
HTTPi for Practical End-to-End Web Content Integrity

Kapil Singh
Georgia Institute of Technology

Helen J. Wang
Microsoft Research

Alexander Moshchuk
Microsoft Research

Collin Jackson
Carnegie Mellon University

Wenke Lee
Georgia Institute of Technology

ABSTRACT
The widespread growth of open wireless hot spots has made it very
easy for network attackers to carry out man-in-the-middle attacks
and impersonate web sites. End-to-end security between a user’s
web browser and web sites is ever more needed to allow mean-
ingful enforcement of the same-origin policy on the web browser
platform. Although HTTPS can be used to prevent such attacks,
its universal adoption by web sites is hindered by its performance
cost and its inability to be cached at intermediate servers (such as
CDN servers and cache proxies) while maintaining end-to-end se-
curity. With significant and increasing amount of web content be-
ing cacheable, HTTPS is not the complete answer to an end-to-end
secure web.

In this paper, we observe that only end-to-end authentication and
integrity are required for the browser platform to meaningfully en-
force the same-origin policy. Without end-to-end confidentiality,
content can be cached. In light of this observation, we propose
a new protocol, HTTPi, which offers only end-to-end authenti-
cation and integrity. HTTPi works seamlessly with and benefits
from the existing web caching infrastructure. It performs content
signing while preserving progressive content loading supported by
browsers. Because content signing can be done offline, HTTPiin-
curs negligible overhead over HTTP. We advocate that sites use
HTTPS for requests that require end-to-end confidentiality, and
HTTPi for all other requests. Our prototype and evaluation experi-
ence show that HTTPi is practical for adoption.

1. INTRODUCTION
The same-origin policy [33] (SOP) is the key access control pol-

icy for the web and browsers. This policy has essentially defined
a principal model where web sites are mutually distrusting prin-
cipals [38, 39], and where one site’s script cannot access another
site’s content. However, the authenticity of the principaland the
integrity of its content are often at question since much of the web
is delivered over HTTP rather than HTTPS. Consequently, network
attackers can carry out man-in-the-middle attacks and undermine
browsers’ access control, even if browsers flawlessly implement
the enforcement of the same-origin policy. Such attacks arehighly
practical today with the prevalence of wireless hotspots and inse-
curity in the DNS infrastructure [19]. The web requiresend-to-end
security to allow meaningful SOP enforcement in browsers.

HTTPS [31] has the potential to prevent network attacks, butits
universal adoption is hindered by its uncacheability at intermediate
servers, such as content distribution network (CDN) servers and
HTTP proxies, and its performance cost.

Web caching offers significant benefits to web sites and users.
It enables web sites to save bandwidth costs and reduce latency
for users by outsourcing infrastructure to CDNs and offloading re-
quests to CDN servers. Although CDNs do offer services for HTTPS

content [6], this is at the cost of trusting CDN servers to be man-
in-the-middle and losing end-to-end security. Furthermore, such
services come with a hefty charge of up to $3,000 per month plus
bandwidth costs [15]. Web cache proxies can also deliver webcon-
tent significantly faster to large user communities behind gateways
or firewalls, such as mobile users. HTTPS content cannot takead-
vantage of these proxies at all today. We observe that much ofthe
web is cacheable (Section 4.1), and we expect significant growth
in cacheable web content as rich media proliferates [2]. To achieve
an end-to-end secure web, HTTPS is definitely not the complete
answer.

In terms of performance, although GMail has recently demon-
strated the ability of serving HTTPS content with low overhead us-
ing commodity hardware (1% CPU load, less than 10KB of mem-
ory per connection and less than 2% network overhead) [26], a
general applicability of their solution to other SSL setupsis not
clear [3]. Due to differences in HTTPS deployments, it mightnot
be trivial for other web sites to replicate Gmail’s performance im-
provements. Even if the SSL’s server overhead is successfully re-
duced, it still suffers from lack of in-network caching, thus limiting
the performance benefits for the clients.

Fortunately, end-to-end security, cacheability, and performance
are not at conflict inherently. End-to-end security encompasses
(1) end-to-end authentication (i.e., content comes from the right
origin1) (2) end-to-end content integrity (i.e., content is not tam-
pered), and (3) end-to-end content confidentiality (i.e., content is
kept private). For the browser platform to meaningfully enforce its
access control policy, both authentication and integrity are needed,
but confidentiality isnot required. Without confidentiality, the con-
tent is cacheable at intermediate web servers. HTTPS provides all
three properties simultaneously and is hence not cacheable.

In this paper, we proposeHTTPi as a protocol to support only
end-to-end authentication and content integrity. We advocate that
web sites use HTTPS for requests that require end-to-end confiden-
tiality, and HTTPi for all other requests.

This work presents a practical and comprehensive design andim-
plementation of HTTPi that is based on a content-signature-based
scheme. While HTTPi requires both browser and server-side modi-
fications, our design does not require changes at intermediate nodes,
such as proxies, for caching HTTPi content (Section 2.1). Our
design also ensures that progressive content loading in browsers
is not hindered by HTTPi, and that this incurs minimal overhead
in both computation and bandwidth (Section 2.1). Because signa-
tures can be computed offline and cached for static content, HTTPi
has a much lower computational cost compared to HTTPS for web
servers.

We further discover that a significant portion of existing HTTPS
content can be shared and cached across users (Section 4.1).This

1Client authentication is at the discretion of web sites.

1

indicates that much of existing HTTPS content can be safely turned
into HTTPi content to have better performance and the ability of be-
ing offloaded to other servers without any loss of security. In fact,
many existing HTTPS sites contain HTTP content including scripts
and images. Such mixed-content pages often contradict the intent
of web sites to defend against network attackers. This is precisely
due to the cost of enabling HTTPS for such existing HTTP content.
It is much easier to turn HTTP content contained on HTTPS sites
into HTTPi content, which will achieve the end-to-end security de-
sired by these sites.

Although we envision a next-generation web with only HTTPi
and HTTPS content, HTTP content will undoubtedly exist for a
long time. We also provide web developers with an easy way to
specify policies of how the three types of content can be safely
mixed together (Section 2.2). Furthermore, we observe thatthe de-
fault isolation policy for HTTPi, HTTPS, and HTTP content ofthe
same domain and port does not need to be as strict as the same-
origin policy. To this end, we design a new default policy to allow
useful interactions across different protocol schemes without sacri-
ficing security (Section 2.3).

End-to-end authentication also requires binding a public key to
an origin. Today, such bindings are established through Certificate
Authorities. Recent observations have shown weakness in such
CA-based binding [16]. DNSSec can potentially offer a more nat-
ural and safer way of binding a domain name to its public key [7].
We will not further discuss this topic in this paper.

We have built an end-to-end prototype to evaluate HTTPi. On
the browser side, we implemented the HTTPi protocol for Inter-
net Explorer using IE’s Asynchronous Pluggable Protocol exten-
sion mechanism. On the server side, we implemented support for
HTTPi requests using an HTTP proxy sitting in front of originweb
servers.

Our microbenchmark measurement indicates that HTTPi incurs
an acceptable verification and one-time signing overhead, with our
unoptimized implementation. This cost is quickly amortized over
many requests; for example, a typical web server deployed onAma-
zon EC2 achieved a 4.06x higher throughput for static content served
over HTTPi (and signed offline) than over HTTPS and HTTPi’s
throughput is negligibly lower than that of HTTP. To evaluate the
efficacy of deploying HTTPi for today’s web sites, we conducted
an initial measurement of cacheability of today’s web and found
that both HTTP and HTTPS content on today’s web is significantly
cacheable. We also present our initial findings on the effectiveness
of caching proxies to understand shared caching benefits forweb
users behind those proxies. Overall, our evaluation suggests that
HTTPi is practical to deploy and can offer compelling benefits.

2. DESIGN
We set the following goals for the HTTPi design:
• Guarantee of end-to-end integrity: Our design ensures that

the integrity of the rendered content is always maintained.
For example, a network attacker will not be able to inject
or remove content, or have adverse impact on browser-side
rendering of content.

• Easy adoption: HTTPi should be easy to adopt by web sites
and should fit seamlessly into the current web infrastruc-
ture. In other words, the design should be transparent to the
intermediate web servers (such as CDN servers and HTTP
web proxies) and should involve minimal changes to the core
setup of the servers and the browser.

