_MIDI_UNKNOWN OXFFFFFFFF

Value Description

XA _MIDI_UNKNOWN Unknown value for MIDI stream attribute.

9.2.42 XA_MILLIBEL

#define XA _MILLIBEL_MIN ((XAmillibel) (-XA_MILLIBEL_MAX-10))
#define XA _MILLIBEL_MAX ((XAmillibel) OX7FFF)

Limit values for millibel units.

Value Description

XA_MILLIBEL_MAX [Minimum volume level. This volume may be treated as silence in some implementations.

XA_MILLIBEL_MAX [Maximum volume level.

9.2.43 XA_MILLIHERTZ_MAX

#define XA_MILLIHERTZ_MAX ((XAmilliHertz) OXFFFFFFFF)

Limit value for milliHertz unit.

Value Description

XA _MILLIHERTZ_MAX A macro for representing the maximum possible frequency.

9.2.44 XA_MILLIMETER_MAX

#deFine XA_MILLIMETER_MAX ((XAmillimeter) Ox7FFFFFFF)

Limit value for millimeter unit.

Value Description

XA _MILLIMETER_MAX A macro for representing the maximum possible positive distance.

9.2.45 XA _NODE_PARENT

#define XA_NODE_PARENT ((XAuint32) OxFFFFFFFF)

XA _NODE_PARENT is used by XAMetadataTraversal 1tf: :SetActiveNode to set the current scope to
the node’s parent.

Value Description

XA NODE_PARENT Used for setting the active parent node.

OpenMAX|AL

9.2.46 XA_NODETYPE

#define XA_NODETYPE_UNSPECIFIED
#define XA_NODETYPE_AUDIO
#define XA_NODETYPE_VIDEO
#define XA_NODETYPE_IMAGE

XA _NODETYPE represents the type of a node.

((XAuint32) 0x00000001)
((XAuint32) 0x00000002)
((XAuint32) 0x00000003)
((XAuint32) 0x00000004)

Value

Description

XA_NODETYPE_UNSPECIFIED

Unspecified node type.

XA_NODETYPE_AUDIO Audio node.
XA_NODETYPE_VIDEO Video node.
XA_NODETYPE__IMAGE Image node.

OpenMAX|AL

409

9.2.47 XA _OBJECT_EVENT

#define XA _OBJECT_EVENT RUNTIME_ERROR ((XAuint32) 0x00000001)
#define XA_OBJECT_EVENT_ASYNC_TERMINATION ((XAuint32) 0x00000002)
#define XA_OBJECT_EVENT RESOURCES_LOST ((XAuint32) 0x00000003)
#define XA _OBJECT _EVENT RESOURCES_AVAILABLE ((XAuint32) 0x00000004)
#define XA _OBJECT_EVENT_ITF_CONTROL_TAKEN ((XAuint32) 0x00000005)
#define XA_OBJECT EVENT_ITF_CONTROL_RETURNED ((XAuint32) 0x00000006)
#define XA _OBJECT EVENT_ITF_PARAMETERS_CHANGED ((XAuint32) 0x00000007)

The macros identify the various event notifiations that an object may emit.

Value

Description

XA_OBJECT_EVENT_RUNTIME_ERROR

Runtime error.

XA_OBJECT_EVENT_ASYNC_TERMINATION

An asynchronous operation has terminated.

XA_OBJECT_EVENT_RESOURCES_LOST

Resources have been stolen from the object, causing it to
become Unrealized or Suspended.

XA_OBJECT_EVENT_RESOURCES_AVAILABLE

Resources have become available, which may enable the
object to recover.

XA_OBJECT_EVENT_ITF_CONTROL_TAKEN

An interface has lost control.

This event cannot be followed by another
XA_OBJECT_EVENT_ITF_CONTROL_TAKEN event
(for the interface in question).

XA_OBJECT_EVENT_ITF_CONTROL_RETURNED

Control was returned to an interface.

This event cannot be followed by another
XA_OBJECT_EVENT_ITF_CONTROL_RETURNED
event (for the interface in question).

XA_OBJECT_EVENT_ITF_PARAMETERS_CHANGED

Some of the parameters of the interface in question were
changed by other entity. (If the application wants to
know the new values, it should use getters.)

This event can only occur (for the interface in question)
between
XA_OBJECT_EVENT_ITF_CONTROL_TAKEN and
XA_OBJECT_EVENT_ITF_CONTROL_RETURNED
events.

9.2.48 XA _OBJECT_STATE

#define XA_OBJECT_STATE_UNREALIZED
#define XA_OBJECT_STATE_REALIZED
#define XA_OBJECT_STATE_SUSPENDED

These macros are used to identify the object states.

((XAuint32) 0x00000001)
((XAuint32) 0x00000002)
((XAuint32) 0x00000003)

Value

Description

XA_OBJECT_STATE_UNREALIZED

Unrealized state.

XA_OBJECT_STATE_REALIZED

Realized state.

OpenMAX|AL

410

XA_OBJECT_STATE_SUSPENDED

Suspended state.

9.2.49

#define
#define
#define
#define
#define
#define
#define
#define
#define

XA_OBJECTID

XA_OBJECTID_ENGINE
XA_OBJECTID_LEDDEVICE
XA_OBJECTID_VIBRADEVICE
XA_OBJECTID_MEDIAPLAYER
XA_OBJECTID_MEDIARECORDER
XA_OBJECTID_RADIODEVICE
XA_OBJECTID_OUTPUTMIX
XA_OBJECTID_METADATAEXTRACTOR
XA_OBJECTID_CAMERADEVICE

((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)

0x00000001)
0x00000002)
0x00000003)
0x00000004)
0x00000005)
0x00000006)
0x00000007)
0x00000008)
0x00000009)

These macros are the object identifiers use while querying for the supported interfaces

Value

Description

XA_OBJECTID_ENGINE

Engine Object ID.

XA_OBJECTID_LEDDEVICE

LED Device Object ID.

XA_OBJECTID_VIBRADEVICE

Vibra Device Object ID.

XA_OBJECTID_MEDIAPLAYER

Media Player Object ID.

XA_OBJECTID_MEDIARECORDER

Media Recorder Object ID.

XA_OBJECTID_RADIODEVICE

Radio Device Object ID.

XA_OBJECTID_OUTPUTMIX

Output Mix Object ID

XA_OBJECTID_METADATAEXTRACTOR

Metadata Extractor Object ID.

XA_OBJECTI1D_CAMERADEVICE

Camera Device Object ID.

9.2.50 XA _ORIENTATION

#define XA_ORIENTATION_UNKNOWN

((XAuint32) 0x00000001)

#define XA _ORIENTATION_OUTWARDS ((XAuint32) 0x00000002)

#define XA_ORIENTATION_INWARDS

These macros are used to describe the device orientation relative to the user.

