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ABSTRACT

The widespread growth of open wireless hot spots has maeeyit v
easy for network attackers to carry out man-in-the-middiacas
and impersonate web sites. End-to-end security betweeprs us
web browser and web sites is ever more needed to allow mean-
ingful enforcement of the same-origin policy on the web tsew
platform. Although HTTPS can be used to prevent such attacks
its universal adoption by web sites is hindered by its penoice
cost and its inability to be cached at intermediate senarsh as
CDN servers and cache proxies) while maintaining end-tbsen
curity. With significant and increasing amount of web contss
ing cacheable, HTTPS is not the complete answer to an epdédo-
secure web.

In this paper, we observe that only end-to-end authenticatnd
integrity are required for the browser platform to meanitigfen-
force the same-origin policy. Without end-to-end confidty,
content can be cached. In light of this observation, we @epo
a new protocol, HTTPi, which offers only end-to-end authent
cation and integrity. HTTPi works seamlessly with and beagefi
from the existing web caching infrastructure. It perfornositent
signing while preserving progressive content loading sugl by
browsers. Because content signing can be done offline, HRTPi
curs negligible overhead over HTTP. We advocate that sises u
HTTPS for requests that require end-to-end confidentjaéityd
HTTPi for all other requests. Our prototype and evaluatixquee-
ence show that HTTPi is practical for adoption.

1. INTRODUCTION

The same-origin policy [33] (SOP) is the key access contwbl p
icy for the web and browsers. This policy has essentiallyngefi
a principal model where web sites are mutually distrustirig-p
cipals [38, 39], and where one site’s script cannot accesthan
site’s content. However, the authenticity of the principatl the
integrity of its content are often at question since mucthefweb
is delivered over HTTP rather than HTTPS. Consequentlyyot
attackers can carry out man-in-the-middle attacks and ramde
browsers’ access control, even if browsers flawlessly implet
the enforcement of the same-origin policy. Such attack$igtdy
practical today with the prevalence of wireless hotspot$ iase-
curity in the DNS infrastructure [19]. The web requirsl-to-end
security to allow meaningful SOP enforcement in browsers.

HTTPS [31] has the potential to prevent network attacksjtbut
universal adoption is hindered by its uncacheability arimediate
servers, such as content distribution network (CDN) serasrd
HTTP proxies, and its performance cost.

Web caching offers significant benefits to web sites and users
It enables web sites to save bandwidth costs and reducecyaten
for users by outsourcing infrastructure to CDNs and offlongdie-
guests to CDN servers. Although CDNs do offer services fof IS
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content [6], this is at the cost of trusting CDN servers to lmm
in-the-middle and losing end-to-end security. Furtheenauch
services come with a hefty charge of up to $3,000 per month plu
bandwidth costs [15]. Web cache proxies can also delivercgeb
tent significantly faster to large user communities behiagtgays

or firewalls, such as mobile users. HTTPS content cannotaeke
vantage of these proxies at all today. We observe that mutheof
web is cacheable (Section 4.1), and we expect significanttgro
in cacheable web content as rich media proliferates [2].Chiexe

an end-to-end secure web, HTTPS is definitely not the complet
answer.

In terms of performance, although GMail has recently demon-
strated the ability of serving HTTPS content with low ovextieis-
ing commodity hardware (1% CPU load, less than 10KB of mem-
ory per connection and less than 2% network overhead) [26], a
general applicability of their solution to other SSL setupsot
clear [3]. Due to differences in HTTPS deployments, it migbt
be trivial for other web sites to replicate Gmail's performea im-
provements. Even if the SSL's server overhead is succésséil
duced, it still suffers from lack of in-network caching, thlimiting
the performance benefits for the clients.

Fortunately, end-to-end security, cacheability, andqrerance
are not at conflict inherently. End-to-end security encosspa
(1) end-to-end authentication (i.e., content comes froenright
origin') (2) end-to-end content integrity (i.e., content is not tam
pered), and (3) end-to-end content confidentiality (i.entent is
kept private). For the browser platform to meaningfullyauoe its
access control policy, both authentication and integrigyreeeded,
but confidentiality isot required. Without confidentiality, the con-
tent is cacheable at intermediate web servers. HTTPS el
three properties simultaneously and is hence not cacheable

In this paper, we proposdTTPi as a protocol to support only
end-to-end authentication and content integrity. We adtethat
web sites use HTTPS for requests that require end-to-erfitieon
tiality, and HTTPi for all other requests.

This work presents a practical and comprehensive desigimand
plementation of HTTPi that is based on a content-signabaeed
scheme. While HTTPi requires both browser and server-simt#-m
fications, our design does not require changes at interitesutales,
such as proxies, for caching HTTPi content (Section 2.1).r Ou
design also ensures that progressive content loading insiers
is not hindered by HTTPi, and that this incurs minimal ovexhe
in both computation and bandwidth (Section 2.1). Becaugegasi
tures can be computed offline and cached for static contantPiH
has a much lower computational cost compared to HTTPS for web
servers.

We further discover that a significant portion of existing HIS
content can be shared and cached across users (Sectio Hidl).

IClient authentication is at the discretion of web sites.



indicates that much of existing HTTPS content can be safiehet
into HTTPi content to have better performance and the gluifibe-

ing offloaded to other servers without any loss of securityfatt,
many existing HTTPS sites contain HTTP content includinipss
and images. Such mixed-content pages often contradichtbsti

of web sites to defend against network attackers. This isigely
due to the cost of enabling HTTPS for such existing HTTP aante
It is much easier to turn HTTP content contained on HTTPS site
into HTTPi content, which will achieve the end-to-end ségude-
sired by these sites.

Although we envision a next-generation web with only HTTPi
and HTTPS content, HTTP content will undoubtedly exist for a
long time. We also provide web developers with an easy way to
specify policies of how the three types of content can belpafe
mixed together (Section 2.2). Furthermore, we observetligade-
fault isolation policy for HTTPi, HTTPS, and HTTP contenttbe

Note that there could be scenarios where intermediate rserve
modify web content, such as for personalization or contéetifig
in enterprises. Transmitting content over HTTPi insteatidTP
would prevent such modifications. We argue that the guagarite
integrity must be end-to-end, and any intermediate modidina
should be explicitly approved by the one of the endpoints €fc
ample, by sharing the private and public key pair of an entpoi

To guarantee end-to-end integrity and to minimize latenay a
overhead, we use a content signature-based scheme thas allo
progressive content loading and at the same time is robuetyto
injection attacks, as described in Section 2.1. In Secti@n\&e
describe the access control policy that browsers shouly cat
across HTTPS, HTTPi and HTTP content.

For easy adoption, we use the existing HTTP protocol to imple
ment HTTPi so that intermediate web servers can cache HTTPi
content seamlessly. Web browsers can show “httpi” in the ad-

same domain and port does not need to be as strict as the samedress bar, but the messages on the wire speak HTTP. We use a new

origin policy. To this end, we design a new default policy iow
useful interactions across different protocol schemekawit sacri-
ficing security (Section 2.3).

End-to-end authentication also requires binding a pulgic tio
an origin. Today, such bindings are established througtificate
Authorities. Recent observations have shown weaknessadn su
CA-based binding [16]. DNSSec can potentially offer a mase n
ural and safer way of binding a domain name to its public k&y [7
We will not further discuss this topic in this paper.