• Negligible overhead over HTTP: The design should incur
negligible overhead over HTTP in computation, bandwidth,
and user-experienced latency.

Note that there could be scenarios where intermediate servers
modify web content, such as for personalization or content filtering
in enterprises. Transmitting content over HTTPi instead ofHTTP
would prevent such modifications. We argue that the guarantee of
integrity must be end-to-end, and any intermediate modifications
should be explicitly approved by the one of the endpoints (for ex-
ample, by sharing the private and public key pair of an endpoint).

To guarantee end-to-end integrity and to minimize latency and
overhead, we use a content signature-based scheme that allows
progressive content loading and at the same time is robust toany
injection attacks, as described in Section 2.1. In Section 2.3, we
describe the access control policy that browsers should carry out
across HTTPS, HTTPi and HTTP content.

For easy adoption, we use the existing HTTP protocol to imple-
ment HTTPi so that intermediate web servers can cache HTTPi
content seamlessly. Web browsers can show “httpi” in the ad-
dress bar, but the messages on the wire speak HTTP. We use a new
Integrity header to indicate the use of HTTPi as the protocol.
The integrity header also carries the signature for HTTP headers
(excluding the integrity header itself, of course). We use the exist-
ing Strict-Transport-Security header to prevent strip-
ping attacks (Section 2.1.3) and the existingX-Content-Secu-
rity-Policy header to allow web sites to configure mixed con-
tent policies (Section 2.2). Signatures for the HTTP response body
are in-band in the body itself. HTTPi’s server-side and client-side
implementation is pluggable into the existing setup and uses public
interfaces without any need for modifying the core functionality of
the server or the browser (Section 3).

2.1 Design Overview
A protocol scheme that ensures message integrity needs to sat-

isfy two requirements. First, the identity of the server sending the
content needs to be authenticated and second, the content needs to
verified for integrity. HTTPi uses a content signature-based proto-
col scheme to satisfy these requirements.

In a strawman design, HTTPi could sign the hash of anentire
HTTP response: The server first creates a cryptographic hash(e.g.,
SHA1) of the whole response and then signs the hash using the
server’s private key. The hash and its signature are then passed to
the client along with the response. At the client side, the browser
waits for the entire response to arrive, calculates its hash, and com-
pares the value with the signed hash to authenticate the server and
verify the response.

A key limitation of this design is that the browser would have
to wait for the entire response to arrive before being able toverify
the content integrity and dispatch the content for rendering. Conse-
quently, this would disrupt the existing progressive content loading
mechanisms in browsers, servers, and the HTTP protocol and the
user would experience much longer delay before seeing any con-
tent.

We leverage previous work on content integrity [20, 21] to de-
velop our HTTPi design that supports progressive content loading
through the use ofHTTPi segments. While these earlier efforts fo-
cused on designing protocol schemes for verification of integrity
in streaming systems, our scheme is designed to be used with to-
day’s web applications and browsers. As a result, we solve new
problems not addressed in prior work, including compatibility with
“chunked” transfer encoding (Section 2.1.1) that is widespread on
the web, various content replay attacks, and stripping attacks (Sec-
tion 2.1.3). Moreover, our work presents a detailed, practical imple-
mentation of HTTPi, whereas earlier work focused on theoretical
protocol design and offered no implementation details. Before div-
ing into our design for HTTPi, we first provide some background.

2

2.1.1 Existing Progressive Content Loading Mecha-
nisms

Current browsers support progressive loading of web content: as
soon as some data arrives from the network, the browser renders it
to the user. The amount of data available at a time is determined by
the underlying TCP congestion control and the network condition
as well as server availability. HTTPS content can also enjoypro-
gressive content loading especially when a stream cipher isselected
by web sites.

Complementing browsers’ progressive content loading, servers
are also motivated to reduce user wait time and to start sending the
response even before completing the processing of a requestand
therefore, before knowing the entire response body. To thisend,
servers often use HTTP chunked transfer encoding [18] and encode
each piece of available response data into a chunk. A web server
typically uses chunked encoding in two scenarios: (1) content is
static, however, its retrieval (for example, from the server database)
or processing is slow, and (2) content is dynamically generated with
a chunk being a logical unit of content for the application. The
chunks are sent in separate HTTP responses as soon as they are
available. Note that the data of a chunk may not arrive at the client
in one shot, but possibly in pieces due to network congestion. Nev-
ertheless, the browser can consume partial chunks progressively.

2.1.2 HTTPi Segments for Progressive Content Load-
ing

In HTTPi, the key challenge in supporting progressive content
loading is to configure the sensible granularity of content verifica-
tion. This design should meet the following goals: (1) it leverages
browser-side progressive content loading; (2) it is compatible with
HTTP chunked transfer encoding; (3) it is resilient to the dynamics
of the underlying TCP congestion control, which is unpredictable
by servers in an offline fashion; (4) it must allow cacheability; (5)
it incurs low overhead.

We useHTTPi segment to refer to the unit of verification in
HTTPi. LetS denote the size of an HTTPi segment.

Using HTTP chunks as HTTPi segments would still be too coarse-
grained. An HTTP chunk can be arbitrarily large and shares the
same problem as the strawman solution described above.

A question one may ask is whether a server can predict how
much data arrives at its clients. If so, then a server could enable
verification for just that data. For a single, live connection, a server
can indeed predict data arrivals on the client by obtaining the cur-
rent TCP congestion control window size and the receiver window
size from the network layer. However, because of dynamic network
conditions, such prediction would not work well for requests at dif-
ferent times or from different users and would defeat cacheability.
In light of this observation,S needs to be a constant value.

We choose to use the typical TCP segment size (1400 bytes) for
S. TCP segment is the unit of TCP transfer. The rationale here is
that the browser will need to wait forat most one packet to arrive to
receive a full HTTPi segment, perform the verification and render
the segment. This wait is as minimal as it can get.

Although HTTPi segment is the unit of verification, it does not
need to be the unit of signing. In our design, we amortize the sign-
ing cost over multiple segments in the response body. In morede-
tail, whenever a web server has some HTTP response data ready
(whether it is the entire HTTP response or an HTTP chunk becom-
ing available), for everyS bytes, we take a hash, then we com-
pute the signature for multiple hashes concatenated in the right
sequence. For HTTP headers, we hash each header individually
and use a single signature over all hashes. Since browsers donot
consume partial header values, we chose not to use the segmented

m, n, T; Sign(H(URLreq, m, n, T, XH, X1, X2))

X1

A1

A2

.

.

Am

X2

B1

B2

.

.

Bn

Chunk 1

T
im
e
 o
f
A
rr
iv
a
l

Chunk 2

m, T; Sign(H(URLreq, m, T, XH, X1))

X1

A1

A2

.

.

Am

n, T; Sign(H(n, T, H(Am), h2))

X2

B1

B2

.

.

Bn

T
im
e
 o
f
A
rr
iv
a
l

Chunk 2

Chunk 1

(a) (b)

Figure 1: Protocol Scheme in HTTPi for (a) static content (b)
dynamic content. A1, A2, ..., Am and B1, B2, ..., Bn represent
segments for Chunk 1 and 2, respectively.X1 andX2 represent
concatenated hashes evaluated over the segments of Chunk 1
and 2, respectively. XH represents concatenated hashes over
the HTTP headers.URLreq is the requested URL andT is the
time stamp.

design for header fields. We further amortize the signing cost by
signing the hashes of HTTP headers along with the hashes of HTTP
content using a single signature. We put the signature together with
the sequence of the hashes at the beginning of the response body.
An alternate way is to put the signature and hashes in an HTTP
header. However, our scheme needs to support HTTP’s chunked
encoding where chunks after the first chunk do not have header
fields. Therefore, we place the signature and hashes inband with
the response body.