((XAuint32) 0x00000003)

Value Description

XA ORIENTATION_UNKNOWN
for some other reason.

The pointing direction of the device is user configurable or cannot be known

XA _ORIENTATION_INWARDS
way.

The device is pointing towards the user when the device is held in a natural

XA _ORIENTATION_OUTWARDS
way.

The device is pointing away from the user when the device is held in a natural

9.2.51 XA _PCMSAMPLEFORMAT

OpenMAX|AL

#define XA _PCMSAMPLEFORMAT FIXED_8 ((XAuint16) 0x0008)
#define XA_PCMSAMPLEFORMAT FIXED_16 ((XAuint16) 0x0010)
#define XA_PCMSAMPLEFORMAT FIXED_20 ((XAuint16) 0x0014)
#define XA_PCMSAMPLEFORMAT FIXED_24 ((XAuintl16) 0x0018)
#define XA_PCMSAMPLEFORMAT FIXED_28 ((XAuint16) 0x001C)
#define XA_PCMSAMPLEFORMAT FIXED_32 ((XAuint16) 0x0020)

These macros list the various sample formats that are possible on audio input and output devices.

Value

Description

XA_PCMSAMPLEFORMAT_FIXED_8

Fixed-point 8-bit samples in 8-bit container.

XA_PCMSAMPLEFORMAT_FIXED_16

Fixed-point 16-bit samples in 16 bit container.

XA_PCMSAMPLEFORMAT_FIXED_20

Fixed-point 20-bit samples in 32 bit container left-justifed.

XA_PCMSAMPLEFORMAT_FIXED_24

Fixed-point 24-bit samples in 32 bit container left-justifed.

XA_PCMSAMPLEFORMAT_FIXED_28

Fixed-point 28-bit samples in 32 bit container left-justifed.

XA_PCMSAMPLEFORMAT_FIXED_32

Fixed-point 32-bit samples in 32 bit container left-justifed.

9.2.52 XA PLAYEVENT
#define XA _PLAYEVENT HEADATEND ((XAuint32) 0x00000001)
#define XA_PLAYEVENT HEADATMARKER ((XAuint32) 0x00000002)
#define XA_PLAYEVENT HEADATNEWPOS ((XAuint32) 0x00000004)
#define XA _PLAYEVENT _HEADMOVING ((XAuint32) 0x00000008)
#define XA_PLAYEVENT HEADSTALLED ((XAuint32) 0x00000010)

These values represent the possible play events.

Value

Description

XA_PLAYEVENT_HEADATEND

Playback head is at the end of the current content and the player has paused.

XA_PLAYEVENT_HEADATMARKER

Playback head is at the specified marker position.

XA_PLAYEVENT_HEADATNEWPOS

in by application).

Playback head is at a new position (period between notifications is specified

XA_PLAYEVENT_HEADMOV ING

Playback head has begun to move.

XA_PLAYEVENT_HEADSTALLED

Playback head has temporarily stopped moving.

9.2.53 XA PLAYSTATE
#define XA_PLAYSTATE_STOPPED ((XAuint32) 0x00000001)
#define XA_PLAYSTATE_PAUSED ((XAuint32) 0x00000002)
#define XA_PLAYSTATE_PLAYING ((XAuint32) 0x00000003)

These values represent the playback state of an object

OpenMAX|AL

412

Value Description

XA_PLAYSTATE_STOPPED | Player is stopped. The playback head is forced to the beginning of the content and is
not trying to move.

XA_PLAYSTATE_PAUSED | Player is paused. The playback head may be anywhere within the content but is not
trying to move.

XA_PLAYSTATE_PLAYING | Player is playing. The playback head may be anywhere within the content and is
trying to move.

9.2.54 XA _PREFETCHEVENT

#define XA _PREFETCHEVENT STATUSCHANGE ((XAuint32) 0x00000001)
#define XA_PREFETCHEVENT FILLLEVELCHANGE ((XAuint32) 0x00000002)

These values represent the possible prefetch related events.

Value Description
XA PREFETCHEVENT _STATUSCHANGE Prefetch status has changed.
XA PREFETCHEVENT_ FILLLEVELCHANGE Prefetch fill level has changed.

9.2.55 XA _PREFETCHSTATUS

#define XA_PREFETCHSTATUS_UNDERFLOW ((XAuint32) 0x00000001)
#define XA _PREFETCHSTATUS_SUFFICIENTDATA ((XAuint32) 0x00000002)
#define XA_PREFETCHSTATUS_OVERFLOW ((XAuint32) 0x00000003)

These values represent the possible status of a player’s prefetching operation.

Value Description

XA PREFETCHSTATUS_UNDERFLOW Playback is suffering due to data starvation.

XA PREFETCHSTATUS_SUFFICIENTDATA Playback is not suffering due to data starvation or spillover.
XA PREFETCHSTATUS_OVERFLOW Playback is suffering due to data spillover.

9.2.56 XA _PRIORITY

#define XA_PRIORITY_LOWEST ((XAint32) -OX7FFFFFFF-1)
#define XA _PRIORITY_VERYLOW ((XAint32) -0x60000000)
#define XA _PRIORITY_LOW ((XAint32) -0x40000000)
#define XA _PRIORITY_BELOWNORMAL ((XAint32) -0x20000000)
#define XA_PRIORITY_NORMAL ((XAint32) 0x00000000)
#define XA _PRIORITY_ABOVENORMAL ((XAint32) 0x20000000)
#define XA _PRIORITY_HIGH ((XAint32) 0x40000000)
#define XA_PRIORITY_VERYHIGH ((XAint32) 0x60000000)
#define XA_PRIORITY_HIGHEST ((XAint32) Ox7FFFFFFF)

Convenient macros representing various different priority levels, for use with the SetPriority method.

Value Description

XA PRIORITY_LOWEST The lowest specifiable priority.

OpenMAX|AL

XA _PRIORITY_VERYLOW Very low priority.

XA _PRIORITY_LOW Low priority.

XA _PRIORITY_BELOWNORMAL Below normal priority.
XA_PRIORITY_NORMAL Normal priority given to objects.
XA _PRIORITY_ABOVENORMAL Above normal priority.
XA_PRIORITY_HIGH High priority.

XA PRIORITY_VERYHIGH Very high priority.

XA PRIORITY_HIGHEST Highest specifiable priority.

9.2.57 XA _PROFILE

#define XA _PROFILES_MEDIA_PLAYER ((XAint16) 0x0001)
#define XA _PROFILES_MEDIA_PLAYER_RECORDER ((XAint16) 0x0002)
#define XA_PROFILES_PLUS_MIDI ((XAint16) 0x0004)

Macros used to report profiles supported. Valid combinations are XA_PROFILES_MEDIA_PLAYER,
(XA_PROFILES_MEDIA_PLAYER | XA_PROFILES_MEDIA_PLAYER_RECORDER),
(XA_PROFILES_MEDIA_PLAYER | XA_PROFILES_PLUS_MIDI) and
(XA_PROFILES_MEDIA_PLAYER | XA_PROFILES_MEDIA_PLAYER_RECORDER |
XA_PROFILES_PLUS_MIDI).