We have built an end-to-end prototype to evaluate HTTPi. On
the browser side, we implemented the HTTPi protocol forrinte
net Explorer using IE’'s Asynchronous Pluggable Protocoémex
sion mechanism. On the server side, we implemented support f
HTTPi requests using an HTTP proxy sitting in front of origieb
servers.

Our microbenchmark measurement indicates that HTTPi éncur
an acceptable verification and one-time signing overheét,our
unoptimized implementation. This cost is quickly amortizever
many requests; for example, a typical web server deployedha
zon EC2 achieved a 4.06x higher throughput for static casenved
over HTTPi (and signed offline) than over HTTPS and HTTPi’'s
throughput is negligibly lower than that of HTTP. To evakighe
efficacy of deploying HTTPi for today’s web sites, we conahatt
an initial measurement of cacheability of today’s web anahfb
that both HTTP and HTTPS content on today’s web is signifigant
cacheable. We also present our initial findings on the éffecess
of caching proxies to understand shared caching benefitsdbr
users behind those proxies. Overall, our evaluation sugdbat
HTTPi is practical to deploy and can offer compelling bersefit

2. DESIGN

We set the following goals for the HTTPi design:
e Guarantee of end-to-end integrity: Our design ensures that
the integrity of the rendered content is always maintained.
For example, a network attacker will not be able to inject

I nt egri ty header to indicate the use of HTTPi as the protocol.
The integrity header also carries the signature for HTTRi@ea
(excluding the integrity header itself, of course). We useéxist-
ing Strict-Transport-Security header to prevent strip-
ping attacks (Section 2.1.3) and the existfagCont ent - Secu-
rity-Policy header to allow web sites to configure mixed con-
tent policies (Section 2.2). Signatures for the HTTP respdrody
are in-band in the body itself. HTTPi's server-side andntligide
implementation is pluggable into the existing setup and psiblic
interfaces without any need for modifying the core funcélity of

the server or the browser (Section 3).

2.1 Design Overview

A protocol scheme that ensures message integrity needs-to sa
isfy two requirements. First, the identity of the serverdiag the
content needs to be authenticated and second, the contsid toe
verified for integrity. HTTPi uses a content signature-bigseto-
col scheme to satisfy these requirements.

In a strawman design, HTTPi could sign the hash ofeatire
HTTP response: The server first creates a cryptographic(eagh
SHA1) of the whole response and then signs the hash using the
server’s private key. The hash and its signature are thesegas
the client along with the response. At the client side, thmvser
waits for the entire response to arrive, calculates its hesthcom-
pares the value with the signed hash to authenticate thersand
verify the response.

A key limitation of this design is that the browser would have
to wait for the entire response to arrive before being ableetdy
the content integrity and dispatch the content for render@onse-
quently, this would disrupt the existing progressive cohteading
mechanisms in browsers, servers, and the HTTP protocollaend t
user would experience much longer delay before seeing amy co
tent.

We leverage previous work on content integrity [20, 21] te de
velop our HTTPI design that supports progressive contexdiia

or remove content, or have adverse impact on browser-side through the use dfiTTPi segments. While these earlier efforts fo-

rendering of content.
e Easy adoption: HTTPi should be easy to adopt by web sites
and should fit seamlessly into the current web infrastruc-

cused on designing protocol schemes for verification ofgirity
in streaming systems, our scheme is designed to be usedawith t
day’'s web applications and browsers. As a result, we solve ne

ture. In other words, the design should be transparent to the problems not addressed in prior work, including compatibiith
intermediate web servers (such as CDN servers and HTTP “chunked” transfer encoding (Section 2.1.1) that is widead on

web proxies) and should involve minimal changes to the core
setup of the servers and the browser.

e Negligible overhead over HTTP: The design should incur
negligible overhead over HTTP in computation, bandwidth,
and user-experienced latency.

the web, various content replay attacks, and strippinglkstéSec-
tion 2.1.3). Moreover, our work presents a detailed, pcattmple-
mentation of HTTPi, whereas earlier work focused on thécakt
protocol design and offered no implementation details oBetliv-
ing into our design for HTTPI, we first provide some backgrmun



2.1.1 Existing Progressive Content Loading Mecha-
nisms

Current browsers support progressive loading of web céonésn
soon as some data arrives from the network, the browser nreitde
to the user. The amount of data available at a time is detedhbn
the underlying TCP congestion control and the network doormdi
as well as server availability. HTTPS content can also epjoy
gressive content loading especially when a stream cipisetésted
by web sites.

Complementing browsers’ progressive content loadingyessr
are also motivated to reduce user wait time and to start sgriie
response even before completing the processing of a regadst
therefore, before knowing the entire response body. Toehds
servers often use HTTP chunked transfer encoding [18] acaoiden
each piece of available response data into a chunk. A welerserv
typically uses chunked encoding in two scenarios: (1) curite
static, however, its retrieval (for example, from the sedatabase)
or processing is slow, and (2) content is dynamically geedraith
a chunk being a logical unit of content for the applicationheT

m,T; Sign(H(URLreq
X4
Ay
Ay

> M, T, Xy Xq)

m,n,T; sign(H(URLreqy m,n,T, XH, X1, X2

Chunk 1

Am

. n, T; Sign(H(n, T, H(A ), hy))
A

'm X2

By

By

Chunk 1

>
Time of Arrival

Time of Arrival

Chunk 2 Chunk 2

8, ¥ En
@) (b)

Figure 1: Protocol Scheme in HTTPi for (a) static content (b)
dynamic content. Ay, Ao, ..., A, and By, Ba, ..., B, represent
segments for Chunk 1 and 2, respectivelyX; and X represent
concatenated hashes evaluated over the segments of Chunk 1
and 2, respectively. Xz represents concatenated hashes over
the HTTP headers.URL,., is the requested URL andT is the

chunks are sent in separate HTTP responses as soon as they aféne stamp.

available. Note that the data of a chunk may not arrive atlikatc
in one shot, but possibly in pieces due to network congeshiav-
ertheless, the browser can consume partial chunks progrss

2.1.2 HTTPi Segmentsfor Progressive Content Load-
Ing

In HTTPIi, the key challenge in supporting progressive conte
loading is to configure the sensible granularity of contemtfica-
tion. This design should meet the following goals: (1) itdeges
browser-side progressive content loading; (2) it is corbpatvith
HTTP chunked transfer encoding; (3) it is resilient to thealyics
of the underlying TCP congestion control, which is unpreatite
by servers in an offline fashion; (4) it must allow cache&gil{5)
it incurs low overhead.

We useHTTPi segment to refer to the unit of verification in
HTTPI. LetS denote the size of an HTTPi segment.

Using HTTP chunks as HTTPi segments would still be too cearse
grained. An HTTP chunk can be arbitrarily large and shares th
same problem as the strawman solution described above.

design for header fields. We further amortize the signing bgs
signing the hashes of HTTP headers along with the hashes BPHT
content using a single signature. We put the signatureliegetith

the sequence of the hashes at the beginning of the respodge bo
An alternate way is to put the signature and hashes in an HTTP
header. However, our scheme needs to support HTTP’s chunked
encoding where chunks after the first chunk do not have header
fields. Therefore, we place the signature and hashes inbéhd w
the response body.