The decision on when to sign rests with the application and is
made based on whether the content being signed is known in ad-
vance (i.e., static content), or is generated on the fly (i.e., dynamic
content). Figure 1 gives an illustration of our protocol scheme. As
can be seen in Figure 1(a), we amortize the cost of signing by using
a single signature over segments for all chunks generated for static
content (e.g.,X1 andX2 in a single signature). Since the content is
known in advance, the signature and all corresponding hashes can
be pre-computed by the server. For dynamic content, the hashes are
computed at the time of content generation. The signature iscal-
culated over all the segments of a single chunk (Figure 1(b)). The
sequence of hashes for the headers (XH) is placed only in the first
signature. We also place the URL of the requested page (URLreq)
in the first signature and the current time stamp (T) in each signa-
ture as a preventive measure for certain attacks (Section 2.1.3).

Note that signing can be done in an offline fashion for static con-
tent. For dynamic content, this incurs a computation overhead of
one SHA1 computation per 1400 bytes, resulting in the bandwidth
overhead of just 1.4% (20/1400). The signature overhead is one
signature per chunk for dynamic content. We will show in Sec-
tion 4 that much of the web is static and cacheable and HTTPi
incurs negligible overhead over HTTP.

Any segment that fails the integrity check is not rendered. In
such cases, we inform the user about the integrity failure and re-
move the security indicator from the page. For JavaScript, we do
not perform progressive content loading because today’s JavaScript
engines require an entire script to be received before starting its ex-
ecution.

2.1.3 Security Analysis and Design Enhancements
Out-of-sequence Segments.The segment hashes are arranged

in a sequence before signing. If a network attacker tries to reorder
the segments, it will break the sequence of the hashes and signature
verification would fail.

3

Injection and Removal Attacks. Attacker will not be able to
launch injection attacks successfully because the injected content
will not be verified by the browser. Removal attacks cannot happen
to the segment group of a signature for the same reason.

Nevertheless, removal attacks can happen across signaturegroups
(a set of chunks for static content or a single chunk for dynamic
content). When HTTP chunks are used by a server, each signature
group will have a set of HTTPi segments and a signature for them.
A network attacker can remove a signature group without being no-
ticed at the client. To address this issue, we insert the hashof the
last segment of the previous chunk at the beginning of the hash se-
quence of the current chunk (Figure 1(b)); and we insert the header
hash at the beginning of the hash sequence of the first chunk.

Content Replay. Network attackers could also mix-and-match
old content and new content to cause disruptions. Such attacks are
prevented in our design by placing time stampT in each signature.
For HTTPi responses that involve multiple signatures, the browser
must verify that the time stamp is the same across all signatures.

The network attackers could alternatively replay a completely
different response for requested object. In order to correctly iden-
tify the response with the requested object, the client verifies its
own value of the requested URL against the signedURLreq value.

Stripping Attacks. Both HTTPS and HTTPi are prone to “strip-
ping” attacks that hijack a user’s initial insecure HTTP request and
remove redirects to secure content. Although it is possibleto notice
stripping attacks by manually checking the browser security indi-
cators, users often ignore these indicators [34]. The HTTP Strict
Transport Security protocol (HSTS) prevents these attacksby al-
lowing web sites to specify a minimum level of security expected
for connections to a given server. The policy can be delivered via
HTTP header [23]. To prevent attacks on the user’s very first visit to
the site, the policy can also be delivered via DNSSEC [25]. Weuse
an extension to HSTS,allowHTTPi, to allow severs to specify
HTTPi as the minimum level of security. TheallowHTTPi token
is appended to the server’s existingStrict-Transport-Sec-
urity policy declaration. Older browsers that do not support
HSTS will ignore this header, while older browsers that support
HSTS but not our extension will default to HTTPS for all content.

Denial of Service. HTTPi is limited in its capability to handle
denial of service attacks, where a network attacker strips off the
integrity header from the response that requires integrityas speci-
fied by the application (Section 2.2). As a result, the content would
not be rendered by the browser. Additionally, the attacker can al-
low some segments to be rendered, while preventing subsequent
segments to arrive through to the browser. This could potentially
corrupt the internal logic of the application. For example,the at-
tacker can strip off JavaScript that changes the content of the page
and as a result, the page remains rendered in its original form. One
possible countermeasure to this attack is to use a time out for inter-
segment arrival at the client and raise an integrity failurealert after
the expiration of the timer. However, it would require an estima-
tion of the typical inter-arrival time for each client, which might
not always be accurate. In our design, we allow the browser towait
infinitely for the packets to arrive. If the user clicks on stop, we
alert the user that the content is not complete. Since we do not exe-
cute JavaScript till it is fully received, partially rendered JavaScript
would not be an issue for the integrity of the site.

2.2 Mixed Content
The mixed content condition occurs when a web developer refer-

ences an insecure (HTTP) resource within a secure (HTTPS) page.
Such references create vulnerabilities that put the privacy and in-
tegrity of the otherwise secure page at risk, because the insecure

content could be modified in network transit. Scripts are particu-
larly problematic because they acquire the principal origin of the
including page, allowing malicious scripts to read or alterthe con-
tent that was delivered over the secure connection. These types of
vulnerabilities are becoming increasingly dangerous as more users
browse untrusted networks and attackers improve upon DNS poi-
soning techniques and weaponize exploits against insecuretraffic.

Browsers differ in their mixed content handling. Internet Ex-
plorer prompts the user before displaying mixed content, while
Firefox and Google Chrome show a modified browser lock icon.
From a security standpoint, the best behavior would be to block
all insecure content in secure pages without prompting the user.
The latest beta release of IE9 enforces this behavior on scripts
and stylesheets, but not images; this policy is similar to the one
proposed by Gazelle [39]. However, this option of automatically
blocking insecure content has some serious compatibility implica-
tions. It might potentially confuse the user, since pages that rely
on insecure resources could appear broken. In the worst case, the
user might think the broken pages indicate a bug in the browser
and subsequently switch to an older version of the browser orto a
completely different browser to get unbroken pages.

We argue that mixed content vulnerabilities should be fixed by
the web developers, both for security and user-experience reasons.
The web developers have a better understanding of the impactthat
embedded content can have on the security of their site. Addi-
tionally, they are in much better position to develop a user-friendly
fallback mechanism for their site in case some content failssecurity
checks and hence is not rendered.

By default, we require that all active content embedded in HTTPi
and HTTPS pages, such as scripts and stylesheets, be rendered over
HTTPi or HTTPS. To allow web applications to customize this de-
fault behavior, we use an HTTP header that is compatible withCon-
tent Security Policy (CSP) [36] header to specify the server’s end-
to-end integrity requirements for dependent resources. The CSP
policy syntax is convenient for our purposes as it already allows
sites to specify which origins they want to include content from.

An example policy is as follows:
X-Content-Security-Policy:

allow https://login.live.com
httpi://*.live.com:443

The above example informs the browser that all embedded ob-
jects fromlogin.live.com should be retrieved over HTTPS
and content from all other subdomains oflive.com needs to be
downloaded over HTTPi. If the servers hosting the embedded con-
tent do not support the corresponding protocol, then the content is
considered unsafe as per the web page’s requirements and hence
should not be rendered by the browser. Our design also supports
specification of integrity requirements at a finer level, i.e., at the
level of object types or specific objects themselves. However, the
web application should be careful in specifying such finer policies
as it increases bookkeeping at the server. It also has the potential
to break existing interactions within the embedded contentif the
policies are not correctly specified.

The CSP syntax provides an ideal mechanism for the web devel-
opers to handle mixed content. It does not require web applications
to change their code by explicitly modifying all insecure references
of embedded objects. Even if web developers decide to modify
their code, it might not be sufficient. A secure (HTTPS or HTTPi)
URL can still return a redirect to an insecure resource, which could
be difficult to determine by examining the DOM alone. Addition-
ally, a script delivered over a secure channel could still make ref-
erences to insecure content. In our design for HTTPi, the browser
enforces the policies specified by CSP for all statically or dynami-

4

HTTPS

HTTPi

HTTP

Confidentiality and Integrity

Integrity

None

Read

Write

Write

Read

Write

Write

Read

Read

Bell LaPadula Model
(no write down, no read up)

Biba Model
(no read down, no write up)

X X

XX

Figure 2: Interactions in Mixed Content Rendering.

cally generated URLs.

