
Application Development with
VisualAge for Java Enterprise

SG24-5081-00

International Technical Support Organization

http://www.redbooks.ibm.com

Ueli Wahli Stefania Celentano Werner Frei
Bruno Georges Paul Gover Rudolf Wirawan

Application Development with
VisualAge for Java Enterprise

SG24-5081-00

April 1998

International Technical Support Organization

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (April 1998)

This edition applies to Version 1.0 of VisualAge for Java Enterprise, Program Number
5801-AAR, for use with the OS/2, Windows 95, or Windows NT operating system.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the
general information in Appendix C, “Special Notices” on page 383.

Take Note!

The sample code for this redbook is available as sg245081.zip on the ITSO home
page on the Internet:

ftp://www.redbooks.ibm.com/redbooks/SG245081

Download the sample code and read “Installation of the Redbook Samples” on
page 368.

SAMPLE CODE ON THE INTERNET

© Copyright IBM Corp. 1998 v

Contents

Figures . xv

Tables . xxi

Preface . xxiii
How This Document Is Organized . xxiv
The Team That Wrote This Redbook . xxvi
Acknowledgments . xxvii
Comments Welcome . xxviii

Chapter 1. Introducing VisualAge for Java Enterprise 1
VisualAge for Java Products . 2
 VisualAge for Java Professional . 2
 VisualAge for Java Entry . 2
VisualAge for Java Enterprise . 3
 Team Programming Feature . 3
 Enterprise Access Builders . 4
 Data Access Builder Overview . 6
 Why a Data Access Builder? . 7
 RMI Access Builder Overview . 8
 Why an RMI Access Builder? . 9
 CICS Access Builder Overview . 10
 C++ Access Builder Overview . 12
VisualAge for Java Enterprise Connectivity . 13
 Applet Connectivity . 13
 Application Connectivity . 14
Connecting to Other Servers . 15
 Connecting to VisualAge Generator . 15
 Connecting to Component Broker . 16

Chapter 2. Sample ATM Application and Database 17
ATM Application Requirements . 18
Application Design . 20
 User Interface . 20
 Data Store . 20
 Business Logic . 20
Database Design . 21
 Logical Design . 21
 Reducing Redundancy and Eliminating Anomalies . 23
 Referential Integrity . 24
 Applying Referential Integrity to the ATM Application 27

vi VisualAge for Java Enterprise

 Physical Design . 27
 ATM Database . 29
 Sample Data of ATM Tables . 30

Chapter 3. Java Database Connectivity . 33
Database Application Architectures . 34
 The Ideal Solution for Programmers . 34
 Single-Tier Architecture . 35
 Two-Tier Architecture . 36
 Three-Tier Architecture . 37
JDBC . 38
 JDBC Drivers . 39
 The Structure of an Ideal JDBC Driver . 39
 Building on Existing Products . 41
 JDBC and ODBC Bridge Driver . 41
 JDBC and Vendor-Specific Bridge Driver . 42
 JDBC Generic Network Protocol Driver . 43
Structure of a JDBC Application . 44
JDBC Connection Sample . 45
JDBC Applications and JDBC Applets . 47
 JDBC Application . 48
 JDBC Applet . 50
JDBC Sample for Insert, Update, and Delete . 51
Statement and Prepared Statement . 54
Callable Statement . 55
JDBC in VisualAge for Java Enterprise . 57

Chapter 4. Data Access Builder . 59
Relational Database Access . 60
Building a JDBC Application . 61
 Application Requirements . 61
 Development Process with Data Access Builder . 63
 Using Data Access Builder for the Organization Applet . 64
 Starting Data Access Builder . 65
 Mapping a Table into Data Access Beans . 66
 Generating the Data Access Beans . 70
 Data Access Builder Beans and Classes . 72
 Creating the JDBC Sample Application and Applet . 79
 Applet Overview . 80
 Applet Construction . 81
 Connecting to the Database . 84
 Completing the Organization List Panel . 85
 Completing the Organization Detail Panel . 87
Data Access Beans in Handwritten Programs . 89
Data Access Builder Advanced . 92

Contents vii

 Sharing Mappings among Developers . 92
 Running Data Access Builder Stand-Alone . 92
 Interesting Methods of the Manager Bean . 94
 Eliminating Attributes from the Mapping . 94
 Customized SQL Statements . 94
 Encapsulating an SQL Search Predicate . 95
 Asynchronous Processing . 96
 Working with Stored Procedures . 96
Application Design Considerations . 97

Chapter 5. ATM Application with Data Access Builder and JDBC 99
Designing the ATM Application . 100
Building the ATM Application . 101
 Database Classes . 101
 PIN Validation . 101
 List of Accounts . 105
 Account Information . 105
 Transaction History . 105
 Adding User-Defined Methods . 106
 Generating the Data Access Beans . 108
 Business Logic Classes . 109
 Card Class . 110
 BankAccount Class . 112
 CheckingAccount Class . 114
 SavingAccount Class . 114
 User Interface Classes . 115
 CardPanel Class . 115
 PinPanel Class . 119
 SelectAccountPanel Class . 121
 TransactionPanel Class . 125
 Application Flow . 129
 Applet Layout . 130
 Panel Switching . 131
 Sharing the Card Object . 135
 Database Connection . 136
Running the ATM Application . 136

Chapter 6. Remote Method Invocation and RMI Access Builder . 137
Overview . 138
 Using RMI for Distributed Processing . 139
 How Does RMI Work? . 140
 Squeezing Objects through a Network . 140
 RMI Architecture . 141
 Tools . 143
 RMI Compiler . 143

viii VisualAge for Java Enterprise

 RMI Registry . 143
 RMI Development Process . 143
 Special Coding . 145
 Execution Environment . 146
Native RMI Example . 147
 Public Interface of the Server . 147
 Server Implementation . 147
 Stub and Skeleton . 149
 Client Logic . 149
 Run the RMI Application . 151
 Stop the RMI Application . 151
 More on Native RMI . 151
RMI with VisualAge for Java . 152
 RMI Access Builder . 152
 Development Process . 152
 Created Classes and Interfaces . 154
 RMI Execution Environment with VisualAge for Java 155
 Using the RMI Access Builder . 157
 Create the Server . 157
 Create an Applet . 157
 Generate Proxy Bean . 158
 Connect the Client with the Server . 161
 Run the RMI Applet . 163
 Stop the Server . 165
 RMI Problems and Hints . 165
 Running an RMI Application outside VisualAge for Java 166
 Export of Application Code . 166
 Start the Registry and the Server . 166
 Run the Applet . 167
 Before You Use RMI to Build a Distributed Application 167
 Design Considerations . 167
 Limitations . 169

Chapter 7. ATM Application with RMI . 171
Design for Distribution . 172
 Application Layers . 172
 Application Layer Architecture . 173
 Business Object Layer . 174
 BankAccount . 175
 CheckingAccount . 176
 SavingsAccount . 176
 Card . 177
 Customer . 177
 Transaction . 178
 Testing the Business Objects . 178

Contents ix

 System Service Layer . 179
 Creating the Data Access Beans . 179
 Tailoring the Data Access Beans . 180
 Generating the Beans . 182
 Initialize Business Objects from Data Access Beans . 182
 Creating Transaction Data Access Beans from Business Objects 183
 Connecting the Layers . 183
 Data Access Classes for Business Objects . 184
 Customer Access Class . 185
 Card Access Class . 186
 Account Access Class . 187
 Transaction Access Class . 190
 ATM Service Bean . 192
 Controller . 195
 Controller Features . 195
 Controller Methods and Events . 197
 Event Propagation . 199
 External Interface . 201
 Testing the Beans . 201
 View Layer . 202
 CardPanel Class . 204
 PinPanel Class . 205
 SelectAccountPanel Class . 206
 TransactionPanel Class . 208
 Main Panel . 210
 Testing the Stand-Alone Applet . 211
Distributed ATM Application . 213
 Application Changes . 213
 Make the Beans Serializable . 213
 Mark the Methods That Update the Bank Account As Synchronized 213
 Review the Events . 214
 Create the Proxy Beans . 215
 Modify the GUI . 216
 Using the Distributed Controller . 216
 Changes in Subpanels . 217
 Test the Distributed ATM Application . 219
 Running the Applet on a Client . 219
 Running As an Application . 220

Chapter 8. Host CICS Access with the CICS Access Builder 221
Host CICS Access Overview . 222
 CICS . 222
 CICS Gateway for Java and CICS Access Builder . 222
 How Does the CICS Access Builder Work? . 223
 Working with a CICS Enterprise Server . 224

x VisualAge for Java Enterprise

 CICS Java Application Design . 225
CICS Access Builder . 226
 CICS Access Builder: Overview . 226
 Create COMMAREA Bean SmartGuide . 226
 Run-Time Class Library . 227
ATM Application with the CICS Access Builder . 229
 CICS Program Design . 230
 Accessing the Database . 231
 Building the CICS Programs . 232
 COBOL Input to the CICS Access Builder . 232
 Restrictions . 234
 Data Types and Non-COBOL Programs . 234
 Running the CICS Access Builder . 237
 Running the CICS Access Builder from the Workbench 237
 Running the CICS Access Builder from the Command Line 239
 Generated Classes . 241
 Application Coding Techniques . 241
 Throwing Exceptions from the CICS Host . 241
 Exchanging Array Data with CICS . 242
 Sample COBOL CICS Transaction . 244
 ATM Applet Using Host CICS Access . 246
 Visual Composition . 246
 Properties of the CICS Unit of Work Bean . 248
 Simulating a CICS Server . 249
Installing CICS and Java Components . 250
Current Restrictions . 251
CICS Host Access Topologies . 252
 CICS Gateway for Java and CICS Client Topologies . 252
 Client/Server Tier Topology . 252
 Presentation Logic Tier . 253
 Data Logic Tier . 253
 Business Logic Tier . 253

Chapter 9. C++ Servers and C++ Access Builder 255
Java Native Interface Overview . 256
 When to Use? . 256
 Java Native Interface Programming . 257
 Declaring and Loading Native Methods . 257
 Simple JNI Example . 258
 JNI Development Process . 261
 Type Mapping between Java and C/C++ . 262
 Accessing Java Methods and Fields from Native Code 262
 Exception Handling . 263
 Object References and Java Garbage Collector . 263
 How to Make Your Life Easier? . 264

Contents xi

C++ Access Builder Overview . 265
 High-level View . 265
 Command Line Utility . 266
 Revisiting the Native Example with the C++ Access Builder 267
 Reverse String Example . 269
C++ Access Builder Advanced . 272
 Considerations for C++ Class Wrappering . 272
 Details of the Generated Code . 273
 Design Considerations . 276
 Type Mapping between C++ and Java . 277
 Exception Handling . 279
 Compiler Support . 280
 Limitations of the C++ to Java Mapping . 280
 Another Way of Exposing the C++ Interfaces . 281
 Accessing a Complex Class by Header File Modification 281
 Using a Class That Accesses a Wrapped C++ Library 284
 Accessing a Class with Templates . 287
 C++ Access Builder Supported Environments . 289
Using a C++ Server in the ATM Application . 290
 Environment . 290
 Approach . 291
 C++ Header Files . 291
 Mapping the ATM C++ Classes to Java . 292
 Mapping the CardManager Class . 293
 Mapping the Card Class . 294
 Testing the Card Beans . 297
 Wrapping the Beans for the ATM Application . 299
 C++ Card Server Bean . 299
 Testing the C++ Card Server Bean . 301
 Integrating the C++ Card Server into the ATM Application 301

Chapter 10. Access to VisualAge Generator Servers 303
VisualAge Generator Support for Java . 304
 VisualAge Generator . 304
 VisualAge Generator Java Support . 306
 Implementation of Java Support . 307
 VisualAge Generator CSO Java Classes . 308
 VisualAge Generator Generated Java Beans . 308
 Accessing VisualAge Generator Servers from Java Clients 308
 From a Java Application . 309
 From a Java Applet . 310
 The e-Business Solution: Java and VisualAge Generator 313
 Run-time Configuration for Java Applets and VisualAge Generator Servers . 313
 Value of VisualAge Generator in an e-Business Solution 314
ATM Application with a VisualAge Generator Server . 315

xii VisualAge for Java Enterprise

Chapter 11. Access to Distributed CORBA Objects 317
The Case for CORBA . 318
 Why CORBA? . 318
 What Is CORBA? . 321
 Object Management Group . 321
 Object Request Broker . 322
 Interface Definition Language . 323
 IIOP Communication Protocol . 325
 CORBA Services . 325
 CORBA and RMI . 329
 How Java Complements CORBA . 329
Component Broker . 330
 CBConnector . 330
 CB Toolkit . 330
 Run-time Architecture Components . 331
 Programming Model . 331
 Managed Object Framework . 331
 Application Adapter Framework . 333
 Object Services . 333
 Workload Management . 334
 Client Enablement . 334
 Developing Distributed Object Applications with Component Broker 335
 Modeling, Analysis, and Design . 335
 Object Builder . 335
 Edit, Compile, and Debug . 336
 Systems Management . 336
Java Client Accessing a CBConnector Server . 337
 Account Interface Definition . 337
 Account Development with CBConnector . 338
 Java Client . 338
 Preparing VisualAge for Java . 338
 Generating Java Proxies . 338
 Creating the Java Client . 341
 Creating the Java Bean for the Applet . 342
 Creating the Applet . 346
 Creating Account Objects . 347
 Updating Account Objects . 349
 Finding Account Objects . 350
 Releasing and Deleting Objects . 351

Chapter 12. Deployment of Java Applications and Applets 353
Deployment of Applications . 354
 Prerequisites for Applications . 354
 Design for Portability . 354
 Exporting an Application from VisualAge for Java . 354

Contents xiii

 Deployment Process for Applications . 355
Deployment of Applets . 356
 Exporting an Applet from VisualAge for Java . 356
 Deployment Process for Applets . 356
 Run-time Libraries . 358
 Jar Files . 358

Appendix A. Installation, Setup, and Prerequisites 359
Prerequisites for JDBC Applications . 360
 DB2 Prerequisites . 360
 VisualAge for Java Prerequisites . 360
 ODBC Prerequisites . 361
Installation and Setup of CICS Components . 362
 Installing the CICS Client for Windows NT . 362
 Configuring the CICS Client for TCP/IP Connections 363
 Configuring the CICS Client for APPC Connections . 364
 Installing the CICS Gateway for Java . 367
Installation of the Redbook Samples . 368

Appendix B. Enterprise Access Builder Changes in Version 1.0.1 371
AS/400 Feature . 372
Data Access Builder . 373
CICS Access Builder . 374
 Changes to the IVJCicsUOWInterface Class . 374
 Additional Version of Transaction Invocation . 374
 DFHCNV Support . 374
 Closing the CICS Gateway for Java . 375
 Setting the CICS Transaction ID . 375
 Specifying a Program to Execute . 376
 Changes to IVJCicsEciCommArea Bean . 377
 Setting the CICS Transaction ID . 377
 Double-Byte Character Set Support . 378
 Changes to Limitation on Code Page . 378
C++ Access Builder . 379
 Compatibility between Versions . 379
 Deleting C++ Objects Allocated in Java . 379
 Character Arrays . 379
 Signed Characters . 380
 Pointers . 380
 Exceptions . 380
 Migration to Version 1.0.1? . 381

xiv VisualAge for Java Enterprise

Appendix C. Special Notices . 383

Appendix D. Related Publications . 387
 International Technical Support Organization Publications 388
 Redbooks on CD-ROMs . 389
 Other Publications . 390
How To Get ITSO Redbooks . 391
 How IBM Employees Can Get ITSO Redbooks . 391
 How Customers Can Get ITSO Redbooks . 392
 IBM Redbook Order Form . 393

Glossary . 395

List of Abbreviations . 405

Index . 407

ITSO Redbook Evaluation . 415

© Copyright IBM Corp. 1998 xv

Figures

1. Development Process Using an Enterprise Access Builder 4
2. Enterprise Access Builder Overview . 5
3. JDBC Database Access Configurations . 6
4. Data Access Builder Overview . 7
5. RMI Overview . 8
6. RMI Access Builder Overview . 9
7. CICS Gateway for Java . 10
8. CICS Access Builder Overview . 11
9. C++ Access Builder Overview . 12