The decision on when to sign rests with the application and is
made based on whether the content being signed is known in ad-
vance (i.e., static content), or is generated on the fly, @ymamic
content). Figure 1 gives an illustration of our protocolestie. As
can be seen in Figure 1(a), we amortize the cost of signingimgu
a single signature over segments for all chunks generatesidtic
content (e.g.X1 andX> in a single signature). Since the content is
known in advance, the signature and all corresponding lsacsdre
be pre-computed by the server. For dynamic content, theekaske
computed at the time of content generation. The signatucalis

A question one may ask is whether a server can predict how culated over all the segments of a single chunk (Figure 1{)g

much data arrives at its clients. If so, then a server coufiblen
verification for just that data. For a single, live conneatia server
can indeed predict data arrivals on the client by obtainiregdur-
rent TCP congestion control window size and the receivedain
size from the network layer. However, because of dynamicort
conditions, such prediction would not work well for requeest dif-
ferent times or from different users and would defeat cdgifiga
In light of this observationS needs to be a constant value.

sequence of hashes for the headéfg | is placed only in the first
signature. We also place the URL of the requested pedel(,.,)
in the first signature and the current time stafi ih each signa-
ture as a preventive measure for certain attacks (Sectio8)2.
Note that signing can be done in an offline fashion for staiicc
tent. For dynamic content, this incurs a computation ovestheaf
one SHA1 computation per 1400 bytes, resulting in the badidiwi
overhead of just 1.4% (20/1400). The signature overheachés o

We choose to use the typical TCP segment size (1400 bytes) forsignature per chunk for dynamic content. We will show in Sec-

S. TCP segment is the unit of TCP transfer. The rationale reere i
that the browser will need to wait fat most one packet to arrive to
receive a full HTTPi segment, perform the verification anaidier
the segment. This wait is as minimal as it can get.

Although HTTPi segment is the unit of verification, it does no
need to be the unit of signing. In our design, we amortize idye- s
ing cost over multiple segments in the response body. In mere

tion 4 that much of the web is static and cacheable and HTTPIi
incurs negligible overhead over HTTP.

Any segment that fails the integrity check is not rendereal. |
such cases, we inform the user about the integrity failuderen
move the security indicator from the page. For JavaScriptda
not perform progressive content loading because todayaStaipt
engines require an entire script to be received beforarggats ex-

tail, whenever a web server has some HTTP response data readcution.

(whether it is the entire HTTP response or an HTTP chunk becom
ing available), for evens bytes, we take a hash, then we com-
pute the signature for multiple hashes concatenated inigfne r
sequence. For HTTP headers, we hash each header indiyiduall
and use a single signature over all hashes. Since browserstdo
consume partial header values, we chose not to use the steginen

2.1.3 Security Analysis and Design Enhancements

Out-of-sequence SegmentsThe segment hashes are arranged
in a sequence before signing. If a network attacker triegooder
the segments, it will break the sequence of the hashes amatsig
verification would fail.



Injection and Removal Attacks. Attacker will not be able to
launch injection attacks successfully because the irgectatent
will not be verified by the browser. Removal attacks cannpplea
to the segment group of a signature for the same reason.

Nevertheless, removal attacks can happen across siggabuies
(a set of chunks for static content or a single chunk for dyinam
content). When HTTP chunks are used by a server, each signatu
group will have a set of HTTPi segments and a signature fanthe
A network attacker can remove a signature group withoutdoeas
ticed at the client. To address this issue, we insert the batie
last segment of the previous chunk at the beginning of the sas
quence of the current chunk (Figure 1(b)); and we insert daelar
hash at the beginning of the hash sequence of the first chunk.

Content Replay. Network attackers could also mix-and-match
old content and new content to cause disruptions. Suchkattae
prevented in our design by placing time staiifn each signature.
For HTTPi responses that involve multiple signatures, ttosvber
must verify that the time stamp is the same across all sigesitu

The network attackers could alternatively replay a congbjet
different response for requested object. In order to ctyréden-
tify the response with the requested object, the clientfiesrits
own value of the requested URL against the sighidelL, ., value.

Stripping Attacks. Both HTTPS and HTTPi are prone to “strip-
ping” attacks that hijack a user’s initial insecure HTTPuest and
remove redirects to secure content. Although itis possiolietice
stripping attacks by manually checking the browser segumii-
cators, users often ignore these indicators [34]. The HT&RtS
Transport Security protocol (HSTS) prevents these attagkal-
lowing web sites to specify a minimum level of security expelc
for connections to a given server. The policy can be deliveia
HTTP header [23]. To prevent attacks on the user’s very fis#tto
the site, the policy can also be delivered via DNSSEC [25].ugée
an extension to HSTSl | owHTTPi , to allow severs to specify
HTTPi as the minimum level of security. Tla¢ | owHTTPi token
is appended to the server’s existi@gr i ct - Transport - Sec-
urity policy declaration. Older browsers that do not support
HSTS will ignore this header, while older browsers that supp
HSTS but not our extension will default to HTTPS for all cartte

Denial of Service. HTTPi is limited in its capability to handle
denial of service attacks, where a network attacker stripthe
integrity header from the response that requires integstgpeci-
fied by the application (Section 2.2). As a result, the canteuld
not be rendered by the browser. Additionally, the attacker al-
low some segments to be rendered, while preventing subseque
segments to arrive through to the browser. This could piatént
corrupt the internal logic of the application. For examples at-
tacker can strip off JavaScript that changes the conterfiteopage
and as a result, the page remains rendered in its original fone
possible countermeasure to this attack is to use a time oirttéy-
segment arrival at the client and raise an integrity faiklegt after
the expiration of the timer. However, it would require anirast
tion of the typical inter-arrival time for each client, whienight
not always be accurate. In our design, we allow the browseatb
infinitely for the packets to arrive. If the user clicks onstave
alert the user that the content is not complete. Since we tlexes
cute JavaScript till it is fully received, partially renéerJavaScript
would not be an issue for the integrity of the site.

2.2 Mixed Content

The mixed content condition occurs when a web developer-refe
ences an insecure (HTTP) resource within a secure (HTTRf®) pa
Such references create vulnerabilities that put the pyieaa in-
tegrity of the otherwise secure page at risk, because tleeuns

content could be modified in network transit. Scripts ardi@ar
larly problematic because they acquire the principal arigfi the
including page, allowing malicious scripts to read or alter con-
tent that was delivered over the secure connection. Thess tyf
vulnerabilities are becoming increasingly dangerous agmsers
browse untrusted networks and attackers improve upon DNS po
soning techniques and weaponize exploits against insé@ifie.

Browsers differ in their mixed content handling. InternetE
plorer prompts the user before displaying mixed contentilevh
Firefox and Google Chrome show a modified browser lock icon.
From a security standpoint, the best behavior would be tokblo
all insecure content in secure pages without prompting #es.u
The latest beta release of IE9 enforces this behavior omptscri
and stylesheets, but not images; this policy is similar ® dhe
proposed by Gazelle [39]. However, this option of autonaiyc
blocking insecure content has some serious compatibitiplica-
tions. It might potentially confuse the user, since pages tely
on insecure resources could appear broken. In the worst ttese
user might think the broken pages indicate a bug in the brnowse
and subsequently switch to an older version of the browséw ar
completely different browser to get unbroken pages.