2.3 Access control across HTTPS, HTTPi, and
HTTP content

HTTPi content can be embedded in an iframe through the use
of the “httpi” scheme, such as<iframe src=“httpi://a.com/”>, or
through the use of an additional iframe “integrity” attribute, such as
<iframe src=”http://a.com/” integrity>. The former has the con-
sistent presentation with other protocol schemes. The latter has
the benefit of backward compatibility; on an older browser, HTTPi
content would simply render as HTTP content. Note that no matter
what the representation is, the network messages still speak HTTP
to be backward compatible with the existing web caching infras-
tructure.

The Same Origin Policy labels the principals with the originde-
fined as the triple of<protocol, domain, port> [38,39]. Therefore,
content from the same domain and port number but with different
protocol schemes is rendered as separate principals. They can only
communicate explicitly through messages (i.e.,postMessage) [8]).

In this subsection, we consider the default interaction andac-
cess control model for HTTPS, HTTPi, and HTTP content served
from thesame domain and port. For example, a top-level HTTPi
page may embed two iframes, one containing HTTP content and
the other containing HTTPS content; and all three pages are from
the same domain and port. While following the SOP is safe for
such scenarios, it disallows all interaction among HTTP, HTTPi,
and HTTPS content. Rather than accessing the DOM objects di-
rectly, developers would be forced to redesign such interaction with
asynchronouspostMessage-based protocols, which may be hard
to design correctly, as illustrated by recent flaws found in Facebook
Connect and Google Friend Connect [22]. As a result, a developer
may be discouraged from converting some content on an HTTPS
site into HTTPi to benefit from its cacheability properties.

As a concrete example, consider an online shopping site thatis
rendered over HTTPS to protect users’ private data such as credit
card information. The site presents users with a map to select a
site-to-store pick-up location during checkout. It may be desirable
to deliver the store information and map content over HTTPi,but
this raises a problem of allowing the HTTPS part of the site toread
the store selection made by the user, an interaction that would be
disallowed by SOP. As a result, the site’s developers may be forced
to refactor their code to usepostMessage.

We observe that the SOP semantics are more restrictive than ac-
tually required to ensure security for such scenarios. Our goal is
to allow legitimate communication while preserving the security
semantics, namely the confidentiality and/or integrity, ofthe ren-

dered data. Our default communication policies are inspired by the
combination of the Bell LaPadula [10, 11] and Biba [12] models.
It is important to note that our goal isnot to enforce information
flow invariants often associated with those models (e.g., frames of
any origin can already freely communicate viapostMessage), but
rather to use these models to determine a secure and convenient de-
fault isolation policy for our setting. We summarize these models
as the following set of rules:

Bell LaPadula model (for confidentiality):
• The Simple Security Property: a subject at a given security

level may not read an object at a higher security level (no
read-up).

• The *(star) property: a subject at a given security level must
not write to any object at a lower security level (no write-
down).

Biba model (for integrity):
• The Simple Integrity Axiom states that a subject at a given

level of integrity may not read an object at a lower integrity
level (no read down).

• The * (star) Integrity Axiom states that a subject at a given
level of integrity must not write to any object at a higher level
of integrity (no write up).

In view of these models, we represent the three protocols (HTTP,
HTTPS and HTTPi) by two confidentiality levels (Chigh and Clow)
and two integrity levels (Ihigh and Ilow), which models the high
and low requirements for confidentiality and integrity, respectively.
HTTPS can be realized by the tuple<Chigh, Ihigh >, HTTPi by
<Clow, Ihigh> and HTTP by<Clow, Ilow>. Using this model, we
define the access control rules across HTTP, HTTPi, and HTTPSas
follows:

HTTPS and HTTP. HTTPS’ confidentiality label Chigh is higher
than HTTP’s confidentiality level Clow, thus resulting in “no read
up, no write down” requirement of the Bell LaPadula model. The
integrity levels of HTTPS and HTTP, Ihigh and Ilow respectively,
with Ihigh > Ilow, results in “no write up, no read down” condition
of the Biba model. Combining these two requirements resultsin no
reads or writes to either side being allowed between HTTPS and
HTTP. This derivation is consistent with the SOP.

HTTPi and HTTP. Since confidentiality levels of HTTPi and
HTTP are equal, only the integrity levels enforce the “no write up,
no read down” policy from the HTTPi content to HTTP resources
(Figure 2). Firstly, this means that a script belonging to the HTTPi
principal can write to the HTTP part of the page without reading
its content. One reason to prevent an HTTPi script from reading
HTTP content is to prevent the HTTP input from influencing the
logic within the HTTPi content. However, an HTTPi script might
still desire to read the HTTP page to identify the DOM elementto
write to. So, our requirement is to allow the read operation on the
HTTP content without allowing the logic of HTTPi content from
being affected. One way to realize this is by performing complete
information flow check in the HTTPi code, which might not be
practical. We use an alternative approach in which the HTTPicon-
tent itself writes the code for reading the HTTP content, andthis
code is injected into the HTTP content. This injected code runs
within the HTTP principal and hence can freely read and writeto
the content. Since HTTPi relinquishes the transferred codeto the
HTTP integrity level (Ilow), that code cannot affect the logic of
HTTPi’s own code, though it still can read from HTTPi content.
Secondly, HTTP can read the HTTPi content, but cannot write to
it. We realize this in our design by providing only a shadow copy of
the HTTPi content to HTTP, with no direct reference to real HTTPi
objects.

HTTPS and HTTPi. Since HTTPS and HTTPi integrity lev-

5

els are equal, only the confidentiality levels force the “no read up,
no write down” rule from HTTPS to HTTPi resources (Figure 2).
Both read and write operations can be realized similarly to the pre-
vious scenario. We allow HTTPi content to write to HTTPS since
the code for HTTPi is at the same integrity level as HTTPS con-
tent and written by the same developer (since they have the same
domain). HTTPi scripts can write the code for reading the HTTPS
content into the HTTPS’ DOM and effectively, that code becomes
part of the HTTPS principal. This allows reading of the HTTPS
code by the injected code without leaking any of the read databack
to HTTPi’s main code. For reading HTTPi content without allow-
ing any write, a shadow of the HTTPi’s DOM is provided to the
HTTPS. Coming back to the shopping site example earlier in this
section, this rule would allow HTTPS content to read the store se-
lection made by the user and correspondingly send the merchandise
to the selected store.

3. IMPLEMENTATION
HTTPi requires both the client browser and the hosting server to

adhere to the protocol. Accordingly, our implementation consists
of server-side and client-side modules. Figure 3 shows the high-
level architecture of our system. Our server-side implementation
consists of an HTTPi Transformer, which implements all HTTPi-
related interactions on the server side, including contenthashing,
segmentation, and a handler for appending integrity policyrequire-
ments to HTTP responses. Our client-side implementation centers
around three modules that we add to Internet Explorer 8: (1) an
HTML content filter that transforms a given page to adhere to in-
tegrity policy requirements, (2) an HTTPi protocol that handles
the client-side processing of HTTPi content, and (3) a module that
provides JavaScript and DOM interposition to enforce our mixed-
content access control policies. In this section, we describe each
of these modules and the associated implementation challenges in
turn. Overall, our implementation consists of 1,100 lines of server-
side code, and 3,500 lines of client-side code.

3.1 Server-side Implementation
We explored two options for implementing the server-side com-

ponent of HTTPi, with the options differing in their deployment
tradeoffs. First, we extended the IIS 7 web server with a C# mod-
ule for HTTPi, called HTTPi Transformer, that encapsulatesthe
functionality to generate HTTP responses with signatures and con-
tent hashes that adhere to the HTTPi protocol. Although we chose
IIS, similar module functionality is available for other web servers.
This option is useful if the server is willing to immediatelyinte-
grate HTTPi functionality into their current setup. It alsohas obvi-
ous performance benefits as the module is closely coupled with the
functionality of the web server.

In our second deployment option, we integrated the HTTPi Trans-
former into a web proxy that translates typical HTTP responses
into HTTPi responses by embedding all the hashes and signatures
needed by HTTPi. We leveraged the public-domain Fiddler web
debugging proxy [27] and its FiddlerCore [17] extensibility inter-
faces. This option is independent of web server implementation
and allows servers to continue supporting HTTP as the delivery
protocol for backward compatibility, while switching to the HTTPi
protocol for requests that pass through the proxy. It eases deploy-
ment, since the proxy can be deployed anywhere in the networkand
guarantees integrity between the proxy and a compatible browser.
This could be desirable for corporations that do not requireintegrity
checks for intranet users, while ensuring integrity of their sites for
external users.