10. Applet Connectivity to Enterprise Servers . 13
11. Application Connectivity to Enterprise Servers . 14
12. Java Applet with VisualAge Generator Server . 16
13. ATM Application Panels and Flow . 19
14. ATM Entity-Relationship Diagram . 22
15. Table with Third Normal Form Violation . 24
16. Table in Third Normal Form . 24
17. Referential Integrity Constraints in the ATM Database 25
18. ATM Database Data Definition Language . 29
19. A Banking Application with Two Different Databases . 34
20. Data Access Layers: Generic and DBMS-Specific . 34
21. Open Database Connectivity Architecture . 35
22. Monolithic (Single-Tier) Architecture . 35
23. Client/Server (Two-Tier) Architecture . 36
24. Multiple Client Instances Accessing One Server . 36
25. Dividing the Application into Client and Server . 37
26. Three-Tier Architecture . 37
27. Data Access Layer Revised . 38
28. JDBC Applet in the Intranet and Internet Environment 39
29. An Ideal JDBC Driver . 40
30. JDBC-ODBC Bridge Driver . 41
31. Vendor-Specific Driver . 42
32. JDBC Vendor Specific Bridge . 42
33. JDBC Generic Network Protocol Driver . 43
34. Structure of JDBC Application . 44
35. Sample JDBC Program . 46
36. DB2 Sample Organization Table . 47
37. JDBC DB2 Organization Application . 48
38. JDBC DB2 Organization Applet . 50
39. JDBC Applet in the AppletViewer . 51
40. JDBC Insert, Update, and Delete Program . 52
41. Statement and PreparedStatement Classes . 54
42. Simple JDBC Applet GUI Design . 61
43. The JDBC Applet Result . 62
44. Application with Ready-to-Use GUI Components . 62
45. Development Process with Data Access Builder . 63
46. JDBC Project in the Workbench . 64

xvi VisualAge for Java Enterprise

47. Launching Data Access Builder . 65
48. Data Access Builder . 66
49. Database and Mapping Method Selection . 66
50. Table Mapping Selection . 67
51. Generated Org Bean and Attributes . 68
52. Specifying a Unique Data Identifier . 69
53. Org Bean with Unique Data Identifier . 69
54. Connection Information in the Org Bean Properties Window 70
55. Beans and Classes Generated by Data Access Builder . 71
56. Forms Generated by Data Access Builder . 74
57. Database Connection Panel . 75
58. Access Application: Datastore Page . 76
59. Access Application: Org (Row Manipulation) . 77
60. Access Application: Manager . 77
61. Access Application: Cursor . 78
62. Access Application: ResultForm . 78
63. Access Application: Selected . 79
64. Organization Applet: Main Panel . 80
65. Organization Applet: Selecting a Row . 80
66. Organization Applet: Selected Row . 81
67. Organization Applet: User Interface Design . 82
68. Organization Applet: Organization List Panel (PanelA) 83
69. Organization Applet: Organization Detail Panel (PanelB) 83
70. Organization Applet: CardLayout Connectivity . 84
71. Organization Applet: Database Connection . 85
72. Organization Applet: Organization List Connections . 87
73. Organization Applet: Organization Detail Connections 88
74. Handwritten Program Using Data Access Beans . 90
75. Data Access Builder: Startup Window . 93
76. Data Access Builder: Save Session . 93
77. Object Model of the ATM Application . 100
78. Data Access Builder SmartGuide Dialog . 102
79. Selecting the Tables for Mapping . 103
80. Validating the SQL Statement . 104
81. Database Access Builder Window: Mappings . 106
82. Context Menu of a Dax Bean . 107
83. Validating the SQL Statement and Setting Parameter Names 108
84. Defining an Event with an Event Listener . 111
85. Layout of the CardPanel . 116
86. Visual Composition Editor: CardPanel . 117
87. Layout of the PinPanel . 119
88. Visual Composition Editor: PinPanel . 120
89. Layout of the SelectAccountPanel . 121
90. Visual Composition Editor: SelectAccountPanel . 122
91. Layout of the TransactionPanel . 125
92. Visual Composition Editor: TransactionPanel . 126
93. ATM Applet Main Panel and Beans . 130
94. ATM Applet Beans List . 131
95. CardPanel Reorder Connections Window . 132

Figures xvii

96. PinPanel Reorder Connections Window . 133
97. SelectAccountPanel Reorder Connections Window . 134
98. TransactionPanel Reorder Connections Window . 134
99. Card Variable Reorder Connections Window . 136
100. Two-Tier Architecture . 138
101. Three-Tier Architecture with JDBC Network Protocol Driver 138
102. Three-Tier Architecture with Client/Server Application 139
103. RMI Conceptual View . 140
104. RMI Architecture . 142
105. RMI Development Process . 144
106. RMI Execution Environment . 146
107. Development Process with RMI Access Builder . 153
108. RMI Server Execution Environment . 155
109. RMI Client Execution Environment . 156
110. Account Applet before Distribution . 158
111. Beans List of Account Applet . 158
112. Start Create Proxy Bean SmartGuide . 159
113. Create Proxy Bean SmartGuide . 160
114. Generated RMI Beans . 161
115. AccountApplet after Distribution . 162
116. Properties of the RmiAccountBean . 162
117. The RMI Options Page . 163
118. The Remote Object Instance Manager . 164
119. Layers of the ATM Application . 173
120. Object Model of the ATM Business Objects . 175
121. Data Access Builder Mappings for RMI ATM Application 180
122. Data Access Classes for Business Objects . 184
123. Visual Composition of CustomerDB Panel . 185
124. Visual Composition of CardDB Panel . 186
125. Visual Composition of AccountDB Panel . 187
126. Visual Composition of TransactionDB Panel . 190
127. The AtmDB Bean . 192
128. AtmDB Visual Composition . 193
129. Application Controller Interfaces . 201
130. ATM Applet Beans List: Old and New . 203
131. Visual Composition Editor: CardPanel . 204
132. Visual Composition Editor: PinPanel . 205
133. PinPanel: Connections from Card . 206
134. Visual Composition Editor: SelectAccountPanel . 206
135. Visual Composition Editor: TransactionPanel . 208
136. Visual Composition Editor: Main Panel . 210
137. Sample Run of ATMApplet . 212
138. Creating the ATMDistributedController Proxy Bean . 215
139. Visual Composition of Distributed ATM Applet . 216
140. Visual Composition of the RMI PIN Panel . 217
141. Visual Composition of the RMI Transaction Panel . 218
142. CICS Access Builder Beans and CICS Gateway for Java 223
143. Three-Tier CICS Java Application . 224
144. Sample CICS COMMAREA Structure Definition . 232

xviii VisualAge for Java Enterprise

145. Sample CICS Program Including COMMAREA Definition 233
146. COBOL Example of Most Data Types Supported . 237
147. Starting to Create the CICS COMMAREA Bean . 238
148. Completing the COMMAREA Bean SmartGuide . 238
149. The Result of Creating a COMMAREA Bean . 239
150. Running the CICS Access Builder from the Command Line 240
151. Possible Coding for Array Element Get and Set Methods 243
152. COBOL Transaction ATMcard: Declarations . 244
153. COBOL Transaction ATMcard: Procedure Division . 245
154. Building the CICS Applet . 246
155. Populating a List from a COMMAREA Array . 247
156. CICS Unit of Work Bean Properties . 248
157. Script to Simulate a CICS Transaction . 249
158. CICS Server, CICS Client, and CICS Java Gateway . 250
159. Simple JNI Example: Java Code . 258
160. Simple JNI Example: Generated C Header File . 259
161. Simple JNI Example: C Function . 260
162. Simple JNI Example: Makefile . 260
163. JNI Development Process . 261
164. C++ Access Builder Code Generation . 266
165. Test Applet for Reverse Bean . 271
166. Mapping between C++ and Java Inheritance . 273
167. Code for Reverse.java . 274
168. Code for ReverseWrapper.cpp . 275
169. Reduced IString Header File . 282
170. Applet Using the IString Bean . 283
171. WordReverse Header and Source Files . 285
172. Applet Using the WordReverse Bean . 286
173. Full Header File of a SortedList C++ Class . 287
174. Reduced SortedList Header File . 288
175. CardManager Header File . 291
176. Card Header File . 292
177. CardManager Interface Class Header File . 293
178. CardManager Interface Class Source Code . 294
179. Card Interface Class Header File . 295
180. Card Interface Class Source File . 295
181. Test of Generated Beans for the ATM Application . 297
182. Testing the C++ Card Server . 301
183. VisualAge Generator Client/Server Support . 305
184. Java Client and VisualAge Generator Server Support 307
185. Developing a Java Application . 309
186. Developing a Java Applet . 311
187. The e-Business Solution: Java Applets and VisualAge Generator Servers . . . 313
188. Development and Production Environment Configuration 315
189. Enterprise Access from a Java Client . 318
190. The Enterprise Distributed Environment . 319
191. Three-Tier Architecture . 320
192. The Object Management Architecture . 322
193. Client/Server Invocation with IDL . 324

Figures xix

194. Component Broker Managed Execution Environment 332
195. AccountView Applet . 341
196. Visual Composition of BuildCBC . 343
197. Visual Composition of the AccountView Applet . 346
198. Creation of Account Objects . 347
199. Updating Account Objects . 349
200. Finding Account Objects . 350
201. Application Deployment Process . 355
202. Applet Deployment Process . 357

xx VisualAge for Java Enterprise

© Copyright IBM Corp. 1998 xxi

Tables

1. Customer Table. 28
2. Card Table. 28
3. Account Table . 28
4. Transaction Table . 28
5. Customer Table Sample Data . 30
6. Card Table Sample Data . 30
7. Account Table Sample Data . 30
8. Transaction Table Sample Data . 31
9. Beans Generated by Data Access Builder . 72

10. Form Classes. 73
11. Bean Feature Table . 174
12. BankAccount Features . 175
13. CheckingAccount Features. 176
14. SavingAccount Features. 177
15. Card Features . 177
16. Customer Features . 178
17. Transaction Features . 178
18. Controller Features . 196
19. Data Types Supported by the CICS Access Builder . 235
20. C++ Primitive Type to Java Class Mapping . 277
21. VTAM Definitions for the SNA Network in CICS/ESA 365
22. Personal Communications Definitions . 365
23. CICS/ESA Definitions. 366
24. CICS Client INI File Definitions . 366
25. VisualAge for Java CICS Unit of Work Bean Properties 367
26. Redbook Sample Code . 368
27. Packages of the Redbook Samples . 369

xxii VisualAge for Java Enterprise

© Copyright IBM Corp. 1998 xxiii

Preface

VisualAge for Java Enterprise is the first enterprise-aware, incre-
mental Java application development environment designed to
connect Java clients to existing server data, transactions, and
applications.

VisualAge for Java Enterprise provides connectivity to enterprise
servers on top of the functions of VisualAge for Java Professional.
The professional version provides the visual programming para-
digm; a workbench with edit, incremental compile, and debug; and
an automatic version control system.

The enterprise access builders include a Data Access Builder for
JDBC applications that connect to relational databases, an RMI
Access Builder that enables construction of distributed Java appli-
cations, a CICS Access Builder for applications that invoke CICS
transactions, and a C++ Access Builder for applications that
invoke C++ server code.

This book demonstrates a practical approach to using VisualAge
for Java Enterprise. A sample ATM bank application is used
throughout the book to illustrate the use of the enterprise access
builders.

xxiv VisualAge for Java Enterprise

How This Document Is Organized

How This Document Is Organized

The document is organized as follows:

❑ Chapter 1, “Introducing VisualAge for Java Enterprise”

In this chapter we introduce the VisualAge for Java products,
VisualAge for Java Enterprise, and the Enterprise Access
Builders that enable us to write Java applications that connect
to enterprise servers.

❑ Chapter 2, “Sample ATM Application and Database”

In this chapter we describe the sample ATM banking applica-
tion that is used throughout the book to illustrate the function
of the VisualAge for Java Enterprise product.

❑ Chapter 3, “Java Database Connectivity”

In this chapter we describe the JDBC feature that enables
Java applications to access relational databases.

❑ Chapter 4, “Data Access Builder”

In this chapter we introduce the Data Access Builder and use
it to create JDBC applications.

❑ Chapter 5, “ATM Application with Data Access Builder
and JDBC”

In this chapter we use the Data Access Builder to implement
the ATM application.

❑ Chapter 6, “Remote Method Invocation and RMI Access
Builder”

In this chapter we describe the remote method invocation
(RMI) feature of Java and ntroduce the RMI Access Builder.

❑ Chapter 7, “ATM Application with RMI”

In this chapter we use the RMI Access Builder to implement
the ATM application.

❑ Chapter 8, “Host CICS Access with the CICS Access
Builder”

In this chapter we describe the CICS Gateway for Java and
the CICS Access Builder. We implement a part of the ATM
application with the CICS Access Builder.

❑ Chapter 9, “C++ Servers and C++ Access Builder”

In this chapter we describe the Java native interface to C++
and the C++ Access Builder. We implement a part of the ATM
application with the C++ Access Builder.

Preface xxv

How This Document Is Organized

❑ Chapter 10, “Access to VisualAge Generator Servers”

In this chapter we describe how a VisualAge for Java applica-
tion can use servers generated by VisualAge Generator.

❑ Chapter 11, “Access to Distributed CORBA Objects”

In this chapter we describe how a VisualAge for Java applica-
tion can use CORBA to access a CBConnector server.

❑ Chapter 12, “Deployment of Java Applications and
Applets”

In this chapter we describe how applications and applets are
deployed from the VisualAge for Java development environ-
ment.

❑ Appendix A, “Installation, Setup, and Prerequisites”

In this appendix we describe the installation and setup of
product components and the sample applications distributed
with this document.

❑ Appendix B, “Enterprise Access Builder Changes in
Version 1.0.1”

In this appendix we describe the enhancement to the Enter-
prise Access Builders in the national language version of the
VisualAge for Java Enterprise product.

❑ Appendix C, “Special Notices”

This appendix contains special notices about IBM products
and trademarks.

❑ Appendix D, “Related Publications”

This appendix contains a list of related publications of the
International Technical Support Organization (ITSO) and
other sources, and information about how to get ITSO Red-
books.

xxvi VisualAge for Java Enterprise

The Team That Wrote This Redbook

The Team That Wrote This Redbook

Ueli Wahli is a Consultant AD Specialist at the IBM Interna-
tional Technical Support Organization in San Jose, California.
Before joining the ITSO 14 years ago, Ueli worked in technical
support in IBM Switzerland. He writes extensively and teaches
IBM classes worldwide on application development, object technol-
ogy, VisualAge products, data dictionaries, and library manage-
ment. He holds a degree in Mathematics from the Swiss Federal
Institute of Technology. His e-mail address is wahli @ us.ibm.com.

Stefania Celentano is an IT specialist in Italy. She has five years
of experience in software development and technical support. She
holds a degree in Mathematics from the Federico II University in
Naples, Italy. Stefania’s areas of expertise include C, C++, object-
oriented analysis and design, and the VisualAge product family.

Werner Frei teaches object-oriented analysis, design, and pro-
gramming with Smalltalk and Java at the IBM education and
training center in Switzerland. He has been with IBM since 1981,
working in application development. Since 1991 he has focused on
object technology, primarily as a consultant and mentor in Visu-
alAge Smalltalk projects. In addition to teaching, Werner works on
customer projects.

Bruno Georges is a member of the application development sales
support team for IBM Europe, concentrating on object technolo-
gies (C++, Java, CORBA) and their supporting IBM products
(VisualAge and Component Broker). His roles include customer
consulting, assistance on pilot projects and proofs of technology,
and presenting at conferences and shows. Bruno worked on the
redbook, World Wide Web Programming with VisualAge C++ and
Smalltalk (SG24-4734) and has consulted on the open systems
architecture. He holds Master’s degrees from the University of
California at Berkeley and the Arts et Metiers Engineering school
in Paris, France.

Paul Gover started as a programmer with IBM in 1975. He is
now a Senior Application Development Specialist in the IBM War-
wick development group, in Warwick, England. The group special-
izes in “turning good ideas into marketable products.” Each
member turns his or her hand to every aspect of application devel-
opment, from architecture and design, through project manage-
ment, code, test and documentation, to system test, packaging,
and maintenance. Paul has worked with a broad range of pro-
gramming languages but now specializes in object-oriented sys-
tems written in Smalltalk and Java. Paul holds a degree in
Mathematics and a diploma in Computing from Cambridge,
England.