We argue that mixed content vulnerabilities should be fixed b
the web developers, both for security and user-experiezasons.
The web developers have a better understanding of the intipetct
embedded content can have on the security of their site. -Addi
tionally, they are in much better position to develop a dserdly
fallback mechanism for their site in case some contentgeitsirity
checks and hence is not rendered.

By default, we require that all active content embedded ifT PiT
and HTTPS pages, such as scripts and stylesheets, be @ogere
HTTPior HTTPS. To allow web applications to customize thes d
fault behavior, we use an HTTP header that is compatible @t
tent Security Policy (CSP) [36] header to specify the sésvard-
to-end integrity requirements for dependent resourcee 8P
policy syntax is convenient for our purposes as it alreattynal
sites to specify which origins they want to include conteanf.

An example policy is as follows:

X- Cont ent - Security-Policy:

allow https://login.live.com

httpi://*.live.com 443

The above example informs the browser that all embedded ob-
jects froml ogi n. | i ve. comshould be retrieved over HTTPS
and content from all other subdomainslofve. comneeds to be
downloaded over HTTPI. If the servers hosting the embeddeed c
tent do not support the corresponding protocol, then théecwris
considered unsafe as per the web page’s requirements and hen
should not be rendered by the browser. Our design also sisppor
specification of integrity requirements at a finer level,,ia the
level of object types or specific objects themselves. Howetie
web application should be careful in specifying such findicpes
as it increases bookkeeping at the server. It also has tleatedt
to break existing interactions within the embedded conifetiite
policies are not correctly specified.

The CSP syntax provides an ideal mechanism for the web devel-
opers to handle mixed content. It does not require web agjpits
to change their code by explicitly modifying all insecuréerences
of embedded objects. Even if web developers decide to modify
their code, it might not be sufficient. A secure (HTTPS or HT)TP
URL can still return a redirect to an insecure resource, Wwhauld
be difficult to determine by examining the DOM alone. Additio
ally, a script delivered over a secure channel could stikengef-
erences to insecure content. In our design for HTTPi, thevkeo
enforces the policies specified by CSP for all staticallyyraini-
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Figure 2: Interactions in Mixed Content Rendering.

cally generated URLSs.

2.3 Access control across HTTPS, HTTPI, and
HTTP content

HTTPi content can be embedded in an iframe through the use

of the “httpi” scheme, such asiframe src="httpi://a.com/%, or
through the use of an additional iframe “integrity” attribusuch as
<iframe src="http://a.com/” integrity. The former has the con-
sistent presentation with other protocol schemes. Therl&ihs
the benefit of backward compatibility; on an older browseF,TiRi
content would simply render as HTTP content. Note that ndenat
what the representation is, the network messages stilkdg&aP
to be backward compatible with the existing web cachingaisir
tructure.

The Same Origin Policy labels the principals with the origa:
fined as the triple ok protocol, domain, port [38,39]. Therefore,
content from the same domain and port number but with differe
protocol schemes is rendered as separate principals. Emeyrty
communicate explicitly through messages (pest Message) [8]).

In this subsection, we consider the default interaction acd

dered data. Our default communication policies are indpisethe
combination of the Bell LaPadula [10, 11] and Biba [12] madel

It is important to note that our goal i®t to enforce information
flow invariants often associated with those models (e.gmés of
any origin can already freely communicate pizst Message), but
rather to use these models to determine a secure and comvagie
fault isolation policy for our setting. We summarize these models
as the following set of rules:

Bell LaPadula model (for confidentiality):

e The Simple Security Property: a subject at a given security
level may not read an object at a higher security level (no
read-up).

e The *(star) property: a subject at a given security level tmus
not write to any object at a lower security level (no write-
down).

Biba model (for integrity):

e The Simple Integrity Axiom states that a subject at a given
level of integrity may not read an object at a lower integrity
level (no read down).

e The * (star) Integrity Axiom states that a subject at a given
level of integrity must not write to any object at a higherdev
of integrity (no write up).

In view of these models, we represent the three protocolT @I T
HTTPS and HTTPI) by two confidentiality levels {6, and Go.)
and two integrity levels ¢y, and ko), Wwhich models the high
and low requirements for confidentiality and integrity,pestively.
HTTPS can be realized by the tupteCrign, lhigh >, HTTPIi by
<Ciow, lhigh>and HTTP by<Ciow, li0w>. Using this model, we
define the access control rules across HTTP, HTTPi, and HEEPS
follows:

HTTPS and HTTP. HTTPS’ confidentiality label &4y, is higher
than HTTP’s confidentiality level G,,, thus resulting in “no read
up, no write down” requirement of the Bell LaPadula modeleTh
integrity levels of HTTPS and HTTP.d,» and L.., respectively,
With lign > 10w, results in “no write up, no read down” condition
of the Biba model. Combining these two requirements refuti®
reads or writes to either side being allowed between HTTRES an

cess control model for HTTPS, HTTPi, and HTTP content served HTTP. This derivation is consistent with the SOP.

from the same domain and port. For example, a top-level HTTPi

HTTPi and HTTP. Since confidentiality levels of HTTPi and

page may embed two iframes, one containing HTTP content and HTTP are equal, only the integrity levels enforce the “notevtip,

the other containing HTTPS content; and all three pagesrane f
the same domain and port. While following the SOP is safe for
such scenarios, it disallows all interaction among HTTPTRIl

and HTTPS content. Rather than accessing the DOM objects di-

rectly, developers would be forced to redesign such intenmawvith
asynchronougost Message-based protocols, which may be hard
to design correctly, as illustrated by recent flaws foundaoebook
Connect and Google Friend Connect [22]. As a result, a dpeelo

no read down” policy from the HTTPi content to HTTP resources
(Figure 2). Firstly, this means that a script belonging ® T TPi
principal can write to the HTTP part of the page without regdi
its content. One reason to prevent an HTTPi script from readi
HTTP content is to prevent the HTTP input from influencing the
logic within the HTTPi content. However, an HTTPi script thig
still desire to read the HTTP page to identify the DOM elentent
write to. So, our requirement is to allow the read operatiorite

may be discouraged from converting some content on an HTTPSHTTP content without allowing the logic of HTTPi content ffino

site into HTTPi to benefit from its cacheability properties.

As a concrete example, consider an online shopping sitdghat
rendered over HTTPS to protect users’ private data sucheaft cr
card information. The site presents users with a map to tsaelec
site-to-store pick-up location during checkout. It may lesichble
to deliver the store information and map content over HT DRI,
this raises a problem of allowing the HTTPS part of the sitectal
the store selection made by the user, an interaction thalowasi
disallowed by SOP. As a result, the site’s developers mapiuefl
to refactor their code to ugmst Message.