Value Description
XA_PROFILES_MEDIA_PLAYER Media player profile. For a description of the profile, see section
2.3.

XA_PROFILES_MEDIA_PLAYER_RECORDER | Media player/recorder profile. For a description of the profile,
see section 2.3.

XA PROFILES PLUS MIDI "+ MIDI" designation. For a description of the designation, see
section 2.5. XA _PROFILES_PLUS_MIDI cannot be set alone,
it must be set along with XA_PROFILE_MEDIA_PLAYER or
XA_PROFILE_MEDIA_PLAYER_RECORDER.

OpenMAX|AL

9.2.58 XA _RADIO_EVENT

#define XA _RADIO_EVENT ANTENNA_STATUS_CHANGED ((XAuint32) 0x00000001)
#define XA_RADIO_EVENT_FREQUENCY_CHANGED ((XAuint32) 0x00000002)
#define XA _RADIO_EVENT_FREQUENCY_RANGE_CHANGED ((XAuint32) 0x00000003)
#define XA _RADIO_EVENT PRESET_CHANGED ((XAuint32) 0x00000004)
#define XA _RADIO_EVENT SEEK_COMPLETED ((XAuint32) 0x00000005)

These macros are used to define the radio related event and the event specific parameters used by

xaRadioCal lback().

Value

Description

XA_RADIO_EVENT_ANTENNA_STATUS_CHANGED

This event indicates that the status of the antenna was
changed. (Some devices contain antennas that can be
unplugged from the device.)

The eventlIntData parameter for this event is not
used and shall be ignored.

The eventBooleanData parameter for this event is
XA BOOLEAN_TRUE if the antenna was detached and
XA BOOLEAN_TRUE if the antenna was attached.

XA_RADIO_EVENT_FREQUENCY_CHANGED

This event indicates that the frequency was changed.
This can be caused either by manual tuning with
SetFrequency or by automatic switching based on
RDS.

The eventlIntData parameter for this event contains
the new frequency in Hertz.

The eventBooleanData parameter for this event is
XA BOOLEAN_TRUE if the the change of the frequency
was automatic and caused by RDS related reason and
XA _BOOLEAN_TRUE otherwise.

XA_RADIO_EVENT_FREQUENCY_ RANGE_CHANGED

This event indicates that the frequency range was
changed.

The eventIntData parameter for this event contains
the new frequency range. See XA_Freq_Range
macros.

The eventBooleanData parameter for this event is
not used and shall be ignored.

XA_RADIO_EVENT_PRESET_CHANGED

This event indicates that a preset has been modified.
This can be caused also by other applications that change
the presets.

The eventlIntData parameter for this event contains
the index of the preset that was modified.

The eventBooleanData parameter for this event is
not used and shall be ignored.

OpenMAX|AL

415

Value

Description

XA RADIO_EVENT_SEEK COMPLETED This event indicates that the seek is completed and the

frequency of the tuner is the one that is given as
eventlIntData parameter, or if nothing was found,
the starting frequency (that will be then given as
parameter).

The eventBooleanData parameter for this event is
not used and shall be ignored.

9.2.59 XA _RATECONTROLMODE

#define XA_RATECONTROLMODE_CONSTANTBITRATE ((XAuint32) 0x00000001)
#define XA_RATECONTROLMODE_VARIABLEBITRATE ((XAuint32) 0x00000002)

These macros are used to set the rate control mode.

Value Description

XA _RATECONTROLMODE_CONSTANTBITRATE Constant bitrate mode.

XA _RATECONTROLMODE_VARIABLEBITRATE Variable bitrate mode.

9.2.60 XA RATEPROP
#define XA RATEPROP_STAGGEREDVIDEO ((XAuint32) 0x00000001)
#define XA _RATEPROP_SMOOTHVIDEO ((XAuint32) 0x00000002)
#define XA RATEPROP_SILENTAUDIO ((XAuint32) 0x00000100)
#define XA_RATEPROP_STAGGEREDAUDIO ((XAuint32) 0x00000200)
#define XA_RATEPROP_NOPITCHCORAUDIO ((XAuint32) 0x00000400)
#define XA _RATEPROP_PITCHCORAUDIO ((XAuint32) 0x00000800)

These values represent the rate-related properties of an object.

Value

Description

XA_RATEPROP_STAGGEREDVIDEO

Displays staggered video. Implementation presents a subset of video
frames (dropping some intermediate frames). This property
accommodates limitations of rewind and high speed fast forward.

XA_RATEPROP_SMOOTHVIDEO

Displays smooth video. Implementation presents all video frames, but the
presentation timing respects the current rate.

XA_RATEPROP_SILENTAUDIO

Silences audio output. This property accommodates limitations of rewind
and high speed fast-forward.

XA_RATEPROP_STAGGEREDAUDIO

Plays small chunks of audio at 1x forward, skipping segments of audio

between chunks. The progression of the playback head between chunks
obeys the direction and speed implied by the current rate. This property
accommodates limitations of rewind and high speed fast forward.

XA_RATEPROP_NOPITCHCORAUDIO

Plays audio at the current rate, but without pitch correction.

XA_RATEPROP_PITCHCORAUDIO

Plays audio at the current rate, but with pitch correction.

OpenMAX|AL

416

9.2.61 XA _RDS_EVENT

#define XA_RDS_EVENT_NEW_PI ((XAuint16) 0x0001)
#define XA_RDS_EVENT_NEW_PTY ((XAuint16) 0x0002)
#define XA_RDS_EVENT_NEW_PS ((XAuint16) 0x0004)
#define XA _RDS_EVENT NEW_RT ((XAuint16) 0x0008)
#define XA _RDS_EVENT_NEW_RT_PLUS ((XAuintl6) 0x0010)
#define XA _RDS_EVENT NEW _CT ((XAuint16) 0x0020)
#define XA _RDS_EVENT _NEW_TA ((XAuint16) 0x0040)
#define XA_RDS_EVENT_NEW_TP ((XAuint16) 0x0080)

#define XA _RDS_EVENT_NEW_ALARM ((XAuint16) 0x0100)

These macros are used to define which of the RDS fields have changed.

Value Description
XA RDS_NEW_PI The Programme ldentification code has changed.

The eventData parameter for this event is not used and shall be ignored.
XA RDS_EVENT_NEW_PTY The Programme TYpe has changed.

The eventData parameter for this event is not used and shall be ignored.
XA RDS_EVENT_NEW_PS The Programme Service name has changed.

The eventData parameter for this event is not used and shall be ignored.
XA RDS_EVENT_NEW_RT The Radio Text has changed.

The eventData parameter for this event is not used and shall be ignored.