For our evaluation, we used the latter option of having a network

proxy, because (1) it allowed us to test our prototype against pub-
licly deployed web sites without having any control of theirweb
servers, and (2) it allowed fair comparison of HTTPi with HTTPS
and HTTP (Section 4.2.3) by cleanly switching to a desired proto-
col between the client and the proxy even when the backend server
did not support the protocol.

3.2 Client-side Implementation

3.2.1 Filtering content to enable HTTPi
We expect that origin servers would generate new content with

the right “httpi” URIs for the content that requires integrity. In any
case, our design ensures that mixed content policies are enforced
by verifying the URIs against the policies. Instead of requiring
the servers to change the URIs in their existing content, ourim-
plementation of HTTPi performs the required filtering to enforce
the mixed content policies. The HTML content filter module is
invoked for every HTML response received at the browser thatis
associated with a Strict Transport Security policy or Content Secu-
rity policy. This module modifies HTML content to ensure thatit
adheres to the minimum security levels specified in STS and CSP.
For example, all object links on a page are transformed to corre-
sponding HTTPi links by modifying the protocol field in the URL.
Since the HTML content filter is invoked before the page is ren-
dered in the browser, this design allows the HTTPi protocol han-
dler to be associated with all such links and hence ensures that the
HTTPi handler is invoked when the browser requests those links
during rendering. We implemented this module by using IE’s pub-
lic MIME filter COM interfaces [1] and subsequently registered it
as a filter for HTML content.

One limitation of this approach is that it may miss dynamically-
generated links where the URL is constructed by JavaScript at run-
time. We are currently working on solving this by performing
HTTPi redirection to the time of actual HTTP requests; our evalu-
ation is independent of this implementation enhancement and was
performed without it.

3.2.2 HTTPi Protocol
The HTTPi protocol handler encapsulates all client-side han-

dling of HTTPi content and is automatically invoked by the browser
when an HTTPi link is encountered by the browser’s renderingen-
gine. Upon invocation, it makes an independent HTTP call to the
server to retrieve the content. It then verifies the integrity of the
content in segments using the mechanism described in Section 2.
Once the integrity of a particular segment is verified, its content is
released to the browser’s rendering engine for progressiveloading.

We implemented this module as an asynchronous pluggable pro-
tocol (APP) [1] IE module associated with the HTTPi protocol.
Even though IE provides this generic protocol extension point, im-
plementing a general-purpose protocol with minimal performance
overhead is challenging. IE’s internal logic is well-optimized for
HTTP and HTTPS, which makes a comparably performant web
protocol difficult to implement. A considerable time and effort was
spent on making our code as optimal as possible by parallelizing
various operations such as network read and signature verification.
Despite our limited knowledge of IE’s internal optimizations and
with the handicap of using a generic interface, we were stillable to
achieve acceptable performance as compared to HTTPS and HTTP
(Section 4.2.3).

3.2.3 Access control for mixed content
Another big challenge for our implementation was to customize

SOP to include our mixed-content access control policies. Unfor-

6

JavaScript
Engine

HTML Layout
Engine

Script Proxy Engine

Mixed Content

Rendering Policies

HTTPi Protocol
Handler

HTML Content
Filter

HTTPi
Transformer

Integrity
Policies

Web Server

(1)

(2)

(3)

(4)

(5) (6)

(7)

(8)

(9)

Internet Explorer

Figure 3: High-Level Architecture of our HTTPi Implementat ion with the operational steps to retrieve content over HTTPi as
follows: (1) IE makes an initial request for a specific page. (2) Server-side proxy identifies that the request is for a HTTPi-enabled
resource and appends integrity policy headers to the response. (3) HTML content filter processes the response by modifying URLs
that match STS policies to point to their corresponding HTTPi links. (4) HTML content filter releases the modified response to
IE’s rendering engine. (5) The HTTPi protocol handler is invoked for every HTTPi object encountered during rendering. (6) The
HTTPi protocol handler makes a HTTP call to the server requesting the object. (7) Server-side proxy traps the request, makes an
independent HTTP call to the backend web server to get the response, hashes and signs the response, and returns it back to the
HTTPi protocol handler. (8) The HTTPi protocol handler veri fies the signature and hashes corresponding to the differentsegments
in the response. (9) Successfully verified segments are passed to the rendering engine for progressive loading. The Script Engine
Proxy (SEP) subsequently mediates all mixed-content interactions while a web page renders.

tunately, IE does not allow changing the code for SOP with public
APIs. As a result, the only alternative was to implement our solu-
tion as an additional layer on top of the existing SOP and thenfind
a way to enforce mixed-content policies within the limits imposed
by the existing SOP logic. This certainly made our implementation
more difficult.

To solve this problem, we use a two step approach. In the first
step, we modify the security origin (origin is defined as the tuple
<protocol, domain, port>) of all objects on the web page
by changing the protocol field to HTTP, i.e., the one with the lowest
integrity and confidentiality level. This is achieved by providing a
custom implementation for theIInternetProtocolInfo in-
terface [4] from within the APP for HTTPi. Note that changingthe
security origin of an element does not affect the URL associated
with that element.

As per the SOP, all the objects on the page can now interact with-
out restriction. Our second step is to enforce access control rules
or policies that govern such interactions. We build on our earlier
work [35, 38] that implements a JavaScript engine proxy (called
script engine proxy or SEP): SEP is installed between IE’s render-
ing and script engines, and it mediates and customizes DOM object
interactions. SEP is implemented as a COM object and is installed
into IE by modifying IE’s JavaScript engine ID in the Windows
registry. We extend SEP to trap into all invocations (read orwrite)
across the page’s objects and ensure that our mixed-contentaccess
control polices (Section 2.3) are enforced. We use the URLs asso-
ciated with the accessing object and the object being accessed in
making our access control decision. The two-step logic thatgov-
erns the access control enforcement in our implementation can be
summarized as follows:

• If the original origins of the caller and the callee objects dif-
fer indomain and/orport, then the browser would prevent
any interactions across them in accordance with the SOP.

• If the original origins of the caller and the callee objects dif-

fers in onlyprotocol, the SOP would allow the objects to
interact (as we modify the protocol of the security origin to
HTTP). In this case, we mediate the interaction within our
customized SEP to enforce our access control policies.

The read operation is straightforward: SEP allows the caller
to have read access to the callee’s objects. The write operation
could be implemented in a similar fashion; however, some writes
must first access an object to which the write subsequently oc-
curs. For example, if the caller wants to write content to a spe-
cific element on a callee object, it might need to read the han-
dle to that element using functions such asgetElementById
or getElementsByName. However, if the caller only has write
privileges with no read access, it cannot make such calls andhence
cannot know where to write the content.

We solve this problem by introducing a new JavaScript function
writeUsingCode, which is interpreted by our SEP implemen-
tation; the browser’s JavaScript engine does not need to understand
this function. Instead of directly making read calls looking for an
element of the callee object, the caller uses the function topass
the JavaScript code that encapsulates such read calls and the subse-
quent write call to the corresponding element. The SEP intercepts
this function call and makes calls to the underlying JavaScript en-
gine to execute the code with the origin of the callee object.Any
unintended feedback mechanism introduced by this code is pre-
vented by SEP’s access control policies.

4. EVALUATION
We have implemented a HTTPi system that works end-to-end.

We used our proxy-based implementation as a server-side HTTPi
endpoint to verify our system for correctness against a number of
popular web sites, such as Google, Bing Maps, and Wikipedia.In
each case, the browser successfully rendered the web pages and all
integrity checks were correctly included at the server and verified
at the browser. Any tampering of the web page in the network was

7

Protocol
Total Objects Publicly Cacheable Objects

Count Size Count Size
HTTP 346,629 1532 MB 251,826 (72.65%) 1385 MB (90.41%)

HTTPS 5,036 21.95 MB 3,659 (72.66%) 19.39 MB (88.33%)

Table 1: Measurement of publicly cacheable web content fromthe top 1000 Alexa sites.

correctly detected and failed the integrity check at the browser. We
evaluated the access control interactions for mixed content by de-
veloping a set of custom web pages that included such interactions.
Our system correctly enforced the access control policies for such
interactions.