We observe that the SOP semantics are more restrictive than a
tually required to ensure security for such scenarios. @at
to allow legitimate communication while preserving the ség
semantics, namely the confidentiality and/or integritytred ren-

being affected. One way to realize this is by performing clatep
information flow check in the HTTPi code, which might not be
practical. We use an alternative approach in which the HT6R#
tent itself writes the code for reading the HTTP content, #risl
code is injected into the HTTP content. This injected codesru
within the HTTP principal and hence can freely read and wdte
the content. Since HTTPi relinquishes the transferred ¢odbe
HTTP integrity level (l,.), that code cannot affect the logic of
HTTPi’'s own code, though it still can read from HTTPi content
Secondly, HTTP can read the HTTPi content, but cannot woite t
it. We realize this in our design by providing only a shadowycof
the HTTPi content to HTTP, with no direct reference to realli®T
objects.

HTTPS and HTTPi. Since HTTPS and HTTPIi integrity lev-



els are equal, only the confidentiality levels force the “ead up,

no write down” rule from HTTPS to HTTPi resources (Figure 2).
Both read and write operations can be realized similarljéogre-
vious scenario. We allow HTTPi content to write to HTTPS sinc
the code for HTTPIi is at the same integrity level as HTTPS con-
tent and written by the same developer (since they have the sa
domain). HTTPi scripts can write the code for reading the RET
content into the HTTPS’ DOM and effectively, that code beesm
part of the HTTPS principal. This allows reading of the HTTPS
code by the injected code without leaking any of the read lokat&

to HTTPi's main code. For reading HTTPi content without aHo
ing any write, a shadow of the HTTPi’'s DOM is provided to the
HTTPS. Coming back to the shopping site example earlieris th
section, this rule would allow HTTPS content to read theest®@-
lection made by the user and correspondingly send the medidea

to the selected store.

3. IMPLEMENTATION

HTTPi requires both the client browser and the hosting seove
adhere to the protocol. Accordingly, our implementationsists
of server-side and client-side modules. Figure 3 shows itie- h
level architecture of our system. Our server-side implematém
consists of an HTTPi Transformer, which implements all HFTP
related interactions on the server side, including contaishing,
segmentation, and a handler for appending integrity poégyire-
ments to HTTP responses. Our client-side implementatiotece
around three modules that we add to Internet Explorer 8: if1) a
HTML content filter that transforms a given page to adherento i
tegrity policy requirements, (2) an HTTPi protocol that tias
the client-side processing of HTTPi content, and (3) a medut
provides JavaScript and DOM interposition to enforce ouret
content access control policies. In this section, we desceach
of these modules and the associated implementation chaken
turn. Overall, our implementation consists of 1,100 linEsesver-
side code, and 3,500 lines of client-side code.

3.1 Server-side Implementation

We explored two options for implementing the server-sid@a-co
ponent of HTTPI, with the options differing in their deplogmt
tradeoffs. First, we extended the IIS 7 web server with a C#-mo
ule for HTTPI, called HTTPi Transformer, that encapsulates
functionality to generate HTTP responses with signatuneiscan-
tent hashes that adhere to the HTTPi protocol. Although veseh
11S, similar module functionality is available for other lvservers.
This option is useful if the server is willing to immediatdhte-
grate HTTPi functionality into their current setup. It alsas obvi-
ous performance benefits as the module is closely coupldtiet
functionality of the web server.

In our second deployment option, we integrated the HTTRigra
former into a web proxy that translates typical HTTP respsns
into HTTPi responses by embedding all the hashes and sigisatu
needed by HTTPi. We leveraged the public-domain Fiddler web
debugging proxy [27] and its FiddlerCore [17] extensililitter-
faces. This option is independent of web server implemiamtat
and allows servers to continue supporting HTTP as the dglive
protocol for backward compatibility, while switching toetfHTTPi
protocol for requests that pass through the proxy. It easplog
ment, since the proxy can be deployed anywhere in the netavatk
guarantees integrity between the proxy and a compatibledso
This could be desirable for corporations that do not requtegrity
checks for intranet users, while ensuring integrity of tiséties for
external users.

For our evaluation, we used the latter option of having a ogtw

proxy, because (1) it allowed us to test our prototype agaubk-
licly deployed web sites without having any control of theieb
servers, and (2) it allowed fair comparison of HTTPi with HHS
and HTTP (Section 4.2.3) by cleanly switching to a desirextqgsr
col between the client and the proxy even when the backenerser
did not support the protocol.

3.2 Client-side Implementation

3.2.1 Filtering content to enable HTTPi

We expect that origin servers would generate new conteffit wit
the right “httpi” URIs for the content that requires integriln any
case, our design ensures that mixed content policies acecexdf
by verifying the URIs against the policies. Instead of reqgi
the servers to change the URIs in their existing content,imodr
plementation of HTTPi performs the required filtering to @k
the mixed content policies. The HTML content filter module is
invoked for every HTML response received at the browser ithat
associated with a Strict Transport Security policy or Coh&ecu-
rity policy. This module modifies HTML content to ensure titat
adheres to the minimum security levels specified in STS arfdl CS
For example, all object links on a page are transformed teeeor
sponding HTTPi links by modifying the protocol field in the UR
Since the HTML content filter is invoked before the page is ren
dered in the browser, this design allows the HTTPi proto@i-h
dler to be associated with all such links and hence ensuatshie
HTTPi handler is invoked when the browser requests those lin
during rendering. We implemented this module by using IEs-p
lic MIME filter COM interfaces [1] and subsequently regiserit
as a filter for HTML content.

One limitation of this approach is that it may miss dynanijcal
generated links where the URL is constructed by JavaSdripna
time. We are currently working on solving this by performing
HTTPi redirection to the time of actual HTTP requests; owal@v
ation is independent of this implementation enhancemethias
performed without it.

3.2.2 HTTPI Protocol

The HTTPi protocol handler encapsulates all client-side-ha
dling of HTTPi content and is automatically invoked by thewser
when an HTTPi link is encountered by the browser’s rendegimg
gine. Upon invocation, it makes an independent HTTP calhéo t
server to retrieve the content. It then verifies the intgguitthe
content in segments using the mechanism described in 8ettio
Once the integrity of a particular segment is verified, itsteat is
released to the browser’s rendering engine for progresaading.

We implemented this module as an asynchronous pluggable pro
tocol (APP) [1] IE module associated with the HTTPi protocol
Even though IE provides this generic protocol extensiomipa@in-
plementing a general-purpose protocol with minimal pen@nce
overhead is challenging. IE’s internal logic is well-opized for
HTTP and HTTPS, which makes a comparably performant web
protocol difficult to implement. A considerable time andogffwas
spent on making our code as optimal as possible by paratigliz
various operations such as network read and signaturecagifi.
Despite our limited knowledge of IE’s internal optimizat®and
with the handicap of using a generic interface, we wereattii to
achieve acceptable performance as compared to HTTPS anB HTT
(Section 4.2.3).