XA_RDS_EVENT_NEW_RT_PLUS | A Radio Text plus information element has changed.

The RT+ class code of the changed information element is given as
eventData parameter of the callback.

This event is posted also in the case when an information element is cleared.
Then

Only one event is send in cases when there is an additional descriptor element
associated with another information element.

XA RDS EVENT _NEW _CT The Clock Time and date has changed.

The eventData parameter for this event is not used and shall be ignored.
XA RDS EVENT _NEW_TA The Traffic Announcement has changed.

The eventData parameter for this event is not used and shall be ignored.
XA _RDS_EVENT_NEW_TP The Traffic Programme has changed.

The eventData parameter for this event is not used and shall be ignored.

XA RDS EVENT_NEW_ALARM The Alarm status has changed.
The eventData parameter for this event is not used and shall be ignored.

OpenMAX|AL

9.2.62 XA _RDSPROGRAMMETYPE

The interpretation of values of this type depends on the origin of the RDS broadcast: in North America, a slightly
different standard, RBDS, is used. These PTY codes are defined by static values

XA_RDSPROGRAMMETYPE_RBDSPTY_XXX, for example XA_RDSPROGRAMMETYPE_RBDSTYPE_SOFTROCK.
Elsewhere, including Europe, the RDS standard is used. In these areas, the PTY codes are defined by static values

XA_PROGRAMMETYPE_RDSTYPE_XXX, for example
XA_PROGRAMMETYPE_RDSPTY_CHILDRENSPROGRAMMES.

#define XA_RDSPROGRAMMETYPE_RDSPTY_NONE \

((XAuint32) 0x00000000)

#define XA_RDSPROGRAMMETYPE_RDSPTY_NEWS \

((XAuint32) 0x00000001)

#define XA_RDSPROGRAMMETYPE_RDSPTY_CURRENTAFFAIRS \

((XAuint32) 0x00000002)

#define XA_RDSPROGRAMMETYPE_RDSPTY_INFORMATION \

((XAuint32) 0x00000003)

#define XA_RDSPROGRAMMETYPE_RDSPTY_SPORT \

((XAuint32) 0x00000004)

#define XA_RDSPROGRAMMETYPE_RDSPTY_EDUCATION \

((XAuint32) 0x00000005)

#define XA_RDSPROGRAMMETYPE_RDSPTY_DRAMA \

((XAuint32) 0x00000006)

#define XA_RDSPROGRAMMETYPE_RDSPTY_CULTURE \

((XAuint32) 0x00000007)

#define XA_RDSPROGRAMMETYPE_RDSPTY_SCIENCE \

((XAuint32) 0x00000008)

#define XA_RDSPROGRAMMETYPE_RDSPTY_VARIEDSPEECH \

((XAuint32) 0x00000009)

#define XA_RDSPROGRAMMETYPE_RDSPTY_POPMUSIC \

((XAuint32) 0x0000000A)

#define XA_RDSPROGRAMMETYPE_RDSPTY_ROCKMUSIC \

((XAuint32) 0x0000000B)

#define XA_RDSPROGRAMMETYPE_RDSPTY_EASYLISTENING \

((XAuint32) 0x0000000C)

#define XA_RDSPROGRAMMETYPE_RDSPTY_LIGHTCLASSICAL \

((XAuint32) 0x0000000D)

#define XA_RDSPROGRAMMETYPE_RDSPTY_SERIOUSCLASSICAL \

((XAuint32) 0x0000000E)

#define XA_RDSPROGRAMMETYPE_RDSPTY_OTHERMUSIC \

((XAuint32) 0x0000000F)

#define XA_RDSPROGRAMMETYPE_RDSPTY_WEATHER \

((XAuint32) 0x00000010)

#define XA_RDSPROGRAMMETYPE_RDSPTY_FINANCE \

((XAuint32) 0x00000011)

#define XA_RDSPROGRAMMETYPE_RDSPTY_CHILDRENSPROGRAMMES \

((XAuint32) 0x00000012)

#define XA_RDSPROGRAMMETYPE_RDSPTY_SOCIALAFFAIRS \

((XAuint32) 0x00000013)

#define XA_RDSPROGRAMMETYPE_RDSPTY_RELIGION \

((XAuint32) 0x00000014)

#define XA_RDSPROGRAMMETYPE_RDSPTY_PHONEIN \

((XAuint32) 0x00000015)

#define XA_RDSPROGRAMMETYPE_RDSPTY_TRAVEL \

OpenMAX|AL

418

((XAuint32) 0x00000016)

#define XA_RDSPROGRAMMETYPE_RDSPTY_LEISURE \

((XAuint32) 0x00000017)

#define XA_RDSPROGRAMMETYPE_RDSPTY_JAZZMUSIC \

((XAuint32) 0x00000018)

#define XA_RDSPROGRAMMETYPE_RDSPTY_COUNTRYMUSIC \

((XAuint32) 0x00000019)

#define XA_RDSPROGRAMMETYPE_RDSPTY_NATIONALMUSIC \

((XAuint32) 0x0000001A)

#define XA_RDSPROGRAMMETYPE_RDSPTY_OLDIESMUSIC \

((XAuint32) 0x0000001B)

#define XA_RDSPROGRAMMETYPE_RDSPTY_FOLKMUSIC \

((XAuint32) 0x0000001C)

#define XA_RDSPROGRAMMETYPE_RDSPTY_DOCUMENTARY \

((XAuint32) 0x0000001D)

#define XA_RDSPROGRAMMETYPE_RDSPTY_ALARMTEST \

((XAuint32) 0x0000001E)

#define XA_RDSPROGRAMMETYPE_RDSPTY_ALARM \

((XAuint32) 0x0000001F)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_NONE \

((XAuint32) 0x00000000)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_NEWS \

((XAuint32) 0x00000001)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_INFORMATION \

((XAuint32) 0x00000002)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_SPORTS \

((XAuint32) 0x00000003)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_TALK \

((XAuint32) 0x00000004)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_ROCK \

((XAuint32) 0x00000005)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_CLASSICROCK \

((XAuint32) 0x00000006)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_ADULTHITS \

((XAuint32) 0x00000007)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_SOFTROCK \

((XAuint32) 0x00000008)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_TOP40 \

((XAuint32) 0x00000009)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_COUNTRY \

((XAuint32) 0x0000000A)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_OLDIES \

((XAuint32) 0x0000000B)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_SOFT \

((XAuint32) 0x0000000C)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_NOSTALGIA \

((XAuint32) 0x0000000D)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_JAZZ \

((XAuint32) 0x0000000E)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_CLASSICAL \

((XAuint32) 0x0000000F)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_RHYTHMANDBLUES \

((XAuint32) 0x00000010)