Preface xxvii

Acknowledgments

Rudolf Wirawan is a consultant at the IBM Australian Program-
ming Centre (APC) and for IBM banking customers in Australia
and Hong Kong for client/server, SNA, TCP/IP, OS/2 database
manager, object-oriented programming (Smalltalk, C++, and
Java), distributed relational database architecture (DRDA),
MQSeries, and cryptography. He specializes in application devel-
opment and implementation of information system technology
with information system (IS) and business strategic plans. Rudolf
also specializes in people and organizational issues related to IS
and IS business problems. Before joining IBM, he worked as a
Senior System Software Designer at Wang Computer in Australia,
as a System Support Manager at Nixdorf Computer in Indonesia,
and as a System Software Engineer at Nixdorf Computer in Ger-
many. He holds a degree in Mathematics from the University of
Darmstadt, Germany.

Acknowledgments

This book would not have been possible without the help of the fol-
lowing people who contributed to the content of the book:

❑ Marc Carrel-Billiard, who wrote the first redbook on Visu-
alAge for Java and helped me get to know the product in detail

❑ Joaquin Picon from the IBM Application Enabling Center of
Competency in La Gaude, France, who wrote part of the chap-
ter on Component Broker

❑ Denise Hendriks from the IBM development lab in Raleigh,
North Carolina, and Cynthia Dematteis from IBM Argen-
tina, who wrote the part on VisualAge Generator

❑ Maggie Cutler, who did her usual outstanding job at editing
the book

Ueli Wahli

xxviii VisualAge for Java Enterprise

Comments Welcome

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us
your comments about this or other redbooks in one of the following
ways:

❑ Fax the evaluation form found in “ITSO Redbook Evaluation”
on page 415 to the fax number shown on the form.

❑ Use the electronic evaluation form found on the Redbooks Web
sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

❑ Send us a note at the following address:

redbook@us.ibm.com

© Copyright IBM Corp. 1998 1

1
Introducing
VisualAge for
Java Enterprise
In this chapter we describe the VisualAge for Java product family
and introduce VisualAge for Java Enterprise. We cover all of the
functions that come with the Enterprise product. We describe how
the enterprise access builders work in general and explain in
detail how each individual builder works.

We also describe how you can use the VisualAge for Java Enter-
prise product to access server applications that were developed
with VisualAge Generator and Component Broker Connector.

We assume that you are familiar with the basic function of
VisualAge for Java. For beginners we recommend the IBM
Redbook entitled Programming with VisualAge for Java,
IBM form number SG24-2232, published by Prentice Hall,
ISBN 0-13-911371-1, April 1998.

2 VisualAge for Java Enterprise

VisualAge for Java Products

VisualAge for Java Products

VisualAge for Java is available in three different versions:

❑ VisualAge for Java Professional

❑ VisualAge for Java Entry

❑ VisualAge for Java Enterprise

This book covers the VisualAge for Java Enterprise product with-
out describing the basic functions of the VisualAge for Java Profes-
sional product.

VisualAge for Java Professional

The main feature of VisualAge for Java Professional is the inte-
grated development environment (IDE), which enables you to cre-
ate classes, or change methods, and then incrementally compile
without the need to exit the testing phase of development. This
IDE sports:

❑ A fully featured colored-syntax editor, which helps you write
syntax-free source code. The source code is incrementally com-
piled when you save it.

❑ A debugger, which opens automatically when program excep-
tions occur

❑ Single-user version control, which lets you keep track of all
changes you make to your code

❑ A Visual Composition Editor, which enables you to develop
your application visually

❑ A JavaBeans creation tool to create 100% pure Java beans
that you can use with the Visual Composition Editor

VisualAge for Java Entry

VisualAge for Java Entry has the same function as VisualAge for
Java Professional, with a limit of 100 Java classes. You can get it
for free from the Web (www.software.ibm.com/ad/vajava).

Chapter 1. Introducing VisualAge for Java Enterprise 3

VisualAge for Java Enterprise

VisualAge for Java Enterprise

The main features of VisualAge for Java Enterprise are the enter-
prise access builders, which include:

❑ Data Access Builder for accessing enterprise data managed by
database servers such as IBM's DB2 through the Java Data-
base Connectivity (JDBC) specification for accessing relational
databases from Java programs

❑ CICS Access Builder for building Java programs with external
call interfaces (ECIs) to enterprise transactions managed by
the IBM CICS Transaction Server for OS/390

❑ RMI Access Builder for building pure distributed Java applica-
tions that use the Java remote method invocation (RMI) speci-
fication

❑ C++ Access Builder for building distributed Java applications
that connect to C++ application servers

In this book we describe, in detail, how to use the enterprise access
builders to develop Java applications that access a multitude of
servers.

Team Programming Feature

Also planned for the Enterprise product is a fully integrated,
repository-based team programming feature that facilitates man-
agement of the development process on Java projects with com-
plete source and version control.

The team programming feature is not available in the first ship-
ment of the product; it will be added in the new version to be avail-
able in the third quarter of 1998.

4 VisualAge for Java Enterprise

VisualAge for Java Enterprise

Enterprise Access Builders

Figure 1 shows the general process of an enterprise access builder.
The access builder analyzes the server specification and builds
Java beans that encapsulate the public interface of the server.

The resulting Java beans are then used in VisualAge for Java to
build applications. These beans are well suited for use in the
Visual Composition Editor. Applications can be constructed by
connecting graphical user interface (GUI) or controller features to
the Java beans that encapsulate the original server.

The real server is used for testing and at execution time.

Figure 1. Development Process Using an Enterprise Access Builder

Label:

Server

Specification

Enterprise

Access Builder

Workbench - Visual Composition

generate

use

test/execution call

analyze

Server

Real

beans

Chapter 1. Introducing VisualAge for Java Enterprise 5

VisualAge for Java Enterprise

In general the four enterprise access builders work the same, but
there are important differences:

❑ The Data Access Builder, the CICS Access Builder, and the
RMI Access Builder are fully integrated with the VisualAge
for Java Workbench. The Java beans that are generated by
these builders are immediately stored in the repository and
workspace.

Optionally the builders can run outside the Workbench, and
the generated Java beans must be imported into the Work-
bench afterward.

❑ The C++ Access Builder is a command-line utility that pro-
duces C++ and Java source code. The C++ code must be com-
piled and the Java source code must be imported into the
Workbench.

Figure 2 shows an overview of the four access builders.

Figure 2. Enterprise Access Builder Overview

DB2 Tables
and

SQL Statement
Java Server

CICS
Communications

C++ Server

SourceArea

DATA
Access Builder

RMI CICS C++
Access Builder Access Builder Access Builder

VisualAge for Java Workbench

Repository

import

generate

analyze

generate

6 VisualAge for Java Enterprise

VisualAge for Java Enterprise

Data Access Builder Overview

The Data Access Builder is based on JDBC. Most vendors of rela-
tional databases provide drivers that implement the JDBC specifi-
cation and allow Java applications to access their relational
databases in three configurations (Figure 3).

Figure 3. JDBC Database Access Configurations

The three configurations are:

❑ A JDBC-ODBC bridge that translates JDBC calls into match-
ing ODBC calls that are forwarded to the database manage-
ment system (DBMS).

❑ A JDBC driver that passes the requests to the DBMS. In this
configuration the JDBC driver and at least one DBMS client
must run on the same machine as the Java application. This is
the normal configuration for server applications.

❑ A JDBC client that passes requests to a remote JDBC driver
and the DBMS. This is a thin client configuration where no
DBMS code is needed on the client machine. This is the best
configuration for applets because the small JDBC client code
can be downloaded with the applet.

In all three configurations it is possible to combine the DBMS cli-
ent and server on the same machine.

DBMS

Client

DBMS

Client

DBMS

Client

DBMS

Server

DBMS

Server

DBMS

Server

JDBC-

Bridge

JDBC

Client

ODBC

Java

Driver

JDBC

Driver

Applet

Appli-

Client Server

Client Server Client Server

JDBC

thin client

cation

Chapter 1. Introducing VisualAge for Java Enterprise 7

VisualAge for Java Enterprise

Why a Data Access Builder?

The Data Access Builder encapsulates the JDBC code into Java
beans. The client program accesses the beans without detailed
knowledge of JDBC coding and database characteristics.

The Data Access Builder analyzes table or view definitions in the
DBMS catalog and generates Java beans that encapsulate all
access to the database tables into Java methods; that is, SQL
select, insert, update, and delete statements are provided as meth-
ods of the generated Java beans.

The Data Access Builder also supports user defined SQL state-
ments (for example, joins), stored procedures, and database opera-
tions such as connect, disconnect, and commit.

Figure 4 shows an overview of the Data Access Builder.

Figure 4. Data Access Builder Overview

The beans that are generated and imported into the repository of
VisualAge for Java include:

❑ Single row access (retrieve, insert, update, delete)

❑ Multirow access (select)

❑ Database operations (connect, commit, rollback)

❑ Forms that can be used in a GUI

❑ An access application for direct database manipulation

The beans are then used to build applets and applications with the
Visual Composition Editor. The developer is shielded from JDBC
coding; all database access is available through the generated
beans.

'DWD $FFHVV

%XLOGHU

SQL Statement

DB2 Catalog

GUI Beans (Forms) Data Access Beans

8 VisualAge for Java Enterprise

VisualAge for Java Enterprise

RMI Access Builder Overview

The RMI Access Builder is based on the RMI protocol of Java. RMI
implements a Java client to Java server connection at an object
level; that is, a local object can invoke a method in a remote object,
pass objects as parameters, and get an object as a result. All com-
munication is handled by the RMI system. Figure 5 shows an
overview of an RMI client/server configuration.

Figure 5. RMI Overview

Not much special code is involved in RMI programming:

❑ The RMI server must have its public interface defined, set up
a security manager, and register with a naming server (RMI
registry).

❑ The RMI client has to set up a security manager and look up
the server in the remote naming server. A local proxy object is
returned and can be used to invoke the remote methods.

❑ Communication between client and server is handled by two
classes called stub and skeleton. These classes are generated
by the RMI compiler from the server class.

❑ All objects that are passed as parameters to a remote method
or returned from a method call must be serializable so that
they can be sent through the network and restored in the
other machine.

Client

Client RMI System

Stub

Server RMI System

Skeleton

Server

TCP/IP

Application

View

Naming
Server

registerlookup

Chapter 1. Introducing VisualAge for Java Enterprise 9

VisualAge for Java Enterprise

Why an RMI Access Builder?

For a simple application, direct coding of RMI is quite easy. For a
more complex application, however, a lot of code must be written
to propagate property values and events from the server to the cli-
ent.

The RMI Access Builder makes the life of developers easy. Devel-
opers can concentrate on implementing the client and server, and
the RMI Access Builder takes care of generating code for registra-
tion, lookup, and propagation of properties and events. The gener-
ated code is encapsulated in an RMI server proxy and RMI client
proxy bean.

Figure 6 shows an overview of the RMI Access Builder.

Figure 6. RMI Access Builder Overview

Application ServerApplication Client

RMI Access Builder

RMI Compiler

Server

SkeletonStub

Client
Interface

Server

visual
composition

Proxy
Bean

Proxy

call

10 VisualAge for Java Enterprise

VisualAge for Java Enterprise

The RMI Access Builder analyzes the application server class and
from its public interface generates:

❑ A server interface class that describes the public interface of
the application server

❑ A server proxy that will be the real RMI server that will regis-
ter itself with the naming server

❑ A client proxy bean that can be used in the Visual Composition
Editor to build the client application. The proxy bean is a real
Java bean that exposes the public interface of the server. The
proxy bean looks up the proxy server and passes all remote
requests to the server and results and events to the client.

The RMI Access Builder then calls the RMI compiler that gener-
ates the stub and skeleton classes from the proxy server class.

CICS Access Builder Overview

CICS provides a CICS Gateway for Java that enables Java appli-
cations to interact with a CICS server (Figure 7).

Figure 7. CICS Gateway for Java

The CICS Access Builder takes the specifications of a CICS server
transaction and generates a Java bean that encapsulates all infor-
mation required to invoke the transaction. The transaction specifi-
cation must be in the form of a COBOL data structure of the CICS
communications area that is passed to the transaction.

Helper classes are generated for marshaling of the properties of
the communications area bean into a format suitable for transmis-
sion to and from the CICS Gateway for Java.

VisualAge for Java Enterprise provides a generic bean called a
CICS unit of work, which is used to invoke the CICS transaction
through the CICS Gateway for Java. The communications area
bean is passed as a parameter to the CICS transaction.

Figure 8 shows an overview of the CICS Access Builder.

CICS

Server

CICS

Client

CICS

Java

Gateway
Applet

Appli- for
cation

Chapter 1. Introducing VisualAge for Java Enterprise 11

VisualAge for Java Enterprise

Figure 8. CICS Access Builder Overview

The communications area must be provided as a COBOL data
structure or a full COBOL program. The CICS Access Builder cre-
ates a property in the communications area bean for each field in
the COBOL data structure. Thus developers can use the Visual
Composition Editor to connect the properties to GUI fields or other
beans.

The CICS unit of work bean is provided by VisualAge for Java on
the palette of the Visual Composition Editor. It is used to invoke
the CICS transaction and for commit and rollback purposes. The
communications area is passed as a parameter, and it is updated
with changed values after the transaction is finished.

A helper class is generated for the communications area and for
each contained substructure. The helper beans are used by the
generated code automatically to translate the properties for com-
munication.

CICS Access Builder

COBOL

Communications

Area

Label

Workbench

Visual

CICS

Java

Gateway

for

Communications

Client

CICS

Server

Area bean

CICS Unit of Work

Helper

classes

CICS

Composition
Editor

bean

12 VisualAge for Java Enterprise

VisualAge for Java Enterprise

C++ Access Builder Overview

The C++ Access Builder is based on the Java Native Method (JNI)
specification. The JNI enables Java programs to invoke C and C++
functions. Coding of native method calls is quite complex and not
suitable for many Java developers. In addition, existing C++ code
might not adhere to the specifications of the JNI.

The C++ Access Builder analyzes existing C++ source code and
generates:

❑ A C++ wrapper class that adheres to JNI specifications and
passes the calls to the original C++ server

❑ A Java bean that can be used in Java applications to invoke
the methods of the C++ server (through the wrapper class)

❑ A makefile that compiles and links the C++ wrapper class into
a dynamic link library (DLL) that is loaded by the Java appli-
cation at execution time

Figure 9 shows the C++ Access Builder process.

Figure 9. C++ Access Builder Overview

C++ Wrapper Class

Generated
Java Bean

Java Application Makefile

call
call

Visual

make

C++ Access Builder

DLL

Native
C++
Source

generate

Editor

Workbench

Composition

Chapter 1. Introducing VisualAge for Java Enterprise 13

VisualAge for Java Enterprise Connectivity

VisualAge for Java Enterprise Connectivity

In an applet or application, you can combine the different methods
of connecting to enterprise servers in many ways.

Applet Connectivity

Figure 10 shows the connectivity for an apple. (We do not suggest
using multiple different ways of connecting to enterprise servers
in a single applet.)

Figure 10. Applet Connectivity to Enterprise Servers

The RMI server is the most flexible of the servers. It is an applica-
tion written in Java and therefore can connect to any other type of
supported server.

CICSCICS

Java

Gateway

CICS

Server

C++ and

DB2 DB2

Server

Other
RMI

Server

JDBC
Client

Client

Web ServerWeb

Web Server Enterprise

Browser

HTML

Applet

down

request

download

load

same or different

HTML

page

with

Applet

C++ and

Server
Server
Other

14 VisualAge for Java Enterprise

VisualAge for Java Enterprise Connectivity

Application Connectivity

Figure 11 shows the connectivity for applications.

Figure 11. Application Connectivity to Enterprise Servers

An application does not have the restrictions that an applet has.
The servers can be on the same machine or on another machine,
except for the C++ server, which must be on the same machine.

CICSCICS

Java

Gateway

CICS

Server

C++ and

DB2 DB2

Server

Other

RMI

Server

JDBC
Client

Client

Server Enterprise

Appli-

Server

Client

Single Machine or

Other
Server

cation

C++

Server

C++ and

Chapter 1. Introducing VisualAge for Java Enterprise 15

Connecting to Other Servers

Connecting to Other Servers

In addition to the four enterprise access builders of VisualAge for
Java Enterprise, other products can provide Java beans to access
servers from Java applications created with VisualAge for Java.

Connecting to VisualAge Generator

IBM’s VisualAge Generator creates server applications and user
interfaces for many platforms (OS/2, Windows, AIX, MVS, VM,
VSE, and AS/400) from the same source specifications.

In its Version 2.2 with Fixpak and Version 3, VisualAge Generator
creates Java beans that can be used in VisualAge for Java to cre-
ate Java applets and applications that connect to VisualAge Gen-
erator servers.