Next, we provide experimental evidence to support our claim
that today’s web sites can benefit from cacheability enabledby
HTTPi. To this end, we first perform a web cacheability study to
answer two questions: (1) what web sites have cacheable content,
and (2) what users are taking advantage of shared caches on the
web. Next, we evaluate the performance of our prototype by micro-
benchmarking its operations and by comparing its overhead to that
of HTTPS and HTTP.

4.1 Study of Web Cacheability
With HTTPi, web sites decide what content uses HTTPi as the

underlying mechanism of transport. Therefore, any contentthat
web sites currently allow to be cached by intermediate web servers,
such as CDNs and web caches, becomes an ideal target for HTTPi.
To better estimate the amount of web content that could benefit
from the use of HTTPi, we performed a cacheability analysis on
the top 1,000 Alexa sites that includes both top-level pagesand em-
bedded content on the sites visited. We analyze the HTTP caching
headers, such asCache-control, Expires, Pragma, etc., to
decide what content is deemed cacheable according to the HTTP
specification [18].

Experimental Setup.To facilitate automatic analysis for a large
number of URLs, we used a customized crawler from our earlier
work [35], which utilizes IE’s extensibility interfaces tocompletely
automate the browser’s navigation. To invoke functionality beyond
a site’s home page, the crawler uses simple heuristics that simulate
some user interaction, such as clicking of links and searching form
submissions. We restrict all simulated navigations to staywithin
the same origin as a site’s home page. We monitor the browser’s
network traffic in a proxy to intercept all HTTP/HTTPS requests
and analyze HTTP headers relevant to web caching. The proxy is
included as a trusted certificate authority at the browser inorder to
allow it to intercept the HTTPS traffic and inspect its content [27].

Prevalence of cacheable content.Table 1 shows the results of
our web cacheability experiment. Note that our results onlycon-
sider content that is marked as public and excludes any private con-
tent that is user-specific and hence is intended to be cached only at
the user’s browser. As we can observe from the table, a large major-
ity of the web content is rendered over HTTP with more than 98%
of the objects that we observed being HTTP objects. We found that
approximately 73% of these objects are cacheable. The cacheabil-
ity is higher in terms of content size, with more than 90% of to-
tal HTTP content size (of all objects) being cacheable, indicating
that the web applications typically want larger-sized content, such
as images, to be cached in the network. The limited number of
HTTPS objects that we encountered follow a similar trend with a
large number (73%) being cacheable objects. The presence ofa
considerable number of public, cacheable HTTPS objects is an in-
dication that web applications intend to cache objects in the web,
but are discouraged by the lack of security provided by HTTP.They

are left with no choice but to trust the CDNs for this type of content.
If only integrity of the content is desired, HTTPi presents itself as
an ideal alternative for these HTTPS objects.

Presence of in-network caches.To see how many users are
benefiting from web caches today, we measured the prevalenceof
forward caching proxy servers, which are a significant source of in-
network caching. More specifically, we conducted an experiment
to determine how the country and the user agent affects whether
a forward network proxy is being used. We used rich media web
ads as a delivery mechanism for our measurement code, using the
same ad network and technique previously demonstrated in [24].
We spent$80 to purchase 115,031 impressions spread across 194
countries. Our advertisement detected forward proxies using XML-
HttpRequest to bypass the browser cache and store content inthe
network cache. Overall, 3% of web users who viewed our ad were
using a caching network proxy. However, some countries had asig-
nificantly higher fraction of users behind network proxies.Popular
countries for forward proxies included Kuwait (63% of 372 impres-
sions), United Arab Emirates (61% of 624 impressions), Argentina
(11% of 1,875 impressions), and Saudi Arabia (10% of 4,248 im-
pressions). We also observed higher usage of forward proxy caches
(11%) among mobile users, although these users accounted for only
0.1% of the total impressions in our experiment.

Relevance to HTTPi.Our results demonstrate that cache prox-
ies are still prevalent and useful today, particularly for large user
communities, such as a whole country of people behind a single
firewall and mobile users behind cellular gateways. HTTPi can
take advantage of these proxies while offering end-to-end security
at the same time.

4.2 Performance Evaluation of HTTPi
We evaluate the performance of HTTPi in two steps. First, we

perform micro-benchmarking of various stages of the protocol and
analyze the parameters that determine HTTPi’s performance. Sec-
ond, we analyze the end-to-end performance overhead of HTTPi
over existing HTTP and HTTPS protocols.

4.2.1 Experimental Overview
Ideally, we would run performance experiments on real web sites

deployed on the web. However, current web servers do not under-
stand the HTTPi protocol, and many servers host an HTTP version
of a site but not HTTPS. To overcome this, we used our modified
server-side Fiddler [27] proxy (Section 3.1) for proxying all re-
quests from the client to the backend server, and convertingHTTP
requests from the origin server into HTTPi or HTTPS requeststo
the client, as necessary for our experiments. This setup allows us
to measure the cost of using HTTPS and HTTPi for web pages that
are currently hosted over HTTP.

We use the end-to-end response time as the measurement cri-
terion, defined as time between the instance at which a URL is
submitted at the browser and the instance at which the correspond-
ing page is fully rendered. To remove any discrepancies thatmight
arise from fetching content from the backend server due to incon-
sistent network conditions, we deduct the data fetching time at Fid-
dler from the total end-to-end response time. This gives us an es-

8

(1) Set Integrity for Headers

(2) Hash Creation

(3) Signature Generation

(4) Verify Integrity for Headers

(5) Hash Verification

(6) Signature Verification

(7) Data Read from Network

(8) Pass Data to Browser

100

200

300

400

15000

T
im

e
(m

s)
Server

Client

~ ~
10 15 3 1

51

21
5

13
73

0

25
4

Figure 4: Micro-benchmarking various operations in HTTPi
for a 836KB web page, using 512Kbps network bandwidth.

timate of the end-to-end response time with Fiddler acting as the
server. For a fair comparison, we also perform similar deductions
for HTTP and HTTPS.

For our experiments, we use SSL certificate size of 1024 bits.
Even though there is a push on the Internet to move towards 2048-
bit certificates, many of the popular sites such as Gmail still use
1024-bit keys. Additionally, it makes HTTPi’s performanceesti-
mates to be conservative in comparison to HTTPS, as HTTPS will
perform worse for 2048-bit keys.

Using the Akma network delay simulator v0.9.129 [5], we sim-
ulated various network conditions to understand their performance
impact on end-to-end response time. We simulate the incoming
and outgoing connections to have equal bandwidth and fixed their
queue sizes at 20 packets. We run our delay simulator on the server
side to cap the server throughput to a desired bandwidth. We de-
ploy our server-side Fiddler code on a Windows 7 machine, with an
Intel 2.67 GHz Core i7 CPU and 6 GB of RAM. The client runs on
a Windows 7 machine, with an Intel 2.4GHz quad-core CPU and
4GB of RAM. All experimental results are averaged over 10 trial
runs.

4.2.2 Micro-benchmarks
To understand sources of overheads in our system, we instru-

mented our HTTPi implementation to measure latencies of various
operations, and used a simulated network bandwidth of 512Kbps to
load an 836KB HTML page in our HTTPi-enabled browser, with
the size picked to maximize measurable overhead and to observe
effects of HTTPi’s segmentation. Figure 4 breaks down the delays
contributing to the end-to-end response time, which we measured
to be 15.7 sec.

