
Interfacing C++ member functions with C
libraries

Kurt Vanmechelen and Jan Broeckhove

Department of Mathematics and Computer Sciences
University of Antwerp

B-2020 Antwerp, Belgium
{kurt.vanmechelen, jan.broeckhove}@ua.ac.be

Abstract. Interfacing functors or member functions with C libraries
proves to be difficult as library routines can only accept a pointer-to-
function as a callback argument. Usually this limitation is addressed by
constructing an ad hoc wrapper, but this approach has several draw-
backs. We propose a more flexible and generic solution to the problem
of mapping functor or object-member function pairs to plain C func-
tions using recursive template programming techniques. A performance
analysis of our solution is presented.

1 Introduction

In object-oriented C++ programming object-and-member-function pairs and
functors occur as callable entities, besides C-style functions and function pointers
[1]. Functors are simply classes that define the call operator, i.e. operator(),
as a member function. In this contribution, we will use a class Particle with
members position and velocity to illustrate our ideas.

class Particle {
public:

double position(double time);
double velocity(double time);

};

When two software components are developed independently, e.g. one’s own
code and a numerical library from a third party, they are often tied together
through the callback mechanism. Consider for instance the computation of a
particle’s acceleration using the library’s derivative procedure on the particle’s
velocity. When the library procedure, referred to as caller, executes, it invokes
the function whose derivative must be computed. This function is the callee,
and it is passed to the caller by way of the callback function argument. Thus the
design of the caller also prescribes the type of the callee that it accepts. There are
several approaches for the design of C++ callback libraries [2] [3] which support
flexible callback constructs. They are however only applicable when both caller
and callee are designed in an object-oriented fashion.

2 K. Vanmechelen and J. Broeckhove

We want to look at the situation that arises when the caller is part of legacy
C code. This is a common situation because few developers care to reengineer
their existing code to C++. The question arises as to how C++ functors and
member functions can be hooked into C-style callbacks. When the caller is a C
procedure, as illustrated below, the callee is necessarily a pointer to function,
with a type determined by its signature (argument types and the return type).

double derivative(double step, double x, double (*f)(double));

On the face of it, the member function in Particle::velocity has the ap-
propriate signature, suggesting that its address can be used as callback function
argument. However, a member function needs to be bound to an object instance
at runtime in order to make sense, an implicit ”this” pointer in its argument list
points to that object. As a consequence, the member function signature is not
compatible with the pointer-to-function accepted by a C-style callback.

In this contribution we want to develop a mechanism that enables object-
oriented code to interface with C libraries when the connection must be made via
the C-style callback. Our approach extends previous work on this mechanism for
functors [4]. In the following sections we first consider the most commonly used
approach, that of the ad hoc wrapper, and its limits and drawbacks. These are
addressed in our approach of an adapter, which we generate through recursive
template instantiation techniques. We will also present a performance analysis
of our solution.

2 The ad hoc wrapper approach

This solution uses a static member function to bind the callee to the caller.
An invocation of a static member function does not require a ”this” pointer to
provide a calling context. Pointers to such static member functions are therefore
convertible to C-style function pointers that host the same method signature.

class ParticleWrapper {
public:

static double velocityGlue(double time)
{ return fObj->velocity(time); }

static void setObj(Particle& obj) { fObj = &obj; }
private:

static Particle* fObj;
};

// Bind the wrapper to particle p and call procedure
ParticleWrapper::setObj(p);
double res = derivative(0.001,2.0,&ParticleWrapper::velocityGlue);

A static data member holds the reference to the callee object that will receive
the adapted call. Static functions need to be defined in the wrapper for every
member function that is to be adapted.

Interfacing C++ member functions with C libraries 3

This approach is the most common way of dealing with the problem of bind-
ing member functions to C-style callbacks [5]. However, it suffers from a number
of limitations. Firstly, one needs to manually define the necessary wrappers for
every class and for every member function that requires adaptation. Secondly,
one can only adapt a member function for a single callee instance at a time be-
cause there’s only one static data member to hold the instance’s address. Indeed,
when a second object is adapted, one overwrites the previous object’s address.
If callers have stored the function pointer for continued use, then calling that
pointer now invokes the member function on the second object instead of on the
first.

3 The adapter approach

This section presents the design of a generic adapter class that is able to bind
member functions to C-style function pointers for a number of callee objects.
The number of callee objects that can be adapted will need to be specified at
compile-time. The core of the approach is again to use static functions to glue
the member function implementations to a calling interface that is convertible to
C-style function pointers. However, the adapter will support objects and member
functions of arbitrary type and signature, alleviating the first limitation of the ad
hoc approach. Furthermore, our solution will be able to support the adaptation
of multiple callee objects of the same type, at the same time, thereby addressing
the ad hoc wrapper’s second limitation.