Figure 12 shows an overview of a Java client with a VisualAge
Generator Server. The process is similar to the enterprise access
builders of VisualAge for Java:

❑ From the server source, VisualAge Generator generates a Java
bean that represents the server and helper beans for the
parameters that are used in calls to the server.

❑ VisualAge Generator generates the server program for the tar-
get platform.

❑ An applet (or application) is constructed with VisualAge for
Java. The applet uses the server bean, the parameter beans,
and a generic unit of work bean provided by VisualAge Gener-
ator.

❑ On the Web server, a gateway program provided by VisualAge
Generator is started.

❑ To call the server, an applet invokes the unit of work bean,
which communicates with the gateway through RMI. The
gateway uses the VisualAge Generator PowerServer API and
middleware to call the server on the target platform.

❑ A gateway program is not required for a Java application.
However, the PowerServer API must be installed on the
machine where the application runs.

In Chapter 10, “Access to VisualAge Generator Servers,” on
page 303, we describe the architecture and use of the VisualAge
Generator support for Java.

16 VisualAge for Java Enterprise

Connecting to Other Servers

Figure 12. Java Applet with VisualAge Generator Server

Connecting to Component Broker

Component Broker is IBM’s Common Object Request Broker
Architecture (CORBA) implementation. It provides a development
tool, CB Toolkit, and an execution environment, CBConnector, for
C++ servers and clients written in C++, ActiveX, or Java.

CB Toolkit generates Java beans that can be used in VisualAge for
Java to create client applications and applets that connect to
CBConnector servers.

In Chapter 11, “Access to Distributed CORBA Objects,” on
page 317, we describe CORBA and Component Broker, and we
develop a VisualAge for Java applet that connects to a CBConnec-
tor server.

Java Applet

VisualAge Generator Server Platform

Generation

Server
Source

Server
Program

Server Bean

Parameter
Beans

RMI

VisualAge

Development Platform

Middleware
Connectivity

Web Server

Gateway

VisualAge Generator
Unit of Work Bean

4

Generator

PowerServer API

© Copyright IBM Corp. 1998 17

2
Sample ATM
Application and
Database

In this chapter we introduce the sample ATM application that is
implemented through the various facilities of VisualAge for Java
Enterprise.

We list the application requirements and show a simple user
interface design. We assume that the application is based on an
existing relational database.

In subsequent chapters we use the enterprise access builders to
implement the application with JDBC, RMI, CICS transactions,
and C++ servers.

18 VisualAge for Java Enterprise

ATM Application Requirements

ATM Application Requirements

The ATM application handles two types of accounts: savings and
checking. For both accounts, customers can perform debit and
credit transactions. In addition, customers can list the transaction
history belonging to an account.

Interest is credited to each savings account within a given period
of time. Customers must maintain a minimum balance in a sav-
ings account and cannot withdraw funds beyond a specified over-
draft amount from a checking account.

At the start of a business transaction, the ATM application
prompts the customer to enter the ATM card identification num-
ber (card ID) on the Card ID panel. (This step simulates the ATM
card reader installed at real ATM machines.)

On receiving a valid card ID, the ATM application greets the cus-
tomer with the customer’s name and title in the PIN panel. The
card ID is redisplayed, so that the customer can verify the card.
The ATM application prompts the customer for the personal iden-
tification number (PIN).

The ATM application verifies the PIN. If the PIN is invalid, a mes-
sage is displayed indicating that the number is invalid, and the
customer can reenter the PIN. On successful validation, a list of
accounts that belong to the card is displayed in the Account panel.

The ATM application requests the customer to select an account
for further processing. When the customer selects an account, the
Transaction panel showing the customer information (title, name)
and the account information (account ID, account type, old bal-
ance, new balance) is displayed.

At the start of a transaction, the new balance is the same as the
old balance. The customer can enter an amount and proceed with
a debit or a credit transaction. After every successful transaction,
the new balance is displayed.

If the customer requests to see the account’s transaction history,
the ATM application displays the accumulated transactions in a
drop-down list on the same panel.

From all panels the customer can return to the previous panel.

Figure 13 shows the basic layout of the panels and the application
flow.

Chapter 2. Sample ATM Application and Database 19

ATM Application Requirements

Figure 13. ATM Application Panels and Flow

Please enter card ID:

OK Cancel

Select an Account ID for Transaction:

Deposit

Cancel

Ms Fname Lname,

Account ID

Old Balance

Ms Fname Lname, please perform your transaction

OK Cancel

Transaction History

OK

Cancel

###-####
###-####

###-####
###-####

Amount:

Withdrawal

####
####
####

New Balance

(valid)

(valid)

-

: ###-####
: Saving Account Account Type

: $$$$$.$$

: $$$$$.$$

Card ID : #######

please verify your card and enter your PIN#:

PIN# : -

-

Card ID Panel

PIN Panel

Account Panel

Transaction History Panel

Transaction Panel

20 VisualAge for Java Enterprise

Application Design

Application Design

We consider the ATM application design in three steps:

1. User interface

2. Data store

3. Business logic

We will not implement all features specified in the ATM applica-
tion requirements. To do so would increase the complexity of the
programs and interfere with your understanding of and learning
VisualAge for Java Enterprise.

We ignore the calculation and the capitalization of the interest for
the savings account. Unlike a real ATM, our ATM continues to
prompt the customer for a valid PIN, until the Cancel button is
clicked.

User Interface

The user interface given in the ATM application requirements (see
Figure 13 on page 19) gives us enough material to start with. The
purpose of this book is to illustrate enterprise function, not to
elaborate on user interface design.

Data Store

The ATM application has to remember the customer, the card, the
account, and the transaction information. We use a relational
database to store the information.

In ”Database Design” on page 21, we describe the logical and phys-
ical database design of the ATM application, the implementation
of the database, and the sample data for all ATM tables.

Business Logic

We have two type of accounts:

❑ Savings

❑ Checking

The main business logic functions are customer verification and
account transactions. The following types of transactions have
been identified:

Chapter 2. Sample ATM Application and Database 21

Database Design

❑ Pin validation

❑ Debit transaction

❑ Credit transaction

In addition, customer information, card information, and transac-
tion history for each account have to be maintained.

Note: We do not describe the implementation of the business logic
in this chapter. We will use different object models and approaches
for the various enterprise access builders.

Database Design

We must make logical and physical database design decisions
before we create the database.

In the logical database design, we describe the relationship
between entities, and we list all attributes belonging to an entity.
We also introduce the concept of referential constraints.

In the physical database design, we map each entity to a relational
database table and each attribute of an entity to a column of a
database table. We specify the type and the length of the columns
in each table.

Logical Design

Our goal in designing the ATM database is to produce a represen-
tation of our environment that is easy to understand and will
serve as a basis for expansion. In addition, we want a database
design that will help us maintain consistency and integrity in our
data. We can achieve these goals by producing a design that will
reduce redundancy and eliminate anomalies that can occur during
database updates.

Database design is not a linear process; in reality we probably
have to redo steps as we work out the design.

We start by identifying the types of data to be stored in database
tables. A database includes information about the entities in an
organization or business and their relationships. In a relational
database, entities are defined as tables.

The entity-relationship (ER) diagram shown in Figure 14
describes the ATM database.

22 VisualAge for Java Enterprise

Database Design

Figure 14. ATM Entity-Relationship Diagram

An entity is a person, object, or concept about which you want to
store information. The entities described in the ATM tables are
CUSTOMER, CARD, ACCOUNT, and TRANSACTION.

In the ATM design, the CUSTOMER entity has attributes, or
properties, such as customer ID, title, first name, and last name.
Those properties have the names CUSTID, TITLE, FNAME, and
LNAME.

The CARD entity has two attributes, CARDID for the card ID, and
PIN for the personal identification number.

The attributes of the ACCOUNT entity are ACCID for account ID,
ACCTYPE for the account type, BALANCE for the account bal-
ance, MINAMT for the savings account minimum balance, and
OVERDRAFT for the checking account overdraft amount. We
added the ACCTYPE attribute to differentiate the savings account
from the checking account.

The attributes of the TRANSACTION are TRANSID for the trans-
action ID, TRANSTYPE for the transaction type, and TRANSAMT
for the transaction amount.

CUSTOMER

ACCOUNT

CARD

TRANSACTION

has

belongs to

associated with
accesses

has
belongs to

SAVINGS

CHECKING

has

belongs to

Chapter 2. Sample ATM Application and Database 23

Database Design

Before we design the tables, we have to understand not only the
entities but also their relationships.

The relationship between the CUSTOMER entity and the
ACCOUNT entity is one-to-many. This can be expressed as a cus-
tomer has zero or more accounts, and an account must belong to
one customer.

The same logic applies to the CUSTOMER and CARD and to the
CARD and ACCOUNT relationships. A customer has zero or many
cards, but a card must belong to one customer. A card accesses one
or many accounts, and an account must be associated with one
card. These are also one-to-many relationships.

The relationship between the ACCOUNT entity and the TRANS-
ACTION entity is one-to-many. This relationship can be expressed
as an account has zero or more transactions, and each transaction
must be identified by an account.

Reducing Redundancy and Eliminating Anomalies

To avoid redundancies and inconsistencies in the ATM data, we
must normalize the ATM tables. The main idea in normalization
is to reduce each table to a set of columns where all of the nonkey
columns depend on the entire primary key of the table. If this is
not the case, the data can become inconsistent during updates.

In fact, all tables in the ATM database are normalized at least up
to the third normal form.

In this section we briefly review the rules for first, second, and
third normal forms of tables. The fourth and the fifth normal
forms of a table, which are covered in many books on database
design, are not necessary for the ATM model and are not described
here.

Here is a brief description of the normal forms:

❑ First normal form: In each cell position in the table, there is
one and only one value.

❑ Second normal form: Each column that is not a key must
depend on the entire key.

❑ Third normal form: Each nonkey column provides a fact that
is independent of other nonkey columns and dependent only
on the key.

24 VisualAge for Java Enterprise

Database Design

Figure 15 depicts a situation that satisfies the second normal
form, but not the third normal form. The dependency between
nonkeyN and the key is transitive; therefore nonkeyN is dependent
on the key, which satisfies the second normal form but not the
third.

Figure 15. Table with Third Normal Form Violation

In Figure 16, all nonkeyX attributes are dependent on the key
attribute. This satisfies not only the second normal form but also
the third normal form.

Figure 16. Table in Third Normal Form

Referential Integrity

Referential integrity lets you define required relationships
between and within tables. The database manager maintains
these relationships, which are expressed as referential con-
straints, and requires that all values of a given attribute or col-
umn of a table also exist in some other table or column. For
example, a typical referential constraint might require that every
account in the ACCOUNT table must belong to a customer that
exists in the CUSTOMER table. No account can exist without an
owner.

You can build referential constraints into a database to ensure
that referential integrity is maintained. When planning for refer-
ential integrity, identify the relationships to be established
between database tables. You can identify a relationship by defin-
ing a primary key and referential constraints.

Figure 17 depicts the referential integrity constraints of the ATM
tables.

key nonkey1 nonkeyN

...

nonkey2 ...

key nonkey1 nonkeyN

...

nonkey2 ...

Chapter 2. Sample ATM Application and Database 25

Database Design

Figure 17. Referential Integrity Constraints in the ATM Database

The following definitions are useful for understanding referential
integrity:

❑ A primary key is a column (or set of columns) that provides a
unique identification for each row of the table. Each table can
have only one primary key. In Figure 17, the CUSTID and
ACCID tables are the primary keys of the CUSTOMER and
ACCOUNT tables.

❑ A foreign key is a column (or set of columns) in a table that
refers to a unique or primary key of the same or another table.
A foreign key is used to establish a relationship with a pri-
mary key to enforce referential integrity among tables. In Fig-
ure 17 on page 25 the CARDID column in the ACCOUNT table
is a foreign key because it refers to the primary key, column
CARDID, of the CARD table.

❑ A parent key is a primary key or unique key of a referential
constraint.

CUSTID TITLE FNAME LNAME

TRANSID ACCID TRANSTYPE TRANSAMT

CARDID PIN CUSTID

(PK)

(PK)

(PK)

(PK)

(FK)

(FK)

(FK)

Card:

Account:

Transaction:

Customer:

ACCID CARDID CUSTID ACCTYPE BALANCE MINAMT OVERDRAF

On delete restrict
Referential constraints:

26 VisualAge for Java Enterprise

Database Design

❑ A parent table is a table containing a parent key that is
related to at least one foreign key in the same or another table.
A table can be a parent in an arbitrary number of relation-
ships. For example, in Figure 17 the CUSTOMER table, which
has a primary key of CUSTID, is a parent of the ACCOUNT
table, which contains foreign key CUSTID.

❑ A dependent table is a table containing one or more foreign
keys. A dependent table can also be a parent table. A table can
be a dependent in an arbitrary number of relationships. For
example, in Figure 17 the ACCOUNT table contains the for-
eign key, CUSTID, which is dependent on the CUSTOMER
table, which has a primary key. In turn the ACCOUNT table is
also the parent table of the TRANSACTION table.

❑ A referential constraint is an assertion that non-null values of
a designated foreign key are valid only if they also appear as
values of the unique key of a designated table. The purpose of
referential constraints is to guarantee that database relation-
ships are maintained and data entry rules are followed.

There are three referential integrity rules:

❑ Insert

❑ Delete

❑ Update

Insert Rules

You can insert a row at any time into a parent table without any
action being taken in the dependent table. However, you cannot
insert a row into a dependent table unless there is a row in the
parent table with a unique key value equal to the foreign key
value of the row that is being inserted, unless the foreign key is
null.

Delete Rules

When you delete a row from a parent table, the database manager
checks whether there are any rows in the dependent table with
matching foreign key values. If any dependent rows are found,
several actions can be taken. You specify which action is taken by
specifying a delete rule when you create the dependent table.

The delete rules for a dependent table, when a primary key is
deleted, are:

❑ Restrict: Prevent any row in the parent table from being
deleted if any dependent rows are found. If you need to remove
both parent and dependent rows, delete the dependent rows
first.

Chapter 2. Sample ATM Application and Database 27

Database Design

❑ Cascade: Implies that deleting a row in the parent table auto-
matically deletes any related rows in the dependent table.
This rule is useful when a row in the dependent table has no
significance without a row in the parent table.

❑ Set null: Ensures that deletion of a row in the parent table
sets the values of the foreign key in any dependent rows to
null. Other columns of the dependent row are unchanged.

Update Rules

The database manager prevents the update of a unique key of a
parent row. When you update a foreign key in a dependent table,
and the foreign key is not null, it must match an existing value of
the parent key in the parent table of the relationship.

Applying Referential Integrity to the ATM Application

By applying referential integrity to the ATM application, the fol-
lowing data consistency can be achieved:

❑ The delete rule for the ATM application has been set to
Restrict. This prevents anyone from deleting a row in the par-
ent table while dependent rows exists.

❑ The insert rule prevents the situation where a new account is
created without an association with a customer. Such an
account is called an orphan or phantom account.

❑ The update rule prevents anyone from reassociating an
account with a nonexisting customer.

Physical Design

After we have completed the logical database design but before
implementation, we must map each entity to a table in the rela-
tional database and each attribute to a column of a table.

In the physical design, we specify the type of the columns, the
length of the data, the primary keys, and if null values are
allowed.

Tables 1 through 4 show the physical design of the ATM tables.

28 VisualAge for Java Enterprise

Database Design

Table 1. Customer Table

Column Name Type Length Key Nulls Description

CUSTID CHAR 4 Yes No Customer ID

TITLE CHAR 3 No No Title

FNAME CHAR 30 No No First name

LNAME CHAR 30 No No Last name

Table 2. Card Table

Column Name Type Length Key Nulls Description

CARDID CHAR 7 Yes No Card ID

PIN CHAR 4 No No PIN

CUSTID CHAR 4 No No Customer ID

Table 3. Account Table

Column Name Type Length Key Nulls Description

ACCID CHAR 8 Yes No Account ID

CARDID CHAR 7 No No Card ID

CUSTID CHAR 4 No No Customer ID

ACCTYPE CHAR 1 No No Account type
(S = Savings,
C = Checking)

BALANCE DEC (8, 2) No No Balance

MINAMT DEC (8, 2) No No Minimum amount

OVERDRAF DEC (8, 2) No No Overdraft amount

Table 4. Transaction Table

Column Name Type Length Key Nulls Description

TRANSID TIME-
STAMP

26 Yes No Transaction ID

ACCID CHAR 4 No No Account ID

TRANSTYPE CHAR 1 No No Transaction type
(D = Debit,
C = Credit,
T = Transfer)

TRANSAMT DEC (8, 2) No No Transaction amount

Chapter 2. Sample ATM Application and Database 29

Database Design

ATM Database

After determining the database design, we use command line pro-
cessor commands and SQL statements to create the database and
the objects within it. These objects can include schemas, node
groups, table spaces, tables, views, aliases, user-defined types
(UDTs), user-defined functions (UDFs), triggers, constraints,
indexes, and packages.