3.2.3 Accesscontrol for mixed content

Another big challenge for our implementation was to cuszami
SOP to include our mixed-content access control policiasfotd



f ‘: O @)
| JavaScript | (1) B
i Engine ! >
1 )
| | | HTML Content . (2)
| € Filter s
i (@)
I | .
!'| Script Proxy Engine | | HTTPi
H | Transformer
i| | Mixed Content i
1 Rendering Policies !
| | (5) (6) Web Server
i —
C ! 9) HTTPi Protocol @
! »é_l | Handler <«
1 )
! : [r
1 !
1 |
7/ 8
®) Integrity
Policies

Internet Explorer

Figure 3: High-Level Architecture of our HTTPi Implementat ion with the operational steps to retrieve content over HTTR as
follows: (1) IE makes an initial request for a specific page. ) Server-side proxy identifies that the request is for a HTTRenabled
resource and appends integrity policy headers to the resp@e. (3) HTML content filter processes the response by modifyg URLs
that match STS policies to point to their corresponding HTTH links. (4) HTML content filter releases the modified respong to
IE’s rendering engine. (5) The HTTPi protocol handler is invoked for every HTTPi object encountered during rendering. €) The
HTTPi protocol handler makes a HTTP call to the server requesing the object. (7) Server-side proxy traps the request, mies an
independent HTTP call to the backend web server to get the rggnse, hashes and signs the response, and returns it back toet
HTTPIi protocol handler. (8) The HTTPi protocol handler veri fies the signature and hashes corresponding to the differesegments
in the response. (9) Successfully verified segments are pedgo the rendering engine for progressive loading. The Saot Engine

Proxy (SEP) subsequently mediates all mixed-content intexctions while a web page renders.

tunately, IE does not allow changing the code for SOP witHipub
APIs. As a result, the only alternative was to implement alu-s
tion as an additional layer on top of the existing SOP and fimeh
a way to enforce mixed-content policies within the limitpiosed
by the existing SOP logic. This certainly made our impleragah
more difficult.

fersin onlypr ot ocol , the SOP would allow the objects to
interact (as we modify the protocol of the security origin to
HTTP). In this case, we mediate the interaction within our
customized SEP to enforce our access control policies.
The read operation is straightforward: SEP allows the rcalle
to have read access to the callee’s objects. The write operat

To solve this problem, we use a two step approach. In the first could be implemented in a similar fashion; however, soméesri

step, we modify the security origin (origin is defined as thglé
<protocol, dommin, port>)ofall objectsonthe web page
by changing the protocol field to HTTP, i.e., the one with thedst
integrity and confidentiality level. This is achieved by yiding a
custom implementation for thel nt er net Pr ot ocol | nf o in-
terface [4] from within the APP for HTTPi. Note that changiting
security origin of an element does not affect the URL ass$edia
with that element.

As per the SOP, all the objects on the page can now interaat wit
out restriction. Our second step is to enforce access danies
or policies that govern such interactions. We build on ouliea
work [35, 38] that implements a JavaScript engine proxylédal
script engine proxy or SEP): SEP is installed between |Hislee-
ing and script engines, and it mediates and customizes DGa¢iob
interactions. SEP is implemented as a COM object and isliedta
into IE by modifying IE’s JavaScript engine ID in the Windows
registry. We extend SEP to trap into all invocations (readidte)
across the page’s objects and ensure that our mixed-cateess
control polices (Section 2.3) are enforced. We use the UREs-a
ciated with the accessing object and the object being aeddas
making our access control decision. The two-step logic gloat
erns the access control enforcement in our implementatarbe
summarized as follows:

o If the original origins of the caller and the callee objedfs d
ferindomai n and/orpor t , then the browser would prevent
any interactions across them in accordance with the SOP.

e If the original origins of the caller and the callee objedfs d

must first access an object to which the write subsequently oc
curs. For example, if the caller wants to write content to e sp
cific element on a callee object, it might need to read the han-
dle to that element using functions suchgest El ement Byl d

or get El ement sByNane. However, if the caller only has write
privileges with no read access, it cannot make such call$iande
cannot know where to write the content.

We solve this problem by introducing a new JavaScript fuomcti
wr i t eUsi ngCode, which is interpreted by our SEP implemen-
tation; the browser’s JavaScript engine does not need teratahd
this function. Instead of directly making read calls loakiior an
element of the callee object, the caller uses the functiopaks
the JavaScript code that encapsulates such read callseasdlibe-
quent write call to the corresponding element. The SEPdefes
this function call and makes calls to the underlying JavigpBen-
gine to execute the code with the origin of the callee objécty
unintended feedback mechanism introduced by this codeeis pr
vented by SEP’s access control policies.

4. EVALUATION

We have implemented a HTTPi system that works end-to-end.
We used our proxy-based implementation as a server-sidePHTT
endpoint to verify our system for correctness against a rurob
popular web sites, such as Google, Bing Maps, and Wikipddia.
each case, the browser successfully rendered the web padjed a
integrity checks were correctly included at the server asrified
at the browser. Any tampering of the web page in the network wa



Total Objects Publicly Cacheable Objects
Protocol - -
Count Size Count Size
HTTP 346,629 | 1532 MB | 251,826 (72.65%)| 1385 MB (90.41%)
HTTPS 5,036 | 21.95MB 3,659 (72.66%) | 19.39 MB (88.33%)

Table 1: Measurement of publicly cacheable web content fronthe top 1000 Alexa sites.

correctly detected and failed the integrity check at thevisey. We
evaluated the access control interactions for mixed corgnle-
veloping a set of custom web pages that included such iriterac
Our system correctly enforced the access control policiestdch
interactions.

Next, we provide experimental evidence to support our claim
that today's web sites can benefit from cacheability enabled
HTTPi. To this end, we first perform a web cacheability stualy t
answer two questions: (1) what web sites have cacheablertont

are left with no choice but to trust the CDNs for this type ofitemt.
If only integrity of the content is desired, HTTPi preseritelf as
an ideal alternative for these HTTPS objects.

Presence of in-network caches.To see how many users are
benefiting from web caches today, we measured the prevaténce
forward caching proxy servers, which are a significant sofdn-
network caching. More specifically, we conducted an expenim
to determine how the country and the user agent affects wheth
a forward network proxy is being used. We used rich media web

and (2) what users are taking advantage of shared cacheson thads as a delivery mechanism for our measurement code, U&ng t

web. Next, we evaluate the performance of our prototype layani
benchmarking its operations and by comparing its overhe et
of HTTPS and HTTP.

4.1 Study of Web Cacheability

With HTTPI, web sites decide what content uses HTTPi as the
underlying mechanism of transport. Therefore, any contieat
web sites currently allow to be cached by intermediate welesg,

same ad network and technique previously demonstrateddin [2
We spent$80 to purchase 115,031 impressions spread across 194
countries. Our advertisement detected forward proxiesgusML-
HttpRequest to bypass the browser cache and store conté in
network cache. Overall, 3% of web users who viewed our ad were
using a caching network proxy. However, some countries fsigha
nificantly higher fraction of users behind network proxiBspular
countries for forward proxies included Kuwait (63% of 37 Diras-
sions), United Arab Emirates (61% of 624 impressions), Atige

such as CDNs and web caches, becomes an ideal target for HTTPi(ll% of 1,875 impressions), and Saudi Arabia (10% of 4,248 im

To better estimate the amount of web content that could benefi
from the use of HTTPI, we performed a cacheability analysis o
the top 1,000 Alexa sites that includes both top-level pagesem-
bedded content on the sites visited. We analyze the HTTRr@ach
headers, such &ache- control , Expi res, Pragnm, etc., to
decide what content is deemed cacheable according to théHTT
specification [18].