OpenMAX|AL

419

#define XA_RDSPROGRAMMETYPE_RBDSPTY_SOFTRHYTHMANDBLUES \

((XAuint32) 0x00000011)
#define XA RDSPROGRAMMETYPE_RBDSPTY_ LANGUAGE \
((XAuint32) 0x00000012)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_RELIGIOUSMUSIC \

((XAuint32) 0x00000013)

#define XA RDSPROGRAMMETYPE_RBDSPTY RELIGIOUSTALK
((XAuint32) 0x00000014)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_ PERSONALITY \
((XAuint32) 0x00000015)

#define XA _RDSPROGRAMMETYPE_RBDSPTY_PUBLIC \
((XAuint32) 0x00000016)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_ COLLEGE \
((XAuint32) 0x00000017)

#define XA RDSPROGRAMMETYPE_RBDSPTY_ UNASSIGNED1 \
((XAuint32) 0x00000018)

#define XA RDSPROGRAMMETYPE_RBDSPTY_ UNASSIGNED2 \
((XAuint32) 0x00000019)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_UNASSIGNED3 \
((XAuint32) 0x0000001A)

#define XA RDSPROGRAMMETYPE_RBDSPTY_ UNASSIGNED4 \
((XAuint32) 0x0000001B)

#define XA_RDSPROGRAMMETYPE_RBDSPTY_UNASSIGNED5 \
((XAuint32) 0x0000001C)

#define XA RDSPROGRAMMETYPE_RBDSPTY_ WEATHER \
((XAuint32) 0x0000001D)

#define XA RDSPROGRAMMETYPE_RBDSPTY EMERGENCYTEST
((XAuint32) 0x0000001E)

#define XA RDSPROGRAMMETYPE_RBDSPTY_EMERGENCY \
((XAuint32) 0x0000001F)

The RDS Programme Types are:

\

\

Value

Description

XA_RDSPROGRAMMETYPE_RDSPTY_NONE

No programme type or undefined.

XA_RDSPROGRAMMETYPE_RDSPTY_NEWS

News.

XA_RDSPROGRAMMETYPE_RDSPTY_CURRENTAFFAIRS

Current Affairs.

XA_RDSPROGRAMMETYPE_RDSPTY_INFORMATION Information.
XA_RDSPROGRAMMETYPE_RDSPTY_SPORT Sport.
XA_RDSPROGRAMMETYPE_RDSPTY_EDUCAT ION Education.
XA_RDSPROGRAMMETYPE_RDSPTY_DRAMA Drama.
XA_RDSPROGRAMMETYPE_RDSPTY_CULTURE Culture.
XA_RDSPROGRAMMETYPE_RDSPTY_SCIENCE Science.
XA_RDSPROGRAMMETYPE_RDSPTY_VARIEDSPEECH Varied.
XA_RDSPROGRAMMETYPE_RDSPTY_POPMUSIC Pop Music.
XA_RDSPROGRAMMETYPE_RDSPTY_ROCKMUSIC Rock Music.

XA_RDSPROGRAMMETYPE_RDSPTY_EASYLISTENING

Easy Listening.

OpenMAX|AL

420

Value

Description

XA_RDSPROGRAMMETYPE_RDSPTY_LIGHTCLASSICAL

Light Classical.

XA_RDSPROGRAMMETYPE_RDSPTY_SERIOUSCLASSICAL

Serious Classical.

XA_RDSPROGRAMMETYPE_RDSPTY_OTHERMUSIC Other Music.
XA_RDSPROGRAMMETYPE_RDSPTY_WEATHER Weather.
XA_RDSPROGRAMMETYPE_RDSPTY_FINANCE Finance.

XA_RDSPROGRAMMETYPE_RDSPTY_CHILDRENSPROGRAMMES

Children’s Programmes.

XA_RDSPROGRAMMETYPE_RDSPTY_SOCIALAFFAIRS

Social Affairs.

XA_RDSPROGRAMMETYPE_RDSPTY_RELIGION Religion.
XA_RDSPROGRAMMETYPE_RDSPTY_PHONEIN Phone In.
XA_RDSPROGRAMMETYPE_RDSPTY_TRAVEL Travel.
XA_RDSPROGRAMMETYPE_RDSPTY_LEISURE Leisure.
XA_RDSPROGRAMMETYPE_RDSPTY_JAZZMUSIC Jazz Music.

XA_RDSPROGRAMMETYPE_RDSPTY_COUNTRYMUSIC

Country Music.

XA_RDSPROGRAMMETYPE_RDSPTY_NATIONALMUSIC

National Music.

XA_RDSPROGRAMMETYPE_RDSPTY_OLDIESMUSIC Oldies Music.
XA_RDSPROGRAMMETYPE_RDSPTY_FOLKMUSIC Folk Music.
XA_RDSPROGRAMMETYPE_RDSPTY_DOCUMENTARY Documentary.
XA_RDSPROGRAMMETYPE_RDSPTY_ALARMTEST Alarm Test.
XA_RDSPROGRAMMETYPE_RDSPTY_ALARM Alarm.

The RBDS Programme Types are:

Value Description

XA_RDSPROGRAMMETYPE_RBDSPTY_NONE

No programme type or undefined.

XA_RDSPROGRAMMETYPE_RBDSPTY_NEWS News.
XA_RDSPROGRAMMETYPE_RBDSPTY_INFORMATION Information.
XA_RDSPROGRAMMETYPE_RBDSPTY_SPORTS Sports.
XA_RDSPROGRAMMETYPE_RBDSPTY_TALK Talk.
XA_RDSPROGRAMMETYPE_RBDSPTY_ROCK Rock.
XA_RDSPROGRAMMETYPE_RBDSPTY_CLASSICROCK Classic Rock.
XA_RDSPROGRAMMETYPE_RBDSPTY_ADULTHITS Adult Hits.
XA_RDSPROGRAMMETYPE_RBDSPTY_SOFTROCK Soft Rock.
XA_RDSPROGRAMMETYPE_RBDSPTY_TOP40 Top 40.
XA_RDSPROGRAMMETYPE_RBDSPTY_COUNTRY Country.
XA_RDSPROGRAMMETYPE_RBDSPTY_OLDIES Oldies.