Figure 18 shows the data definition language we used to imple-
ment the ATM database.

Figure 18. ATM Database Data Definition Language

echo --- connect to ATM database ---

CONNECT TO ATM

echo --- creating tables ---

CREATE TABLE ATM.CUSTOMER (\

custid CHAR(4) NOT NULL PRIMARY KEY, \

title CHAR(3) NOT NULL, \

fname CHAR(30) NOT NULL, \

lname CHAR(30) NOT NULL \

)

CREATE TABLE ATM.CARD (\

cardid CHAR(7) NOT NULL PRIMARY KEY, \

pin CHAR(4) NOT NULL \

custid CHAR(4) NOT NULL, \

FOREIGN KEY (custid) REFERENCES ATM.CUSTOMER ON DELETE RESTRICT \

)

CREATE TABLE ATM.ACCOUNT (\

accid CHAR(8) NOT NULL PRIMARY KEY, \

cardid CHAR(7) NOT NULL, \

custid CHAR(4) NOT NULL, \

acctype CHAR(1) NOT NULL, \

balance DEC(8,2), \

minamt DEC(8,2), \

overdraf DEC(8,2), \

FOREIGN KEY (custid) REFERENCES ATM.CUSTOMER ON DELETE RESTRICT, \

FOREIGN KEY (cardid) REFERENCES ATM.CARD ON DELETE RESTRICT \

)

CREATE TABLE ATM.TRANS (\

transid TIMESTAMP NOT NULL PRIMARY KEY, \

accid CHAR(8) NOT NULL, \

transtype CHAR(1) NOT NULL, \

transamt DEC(8,2) NOT NULL, \

FOREIGN KEY (accid) REFERENCES ATM.ACCOUNT ON DELETE RESTRICT \

)

echo --- execute GRANT statements ---

GRANT BINDADD ON DATABASE TO PUBLIC

GRANT CONNECT ON DATABASE TO PUBLIC

GRANT ALL ON ATM.CUSTOMER TO PUBLIC

...

echo --- connect reset ---

CONNECT RESET

30 VisualAge for Java Enterprise

Database Design

Sample Data of ATM Tables

The sample data of the ATM tables shows the internal relation-
ships among the ATM tables:

❑ We have six customers, with numbers 101 to 106.

❑ There are seven ATM cards with numbers 1111111 to
7777777, and matching PINs 1111 to 7777.

❑ Account numbers are structured xxx-yyyy, where xxx is the
customer number.

Tables 5 through 8 list the sample data of the ATM tables.

Table 5. Customer Table Sample Data

CUSTID TITLE FNAME LNAME

101 Sig Stefania Celentano

102 Mr Rudolf Wirawan

103 CH. Werner Frei

104 Sir Paul Gover

105 Mon Bruno Georges

106 ITS Ueli Wahli

Table 6. Card Table Sample Data

CARDID PIN CUSTID

1111111 1111 101

2222222 2222 102

.......

6666666 6666 106

7777777 7777 106

Table 7. Account Table Sample Data

ACCID CARD-
ID

CUST-
ID

ACC-
TYPE

BALANCE MIN-
AMT

OVERDRAF

101-1001 1111111 101 C 80.00 0.00 100.00

101-1002 1111111 101 C 195.22 0.00 400.00

101-1003 1111111 101 S 9375.26 100.00 0.00

102-2001 2222222 102 S 19375.26 9999.99 0.00

....

106-6666 6666666 106 C 6.66 0.00 0.00

106-7777 7777777 106 S 111.11 11.11 0.00

Chapter 2. Sample ATM Application and Database 31

Database Design

Table 8. Transaction Table Sample Data

TRANSID ACCID TRANSTYPE TRANSAMT

1997-10-07-14.30.26.720001 101-1001 C 80.00

CURRENT TIMESTAMP 101-1002 C 200.00

...

CURRENT TIMESTAMP 106-7777 D 111.11

32 VisualAge for Java Enterprise

Database Design

© Copyright IBM Corp. 1998 33

3
Java Database
Connectivity

In this chapter we introduce the JDBC concepts and show how
Java applications can access relational databases. We describe the
different categories in which JDBC drivers are organized.

We implement an application and an applet that, through JDBC
drivers, connect to and retrieve data from local and remote data-
bases.

34 VisualAge for Java Enterprise

Database Application Architectures

Database Application Architectures

To access a vendor-specific database, you use a vendor-specific
database engine, whose SQL implementation is in many cases
incompatible with another vendor’s implementation. Incompatibil-
ities occur mainly in the areas of embedded SQL and stored proce-
dures.

To resolve incompatibilities you have to write two different appli-
cations if you have to support two different databases (Figure 19).

Figure 19. A Banking Application with Two Different Databases

The Ideal Solution for Programmers

You can avoid writing applications to support two different data-
bases by adding data access layers consisting of a generic data
access part and a DBMS-specific data access part (Figure 20).

Figure 20. Data Access Layers: Generic and DBMS-Specific

One implementation of such an architecture is Open Database
Connectivity (ODBC) as shown in Figure 21.

Banking Application (DB2) DBMS (DB2)

Banking Application (Oracle) DBMS (Oracle)

Application

Generic Data Access

DBMS-Specific Data Access

DBMS

Chapter 3. Java Database Connectivity 35

Database Application Architectures

Figure 21. Open Database Connectivity Architecture

Another situation with incompatibilities occurs if your application
has to support databases on two different platforms. Many pro-
gramming languages, for example, C, C++, and COBOL, are not
fully portable between platforms. To avoid this situation, you can
write your application in an interpretive language such as Java.

Using the ideal solution for both data access and language sup-
port, you can now write one application regardless of the database
type and platform that it must support. Having the same Java
language and the same database application programming inter-
face (API) on all platforms solves the programmer’s problem. The
Java interpreter handles the data access layer of the database
engine and the platform dependent issues. However, to optimize
the utilization of the database, you need some sort of client/server
configuration.

Single-Tier Architecture

In the early days of database application development, a mono-
lithic architecture, also known as a single-tier architecture, was
used. There is no network and the application and the data store
reside on the same machine (Figure 22).

Figure 22. Monolithic (Single-Tier) Architecture

ODBC Driver (DB2) ODBC Driver (Oracle)

DBMS (DB2) DBMS (Oracle)

ODBC Driver Manager

Application

Data storeApplication DBMS

36 VisualAge for Java Enterprise

Database Application Architectures

Most of the applications written in those days were rather simple.
For larger applications the model did not scale and the applica-
tions were tightly coupled to the DBMS. Furthermore, only one
instance of the application could access the DBMS.

Two-Tier Architecture

In a two-tier architecture, the DBMS is divided into two compo-
nents, the client and the server (Figure 23). The application and
the DBMS’ client component can be installed in a machine other
than the DBMS server.

Figure 23. Client/Server (Two-Tier) Architecture

With this architecture, more than one instance of an application
can access the DBMS server and therefore optimize the utilization
of the database (Figure 24).

Figure 24. Multiple Client Instances Accessing One Server

As more and more application logic is built into the client, the cli-
ent itself becomes large and ineffective. The many clients are hard
to maintain because they must have a DBMS component installed.
This type of client is a fat client.

Data storeApplication DBMS
 Client

Server

Data store

Application
 DBMS
 Client

DBMS
Server

Application
 DBMS
 Client

Chapter 3. Java Database Connectivity 37

Database Application Architectures

Three-Tier Architecture

Most of the database applications written in the two-tier architec-
ture do not use the solution we described in “The Ideal Solution for
Programmers” on page 34 and are therefore DBMS dependent.
The application has to be changed if it has to support another
DBMS. To avoid this situation, you must divide the application
into two parts: DBMS-dependent code and DBMS-independent,
reusable, code (Figure 25).

Figure 25. Dividing the Application into Client and Server

Using the client/server architecture, you can place the DBMS-
dependent portion into the application server and the DBMS-inde-
pendent portion into the application client. In this architecture,
you only have to write one client application to access different
types of DBMSs. The client machine becomes thin and easy to
manage. This type of client is a thin client, and the architecture is
called a three-tier architecture (Figure 26).

Figure 26. Three-Tier Architecture

Data store
Application

 Server

DBMS

DBMS
Client

Client

Server

Data store
 Server

DBMS

DBMS

ClientServer

Application

Application

Client

Middleware

DBMS Server

Application

38 VisualAge for Java Enterprise

JDBC

In intranet and Internet environments, the Web browser is the
first tier, the Web server is the second tier, and the DBMS server
is the third tier. The secondary tier is also referred to as the mid-
dleware.

Using a three-tier architecture, you can build your application and
divide it into two components. The first component, for example, a
Java applet, is the client application; it can be run in the client
machine, after it has been requested by the Web browser.

The second component, which has all the business logic, remains
on the Web server. This application component has a connection to
the DBMS client to service all applets that are connected to the
Web server.

In the sections that follow, we describe the data access layer based
on a two-tier architecture, which simplifies the explanation and
applies in most cases to a three-tier architecture (see Figure 20 on
page 34).

JDBC

In a two-tier architecture, the client application uses the data
access layer to communicate with the server. The communication
between a client and a server is through a network protocol. The
server resides on a system other than the client (Figure 27).

Figure 27. Data Access Layer Revised

Let us now look at how JavaSoft, the Sun Microsystems Business
Unit responsible for the development of Java products, imple-
ments the data access layer.

Application

Generic Data Access

DBMS-Specific Data Access DBMS Server

Client Server

Chapter 3. Java Database Connectivity 39

JDBC

JDBC Drivers

JavaSoft implemented the data access layer similar to Microsoft’s
ODBC API, which is probably the most widely used API for access-
ing relational databases in Windows operating systems, and called
its implementation JDBC.

The Structure of an Ideal JDBC Driver

Before we describe the structure of an ideal JDBC driver, let us
consider the Internet and intranet environment in Figure 28.

Figure 28. JDBC Applet in the Intranet and Internet Environment

You use your favorite Web browser (client), point to a URL, and
request to run a database application from a Web server (1).

The server responds by sending the requested applet (the data-
base application), including the JDBC driver and other required
resources, bundled into a jar file to the Web browser (2).

As soon as the jar file has been successfully downloaded, the Web
browser starts the applet, which uses the JDBC driver to access
the database (3).

In this scenario, no additional program and configuration are
required in the client machine, because the JDBC driver is auto-
matically shipped with the applet in a jar file. The only software
required in the client is the Web browser, and we have a thin cli-
ent configuration.

JAR

Java Applet

JDBC Driver

Web Browser

Java Applet

JDBC Driver Database Server
3

1

2
...

Web Server

Java Applet

JDBC Driver
...

40 VisualAge for Java Enterprise

JDBC

An ideal JDBC driver is a database driver written entirely in Java
and used by an application to access a database. The database
server responds directly to the JDBC driver requests without any
additional interface.

The communication between the JDBC driver and the database
server is through a network protocol, which must be built into the
database engine. The JDBC driver talks directly to the database
through Java sockets (Figure 29).

Figure 29. An Ideal JDBC Driver

This type of driver is provided in most cases by the database ven-
dor. JavaSoft has categorized this type of driver as a category 4
driver.

In “Building on Existing Products” we describe the drivers of cate-
gory 1, 2, and 3 as interim solutions.

An application using the ideal JDBC API interfaces directly with
the JDBC driver manager. The JDBC driver manager in turn
loads the JDBC driver that handles access to the requested data-
base.

This is the ideal solution. It will take some time for all database
vendors to implement it, however, because the database driver has
to be written in Java, and the network protocol must be built into
the database engine.

JDBC Driver (DB2) JDBC Driver (Oracle)

DBMS (DB2) DBMS (Oracle)

S
erv

er

Application

JDBC Driver Manager

C
lien

t

Chapter 3. Java Database Connectivity 41

JDBC

Building on Existing Products

To be competitive and responsive to customer demand, vendors
capitalize on existing products, so that their products can be
released to market quickly.

JavaSoft has identified three interim solutions for developing a
JDBC driver for an existing product:

❑ JDBC and ODBC bridge driver

❑ JDBC and vendor-specific bridge driver

❑ JDBC generic network protocol driver

JDBC and ODBC Bridge Driver

JavaSoft provides a bridge between Java applications and ODBC
drivers to utilize the many existing ODBC drivers for different
database engines (Figure 30).

Figure 30. JDBC-ODBC Bridge Driver

There is a very close relationship between the ODBC (Figure 21 on
page 35) and JDBC (Figure 29 on page 40) architectures and APIs.
Both ODBC and JDBC are based on the X/Open SQL Command
Level Interface.

JavaSoft categorizes the ODBC Bridge driver as a category 1
driver.

ODBC Driver (DB2) ODBC Driver (Oracle)

DBMS (DB2) DBMS (Oracle)

Application

JDBC Driver Manager

JDBC-ODBC Bridge

ODBC Driver Manager

C
lien

t
S

erv
er

42 VisualAge for Java Enterprise

JDBC

JDBC and Vendor-Specific Bridge Driver

ODBC is not the only way to access a database. Most database
vendors already have their own drivers to access their databases.

IBM, for example, uses the DB2 Client Application Enabler (CAE)
driver to access the DB2 database server (Figure 31).

Figure 31. Vendor-Specific Driver

To make use of this type of driver in a Java environment, a JDBC
vendor-specific bridge is required (Figure 32).

Figure 32. JDBC Vendor Specific Bridge

JavaSoft categorizes this type of driver as a category 2 driver.

 Application

DBMS Server
(DB2)

Client Application
Enabler (CAE)

Client Server

JDBC Driver Manager

JDBC Vendor Specific
Data Access Bridge

Client Application
Enabler

DBMS Server
(DB2)

Application

Client Server

Chapter 3. Java Database Connectivity 43

JDBC

JDBC Generic Network Protocol Driver

The category 1 and category 2 drivers cannot be used in an Inter-
net environment, because both driver managers depend on a set of
libraries written in a language other than Java. This is true for
the ODBC bridge driver and vendor-specific drivers, such as DB2
CAE.

To solve this problem, we divide the ideal JDBC driver (Figure 29
on page 40) into two components, a client component and a server
component, and move all non-Java language functions to the
server component, so that the client portion can be written in
“pure” Java language.

The client portion is responsible for translating the JDBC calls
into a database-independent network protocol, and the server
component is responsible for translating the database-indepen-
dent network protocol into database calls. The server component is
also referred to as the middleware component (Figure 33).

Figure 33. JDBC Generic Network Protocol Driver

The JDBC generic network protocol driver is extremely flexible
because it does not require code installed on the client, and a sin-
gle driver can provide access to multiple databases.

JavaSoft categorizes this type of driver as a category 3 driver.

Now that we understand the various ways to connect with JDBC
to a database, we can explain how a Java database application is
structured.

JDBC Driver Manager

Application

JDBC Generic Network Protocol Driver

Middleware Component Middleware Component

DBMS (DB2) DBMS (Oracle)

C
lien

t
S

erv
er

44 VisualAge for Java Enterprise

Structure of a JDBC Application

Structure of a JDBC Application

Figure 34 shows the structure of a JDBC application. Before you
can communicate with a database, you must load the related
JDBC driver. Using the DriverManager class, you can load the
driver and then make a connection to the database.

After the connection is successful, you create an instance of a
statement class. The statement object is used to represent the
SQL statement. There are three types of statements:

❑ Statement (without host variables)

❑ Prepared statement (with place holders for host variables)

❑ Callable statement (stored procedure)

The result set object manages the rows retrieved by an SQL select.
The result set maintains the position of the current row. The next
method moves to the next data row.

Figure 34. Structure of JDBC Application

JDBC provides an interface that enables you to determine the
type of data returned, so that you can get information about the
data itself (meta data).

Start of JDBC App Load JDBC driver

Connect to the database

Create a Statement object

Prepared
Statement Statement

Callable
Statement

Process results End of JDBC App

Execute the SQL using the Statement object

(get result set for select)

Chapter 3. Java Database Connectivity 45

JDBC Connection Sample

For a given result set object, an application can call the getMeta-
Data method to retrieve descriptive meta data (for example, the
number of columns, their names, and data types).

JDBC Connection Sample

In this section we present a “minimal” JDBC program to illustrate
how to connect to a database. This program has been written as
simply as possible, similar to “Hello, World,” so that you can cre-
ate a minimal functional JDBC program to test your connection
(Figure 35).