Experimental Setup.To facilitate automatic analysis for a large
number of URLs, we used a customized crawler from our earlier
work [35], which utilizes IE’s extensibility interfaces tmmpletely
automate the browser’s navigation. To invoke functiogdiyond
a site’s home page, the crawler uses simple heuristicsithatate
some user interaction, such as clicking of links and seagcfirm
submissions. We restrict all simulated navigations to stafin
the same origin as a site’s home page. We monitor the brasvser’
network traffic in a proxy to intercept all HTTP/HTTPS reqises
and analyze HTTP headers relevant to web caching. The psoxy i
included as a trusted certificate authority at the browserdier to
allow it to intercept the HTTPS traffic and inspect its con{@7].

Prevalence of cacheable contenfTable 1 shows the results of
our web cacheability experiment. Note that our results aoly-
sider content that is marked as public and excludes anytprogm-
tent that is user-specific and hence is intended to be cactigcb
the user’s browser. As we can observe from the table, a laagerm
ity of the web content is rendered over HTTP with more than 98%
of the objects that we observed being HTTP objects. We fobad t
approximately 73% of these objects are cacheable. The abithe
ity is higher in terms of content size, with more than 90% of to
tal HTTP content size (of all objects) being cacheable,catiing
that the web applications typically want larger-sized eoitsuch

pressions). We also observed higher usage of forward praciyes
(11%) among mobile users, although these users accoumtealjo
0.1% of the total impressions in our experiment.

Relevance to HTTPi. Our results demonstrate that cache prox-
ies are still prevalent and useful today, particularly famge user
communities, such as a whole country of people behind aesing|
firewall and mobile users behind cellular gateways. HTTRi ca
take advantage of these proxies while offering end-to-ecd ity
at the same time.

4.2 Performance Evaluation of HTTPi

We evaluate the performance of HTTPi in two steps. First, we
perform micro-benchmarking of various stages of the pritand
analyze the parameters that determine HTTPi’s performabee-
ond, we analyze the end-to-end performance overhead of HTTP
over existing HTTP and HTTPS protocols.

4.2.1 Experimental Overview

Ideally, we would run performance experiments on real widssi
deployed on the web. However, current web servers do notrunde
stand the HTTPi protocol, and many servers host an HTTPorersi
of a site but not HTTPS. To overcome this, we used our modified
server-side Fiddler [27] proxy (Section 3.1) for proxyini re-
quests from the client to the backend server, and converiigP
requests from the origin server into HTTPi or HTTPS requésts
the client, as necessary for our experiments. This setopslus
to measure the cost of using HTTPS and HTTPi for web pages that
are currently hosted over HTTP.

We use the end-to-end response time as the measurement cri-

as images, to be cached in the network. The limited number of terion, defined as time between the instance at which a URL is

HTTPS objects that we encountered follow a similar trendhwit
large number (73%) being cacheable objects. The presenae of
considerable number of public, cacheable HTTPS objects is-a
dication that web applications intend to cache objects énwtleb,
but are discouraged by the lack of security provided by HTThRy

submitted at the browser and the instance at which the gonels
ing page is fully rendered. To remove any discrepanciesniigttt
arise from fetching content from the backend server duedorin
sistent network conditions, we deduct the data fetching titrid-
dler from the total end-to-end response time. This givesnuesa
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Figure 5: End-to-end response time as a function of the net-
work bandwidth available to the client, measured for a 836KB
page. Note that these results do not include performance ben
fits due to caching for HTTP and HTTPi.

Figure 4: Micro-benchmarking various operations in HTTPi
for a 836KB web page, using 512Kbps network bandwidth.

timate of the end-to-end response time with Fiddler actmgha
server. For a fair comparison, we also perform similar dédos
for HTTP and HTTPS.

For our experiments, we use SSL certificate size of 1024 bits.
Even though there is a push on the Internet to move toward3-204
bit certificates, many of the popular sites such as Gmall i
1024-bit keys. Additionally, it makes HTTPi’s performanesti-
mates to be conservative in comparison to HTTPS, as HTTHS wil
perform worse for 2048-bit keys.

Using the Akma network delay simulator v0.9.129 [5], we sim-
ulated various network conditions to understand theirgrerance
impact on end-to-end response time. We simulate the in@min 6)
and outgoing connections to have equal bandwidth and fixad th
queue sizes at 20 packets. We run our delay simulator on therse
side to cap the server throughput to a desired bandwidth. é\e d

ploy our server-side Fiddler code on a Windows 7 machiné ait 4.2.3 Comparing HTTPi to HTTP and HTTPS
Intel 2.67 GHz Core i7 CPU and 6 GB of RAM. The client runs on In this section, we compare HTTPi’s performance to that oTRT

a Windows 7 machine, with an Intel 2.4GHz quad-core CPU and - . _ :
4GB of RAM. All experimental results are averaged over 1ltri ?enndCyH glfei?anb?ea?mﬁL“ggtgﬁig?\?esa E)lv)elrs LhﬁTl;?;ﬁgrf;\tl\‘/evh
runs. is the performance impact of running HTTPi and the hashirdy an
422 Micro-benchmarks signing load it. incurs on a web server?
) ) User-perceived latency.We compared the end-to-end response

To understand sources of overheads in our system, we instru-time for our 836KB test page rendered over HTTPi, HTTPS and
mented our HTTPi implementation to measure latencies abwar HTTP. Figure 5 shows the results of our experiments perfdrme
operations, and used a simulated network bandwidth of 5pRd  gyer different network bandwidth conditions. Note that thes-
load an 836KB HTML page in our HTTPi-enabled browser, with  formance results do not include caching, and only evalutites
the size picked to maximize _measm_JrabIe overhead and tov@ser i st of potentially many requests for this page. Evaluatiegfor-
effects of HTTPi's segmentation. Figure 4 breaks down thayde mance of a particular cache is not a goal of our experimerds an
contributing to the end-to-end response time, which we mveals 155 heen previously well studied [40, 41]. We see that HTTPi i
to be 15.7 sec. _ o _ curs minimal overhead over both HTTP and HTTPS, and this-over

We find that a large fraction of the total time is spent reading head is consistently within 0.7-2.0 seconds over both HTA® a
content from the network (bar 7 in Figure 4), which is an exe@c  HTTPS for different network bandwidths. Since this valu@sio
behavior for slower networks. The overhead costs of hasaing ot vary much with network bandwidth, we believe our impleme
content segments (bar 2) and signing these hashes with a 102440 is successful in approximately matching the netwapki-
bit key (bar 3) on the server side is very small. Here, the RSA mjzations of HTTPS and HTTP. We believe that there is stilptem
signature is calculated on a fixed-size single SHALhash 6§28 0om for client-side optimization as we discussed earfieBec-
(Section 2); this takes just 3ms. Since the header valus sime o 3, and this will certainly reduce the total overhead GTTHPi
much smaller as compared to the content body, both the time to (sjnce client-side overhead is not negligible as shown yviaro-
set the header integrity content (hashing and signing) es¢nver benchmarking experiments).
(bar 1) and time to verify it on the client side (bar 4) is lovOn Web Server Throughput. Our server throughput measurements
are performed using httperf [28], an HTTP performance measu

the client side, the signature verification time (215 ms,&)as a
more significant source of overhead. It is considerably éighan
the cumulative hash verification time for all content segim¢bl
ms, bar 5), supporting our design of using a single signaiuee
multiple segment hashes. The time to pass data from out-clida
HTTPi protocol handler into the browser’s rendering endgler 8)

is also considerable; although it is not specific to HTTPi aodld
also be incurred by other protocol handlers in the browsstiye
protocols like HTTP are more optimized in our browser forsthi
step, as we discussed in Section 3.2.2.