In order to support the adaptation of multiple callee instances, we introduce
a mapping structure that maps pairs of object/member function addresses to
associated glue functions.

template <class KeyType, class MappedType, int mapCapacity>
class IndexedMap : public vector<pair<KeyType, MappedType> >

When a member function is adapted for the first time, a key-value pair is
added to the map. The addresses of the callee object and its member function
serve as the key, with the address of an available glue function as its associated
value. The map is wrapped inside Loki’s SingletonHolder (cfr. [6] for the Loki
library) which creates and holds a unique instance of the type defined by its
template parameter.

The glue functions retrieve a callee object’s address at a fixed position in the
map and invoke the appropriate member function. A glue function is wrapped
inside a template class to support arbitrary callee types and member function
signatures. A specialization [7] for a wrapper class that supports member func-
tions accepting a single argument is shown below.

4 K. Vanmechelen and J. Broeckhove

template <class CTraits, int mapMax, int i> class Wrapper {};

//Specialization of the Wrapper template for member functions
//accepting one argument
template<class ObjectType, class R, class P1, int MapMax, int i>
class Wrapper<MemberFunctionTraits<ObjectType, R, TYPELIST_1(P1)>,

MapMax, i>
{
public:

//The C-Style function pointer type
typedef R (*FP)(P1);

//The KeyType for indexing the map
typedef pair< ObjectType*,

MemberFunctionTraits<ObjectType, R, TYPELIST_1(P1)
>::MemberFunctionPointerType > MemFuncKeyType;

//The IndexedMap singleton
typedef SingletonHolder< IndexedMap<MemFuncKeyType, FP, MapMax>,

CreateStatic, NoDestroy > A2FMap;

//The forwarding function
static R forwardCall(P1 parm1)
{

MemFuncKeyType key = (A2FMap::Instance())[i].first;
return (key.first->*key.second)(parm1);

}
};

We use the traits [8] technique to combine all information concerning the
member function’s type in the MemberFunctionTraits class. Encapsulation of
type information within a traits class increases the modularity and resulting
extensibility of the template structure. The function’s argument types are passed
to the traits class through a TYPELIST construct provided by the Loki library.
A TYPELIST is a container for types. Loki provides operations in the form of
template classes to manipulate the list at compile-time.

In order to support the adaptation of the same member function for n in-
stances of the callee class, we need to generate n static glue functions. We add
an extra int template parameter to the wrapper class that hosts the static glue
function for this purpose. The integer parameter will denote the index of the
object/member function pair that will be adapted by the glue function. Every
time the compiler instantiates the Wrapper class with a new value for i, a static
glue function will be generated. To perform the instantiation process, we use the
recursive template algorithm shown below.

Interfacing C++ member functions with C libraries 5

template<class CT, template<class,int,int> class Glue,
int mapMax, int i>

class GlueList {
public:

//The typelist of the previous GlueList instantiation
typedef GlueList<CT, Glue, mapMax, i-1>::typeList pList;

//Append a new wrapper class instantiation to the typelist
typedef Glue<CT, mapMax, i> newGlue;
typedef typename Append<pList, newGlue>::Result typeList;

};

//Specialization representing the base case for the recursion
template<class CT, template<class,int,int> class Glue, int mapMax>
class GlueList<CT, Glue, mapMax, 0> {
public:

typedef Glue<CT, mapMax, 0> newGlue;
typedef TYPELIST_1(newGlue) typeList;

};

The i parameter specifies the number of Glue class instantiations that need
to be made. The GlueList class defines a publicly available typeList type. At
the end of the recursion, this typelist will contain all the Glue instantiations.
In every step of the algorithm we take the list of the i − 1’th GlueList and
append a new instantiation of Glue to it. The compiler continues the recursive
instantiation process until i reaches 0. At this point, the specialization of the
GlueList template for i = 0 is instantiated and the recursion ends.

The glue function addresses of these wrapper classes are inserted into the
IndexedMap singleton by means of a type-iterative algorithm based on recursive
template instantiation (no code shown). The algorithm iterates over the typelist
constructed by the GlueList template. In every step of the recursion, the address
of the glue function belonging to the wrapper class at the head of the list is
inserted into the map. Recursion continues until the tail of the typelist equals
NullType, indicating the end of the list.

The code fragment below demonstrates the use of our final solution by adapt-
ing the member function velocity of the Particle class defined in the intro-
ductory section. The adapted member function is then passed on as a pointer-
to-function argument of the derivative function contained in a C library.

//Define a 10-slot adapter and get the instance
typedef Adapter<Particle,double,TYPELIST_1(double),10> PAdapter;
PAdapter* ad = &PAdapter::Instance();

//Adapt a particle p’s velocity function
PAdapter::FunctionPointerType fp=ad->adapt(p, &Particle::velocity);
double res = derivative(0.001, 2, fp);

6 K. Vanmechelen and J. Broeckhove

4 Performance Evaluation

Our adapter provides a more generic and flexible solution to the member func-
tion adaptation problem. This section will determine the associated cost of this
flexibility by comparing the performance of C callbacks using the adhoc wrapper
approach versus callbacks using our adapter.