To connect to any database you must load a JDBC driver. DB2
provides two types of drivers: category 2 (vendor-specific bridge)
and category 3 (generic network protocol). We use both drivers to
implement a local and a remote database connection.

For category 2, you have to install the DB2 CAE, a native DB2
driver, on the client machine. For category 3, you have to start a
JDBC server daemon on the server machine.

The DB2 JDBC drivers are denoted—in their full class name—by:

❑ COM.ibm.db2.jdbc.app.DB2Driver (category 2)

❑ COM.ibm.db2.jdbc.net.DB2Driver (category 3)

To load the driver, an application uses the Java Class method for-
Name(String), which returns the Class object associated with the
class of the given string name. The newInstance method creates
an actual object for the loaded class. The newInstance method is
required on certain platforms (OS/2) and works on all platforms
(for example, Windows 95 and Windows NT):

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

The DriverManager attempts to load the class with the given
name through the current CLASSPATH. If the requested driver is
not found, the DriverManager throws a ClassNotFoundException
exception.

To make the sample as simple as possible, we do not specifically
catch the ClassNotFoundException but more generally catch
every exception that can occur in this program.

After you have successfully loaded the driver, you connect to the
database, using a method provided by the DriverManager:

getConnection(String url, String user, String password);

46 VisualAge for Java Enterprise

JDBC Connection Sample

If the program runs successfully, the Connected to database message
is displayed on the console.

Otherwise you could see:

java.sql.SQLException: [IBM][CLI Driver] SQL1032N
no start database manager command was issued

java.lang.ClassNotFoundException: COM.ibm.db2.jdbc.app.DB2DriverXYZ

Figure 35 shows the complete sample program.

Figure 35. Sample JDBC Program

This sample JDBC program uses the DB2 category 2 driver
(COM.ibm.db2.jdbc.app.DB2Driver) to connect to a local database.

To connect to a remote database, you can use the DB2 category 3
driver (COM.ibm.db2.jdbc.net.DB2Driver). In the getConnection
method, you specify the location of your database as a JDBC URL:

jdbc:db2://IPhostname:port/databaseName

There is no default port number for JDBC; we use 8888. To con-
nect to a remote DB2 database through a category 3 driver, you
start the DB2 JDBC server daemon before trying the connection:

DB2JSTRT 8888

import java.sql.*;
public class JdbcConnect
{

public static void main(String[] args)
{

try
{

// load the JDBC driver with DriverManager
Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").

newInstance();
// Identify the data source
String url = "jdbc:db2:sample";
// Allocate a Connection object
Connection con = DriverManager.getConnection(url,

"userid", "password");
System.out.print("Connected to database\n");
// Close the Connection object
con.close();

}
catch (Exception e)
{ System.out.println(e); }

}
}

Chapter 3. Java Database Connectivity 47

JDBC Applications and JDBC Applets

The general syntax of the JDBC URL is:

JDBC:<subprotocol>:<subname>

The <subprotocol> identifies which driver to use, and <subname> pro-
vides the driver with any required connection information.

For example, to access a database, you can use the following con-
nection:

jdbc:db2:databaseName (local)
jdbc:db2://serverHostname:8888/databaseName (remote)

In summary, to access a remote database you have to change two
statements in the program:

Class.forName("COM.ibm.db2.jdbc.net.DB2Driver").newInstance();
String url = "jdbc:db2://serverHostname:8888/sample";

JDBC Applications and JDBC Applets

From a JDBC programming structure point of view, there are no
significant differences between applications and applets, other
than the fact that an applet must use a category 3 driver, whereas
an application can use either a category 2 or 3 driver.

The example that follows is built on the JdbcConnect sample (Fig-
ure 35). We implement the program as both a JDBC application
and a JDBC applet.

The program retrieves data from the ORG table in the DB2 sam-
ple database. The result of the program should be similar to the
result when you execute the SQL statement shown in Figure 36 in
a DB2 command window.

Figure 36. DB2 Sample Organization Table

DB2CLP C:\SQLLIB\bin>db2 select * from org

DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION
-------- ---------- -------- -------- -------------

10 Head Office 160 Corporate New York
15 New England 50 Eastern Boston
20 Mid Atlantic 10 Eastern Washington
38 South Atlantic 30 Eastern Atlanta
42 Great Lakes 100 Midwest Chicago
51 Plains 140 Midwest Dallas
66 Pacific 270 Western San Francisco
84 Mountain 290 Western Denver

8 record(s) selected.

48 VisualAge for Java Enterprise

JDBC Applications and JDBC Applets

JDBC Application

In this application program (Figure 37), we use the category 3
driver, COM.ibm.db2.jdbc.net.DB2Driver, to access the database
remotely.

Figure 37. JDBC DB2 Organization Application

import java.sql.*;

public class SampleOrg

{

public static void main(String[] args)

{

try

{

int n, i = 0;

StringBuffer aString;

String aDriverName = "COM.ibm.db2.jdbc.net.DB2Driver";

Class.forName(aDriverName).newInstance();

String url = "jdbc:db2://senegal:8888/sample";

Connection con = DriverManager.getConnection(url, "stade1", "stade1");

// Allocate a Statement object

Statement stmt = con.createStatement();

// Execute a query using the Statement object

ResultSet rs = stmt.executeQuery("SELECT * FROM ORG");

ResultSetMetaData rsmd = rs.getMetaData();

int nrColumns = rsmd.getColumnCount();

System.out.print("\n");

System.out.println("DEPT DEPTNAME MGR DIVISION LOCATION");

System.out.println("------ -------------- ------ ---------- ------------");

// Retrieve data from the returned ResultSet object

while (rs.next())

{

for (n=1; n <= nrColumns; n++)

{

aString = new StringBuffer(rs.getString(n));

aString.setLength(rsmd.getColumnDisplaySize(n) + 1);

System.out.print(aString);

}

System.out.print("\n");

i++;

}

System.out.println("\n" + i + " record(s) selected");

// Close the ResultSet and Statement object

rs.close();

stmt.close();

con.close();

}

catch (ClassNotFoundException e)

{ System.out.println(e); }

catch (SQLException sqle)

{ System.out.println(sqle); }

catch(InstantiationException ie)

{ System.out.println(ie.toString()); }

catch(IllegalAccessException iae)

{ System.out.println(iae.toString()); }

}

}

Chapter 3. Java Database Connectivity 49

JDBC Applications and JDBC Applets

As you can see, the beginning of the program is the same as the
JdbcConnect class example (Figure 35 on page 46), except for the
driver name and the URL. You can, of course, continue to use the
category 2 driver (COM.ibm.db2.jdbc.app.DB2Driver) if you want.

In this example, senegal is the host name of the remote machine,
and stade1 is the user ID and password. For tests with a local
database on your own machine you can use the loopback or local-
host host name and your own user ID and password.

Notice that we handle the ClassNotFoundException and the
SQLException exceptions. We also have to handle the Instantia-
tionException and the IllegalAccessException exceptions, because
they could be thrown by the newInstance method. The newIn-
stance method has been included, so the program can be run in
non-Windows environments as well.

We need an SQL statement to select, insert, update, or delete one
or more rows in a table. Using the Connection object, we can cre-
ate a java.sql.Statement:

Statement stmt = con.createStatement();

A Statement object enables us to execute a select statement that
returns a ResultSet object:

ResultSet rs = stmt.executeQuery("SELECT * FROM ORG");

A ResultSet maintains a cursor pointing to its current row of data.
Initially the cursor is positioned before the first row. Using the
next method of the ResultSet, we can access the next row.

rs.next();

Using a ResultSetMetaData object we can analyze the types and
properties of the columns in a ResultSet:

ResultSetMetaData rsmd = rs.getMetaData();

In this program, we use the getColumnCount method to get the
number of the columns and the getColumnDisplaySize method to
get the size of each column. The getString method returns the
value of a column in the current row as a Java string. The String-
Buffer, in conjunction with the getColumnDisplaySize method,
permits us to format the rows retrieved.

To end the program, we close the ResultSet object, the Statement
object, and the Connection object, as shown in the example.

To run with remote database access we start the DB2 JDBC dae-
mon on the server (DB2JSTRT 8888).

50 VisualAge for Java Enterprise

JDBC Applications and JDBC Applets

JDBC Applet

Our JDBC applet is pretty much the same as our JDBC applica-
tion. For simplicity, we retrieve only the first record from the ORG
table and use only the init and paint methods (Figure 38).

Figure 38. JDBC DB2 Organization Applet

To run this program, you need an HTML file. For example:

<HTML> <title> JDBC Applet Tester </title>
<center> <h1> JDBC APPLET TESTER </h1> </center>
The record from the ORG table:
<p>
<applet code="OrgApplet.class" width=500 height=120> </applet>

</HTML>

import java.awt.*;

import java.sql.*;

public class OrgApplet extends java.applet.Applet

{

String depnum, depname, manager,division, location;

public void init()

{ try

{

String aDriverName = "COM.ibm.db2.jdbc.net.DB2Driver";

Class.forName(aDriverName).newInstance();

String url = "jdbc:db2://senegal:8888/sample";

Connection con = DriverManager.getConnection(url,"stade1","stade1");

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT * FROM ORG WHERE DEPTNUMB=10");

// Retrieve the first record from SAMPLE database

rs.next();

depnum = rs.getString(1); // retrieve by column number

depname = rs.getString("DEPTNAME"); // retrieve by column name

manager = rs.getString(3);

division = rs.getString("DIVISION");

location = rs.getString(5);

rs.close();

stmt.close();

con.close();

}

catch (Exception e) { System.out.println(e); }

}

public void paint(Graphics g) {

g.drawString("Department Number", 25, 30);

g.drawString(": "+depnum, 150, 30);

g.drawString("Department Name", 25, 50);

g.drawString(": "+depname, 150, 50);

g.drawString("Manager", 25, 70);

g.drawString(": "+manager, 150, 70);

g.drawString("Division", 25, 90);

g.drawString(": "+division, 150, 90);

g.drawString("Location", 25, 110);

g.drawString(": "+location, 150, 110);

}

}

Chapter 3. Java Database Connectivity 51

JDBC Sample for Insert, Update, and Delete

Running the HTML file with the applet viewer

appletviewer OrgApplet.html

produces the results shown in Figure 39.

Figure 39. JDBC Applet in the AppletViewer

JDBC Sample for Insert, Update, and Delete

Figure 40 shows you how to write a Java program with SQL
insert, update, and delete statements. For the purpose of simplic-
ity, we only manipulate one row of the Organization table (Figure
36 on page 47). In contrast to the previous JDBC application
(SampleOrg.java in Figure 37 on page 48), we do not format the
rows retrieved from the table.

We first insert one record with the department number 11, update
the department name, and then delete the record, so that we can
run it many times.

In each process, we list the content of the ORG table before we
change anything, and we list it again after modifications.

Note the use of getInt and getFloat methods to retrieve column
values from the result set object. There is a matching get method
for each data type. DB2 converts a numeric column value to the
data type of the Java variable.

52 VisualAge for Java Enterprise

JDBC Sample for Insert, Update, and Delete

Figure 40. JDBC Insert, Update, and Delete Program

import java.sql.*;

public class JDBCTest

{

Connection con;

Statement stmt;

public static void main(String[] args)

{ JDBCTest SQLTest;

try

{

SQLTest = new JDBCTest();

System.out.println("--- ORG List Before Modifications ---");

SQLTest.orgList();

System.out.println("--- SQL Add DEPTNUMB 11 ---");

SQLTest.insert();

SQLTest.orgList();

System.out.println("--- SQL Update DEPTNAME ---");

SQLTest.update();

SQLTest.orgList();

System.out.println("--- SQL Delete DEPTNUMB 11 ---");

SQLTest.delete();

SQLTest.orgList();

}

catch(SQLException sqle) { System.out.println("SQL Exception: " + sqle); }

catch(ClassNotFoundException cnfe) { System.out.println(cnfe.toString()); }

catch(InstantiationException ie) { System.out.println(ie.toString()); }

catch(IllegalAccessException iae) { System.out.println(iae.toString()); }

}

public JDBCTest() throws SQLException, ClassNotFoundException,

InstantiationException, IllegalAccessException

{ Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

con = DriverManager.getConnection("jdbc:db2:sample", "stade1", "stade1");

stmt = con.createStatement();

}

public void insert() throws SQLException

{ stmt.executeUpdate("INSERT INTO ORG " +

"VALUES(11, 'Head Office', 111, 'Corporate', 'San Jose')");

}

public void update() throws SQLException

{ stmt.executeUpdate("UPDATE ORG SET DEPTNAME = 'ITSO' WHERE DEPTNUMB=11");

}

public void delete() throws SQLException

{ stmt.executeUpdate("DELETE FROM ORG WHERE DEPTNUMB = 11");

}

public void orgList() throws SQLException

{ ResultSet rs = stmt.executeQuery("SELECT * FROM ORG");

System.out.println("Organization List:");

while (rs.next()) {

int f1 = rs.getInt("DEPTNUMB");

float f2 = rs.getFloat("MANAGER");

String s1 = rs.getString("DEPTNAME");

String s2 = rs.getString("DIVISION");

String s3 = rs.getString("LOCATION");

System.out.println(f1+"-"+s1+"-"+f2+"-"+s2+"-"+s3);

}

}

}

Chapter 3. Java Database Connectivity 53

JDBC Sample for Insert, Update, and Delete

The result of the program is listed below. The highlighted line in
the program’s output indicates that a line has been inserted or
updated.

--- ORG List Before Modifications ---

Organization List:

10-Head Office-160.0-Corporate-New York

15-New England-50.0-Eastern-Boston

20-Mid Atlantic-10.0-Eastern-Washington

38-South Atlantic-30.0-Eastern-Atlanta

42-Great Lakes-100.0-Midwest-Chicago

51-Plains-140.0-Midwest-Dallas

66-Pacific-270.0-Western-San Francisco

84-Mountain-290.0-Western-Denver

--- SQL Add DEPTNUMB 11 ---

Organization List:

10-Head Office-160.0-Corporate-New York

15-New England-50.0-Eastern-Boston

20-Mid Atlantic-10.0-Eastern-Washington

38-South Atlantic-30.0-Eastern-Atlanta

42-Great Lakes-100.0-Midwest-Chicago

51-Plains-140.0-Midwest-Dallas

66-Pacific-270.0-Western-San Francisco

84-Mountain-290.0-Western-Denver

11-Head Office-111.0-Corporate-San Jose

--- SQL Update DEPTNAME ---

Organization List:

10-Head Office-160.0-Corporate-New York

15-New England-50.0-Eastern-Boston

20-Mid Atlantic-10.0-Eastern-Washington

38-South Atlantic-30.0-Eastern-Atlanta

42-Great Lakes-100.0-Midwest-Chicago

51-Plains-140.0-Midwest-Dallas

66-Pacific-270.0-Western-San Francisco

84-Mountain-290.0-Western-Denver

11-ITSO-111.0-Corporate-San Jose

--- SQL Delete DEPTNUMB 11 ---

Organization List:

10-Head Office-160.0-Corporate-New York

15-New England-50.0-Eastern-Boston

20-Mid Atlantic-10.0-Eastern-Washington

38-South Atlantic-30.0-Eastern-Atlanta

42-Great Lakes-100.0-Midwest-Chicago

51-Plains-140.0-Midwest-Dallas

66-Pacific-270.0-Western-San Francisco

84-Mountain-290.0-Western-Denver

54 VisualAge for Java Enterprise

Statement and Prepared Statement

Statement and Prepared Statement

Now let us compare the Statement class with the PreparedState-
ment class. A PreparedStatement object is a precompiled SQL
statement. Such an object can be used to efficiently execute the
same statement multiple times, with different values of host vari-
ables.

Figure 41 shows a program written for both a Statement and Pre-
paredStatement class. The result should be the same, but the Pre-
paredStatement works more efficiently if you have to execute it
often.