OpenMAX|AL

421

Value Description
XA_RDSPROGRAMMETYPE_RBDSPTY_SOFT Soft.
XA_RDSPROGRAMMETYPE_RBDSPTY_NOSTALGIA Nostalgia.
XA_RDSPROGRAMMETYPE_RBDSPTY_JAZZ Jazz.
XA_RDSPROGRAMMETYPE_RBDSPTY_CLASSICAL Classical.
XA_RDSPROGRAMMETYPE_RBDSPTY_RHYTHMANDBLUES Rhythm and Blues.
XA_RDSPROGRAMMETYPE_RBDSPTY_SOFTRHYTHMANDBLUES Soft Rhythm and Blues.
XA_RDSPROGRAMMETYPE_RBDSPTY_LANGUAGE Language.
XA_RDSPROGRAMMETYPE_RBDSPTY_RELIGIOUSMUSIC Religious Music.
XA_RDSPROGRAMMETYPE_RBDSPTY_RELIGIOUSTALK Religious Talk.
XA_RDSPROGRAMMETYPE_RBDSPTY_PERSONALITY Personality.
XA_RDSPROGRAMMETYPE_RBDSPTY_PUBLIC Public.
XA_RDSPROGRAMMETYPE_RBDSPTY_COLLEGE College.
XA_RDSPROGRAMMETYPE_RBDSPTY_UNASSIGNED1 Unassigned.
XA_RDSPROGRAMMETYPE_RBDSPTY_UNASSIGNED2 Unassigned.
XA_RDSPROGRAMMETYPE_RBDSPTY_UNASSIGNED3 Unassigned.
XA_RDSPROGRAMMETYPE_RBDSPTY_UNASSIGNED4 Unassigned.
XA_RDSPROGRAMMETYPE_RBDSPTY_UNASSIGNEDS Unassigned.
XA_RDSPROGRAMMETYPE_RBDSPTY_WEATHER Weather.
XA_RDSPROGRAMMETYPE_RBDSPTY_EMERGENCYTEST Emergency Test.
XA_RDSPROGRAMMETYPE_RBDSPTY_EMERGENCY Emergency.

OpenMAX|AL

9.2.63

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

OpenMAX

XA_RDSRTPLUS

XA_RDSRTPLUS_ITEMTITLE
XA_RDSRTPLUS_ITEMALBUM
XA_RDSRTPLUS_ITEMTRACKNUMBER
XA_RDSRTPLUS_ITEMARTIST
XA_RDSRTPLUS_ITEMCOMPOSITION
XA_RDSRTPLUS_ ITEMMOVEMENT
XA_RDSRTPLUS_ITEMCONDUCTOR
XA_RDSRTPLUS_ ITEMCOMPOSER
XA_RDSRTPLUS_ ITEMBAND
XA_RDSRTPLUS_ITEMCOMMENT
XA_RDSRTPLUS_ ITEMGENRE
XA_RDSRTPLUS_ INFONEWS
XA_RDSRTPLUS_ INFONEWSLOCAL
XA_RDSRTPLUS_ INFOSTOCKMARKET
XA_RDSRTPLUS_ INFOSPORT
XA_RDSRTPLUS_INFOLOTTERY
XA_RDSRTPLUS_ INFOHOROSCOPE

XA_RDSRTPLUS_INFODAILYDIVERSION

XA_RDSRTPLUS_ INFOHEALTH
XA_RDSRTPLUS_INFOEVENT
XA_RDSRTPLUS_ INFOSZENE
XA_RDSRTPLUS_ INFOCINEMA
XA_RDSRTPLUS_INFOTV
XA_RDSRTPLUS_ INFODATET IME
XA_RDSRTPLUS_ INFOWEATHER
XA_RDSRTPLUS_INFOTRAFFIC
XA_RDSRTPLUS_ INFOALARM

XA_RDSRTPLUS_ INFOADVISERTISEMENT

XA_RDSRTPLUS_ INFOURL
XA_RDSRTPLUS_ INFOOTHER

XA_RDSRTPLUS_STATIONNAMESHORT

XA_RDSRTPLUS_STAT IONNAMELONG
XA_RDSRTPLUS_PROGRAMNOW
XA_RDSRTPLUS_PROGRAMNEXT
XA_RDSRTPLUS_PROGRAMPART
XA_RDSRTPLUS_PROGRAMHOST

XA_RDSRTPLUS_PROFRAMEDITORIALSTAFF
XA_RDSRTPLUS_PROGRAMFREQUENCY

XA_RDSRTPLUS_PROGRAMHOMEPAGE

XA_RDSRTPLUS_PROGRAMSUBCHANNEL

XA_RDSRTPLUS_PHONEHOTL INE
XA_RDSRTPLUS_PHONESTUDIO
XA_RDSRTPLUS_PHONEOTHER
XA_RDSRTPLUS_SMSSTUDIO
XA_RDSRTPLUS_SMSOTHER
XA_RDSRTPLUS_EMAILHOTLINE
XA_RDSRTPLUS_EMAILSTUDIO
XA_RDSRTPLUS_EMAILOTHER
XA_RDSRTPLUS_MMSOTHER
XA_RDSRTPLUS_CHAT
XA_RDSRTPLUS_CHATCENTER
XA_RDSRTPLUS_VOTEQUESTION
XA_RDSRTPLUS_VOTECENTER
XA_RDSRTPLUS_OPENCLASS45

AL

((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)
((XAuint8)

0x01)
0x02)
0x03)
0x04)
0x05)
0x06)
0x07)
0x08)
0x09)
0x0A)
0x0B)
0x0C)
0x0D)
OxOE)
OxO0F)
0x10)
0x11)
0x12)
0x13)
0x14)
0x15)
0x16)
0x17)
0x18)
0x19)
0x1A)
0x1B)
0x1C)
0x1D)
Ox1E)
Ox1F)
0x20)
0x21)
0x22)
0x23)
0x24)
0x25)
0x26)
0x27)
0x28)
0x29)
0x2A)
0x2B)
0x2C)
0x2D)
Ox2E)
Ox2F)
0x30)
0x31)
0x32)
0x33)
0x34)
0x35)
0x36)

423

#define XA_RDSRTPLUS_OPENCLASS55
#define XA_RDSRTPLUS_OPENCLASS56
#define XA_RDSRTPLUS_OPENCLASS57
#define XA_RDSRTPLUS_OPENCLASS58
#define XA_RDSRTPLUS_PLACE
#define XA_RDSRTPLUS_APPOINTMENT
#define XA_RDSRTPLUS_IDENTIFIER
#define XA_RDSRTPLUS_PURCHASE
#define XA_RDSRTPLUS_GETDATA

((XAuint8) 0x37)
((XAuint8) 0x38)
((XAuint8) 0x39)
((XAuint8) 0x3A)
((XAuint8) 0x3B)
((XAuint8) 0x3C)
((XAuint8) 0x3D)
((XAuint8) 0x3E)
((XAuint8) 0x3F)

The macros are sued to specify Class codes for RT+ content types and they are defined in Radiotext plus (RT+)

Specification Version 2.1. See RDS Forum 2006-07-21 - R06/040_1.