We find that a large fraction of the total time is spent reading
content from the network (bar 7 in Figure 4), which is an expected
behavior for slower networks. The overhead costs of hashingall
content segments (bar 2) and signing these hashes with a 1024-
bit key (bar 3) on the server side is very small. Here, the RSA
signature is calculated on a fixed-size single SHA1 hash of 20bytes
(Section 2); this takes just 3ms. Since the header value sizes are
much smaller as compared to the content body, both the time to
set the header integrity content (hashing and signing) on the server
(bar 1) and time to verify it on the client side (bar 4) is low.2 On

2Note that we do not perform any segmentation for headers.
For our measurements, we specify two headers,Server and
Content-Type, to require integrity. This time cost will vary

128Kbps 256Kbps 512Kbps 1Mbps 10Mbps 100Mbps 1Gbps

Network Bandwidth

0

20000

40000

60000

E
nd

-t
o-

E
nd

 R
es

po
ns

e
T

im
e

(m
s)

HTTP

HTTPS

HTTPi

Figure 5: End-to-end response time as a function of the net-
work bandwidth available to the client, measured for a 836KB
page. Note that these results do not include performance bene-
fits due to caching for HTTP and HTTPi.

the client side, the signature verification time (215 ms, bar6) is a
more significant source of overhead. It is considerably higher than
the cumulative hash verification time for all content segments (51
ms, bar 5), supporting our design of using a single signatureover
multiple segment hashes. The time to pass data from our client-side
HTTPi protocol handler into the browser’s rendering engine(bar 8)
is also considerable; although it is not specific to HTTPi andwould
also be incurred by other protocol handlers in the browser, native
protocols like HTTP are more optimized in our browser for this
step, as we discussed in Section 3.2.2.

In summary, we find that the major HTTPi components (bars 1-
6) constitute only 295 ms (1.8%) of the end-to-end response time
for this microbenchmark, with largest overhead coming fromclient-
side signature verification.

4.2.3 Comparing HTTPi to HTTP and HTTPS
In this section, we compare HTTPi’s performance to that of HTTP

and HTTPS and answer two questions: (1) Is the user-perceived la-
tency acceptable for the data received over HTTPi, and (2) What
is the performance impact of running HTTPi and the hashing and
signing load it incurs on a web server?

User-perceived latency.We compared the end-to-end response
time for our 836KB test page rendered over HTTPi, HTTPS and
HTTP. Figure 5 shows the results of our experiments performed
over different network bandwidth conditions. Note that theper-
formance results do not include caching, and only evaluatesthe
first of potentially many requests for this page. Evaluatingperfor-
mance of a particular cache is not a goal of our experiments and
has been previously well studied [40, 41]. We see that HTTPi in-
curs minimal overhead over both HTTP and HTTPS, and this over-
head is consistently within 0.7-2.0 seconds over both HTTP and
HTTPS for different network bandwidths. Since this value does
not vary much with network bandwidth, we believe our implemen-
tation is successful in approximately matching the networkopti-
mizations of HTTPS and HTTP. We believe that there is still ample
room for client-side optimization as we discussed earlier in Sec-
tion 3, and this will certainly reduce the total overhead of HTTPi
(since client-side overhead is not negligible as shown by our micro-
benchmarking experiments).

Web Server Throughput. Our server throughput measurements
are performed using httperf [28], an HTTP performance measure-

according to the number of headers for which integrity checksum
is set.

9

Experiment HTTP HTTPi HTTPS

Bare-metal Setup 3320 3318 2503

Amazon EC2 Setup 2757 2732 678

Table 2: Impact of HTTPi and HTTPS on server throughput in
responses/sec.

ment tool. The experiments are performed using two different se-
tups that closely represent typical real-world web deployments:

• Our first setup consists of an IIS server that is hosted on a
bare-metal Windows 7 machine, with Intel 2.67 GHz Core i7
CPU and 6 GB of RAM. The Linux client machine running
httperf is connected to the server by a 1Gbps network with
negligible latency.

• Our second setup is cloud-based; we use a virtual Windows
2008 Server image on Amazon EC2. At the time, this image
was the only publicly available image that came pre-installed
with IIS 7. It is a “high-CPU medium” instance with 5 EC2
compute units with 1.7 GB of RAM (the fastest instance that
was available for this image). This setup mimics a typical
EC2 user who wants to host a web server. httperf is executed
from a Linux EC2 instance in the same region, using EC2-
private LAN with negligible network latency.

We use an experimental HTML page of size 4.8 KB, which rep-
resents a typical size of a page with no embedded links. We ar-
rived at this page size based on the web estimates that put total
page size at 170KB (median) and number of objects per page at
37 (median) [29]. For each page, we increased the offered load on
the server until the number of sustained sessions peaked. Wefound
that the server was CPU-bound in all cases. Each session simulated
one request to the web page.

Table 2 shows a summary of our results. HTTPi incurs negligi-
ble degradation (less than 1%) of throughput compared to theorig-
inal HTTP page. In comparison, the throughput drop was substan-
tial when using HTTPS, with our bare-metal experiment reporting
25% and EC2 experiment showing 75% drop in the throughput.
This drop is attributed to the heavy CPU load for the SSL hand-
shake. Our bare-metal experiment shows a lesser drop since it has
a considerably faster CPU, which handles the load better. Overall,
these results demonstrate that web servers can have a significant
performance incentive to use HTTPi instead of HTTPS.

5. RELATED WORK
Prior work has explored a number of integrity protection tech-

niques. A proposal on authentication-only ciphersuites for PSK-
TLS [13] describes a transport layer security scheme for authen-
tication and integrity, with no confidentiality guarantees. How-
ever, this proposal requires a shared secret between each client
and the server to key the hash, making it impractical to sharethe
key with all the clients of the application. SHTTP [32] is another
proposal for a content-signature-based protocol that unsuccessfully
competed with SSL and HTTPS. Our work builds on SHTTP’s sig-
nature mode of operation and develops a practical and comprehen-
sive solution by additionally addressing progressive content load-
ing, mixed content handling and the associated security.

Web tripwires [30] verify the integrity of a page by matchingit
against a known good representation of the page (either a check-
sum or an encoded full copy of the page’s HTML). It uses client-
side JavaScript code to detect in-flight modifications to a web page.
However, web tripwires have high network overhead (approximately
17% of the page size), which could hinder the end-to-end response
time, especially for slower networks. Moreover, web tripwires can
be identified and disabled by an adversary, and they cannot detect

full-page substitutions. In contrast, HTTPi is cryptographically se-
cure and can prevent any type of integrity breaches. HTTPi also has
a much lower network overhead cost as compared to web tripwire.
Finally, web tripwires focus ondetection, while HTTPi focuses on
bothdetection andprevention.

Other research has proposed cryptographic schemes for web con-
tent integrity [9, 20]. While we share some commonality withthis
work in integrity computation, our system differs in three signif-
icant ways. First, our design is more robust against attackslike
stripping attacks and content replay. Second, we design HTTPi to
be practical for today’s web and address problems such as mixed
content treatment, compatibility with “chunked” transferencoding,
and access control across HTTP/HTTPi/HTTPS content, none of
which are considered in prior work. Third, we go beyond protocol
design and also offer a full practical implementation and evaluation
of HTTPi for a real-world browser, while earlier research lacks any
implementation details.

Stubblefield et al. [37] proposed mechanisms to improve SSL’s
performance. While their WISPr system shares HTTPi’s motiva-
tion of supporting in-network caching while preserving integrity,
it is designed for another content delivery protocol (subscription-
based), rather than for use in existing web sites. WISPr constructs
an HTTP page that embeds the encrypted version of the original
page; this page can be cached in the network. However, a client
needs to download a key from the server in order to decrypt thecon-
tent, and WISPr only works for static content. In contrast, HTTPi
is readily compatible with existing web sites, it supports static and
dynamic content, and it adds support for progressive loading and
mixed-content scenarios common on the web. Whereas no evalu-
ation details are provided for WISPr implementation, we showed
that HTTPi is practical in Section 4.

HTTP provides a Content-MD5 header [18] that can carry the
MD5 signature of the complete page. This header could be use-
ful in providing basic page integrity, but suffers from manyweak-
nesses if used by itself. For example, a network attacker canmod-
ify the header since it is not authenticated, and the attacker can
completely drop the header without the client knowing aboutit. In
contrast, HTTPi provides authentication by signing content hashes,
and since it specifies the requirements for a page using HSTS in
advance, the client can easily detect whether the required integrity
content is dropped by network attackers. Additionally, with HTTPi,
integrity is evaluated over smaller-sized segments, whichhas per-
formance benefits (see Section 2.1) over the entire-page approach
used in the Content-MD5 header.

The YURL [14] specification defines an alternative server iden-
tification and authentication mechanism that does not depend on
centralized authorities like the DNS or PKI. A YURL identifies a
site using the site’s public key fingerprint and the web site owner
owns the CA fingerprint. However, like HTTPS, and unlike HTTPi,
the proposed YURL-based protocolhttpsy [14] precludes content
from being cached at web proxies.