Figure 41. Statement and PreparedStatement Classes

import java.sql.*;

public class StatementTest

{

public static void main(String[] args)

{

StatementTest s;

String drv = "COM.ibm.db2.jdbc.app.DB2Driver";

String URL = "jdbc:db2:sample";

try {

s = new StatementTest();

Class.forName(drv).newInstance();

Connection con = DriverManager.getConnection(URL, "stade3", "stade3");

Statement s1 = con.createStatement();

ResultSet r1 = s1.executeQuery("SELECT * FROM ORG WHERE DEPTNUMB > 40");

s.orgList("\n--- Org list using Statement ---", r1);

PreparedStatement s2 = con.prepareStatement(

"SELECT * FROM ORG WHERE DEPTNUMB > ?");

s2.setInt(1,40); // set first host variable value

ResultSet r2 = s2.executeQuery();

s.orgList("\n--- Org List using PreparedStatement --- 40", r2);

s2.setInt(1,60); // set host variable to 60

ResultSet r3 = s2.executeQuery();

s.orgList("\n--- Org List using PreparedStatement --- 60", r3);

}

catch(Exception e) { System.out.println("Exception: " + e); }

}

public void orgList(String s, ResultSet rs) throws SQLException

{

System.out.println(s);

while (rs.next()) {

int f1 = rs.getInt("DEPTNUMB");

int f2 = rs.getInt("MANAGER");

String s1 = rs.getString("DEPTNAME");

String s2 = rs.getString("DIVISION");

String s3 = rs.getString("LOCATION");

System.out.println(f1+s1+f2+s2+s3);

}

}

}

Chapter 3. Java Database Connectivity 55

Callable Statement

To create a PreparedStatement use an SQL statement with host
variables denoted by a question mark (?):

PreparedStatement s2
= con.prepareStatement("SELECT * FROM ORG WHERE DEPTNUMB > ?�);

Before executing the statement, you must assign a value of match-
ing type to each host variable:

s2.setInt(1,40);

The first parameter is the number of the host variable, the second,
the value.

Notice that the PreparedStatement is executed twice in the pro-
gram, each time with a different value of the host variable.

The results of the program are listed below. As you can see, the
results are the same.

--- Org list using Statement ---

42-Great Lakes-100-Midwest-Chicago

51-Plains-140-Midwest-Dallas

66-Pacific-270-0Western-San Francisco

84-Mountain-290-Western-Denver

--- Org List using PreparedStatement --- 40

42-Great Lakes-100-Midwest-Chicago

51-Plains-140-Midwest-Dallas

66-Pacific-270-0Western-San Francisco

84-Mountain-290-Western-Denver

--- Org List using PreparedStatement --- 60

66-Pacific-270-0Western-San Francisco

84-Mountain-290-Western-Denver

Callable Statement

Callable statements are used to interface with stored procedures.
In many cases a stored procedure is a precompiled program with
embedded static SQL statements. A stored procedure provides bet-
ter performance than dynamic SQL written in Java with JDBC.

Some DBMSs also allow stored procedures written in Java. DB2
Universal Database (UDB) provides a sample Java program that
calls a stored procedure written in Java. The description that fol-
lows is based on the DB2Stp.java sample program provided in
d:\SQLLIB\samples\java.

A callable statement is created by using an SQL statement with
parameters denoted by a question mark (?):

CallableStatement cstmt = con.prepareCall("CALL procname (?, ?, ?)");

56 VisualAge for Java Enterprise

Callable Statement

Parameters of a stored procedure are defined in the DBMS catalog
as in, out, or inout. Input parameters (in, inout) must be set, and
output parameters (out, inout) must be registered before execu-
tion:

cstmt.setInt(1,40);
cstmt.setDouble(2, 4.58)
cstmt.registerOutParameter(2, java.sql.Types.DOUBLE);
cstmt.registerOutParameter(3, java.sql.Types.CHAR);

The first value in these calls is the number of the parameter in the
stored procedure. The second is the value of an input parameter or
the type of an output parameter.

A callable statement is a subclass of a prepared statement. To exe-
cute the stored procedure, we call one of the execution methods,
execute or executeQuery:

cstmt.execute();

The results of output parameters are retrieved by parameter num-
ber:

double result2 = cstmt.getDouble(2);
String result3 = cstmt.getString(3);

A stored procedure can return one or multiple result sets. To
retrieve a single result set we use executeQuery:

ResultSet rs = cstmt.executeQuery();

To retrieve multiple results sets we use the getResultSet and get-
MoreResults methods:

cstmt.execute();
ResultSet rs = cstmt.getResultSet();
// process result set ...
while (getMoreResults());
{ rs = cstmt.getResultSet();

... }

This short overview of callable statements is in no way complete
but should give you a “feeling” for how stored procedures are
called from a Java program.

Chapter 3. Java Database Connectivity 57

JDBC in VisualAge for Java Enterprise

JDBC in VisualAge for Java Enterprise

Up to now we have built a JDBC application and an applet manu-
ally, without using the sophisticated environment of VisualAge for
Java Enterprise. In this environment, we can build a complete
JDBC application or applet without writing any Java JDBC code.

In “JDBC Applet” on page 50, we intentionally built a simple
JDBC applet, without using the sophistication of the GUI system
provided by the Java Abstract Windowing Toolkit (AWT) package.

Now, with VisualAge for Java Enterprise in our pocket, we can
embark on a more ambitious project. The Data Access Builder gen-
erates JDBC-enabled Java beans for us that will make the compo-
sition of applications and applets very easy.

In Chapter 4, “Data Access Builder,” on page 59, we explain step-
by-step how you can build the organization applet in Figure 39 on
page 51 and use the Data Access Builder to map classes from a
database table.

58 VisualAge for Java Enterprise

JDBC in VisualAge for Java Enterprise

© Copyright IBM Corp. 1998 59

4
Data Access
Builder

In this chapter we provide detailed information about Data Access
Builder, the VisualAge for Java tool that enables Java applica-
tions or applets to access and retrieve data from an SQL database.

We start by showing how easy it is to use Data Access Builder. We
explain what Data Access Builder does for you and what the logic
behind the generated classes is. In this way, you can appreciate
the power and the usefulness of this tool.

60 VisualAge for Java Enterprise

Relational Database Access

Relational Database Access

The Data Access Builder is an application development tool that
you can use to create data access classes customized for your exist-
ing relational database tables. In other words, Data Access
Builder generates Java beans that access data outside the Java
environment. Do not modify the source code that Data Access
Builder creates; just use the generated classes in your programs.

Data Access Builder generates code that uses JDBC to access your
database. You can use the DB2 JDBC driver, the JDBC-ODBC
Bridge of JDK Version 1.1 or later, or other JDBC drivers with the
generated code.

Data Access Builder generates code from database tables, data-
base views, or any valid SQL statements that you enter. For exam-
ple, you can simply specify a database table name, and Data
Access Builder accesses the table information and generates Java
source code that enables you to add, update, delete, or retrieve the
data in that table.

You can tailor how Data Access Builder builds the code before code
generation. You can, for example, remove unused columns or add
your own methods to the beans to be generated. If you want to use
a more advanced mapping schema than table-to-class, you can
specify your own SQL statements, for example, join operations.

The generated classes enable you to use a cursor to fetch rows
from database queries that return result sets. Separate classes
provide services for connecting to and disconnecting from your
databases. In addition, commit and rollback methods are gener-
ated to handle transaction services.

Before starting, review “Prerequisites for JDBC Applications” on
page 360.

Chapter 4. Data Access Builder 61

Building a JDBC Application

Building a JDBC Application

Now we guide you in building the JDBC applet that we showed in
Figure 39 on page 51, using Data Access Builder.

Application Requirements

Let us construct a JDBC applet in which, at the click of a push
button, all rows from the organization table are retrieved and dis-
played in a multicolumn list box.

Remember, you can always divide any application into three parts
or modules: the user interface, the business logic, and the data
store.

For simplicity, in our case we combine the data store and the busi-
ness logic into one module and put the user interface in another
module. Figure 42 depicts the structure of the JDBC applet that
we are going to build.

Figure 42. Simple JDBC Applet GUI Design

Now, to make everything pure object-oriented, we need to wrap
the ORG table into Java beans. In VisualAge for Java Enterprise,
we can do this by mapping the schema of the ORG table, using
Data Access Builder.

After creating a class mapping for the ORG table, we construct the
user interface for the applet. The interaction between the user
interface and the database classes enables us to retrieve the rows
of the ORG table and to display the result (Figure 43).

DEPTNUMB DEPTNAME

Retrieve

........

Data store

X

62 VisualAge for Java Enterprise

Building a JDBC Application

Figure 43. The JDBC Applet Result

We also show you how to incorporate ready-to-use GUI compo-
nents that will run the basic SQL functions, such as add, delete,
retrieve, and update of your generated beans. We use these GUI
components in the Visual Composition Editor of VisualAge for
Java in our own applications (Figure 44).

Figure 44. Application with Ready-to-Use GUI Components

Chapter 4. Data Access Builder 63

Building a JDBC Application

Development Process with Data Access Builder

Follow these high-level steps to construct an application (or
applet) with Data Access Builder (see Figure 45):

1. Create a project (or use an existing one) in the Workbench.

2. Create a package under the project. We suggest putting the
data access beans into a project separate from the application.

3. Start Data Access Builder in the package.

4. Create a mapping, using table definitions from the relational
catalog (1) and SQL statements (2).

5. Generate the data access beans from the mapping (3).

6. Create the application’s GUI (4).

7. Use the data access beans to complete the application (5).

Figure 45. Development Process with Data Access Builder

GUI

'DWD $FFHVV

%XLOGHU
SQL Statements

DB2 Catalog

:RUNEHQFK

Database

GUI Beans (Forms) Data Access Beans

sel
ect

update

connect

2 1

33

4

5

5

64 VisualAge for Java Enterprise

Building a JDBC Application

Using Data Access Builder for the Organization Applet

Let us use the development process with Data Access Builder for
our organization applet:

1. Create a project in the workbench, for example, JDBC.

2. Create two packages in the JDBC project, for example, Sam-
pleApplication and SampleDax.

3. Start Data Access Builder for the SampleDax package.

4. Map the ORG table into data access beans

5. Generate the data access beans.

6. Analyze and understand the generated data access beans.

7. Create the application or applet, using some of the generated
data access beans.

If you do not know how to perform steps 1 and 2, refer to the IDE
HTML Help, which comes with VisualAge for Java.

Before you continue with step 4, be sure to create the JDBC
project and the two packages in the workbench, as shown in Fig-
ure 46.

Figure 46. JDBC Project in the Workbench

Chapter 4. Data Access Builder 65

Building a JDBC Application

Starting Data Access Builder

To start Data Access Builder and to create data access beans,
select the SampleDax package in the Workbench, and select
Tools -> Data Access -> Create Data Access Beans... in the Selected
menu (Figure 47).

The generated beans have to reside in one package. That is why
you do not see this menu option if no package is selected.

Alternatively you can use the context (pop-up) menu of the
selected package.

Figure 47. Launching Data Access Builder

Selecting the Create Data Access Beans... option, launches Data
Access Builder, which you can use to create a new Data Access
Builder schema mapping.

The schema mapping is visually represented in the Data Access
Builder window (Figure 48) by icons. At this time only the package
icon is shown.

66 VisualAge for Java Enterprise

Building a JDBC Application

Figure 48. Data Access Builder

Mapping a Table into Data Access Beans

To create a schema mapping, select Map Schema... in the Selected
menu of the Data Access Builder window or use the pop-up menu.

Click on Next in the Data Access Builder SmartGuide window to
go to the Select database and mapping method window (Figure
49). Select DB2 as the database source, and SAMPLE as the data-
base. Leave the default value of the preselected radio button.

Figure 49. Database and Mapping Method Selection

Chapter 4. Data Access Builder 67

Building a JDBC Application

Note that relational database systems other than DB2 are sup-
ported. One of the drop-down choices is ODBC.

Click on Next in the Select database and mapping method window
to go to the Select the table(s) for mapping window (Figure 50).
For Get tables using the specified filter, type in the owner name
(creator of the DB2 sample database, STADE3 in our case), table
name, and table type, and click on the Get tables button (left of
the Filter fields). Select ORG as the table to be accessed.

Figure 50. Table Mapping Selection

You can click on the Next button in the Select the table(s) for
mapping window to go to the Schema Mapping Description win-
dow, where you can describe your schema mapping with text. The
description will be added as a comment in the generated classes.
Click on the Finish button when you are ready.

The SmartGuide tool brings you back to the Data Access Builder
window and creates the necessary mapping as specified during the
session. Each mapping is represented by an icon in a tree struc-
ture (Figure 51). If you do not see the Org bean’s attributes, click
on the plus sign (+) next to the Org bean.

68 VisualAge for Java Enterprise

Building a JDBC Application

Figure 51. Generated Org Bean and Attributes

The Data Access Builder does not generate delete, update, or
retrieve methods for a table without a key, that is, a table without
a column (or group of columns) that uniquely identifies each row.
Usually, Data Access Builder maps a table’s primary key if one is
defined in the DB2 catalog.

Unfortunately, as indicated in Figure 51, a primary key was not
defined during definition of the ORG table. Otherwise, at least one
icon would symbolize the presence of a unique key (see Figure 53
on page 69). Therefore we need some way of forcing the Data
Access Builder to generate the methods we require.

Fortunately, the Data Access Builder provides an easy way of
specifying a key. We can modify one or more attributes to form the
key. We select the debtnumb attribute as a unique key for our
application. We click with the right mouse button on the debt-
numb attribute and select properties. In the Properties window
(Figure 52), we check the Data Identifier checkbox to indicated our
desire and click on OK.

Chapter 4. Data Access Builder 69

Building a JDBC Application

Figure 52. Specifying a Unique Data Identifier

After we modified the deptnumb attribute to form the data identi-
fier, Data Access Builder remaps and redraws the deptnumb icon.
Now it shows a notebook with tabs to indicate that the deptnumb
attribute is a unique key (Figure 53).

Figure 53. Org Bean with Unique Data Identifier

70 VisualAge for Java Enterprise

Building a JDBC Application

Before we ask Data Access Builder to generate the classes, there
are two other important items we need to specify: the JDBC driver
we intend to use, and the URL where the database resides.
Although you could specify these two items at run time (see Figure
58 on page 76), it is good practice to initialize them.

In our sample, we use the following values:

❑ For the driver, COM.ibm.db2.jdbc.net.DB2Driver

❑ For the database URL, jdbc:db2://localhost:8888/SAMPLE

To specify these values using the right mouse button, click on the
Org bean icon and select Properties. In the Properties window
(Figure 54), select the Access tab and under Connection Informa-
tion, specify the driver and the URL. You may want to remove the
table qualifier in the Source tab, so that your application is inde-
pendent of the table qualifier.

Figure 54. Connection Information in the Org Bean Properties Window

Generating the Data Access Beans

After specifying all of the required information for the Org bean,
you can generate the Java classes. Select File in the tool bar of the
Data Access Builder window and then select Save and Generate.
Select File -> Exit when Data Access Builder has finished generat-
ing the classes.

The Java source code that Data Access Builder generates is auto-
matically imported and compiled in the package in the Work-
bench.

Chapter 4. Data Access Builder 71

Building a JDBC Application

For this example, Data Access Builder generates 17 classes that
encapsulate the database access for our application. We do not
have to write any SQL code in the application; it interacts with the
database through the beans and classes generated by Data Access
Builder (Figure 55).

Figure 55. Beans and Classes Generated by Data Access Builder

72 VisualAge for Java Enterprise

Building a JDBC Application

Data Access Builder Beans and Classes

Table 9 lists the beans generated by Data Access Builder. The
<class> template stands for the name of the mapping given in the
Data Access Builder.

In addition to the beans (classes) described in Table 9, there are
three interesting types of classes generated by Data Access
Builder:

❑ Data access BeanInfo classes

❑ Form classes

❑ Access application class

Table 9. Beans Generated by Data Access Builder

Class Name Extends Description

<class>

Org

PersistentObject Objects represent one row from
the schema. Class contains data-
base access methods, including
any user-defined methods you
have defined.

<class>Manager

OrgManager

DAManager Enables you to select a collection
of rows from the tables and work
with them, or to open a database
cursor and access a collection of
rows one at a time. Class contains
any user-defined manager meth-
ods you have defined.

<class>DataId

OrgDataId

PODataId Objects represent the set of col-
umns that uniquely identify a row.
This class is generated only if the
mapping specifies a data ID col-
umn or columns.

<class>DataIdManager

OrgDataIdManager

DAManager Enables you to select a collection
of data IDs from the table and
work with them, or to open a data-
base cursor and access a collection
of data IDs one at a time. This
class is generated only if the map-
ping specifies a data ID column or
columns.

<class>Datastore

OrgDatastore

DatastoreJDBC Objects represent connections to a
database. Class contains methods
for connect, disconnect, commit,
and rollback operations.