Category enum Code | RT+ Classes

ITEM XA_RDSRTPLUS_ITEMTITLE 1 TITLE
XA_RDSRTPLUS_ITEMALBUM 2 ALBUM
XA_RDSRTPLUS_ ITEMTRACKUMBER 3 TRACKNUMBER
XA_RDSRTPLUS_ITEMARTIST 4 ARTIST
XA_RDSRTPLUS_ITEMCOMPOSITION 5 COMPOSITION
XA_RDSRTPLUS_ITEMMOVEMENT 6 MOVEMENT
XA_RDSRTPLUS__ITEMCONDUCTOR 7 CONDUCTOR
XA_RDSRTPLUS_ITEMCOMPOSER 8 COMPOSER
XA_RDSRTPLUS_ITEMBAND 9 BAND
XA_RDSRTPLUS__ITEMCOMMENT 10 COMMENT
XA_RDSRTPLUS_ ITEMGENRE 11 GENRE

Info XA_RDSRTPLUS__ INFONEWS 12 NEWS
XA_RDSRTPLUS_ INFONEWSLOCAL 13 NEWS.LOCAL
XA_RDSRTPLUS_INFOSTOCKMARKET 14 STOCKMARKET
XA_RDSRTPLUS_ INFOSPORT 15 SPORT
XA_RDSRTPLUS_INFOLOTTERY 16 LOTTERY
XA_RDSRTPLUS_ INFOHOROSCOPE 17 HOROSCOPE
XA_RDSRTPLUS_ INFODAILYDIVERSION 18 DAILY_DIVERSION
XA_RDSRTPLUS_INFOHEALTH 19 HEALTH
XA_RDSRTPLUS_ INFOEVENT 20 EVENT
XA_RDSRTPLUS_ INFOSZENE 21 SZENE
XA_RDSRTPLUS_ INFOCINEMA 22 CINEMA
XA_RDSRTPLUS_INFOTV 23 TV
XA_RDSRTPLUS_ INFODATET IME 24 DATE_TIME
XA_RDSRTPLUS_ INFOWEATHER 25 WEATHER
XA_RDSRTPLUS_INFOTRAFFIC 26 TRAFFIC

OpenMAX|AL

424

Category enum Code | RT+ Classes
XA_RDSRTPLUS_ INFOALARM 27 ALARM
XA_RDSRTPLUS_ INFOADVISERTISEMENT 28 ADVERTISEMENT
XA_RDSRTPLUS_ INFOURL 29 URL
XA_RDSRTPLUS_INFOOTHER 30 OTHER

Programme XA_RDSRTPLUS_STATIONNAMESHORT 31 STATIONNAME.SHORT
XA _RDSRTPLUS_STAT IONNAMELONG 32 STATIONNAME.LONG
XA _RDSRTPLUS_PROGRAMNOW 33 NOW
XA_RDSRTPLUS_PROGRAMNEXT 34 NEXT
XA_RDSRTPLUS_PROGRAMPART 35 PART
XA_RDSRTPLUS_PROGRAMHOST 36 HOST
XA _RDSRTPLUS_PROGRAMEDITORIALSTAFF | 37 EDITORIAL_STAFF
XA _RDSRTPLUS_PROGRAMFREQUENCY 38 FREQUENCY
XA_RDSRTPLUS_PROGRAMHOMEPAGE 39 HOMEPAGE
XA _RDSRTPLUS_PROGRAMSUBCHANNEL 40 SUBCHANNEL

Interactivity | XA_RDSRTPLUS_PHONEHOTLINE 41 PHONE.HOTLINE
XA_RDSRTPLUS_PHONESTUDIO 42 PHONE.STUDIO
XA _RDSRTPLUS_PHONEOTHER 43 PHONE.OTHER
XA _RDSRTPLUS_SMSSTUDIO 44 SMS.STUDIO
XA_RDSRTPLUS_SMSOTHER 45 SMS.OTHER
XA_RDSRTPLUS_EMAILHOTLINE 46 EMAIL.HOTLINE
XA_RDSRTPLUS_EMAILSTUDIO 47 EMAIL.STUDIO
XA_RDSRTPLUS_EMAILOTHER 48 EMAIL.OTHER
XA_RDSRTPLUS_MMSOTHER 49 MMS.OTHER
XA_RDSRTPLUS_CHAT 50 CHAT
XA_RDSRTPLUS_CHATCENTER 51 CHAT.CENTER
XA_RDSRTPLUS_VOTEQUESTION 52 VOTE.QUESTION
XA_RDSRTPLUS_VOTECENTER 53 VOTE.CENTER

rfu 54 Reserved for Future Use

55 Reserved for Future Use
Private 56 Private classes may be defined by the
classes service provider
57 Private classes may be defined by the
service provider
58 Private classes may be defined by the
service provider

OpenMAX|AL

Category enum Code | RT+ Classes
Descriptor XA_RDSRTPLUS_PLACE 59 PLACE
XA_RDSRTPLUS_APPOINTMENT 60 APPOINTMENT
XA_RDSRTPLUS_IDENTIFIER 61 IDENTIFIER
XA_RDSRTPLUS_PURCHASE 62 PURCHASE
XA_RDSRTPLUS_GETDATA 63 GET_DATA
9.2.64 XA RECORDEVENT
#define XA_RECORDEVENT HEADATLIMIT ((XAuint32) 0x00000001)
#define XA RECORDEVENT_HEADATMARKER ((XAuint32) 0x00000002)
#define XA RECORDEVENT_HEADATNEWPOS ((XAuint32) 0x00000004)
#define XA_RECORDEVENT HEADMOVING ((XAuint32) 0x00000008)
#define XA_RECORDEVENT_HEADSTALLED ((XAuint32) 0x00000010)
#define XA_RECORDEVENT BUFFER_FULL ((XAuint32) 0x00000020)

These values represent the possible record events.

Value Description

XA_RECORDEVENT_HEADATLIMIT | Recording head is at the specified duration limit and the recorder has

stopped.

XA_RECORDEVENT_HEADATMARKER | Recording head is at the specified marker position.

XA_RECORDEVENT_HEADATNEWPOS | Recording head is at a new position. (Period between notifications is

specified by application.)

XA_RECORDEVENT_HEADMOVING

Recording head has begun to move.

XA_RECORDEVENT_HEADSTALLED

Recording head has temporarily stopped moving.

XA_RECORDEVENT_BUFFER_FULL

Recording has reached the end of the memory buffer (i.e.
XADatalocator_Address).

When the recorder is unable to write any more data (e.g. when the
memory buffer it is writing to is full) the recorder transitions to the
XA_RECORDSTATE_STOPPED state.

This event will not be posted when recording to a file.

9.2.65

XA_RECORDSTATE

#define XA_RECORDSTATE_STOPPED
#define XA_RECORDSTATE_PAUSED

((XAuint32) 0x00000001)
((XAuint32) 0x00000002)

#define XA_RECORDSTATE_RECORDING ((XAuint32) 0x00000003)

These values represent the recording state of an object.

Value

Description

XA_RECORDSTATE_STOPPED

Recorder is stopped. The destination is closed

XA_RECORDSTATE_PAUSED

Recorder is stopped. The destination is open but not receiving captured
content.

XA_RECORDSTATE_RECORDING

Recorder is recording. The destination is open and receiving captured content.