Measurements were obtained on a 2.4 GHz Pentium IV processor with 512
Kb L2 cache and 512 Mb of RAM. The adapter has been compiled and tested on
the following platforms; gcc 3.2.2 and 3.3 on Solaris and SuSE Linux, Comeau
4.3 with a SunONE CC 5.1 backend on Solaris, Intel C++ 7.1 on Windows XP
and SuSe Linux, Microsoft Visual 2003 C++ 7.1 and Metrowerks C++ 8.3 on
Windows XP. All tests ran under a thread with critical priority. In this section,
we present timings for the Visual 7.1, Intel 7.1 and gcc 3.3 compilers.

Our test setup consists of a C library function that calls back to a member
function which returns the sum of two integers. We will measure the time it takes
for the library function to return, i.e member function execution time is included
in the measurements. In order to prevent cross-source compiler optimizations,
we compiled the library source separately using the highest optimization level.
We enabled automatic inlining for all compilers and optimization levels.

Intel’s RDTSC [9] instruction was used to measure the execution time of the
library function. The RDTSC assembly instruction returns the current 64 bit
value of the Pentium’s TSC (Time Stamp Counter). The TSC is reset on boot
and increments every clockcycle. RDTSC reads the low-order 32 bits of the TSC
into the accumulator. The RDTSC instruction does not qualify as a serializing
instruction. Therefore, it may be executed out of order with respect to instruc-
tions preceding or following it. To prevent this, we issued a CPUID instruction
before every call to RDTSC. CPUID returns information about the CPU and
is the only serializing instruction callable from user mode. The overhead for is-
suing the RDTSC/CPUID instruction pair was subtracted from the measured
result. The library function was called ten times. The first call includes all main
memory transfer times and cache miss overhead, it serves as a warmup. We took
the minimum of the other nine calls to denote the minimal execution time of the
library function.

Table 1 shows the values of these measurements for different compilers, plat-
forms and optimization levels. For the Visual compiler, the extra cost of using
our adapter is 12 cycles on the highest optimization level. Object code produced
by the gcc compiler shows slightly higher execution times for both ad hoc and
adapted cases. The extra overhead incurred by our adapter results from access-
ing the map structure, but more importantly, from the fact that the code for
the forwarded member function did not get inlined in the glue function body, in
contrast to the ad hoc case. This was determined by inspecting the generated
assembly code. The table also shows that the impact of the extra statements in
the adapter’s wrapper function is heavily reduced by the compiler’s optimiza-
tions. The OS has a small impact on the code’s performance as shown by the
measurements for the Intel compiler on SuSe versus those on Windows XP.

Interfacing C++ member functions with C libraries 7

Table 1. Time per callback in clock cycles for the ad hoc case and adapted case on
different compilers, platforms and optimization levels.

VC 7.1 XP Intel 7.1 XP Intel 7.1 SuSe gcc 3.3 SuSe
Optimization O2 O1 O0 O3 O2 O1 O0 O3 O2 O1 O0 O3 O2 O1 O0

Adapted 28 32 72 32 32 92 184 36 36 36 100 40 48 64 164

Ad hoc 16 16 16 16 16 16 32 16 16 16 40 20 20 20 40

Overhead 12 16 56 16 16 76 152 20 20 20 60 20 28 44 124

Previous work [4] using the same test setup, showed a smaller overhead of
10% for the Visual compiler when adapting a functor’s call operator. In the
functor case, the operator call was hard coded into the wrapper’s glue function,
which enabled the compiler to inline its code.

5 Conclusion

A flexible solution was presented to tackle the problem of adapting member
functions to C-style function pointers. In contrast to the ad hoc wrapper solution,
it is possible to adapt multiple object and member function types. The number
of object/member function pairs that can be adapted is tunable at compile time
on a type to type basis. Performance analysis has quantified the overhead of our
solution compared to the ad hoc approach, and has shown the effect of compiler
optimizations in this regard.

References

1. J. Barton and L. Nackman. Scientific and engineering C++. Addison-Wesley,
1994.

2. R. Hickey. Callbacks in C++ Using Template Functors. C++ Report, 7(2), pages
42-50, February 1995.

3. P. Jakubic. Callback Implementations in C++. Proceedings of the 23rd Technology
of Object-Oriented Languages Conference, TOOLS-23, pages 377-406, Eds. IEEE
Computer Society Press., Santa Barbara, CA, USA, July 1997.

4. J. Broeckhove and K. Vanmechelen. Using C++ functors with legacy C libraries.
Proceedings of the 2004 International Conference on Computational Science and
its Applications, ICCSA 2004, number 3046 in Lecture Notes in Computer Science,
pages 514-523, Assisi, Italy, May 2004.

5. L. Haendel. The function pointer tutorials. http://www.function-pointer.org.
6. A. Alexandrescu. Modern C++ Design. Addison-Wesly, 2001.
7. D. Vandevoorde and N. Josuttis. C++ templates. Pearson Education, 2003.
8. N. Meyers. Traits: A New and Useful Template Technique. C++ Report, 7(5),

pages 32-35, June 1995.
9. Intel Corporation. IA-32 Intel(R) Architecture Software Developer’s Manual Vol-

ume 2B: Instruction Set Reference, N-Z. Intel Corporation, 2004.