6. CONCLUSIONS
We envision HTTPi to complement HTTPS to bring end-to-end

security to the entire web. Only when there is end-to-end security,
the browser platform and the web are able to have a collectively
secure overall system.

We advocate the part of web that does not have end-to-end se-
curity today to adopt HTTPi which incurs negligible performance
overhead over HTTP and enjoys the benefit of CDNs and cache
proxies just as HTTP. For existing HTTPS content, our study indi-
cates that its significant portion is cacheable and can also gain sig-
nificant performance and caching benefit from employing HTTPi.

10

7. ACKNOWLEDGMENTS
We would like to thank Shai Herzog and Gil Shklarski for their

insightful discussions and support. We are also grateful toCarl
Edlund, Jim Fox, Justin Rogers, and Ali Alvi for their help with IE
instrumentation.

8. REFERENCES
[1] About Asynchronous Pluggable Protocols.

http://msdn.microsoft.com/en-us/library/
aa767916(v=VS.85).aspx. Accessed on May 1, 2011.

[2] Cisco Visual Networking Index: Forecast and Methodology,
2009-2014.
http://www.cisco.com/en/US/solutions/
collateral/ns341/ns525/ns537/ns705/
ns827/white_paper_c11-481360_ns827_
Networking_Solutions_White_Paper.html.
Accessed on May 1, 2011.

[3] Dispelling the New SSL Myth.http://devcentral.
f5.com/weblogs/macvittie/archive/2011/
01/31/dispelling-the-new-ssl-myth.aspx.
Accessed on May 1, 2011.

[4] IInternetProtocolInfo interface.
http://msdn.microsoft.com/en-us/library/
aa767874(VS.85).aspx. Accessed on May 1, 2011.

[5] Network Simulator.http:
//www.akmalabs.com/downloads_netsim.php.
Accessed on May 1, 2011.

[6] I. Akamai Technologies. Secure content deliver.
http://www.akamai.com/dl/feature_sheets/
fs_edgesuite_securecontentdelivery.pdf.

[7] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
RFC 4033: DNS Security Introduction and Requirements,
2005.

[8] A. Barth, C. Jackson, and J. C. Mitchell. Securing Frame
Communication in Browsers. InProceedings of the 17th

USENIX Security Symposium, San Jose, CA, July 2008.
[9] R. J. Bayardo and J. Sorensen. Merkle Tree Authentication

of HTTP Responses. InSpecial Interest Tracks and Posters
of the 14th International Conference on World Wide Web
(WWW), Chiba, Japan, May 2005.

[10] D. E. Bell. Looking Back at the Bell-LaPadula Model. In
Proceedings of the 21st Annual Computer Security
Applications Conference (ACSAC), Tucson, AZ, Dec. 2005.

[11] D. E. Bell and L. J. LaPadula. Secure Computer Systems:
Mathematical Foundations. Technical Report
ESD-TR-73-278, MITRE Corporation, Bedford, MA, Nov.
1973.

[12] K. J. Biba. Integrity Considerations for Secure Computer
Systems. Technical Report ESD-TR-76-372, MITRE
Corporation, Bedford, MA, Apr. 1977.

[13] U. Blumenthal and P. Goel. RFC 4785: Pre-Shared Key
(PSK) Ciphersuites with NULL Encryption for Transport
Layer Security (TLS), 2007.

[14] T. Close. Petname Tool: Enabling Web site Recognition
using the Existing SSL Infrastructure. InW3C Workshop on
Transparency and Usability of Web Authentication, New
York, NY, Mar. 2006.

[15] K. DeGrande. CDNetworks, September 2010. Personal
communication.

[16] P. Eckersley and J. Burns. Observatory for the SSLiverse,
July 2010.http:
//www.eff.org/files/DefconSSLiverse.pdf.

[17] FiddlerCore.
http://fiddler.wikidot.com/fiddlercore.

[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. RFC2616: Hypertext Transfer
Protocol – HTTP/1.1, 1999.

[19] S. Friedl. An Illustrated Guide to the Kaminsky DNS
Vulnerability.http://unixwiz.net/techtips/
iguide-kaminsky-dns-vuln.html.

[20] C. Gaspard, S. Goldberg, W. Itani, E. Bertino, and
C. Nita-Rotaru. SINE: Cache-Friendly Integrity for the Web.
In Workshop on Secure Network Protocols (NPSec),
Princeton, NJ, Oct. 2009.

[21] R. Gennaro and P. Rohatgi. How to Sign Digital Streams. In
Proceedings of the 17th Annual International Cryptology
Conference on Advances in Cryptology (CRYPTO), Santa
Barbara, CA, Aug. 1997.

[22] S. Hanna, R. Shin, D. Akhawe, P. Saxena, A. Boehm, and
D. Song. The Emperor’s New APIs: On the (In)Secure
Usage of New Client-side Primitives. InWeb 2.0 Security
and Privacy (W2SP 2010), 2010.

[23] J. Hodges, C. Jackson, and A. Barth. Http strict transport
security (HSTS), 2010.http://tools.ietf.org/
html/draft-hodges-strict-transport-sec.

[24] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh.
Protecting Browsers from DNS Rebinding Attacks. In
Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS), Alexandria, VA, Oct. 2007.

[25] V. Jirasek. Overcoming man in the middle attack on Strict
Transport Security, August 2010.
http://blog.jirasek.eu/2010/08/
overcoming-man-in-middle-attack-on.html.

[26] A. Langley, N. Modadugu, and W.-T. Chang. Overclocking
SSL. InVelocity: Web Performance and Operations
Conference, Santa Clara, CA, June 2010.
http://www.imperialviolet.org/2010/06/
25/overclocking-ssl.html. Accessed on May 1,
2011.

[27] E. Lawrence. Fiddler Web Debugging Tool.
http://www.fiddler2.com/fiddler2/. Accessed
on May 1, 2011.

[28] D. Mosberger and T. Jin. httperf—A Tool for Measuring
Web Server Performance.Performance Evaluation Review,
26(3):31–37, 1998.

[29] S. Ramachandran. Let’s make the web faster.
http://code.google.com/speed/articles/
web-metrics.html.

[30] C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver.
Detecting In-Flight Page Changes with Web Tripwires. In
Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), San Francisco,
CA, Apr. 2008.

[31] E. Rescorla. RFC 2818: HTTP Over TLS, 2000.
[32] E. Rescorla. and A. Schiffman. RFC2660: The Secure

Hypertext Transfer Protocol, 1999.
[33] J. Ruderman. Same Origin Policy for JavaScript.

http://www.mozilla.org/projects/
security/components/same-origin.html.
Accessed on May 1, 2011.

[34] S. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The
emperor’s new security indicators. InProceedings of the
28th IEEE Symposium on Security and Privacy, Oakland,

11

CA, May 2007.
[35] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. On the

Incoherencies in Web Browser Access Control Policies. In
Proceedings of the 31st IEEE Symposium on Security and
Privacy, Oakland, CA, May 2010.

[36] S. Stamm, B. Sterne, and G. Markham. Reining in the Web
with Content Security Policy. InProceedings of the 19th

International World Wide Web Conference (WWW), Raleigh,
NC, Apr. 2010.

[37] A. Stubblefield, A. D. Rubin, and D. S. Wallach. Managing
the Performance Impact of Web Security.Electronic
Commerce Research, 5:99–116, January 2005.

[38] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection
and Communication Abstractions for Web Browsers in
MashupOS. InProceedings of the 21st ACM Symposium on

Operating Systems Principles (SOSP), Stevenson, WA, Oct.
2007.

[39] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The Multi-Principal OS
Construction of the Gazelle Web Browser. InProceedings of
the 18th USENIX Security Symposium, Montreal, Canada,
Aug. 2009.

[40] J. Wang. A Survey of Web Caching Schemes for the Internet.
SIGCOMM Computer Communication Review, 29:36–46,
October 1999.

[41] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,
A. Karlin, and H. M. Levy. On the Scale and Performance of
Cooperative Web Proxy Caching. InProceedings of the 17th

ACM Symposium on Operating Systems Principles (SOSP),
Charleston, SC, Dec. 1999.

12