OpenMAX|AL

426

9.2.66

XA_RENDERINGHINT

#define XA_RENDERINGHINT_NONE ((XAuint32) 0x00000000)
#define XA_RENDERINGHINT_ANTIALIASING ((XAuint32) 0x00000001)

These values represent rendering hints for image and video processing. They can be used with
XAVideoPostProcessingltf.

Value

Description

XA_RENDERINGHINT_NONE

No specific hint is given. The application prefers speed.

XA_RENDERINGHINT_ANTIALIASING

quality.

A hint to use anti-aliasing in processing. The application prefers

9.2.67

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

XA_RESULT

XA_RESULT_SUCCESS

XA_RESULT_PRECONDITIONS_VIOLATED

XA_RESULT_PARAMETER_INVALID
XA_RESULT_MEMORY_FAILURE
XA_RESULT_RESOURCE_ERROR
XA_RESULT_RESOURCE_LOST
XA_RESULT_10_ERROR
XA_RESULT_BUFFER_INSUFFICIENT
XA_RESULT_CONTENT_CORRUPTED
XA_RESULT_CONTENT_UNSUPPORTED
XA_RESULT_CONTENT_NOT_FOUND
XA_RESULT_PERMISSION_DENIED
XA_RESULT_FEATURE_UNSUPPORTED
XA_RESULT_INTERNAL_ERROR
XA_RESULT_UNKNOWN_ERROR
XA_RESULT_OPERATION_ABORTED
XA_RESULT_CONTROL_LOST

The XA_RESULT values are described.

((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)
((XAuint32)

0x00000000)
0x00000001)
0x00000002)
0x00000003)
0x00000004)
0x00000005)
0x00000006)
0x00000007)
0x00000008)
0x00000009)
0x0000000A)
0x0000000B)
0x0000000C)
0x0000000D)
0x0000000E)
0x0000000F)
0x00000010)

Value

Description

XA_RESULT_SUCCESS

Success.

XA_RESULT_PRECONDITIONS_VIOLATED

Use of the method violates a pre-condition (not including invalid
parameters). The pre-conditions are defined in the method
specifications.

XA_RESULT_PARAMETER_INVALID

pointers.

An invalid parameter has been detected. In case of parameters
passed by pointer (such as the self-parameters) — if the pointer is
corrupt, an implementation’s behavior is undefined. However, it
is recommended that implementations at least check for NULL-

XA_RESULT_MEMORY_FAILURE

The method was unable to allocate or release memory.

XA_RESULT_RESOURCE_ERROR

Operation failed due to a lack of resources (usually a result of
object realization).

XA_RESULT_RESOURCE_LOST

state.

Operation ignored, since object is in Unrealized or Suspended

XA_RESULT_10_ERROR

Failure due to an I/O error (file or other 1/O device).

OpenMAXIAL

427

Value

Description

XA_RESULT_BUFFER_INSUFFICIENT

One or more of the buffers passed to the method is too small to
service the request.

XA_RESULT_CONTENT_CORRUPTED

Failure due to corrupted content (also applies for malformed
MIDI messages sent programmatically).

XA_RESULT_CONTENT_UNSUPPORTED

Failure due to an unsupported content format (such as
unsupported codec).

XA_RESULT_CONTENT_NOT_FOUND

Failed to retrieve content (for example, file not found).

XA_RESULT_PERMISSION_DENIED

Failure due to violation of DRM, user permissions, policies, etc.

XA_RESULT_FEATURE_UNSUPPORTED

Failure due to an unsupported feature. This occurs when trying to
access unsupported extensions.

XA_RESULT_INTERNAL_ERROR

Failure due to an (unrecoverable) internal error.

XA_RESULT_UNKNOWN_ERROR

Catch-all error, including system errors. Should never be returned
when any of the above errors apply.

XA_RESULT_OPERATION_ABORTED

Operation was aborted as a result of a user request.

XA_RESULT_CONTROL_LOST

Another entity is now controlling the interface and it cannot be
controlled by this application currently. xaObjectCal Iback
can be used for monitoring this behavior: this error code can only
occur between XA_OBJECT_EVENT_ITF_CONTROL_TAKEN
and XA_OBJECT_EVENT_I1TF_CONTROL_RETURNED events.

9.2.68 XA ROOT_NODE_ID

#define XA_ROOT_NODE_ID ((XAint32) Ox7FFFFFFF)

This define is used to refer to the root node of the metadata tree.

Value Description

XA ROOT_NODE_ID ID of the root node.

OpenMAX|AL

9.2.69

XA_SAMPLINGRATE

#define XA_SAMPLINGRATE_8 ((XAuint32) 8000000)

#define XA _SAMPLINGRATE_ 11 025 ((XAuint32) 11025000)
#define XA_SAMPLINGRATE_12 ((XAuint32) 12000000)
#define XA_SAMPLINGRATE_16 ((XAuint32) 16000000)
#define XA_SAMPLINGRATE_22_ 05 ((XAuint32) 22050000)
#define XA_SAMPLINGRATE_24 ((XAuint32) 24000000)
#define XA_SAMPLINGRATE_32 ((XAuint32) 32000000)
#define XA_SAMPLINGRATE 44 1 ((XAuint32) 44100000)
#define XA_SAMPLINGRATE_48 ((XAuint32) 48000000)
#define XA_SAMPLINGRATE_64 ((XAuint32) 64000000)
#define XA _SAMPLINGRATE_88 2 ((XAuint32) 88200000)
#define XA_SAMPLINGRATE_96 ((XAuint32) 96000000)
#define XA_SAMPLINGRATE_192 ((XAuint32) 192000000)

These macros specify the commonly used sampling rates (in milliHertz) supported by most audio 1/0 devices.

Value

Description

XA_SAMPLINGRATE_8

8 kHz sampling rate.

XA_SAMPLINGRATE_11_025

11.025 kHz sampling rate.

XA_SAMPLINGRATE_12

12 kHz sampling rate.

XA_SAMPLINGRATE_16

16 kHz sampling rate.

XA_SAMPLINGRATE_22_05

22.05 kHz sampling rate.

XA_SAMPLINGRATE_24

24 kHz sampling rate.

XA_SAMPLINGRATE_32

32 kHz sampling rate.

XA_SAMPLINGRATE_44 1

44.1 kHz sampling rate.

XA_SAMPLINGRATE_48

48 kHz sampling rate.

XA_SAMPLINGRATE_64

64 kHz sampling rate.

XA_SAMPLINGRATE_88_2

88.2 kHz sampling rate.

XA_SAMPLINGRATE_96

96 kHz sampling rate.

XA_SAMPLINGRATE_192

192 kHz sampling rate.

9.2.70 XA_SEEKMODE

#define XA_SEEKMODE_FAST
#define XA_SEEKMODE_ACCURATE

((XAuint32) 0x0001)
((XAuint32) 0x0002)

Thes