In summary, we find that the major HTTPi components (bars 1-
constitute only 295 ms (1.8%) of the end-to-end respoinse t
for this microbenchmark, with largest overhead coming fobient-
side signature verification.

2Note that we do not perform any segmentation for headers.
For our measurements, we specify two head&st ver and according to the number of headers for which integrity ckaok
Cont ent - Type, to require integrity. This time cost will vary s set.




Experiment HTTP HTTPI HTTPS
Bare-metal Setup 3320 3318 2503
Amazon EC2 Setup 2757 2732 678

Table 2: Impact of HTTPi and HTTPS on server throughputin
responses/sec.

ment tool. The experiments are performed using two diffesen
tups that closely represent typical real-world web deplegts:

full-page substitutions. In contrast, HTTPi is cryptodraally se-
cure and can prevent any type of integrity breaches. HT EBilads

a much lower network overhead cost as compared to web tepwir
Finally, web tripwires focus odetection, while HTTPi focuses on
both detection andprevention.

Other research has proposed cryptographic schemes forameb ¢
tent integrity [9, 20]. While we share some commonality vitifs
work in integrity computation, our system differs in thregrsf-
icant ways. First, our design is more robust against atték&s

e Our first setup consists of an IIS server that is hosted on a stripping attacks and content replay. Second, we designRHTor
bare-metal Windows 7 machine, with Intel 2.67 GHz Core i7 be practical for today’s web and address problems such asdmix
CPU and 6 GB of RAM. The Linux client machine running  content treatment, compatibility with “chunked” transégrcoding,
httperf is connected to the server by a 1Gbps network with and access control across HTTP/HTTPi/HTTPS content, néne o
negligible latency. which are considered in prior work. Third, we go beyond pcoto
e Our second setup is cloud-based; we use a virtual Windows design and also offer a full practical implementation aral@ation
2008 Server image on Amazon EC2. At the time, this image of HTTPi for a real-world browser, while earlier researctksaany
was the only publicly available image that came pre-insthll  implementation details.
with [IS 7. It is a “high-CPU medium” instance with 5 EC2 Stubblefield et al. [37] proposed mechanisms to improve $SL’
compute units with 1.7 GB of RAM (the fastest instance that performance. While their WISPr system shares HTTPi’s naetiv
was available for this image). This setup mimics a typical tion of supporting in-network caching while preservingeintity,
EC2 user who wants to host a web server. httperf is executed it is designed for another content delivery protocol (sulpsion-
from a Linux EC2 instance in the same region, using EC2- based), rather than for use in existing web sites. WISPrtnaeis
private LAN with negligible network latency. an HTTP page that embeds the encrypted version of the origina
We use an experimental HTML page of size 4.8 KB, which rep- page; this page can be cached in the network. However, & clien
resents a typical size of a page with no embedded links. We ar- needs to download a key from the server in order to decryptdhe
rived at this page size based on the web estimates that @it tot tent, and WISPr only works for static content. In contrasE,TIRi
page size at 170KB (median) and number of objects per page atis readily compatible with existing web sites, it suppotttis and

37 (median) [29]. For each page, we increased the offeretdoa
the server until the number of sustained sessions peaketbuive
that the server was CPU-bound in all cases. Each sessiotasatiu
one request to the web page.

Table 2 shows a summary of our results. HTTPi incurs negligi-
ble degradation (less than 1%) of throughput compared torilge
inal HTTP page. In comparison, the throughput drop was subst
tial when using HTTPS, with our bare-metal experiment répgr
25% and EC2 experiment showing 75% drop in the throughput.
This drop is attributed to the heavy CPU load for the SSL hand-
shake. Our bare-metal experiment shows a lesser drop s$ihas i
a considerably faster CPU, which handles the load bettegrally
these results demonstrate that web servers can have acsghifi
performance incentive to use HTTPi instead of HTTPS.

5. RELATED WORK

Prior work has explored a number of integrity protectiorhtec
niques. A proposal on authentication-only ciphersuitesHBK-
TLS [13] describes a transport layer security scheme foneaut
tication and integrity, with no confidentiality guaranteeslow-
ever, this proposal requires a shared secret between each cl
and the server to key the hash, making it impractical to stiee
key with all the clients of the application. SHTTP [32] is dmer
proposal for a content-signature-based protocol thatagessfully
competed with SSL and HTTPS. Our work builds on SHTTP’s sig-
nature mode of operation and develops a practical and cdrapre
sive solution by additionally addressing progressive eontoad-
ing, mixed content handling and the associated security.

Web tripwires [30] verify the integrity of a page by matchiitg
against a known good representation of the page (either ékehe
sum or an encoded full copy of the page’s HTML). It uses client
side JavaScript code to detect in-flight modifications to b page.
However, web tripwires have high network overhead (appnaxely
17% of the page size), which could hinder the end-to-encoresp
time, especially for slower networks. Moreover, web tripegican
be identified and disabled by an adversary, and they cantettde
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dynamic content, and it adds support for progressive |@peimd
mixed-content scenarios common on the web. Whereas no-evalu
ation details are provided for WISPr implementation, wevatth
that HTTPi is practical in Section 4.

HTTP provides a Content-MD5 header [18] that can carry the
MD5 signature of the complete page. This header could be use-
ful in providing basic page integrity, but suffers from mamgak-
nesses if used by itself. For example, a network attacke ez
ify the header since it is not authenticated, and the attacke
completely drop the header without the client knowing alibuh
contrast, HTTPi provides authentication by signing contershes,
and since it specifies the requirements for a page using HBTS i
advance, the client can easily detect whether the requitedrity
content is dropped by network attackers. Additionallyh#fT TPi,
integrity is evaluated over smaller-sized segments, whah per-
formance benefits (see Section 2.1) over the entire-pageap
used in the Content-MD5 header.

The YURL [14] specification defines an alternative servenide
tification and authentication mechanism that does not dkjoen
centralized authorities like the DNS or PKI. A YURL identsia
site using the site’s public key fingerprint and the web siteer
owns the CA fingerprint. However, like HTTPS, and unlike HT,TP
the proposed YURL-based protodutpsy [14] precludes content
from being cached at web proxies.

6. CONCLUSIONS

We envision HTTPi to complement HTTPS to bring end-to-end
security to the entire web. Only when there is end-to-endriyc
the browser platform and the web are able to have a collégtive
secure overall system.

We advocate the part of web that does not have end-to-end se-
curity today to adopt HTTPi which incurs negligible perf@ante
overhead over HTTP and enjoys the benefit of CDNs and cache
proxies just as HTTP. For existing HTTPS content, our stundl-i
cates that its significant portion is cacheable and can asosig-
nificant performance and caching benefit from employing HT TP
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