Chapter 4. Data Access Builder 73

Building a JDBC Application

BeanInfo Classes

BeanInfo classes enable builders, such as the Visual Composition
Editor, to use the data access classes by providing information
about the properties, methods, and events of each class. These
BeanInfo classes let the builder know what can be done with the
corresponding class of the bean. Data Access Builder generates a
BeanInfo class for all the classes described in Table 9:

❑ <class>BeanInfo: OrgBeanInfo

❑ <class>ManagerBeanInfo: OrgManagerBeanInfo

❑ <class>DataIdBeanInfo: OrgDataIdBeanInfo

❑ <class>DataIdManagerBeanInfo: OrgDataIdManagerBeanInfo

❑ <class>DatastoreBeanInfo: OrgDataStoreBeanInfo

When you create a new bean, VisualAge for Java automatically
generates a BeanInfo class for it. All of these BeanInfo classes fol-
low the Java beans standard.

Form Classes

Data Access Builder generates a group of Form classes that are
GUI parts you can use in your own applets and applications (see
Table 10).

For your convenience, Figure 56 shows all the forms generated by
Data Access Builder for our sample.

Table 10. Form Classes

Class Name Description

<class>Form

OrgForm

A form for displaying the attributes and attribute
values of a <class> object (which corresponds to a
row in the database table); lets you change the
attribute values, add, update, delete, retrieve, and
fetch data access objects.

<class>DataIdForm

OrgDataIdForm

A form for displaying the attributes and attribute
values of a <class>DataId object; lets you change
the attribute values, add, update, delete, retrieve,
and fetch data access objects.

<class>ResultForm

OrgResultForm

A form for displaying a collection of created <class>
objects that were retrieved with a select or open
method; lets you choose one object(row) and dis-
play it in the <class>Form.

<class>DataIdResultForm

OrgDataIdResultForm

A form for displaying a collection of <class>DataId
objects retrieved with a select or open method; let
you choose one object and display it in a
<class>Form or a <class>DataIdForm.

74 VisualAge for Java Enterprise

Building a JDBC Application

Figure 56. Forms Generated by Data Access Builder

There is one additional form not shown in Figure 56—the ICon-
nectPanel, which is in the COM.ibm.ivj.eab.data package of the
IBM Enterprise Access Builder Library in your Workbench.

The connection panel is similar to the Form classes. You can use it
in an application to enter database access information, such as the
URL, driver, user ID, and password. It lets you connect, discon-
nect, commit, roll back, and set the autoCommit setting (Figure
57).

Chapter 4. Data Access Builder 75

Building a JDBC Application

Figure 57. Database Connection Panel

Access Application Class

With the information you provided during the mapping, Data
Access Builder constructs a complete application against your
table. The application is called <class>AccessApp (OrgAccessApp
in our case).

Using the access application, you can connect, disconnect, commit,
and roll back a database; manipulate a table (add, delete, update,
and retrieve) in the connected database; add your own clause
(called suffix) to the SQL select statement; open a cursor; step
through the cursor for update or delete; list all rows retrieved,
using the SQL suffix; and manipulate a selected row. Data Access
Builder automatically generates all of these facilities for you. You
also get the history of all of your activities, while you are con-
nected to the database.

The access application uses a card layout that displays the indi-
vidual pages (panels and forms) one at a time. A series of push
buttons at the top enables you to navigate from page to page. The
pages are:

❑ Datastore, for database operations, such as connect, discon-
nect, commit, and rollback (Figure 58)

❑ Org, for row manipulation, such as retrieve, insert, update,
and delete (Figure 59)

❑ Manager, to execute a select statement with an optional
WHERE clause (Figure 60)

76 VisualAge for Java Enterprise

Building a JDBC Application

❑ Cursor, to step through the rows retrieved in the Manager
page, with update and delete of the fetched row (Figure 61)

❑ ResultForm, to display the rows retrieved in the Manager
page in a tablelike format (Figure 62)

❑ Selected, to display a row selected in the ResultForm page
and to step forward and backward through the rows retrieved
in the Manager page (Figure 63)

Let us start with the Datastore page (Figure 58).

Figure 58. Access Application: Datastore Page

If you check the Autocommit check box, the Rollback and Com-
mit buttons are removed. All transactions are automatically com-
mitted.

With the Org button selected, you can manipulate the table by
executing add, retrieve, delete, and update functions. These func-
tions are represented as a drop-down list labeled Action (Figure
59).

Chapter 4. Data Access Builder 77

Building a JDBC Application

Figure 59. Access Application: Org (Row Manipulation)

With the Manager button selected, you can specify an SQL suffix
(for example, a WHERE clause) for the select statement, execute
the select, and open a cursor on the retrieved rows (Figure 60).

Figure 60. Access Application: Manager

78 VisualAge for Java Enterprise

Building a JDBC Application

With the Cursor button selected, you can update or delete a
fetched row, and fetch the next row (Figure 61).

Figure 61. Access Application: Cursor

With the ResultForm button selected, you can fill the Result-
Form with the cursor that you have opened in the Manager page,
to display all the rows starting from the cursor (Figure 62).

Figure 62. Access Application: ResultForm

Chapter 4. Data Access Builder 79

Building a JDBC Application

You can select a row, and continue with the Selected page, where
the row selected in the ResultForm is displayed. In this page, you
can update and delete the row, step forward and backward
through the rows displayed in the ResultForm, and you can per-
form the same row operations as on the Org page (Figure 63).

Figure 63. Access Application: Selected

In summary, the access application provides you with an easy way
of testing the generated data access beans and the connection to
the database.

The access application is not designed to be put into the hands of
end users; they should not be concerned with JDBC drivers, data-
base URLs, and connections. However, the access application and
the generated forms can be of great help to you, as the developer of
the real applications.

Creating the JDBC Sample Application and Applet

The best way to learn how to build a new application is to start
with an existing application, because you know what the end
result will be and you will never be misguided. Therefore in this
section we “tear” apart the <class>AccessApp application and
show you step by step how you can build an application similar to
it. We use most of the parts provided by Data Access Builder.

80 VisualAge for Java Enterprise

Building a JDBC Application

Applet Overview

After you start the application as an applet, click the List All
Organization push button to list all of the information from the
Sample database table into the multicolumn list box (Figure 64).

Figure 64. Organization Applet: Main Panel

Initially, no row is selected and the Update Selected Organiza-
tion push button is disabled. When you select a row, for example,
department number 38, the push button is enabled (Figure 65).

Figure 65. Organization Applet: Selecting a Row

Chapter 4. Data Access Builder 81

Building a JDBC Application

When you click on the Update Selected Organization push but-
ton, you are presented with the second panel, which displays the
row you selected. In this panel, you can add, delete, and update
the row data. You can also retrieve another row by specifying a
department number in the corresponding entry field (Figure 66).

When you click on the List All Organization push button, you
return to the main panel and the list of departments is automati-
cally refreshed (Figure 64).

Figure 66. Organization Applet: Selected Row

Applet Construction

We construct the user interface of the applet as illustrated in Fig-
ure 67. From the Workbench, under the JDBC project, select the
SampleApplication package (Figure 46 on page 64). Create a new
applet and call it OrgApplet.

Change the layout of the default panel to CardLayout, and name
the panel MainPanel. Drop two panels (from the Container cate-
gory) into the default panel. Name the first PanelA, and the sec-
ond, PanelB. Change the layout manager of both panels to
BorderLayout.

If you experience difficulties accessing the individual panels, open
the Beans List window (from the Tools pull-down, or using the
icon button in the tool bar).

82 VisualAge for Java Enterprise

Building a JDBC Application

Figure 67. Organization Applet: User Interface Design

Add two push buttons in PanelA, one in the North area and the
other in the South area. Label the North button with “Update
Selected Organization” and name it UpdateSelectedButton. The
South button has the label “List All Organization” and the name
ListAllButton1.

Add one push button in the North of PanelB, label it “List All
Organization,” and name it ListAllButton2. Add another panel
(PanelC) on the free-form surface and change the layout to Grid-
Layout. Add four push buttons to PanelC. Label the buttons
“Add,” “Delete,” “Retrieve,” and “Update.” Now move PanelC,
including the buttons, into the South area of PanelB.

To complete the user interface, add two visual beans from the
SampleDax package; they were generated previously by Data
Access Builder. The first bean is the OrgResultForm bean; add
this bean to the center area of PanelA. The second bean is the Org-
Form bean; add it to the center area of PanelB.

OrgForm

Update Selected Organization

Form

List All Organization

List All Organization

Add Delete Retrieve Update

OrgResult

CardLayout

BorderLayout

BorderLayout

GridLayout

PanelA:

(North)

(North)

(South)

(South)

(Center)

(Center)

PanelB:

PanelC:

Chapter 4. Data Access Builder 83

Building a JDBC Application

PanelA should now look like that in Figure 68, and PanelB should
look like that in Figure 69.

Figure 68. Organization Applet: Organization List Panel (PanelA)

Figure 69. Organization Applet: Organization Detail Panel (PanelB)

To activate the List All Organization push buttons on both pan-
els (PanelA and PanelB), you have to add a variable of type Card-
Layout to the free-form surface and connect it in the following way
(see Figure 70):

❑ Connect the layout property of the MainPanel with the this
property of the CardLayout variable (1).

❑ Connect the actionPerformed event of the UpdateSelected-
Button (on PanelA) with the next method of the CardLayout
variable (2). Pass the MainPanel as the parent parameter of
the connection (3).

84 VisualAge for Java Enterprise

Building a JDBC Application

❑ Connect the ListAllButton (on PanelB) with the next method
of the CardLayout variable. Pass the MainPanel as the parent
parameter of the connection (same as 2 and 3, but for PanelB).

After you perform these three steps, the CardLayout connectivity
should look like that in Figure 70.

Figure 70. Organization Applet: CardLayout Connectivity

Note: In future screen captures we show only the inside of the
Visual Composition Editor.

You can click on the Test icon button in the SampleApplica-
tion.OrgApplet window. When the application is started, click on
the push button in the top pane, and the next panel is displayed.

Connecting to the Database

After you have tested the panel design of your applet, you can con-
nect to the database.

Add an OrgDatastore bean from the SampleDax package to the
free-form surface. To display potential error messages, add a mes-
sage box bean from the palette (Enterprise Access category) to the
free-form surface.

1

2

3

Chapter 4. Data Access Builder 85

Building a JDBC Application

To create the logic for the database connection, make the following
connections in the Visual Composition Editor (see Figure 71):

❑ Connect the init event of the applet with the connect method
of the OrgDatastore bean (1). Note that the init event is an
expert feature (click on the Show expert features check box).
Set the parameters of the connect method to your user ID and
password.

❑ Connect the exceptionOccurred event of the previous connec-
tion with the message box (2). Open the new connection and
select the Pass event data check box.

❑ Connect the destroy event of the applet with the disconnect
method of the OrgDatastore (3).

Figure 71. Organization Applet: Database Connection

Test the database connection of your applet. You should be able to
connect to the database without prompting an error message box;
otherwise check that DB2 and the JDBC daemon (DB2JSTRT
8888) are running and that you can connect to the database with
the specified user ID and password.

Completing the Organization List Panel

As indicated in Figure 67 on page 82, the objective of the first
panel (PanelA) is to enable the user to list all records in the multi-
column list box, by clicking the List All Organization button.
The user then selects a record and clicks the Update Selected
Organization button, and the selected record is passed to the sec-
ond panel (PanelB).

1

3

2

86 VisualAge for Java Enterprise

Building a JDBC Application

You need three beans to process PanelA:

❑ To populate the multicolumn list box with the organization’s
records, you have to add an OrgManager bean from the Sam-
pleDax package.

❑ To pass the selected record from PanelA to PanelB, you need a
variable to hold the row object. This variable is of the type Org
from the SampleDax package.

❑ When switching from PanelA to PanelB and vice versa, you
need to access the state of a push button. Therefore, add a
variable of type Button.

Now you connect the beans of PanelA (see Figure 72):

❑ Connect the items property of the OrgManager bean with the
elements property of the OrgResultForm list box (1).

❑ Connect the actionPerformed event of the List All Organiza-
tion button with the OrgManager select method (2). You can
add a WHERE clause as the parameter of this connection.
Because you want to select all the rows, there is nothing to
enter. However, the connection remains dashed; you can enter
a blank character as the SQL suffix to make the connection a
solid line.

❑ To pass the selected row to PanelB connect the itemState-
Changed event of the list box and the this method of the Org
variable (3). Connect the selected object of the list box with the
value parameter of the previous connection (4).

❑ Initially the Update Selected Organization button must be
disabled. Open its properties and set the enabled property to
false. The button must also be disabled after the list of organi-
zations is retrieved. Connect the List All Organization but-
ton with the enabled property (or the setEnabled method) and
set the parameter value to false (5).

❑ To enable the Update Selected Organization button when
the user selects a row in the list box, connect the itemState-
Changed event of the list box with the enabled method of the
button. Set the parameter of this connection to true (6).

❑ To disable the Update Selected Organization button from
PanelB, connect its this property with the this property of the
button variable. The variable will make the button’s attributes
available in PanelB (7). The purpose of the button variable and
this connection will become more clear when we complete Pan-
elB.

Chapter 4. Data Access Builder 87

Building a JDBC Application

Figure 72. Organization Applet: Organization List Connections

Before you continue with the organization detail panel (PanelB),
you can test PanelA by running the application. Check that this
application indeed satisfies the PanelA requirements.

When you click the Update Selected Organization button, Pan-
elB appears. Although the Org variable is loaded with the data
from the selected row, its data is not displayed, because the con-
nection between the Org Variable and the OrgForm has not been
established.

Completing the Organization Detail Panel

The processing of PanelB requires the following connections (see
Figure 73):

❑ To display the data of the Org variable, connect the Org vari-
able (this) with the OrgForm (targetAsOrg) (1). In fact, after
this connection is established, you can test the application and
check that the data of the Org variable is displayed in PanelB.

❑ When the application switches back from PanelB to PanelA,
the Update Selected Organization button in PanelA is still
enabled. To disable this button, connect the List All Organi-
zation button (actionPerformed) in PanelB with the enable
property of the button variable and set the parameter to false
(2).

1
2 34

6

5

7

88 VisualAge for Java Enterprise

Building a JDBC Application

❑ To complete PanelB, you have to connect all actionPerformed
events of the add, retrieve, update, and delete buttons to the
related methods (add, delete, retrieve, and update) of the Org
variable (3). No parameters are needed for these methods of
the Org bean. You also have to connect the ExceptionOccurred
event of each connection to the showException method of the
messageBox and pass the event data (4).

Figure 73. Organization Applet: Organization Detail Connections

This example concludes our introduction of Data Access Builder.
We have created an applet accessing a relational database without
writing a single line of code.

In Chapter 5, “ATM Application with Data Access Builder and
JDBC,” on page 99, we use all the knowledge we have learned so
far to write a more realistic application. We simulate an ATM to
implement simple banking transactions.

1
2

3 3 3 3

44

Chapter 4. Data Access Builder 89

Data Access Beans in Handwritten Programs

Data Access Beans in Handwritten Programs

This example describes how you can incorporate beans generated
by Data Access Builder into your handwritten programs. With
this, you will appreciate not only the power of the tool but also its
flexibility.

The example uses the datastore bean (OrgDatastore), the row
manager bean (OrgManager), and the persistent object bean (Org)
to perform SQL operations without writing SQL statements in a
handwritten program.

To run this code, you have to perform the following steps:

1. Export the beans generated by Data Access Builder from Visu-
alAge for Java into a directory in the CLASSPATH. Export
creates a subdirectory with the name of the package used in
VisualAge for Java (for example, SampleDax).

2. Another directory, SampleOrg, holds the SampleOrgDax pro-
gram. Compile the program:

Javac SampleOrgDax.java

3. Run this command to execute the program:

java SampleOrgDax <userid> <password>

Figure 74 lists the SampleOrgDax program.

import SampleDax.*;
import java.lang.*;
import java.util.*;

public class SampleOrgDax
{

public static void main(String args[])
{

try
{

// Create the Datastore and Manager objects
OrgDatastore theOrgDatastore = new OrgDatastore();
OrgManager theOrgMgr = new OrgManager();
Org theOrg = new Org();

// Connect to database
System.out.println("Connecting to ORG database...");
if (args.length > 1)

theOrgDatastore.connect(args[0], args[1]);
else

theOrgDatastore.connect();
System.out.println("...Connected");
theOrgDatastore.setAutoCommit(false);

90 VisualAge for Java Enterprise

Data Access Beans in Handwritten Programs

Figure 74. Handwritten Program Using Data Access Beans

// List all orgs as they are
System.out.println("\nListing of all orgs, sorted by name:");

theOrgMgr.open("ORDER BY DEPTNAME");

while(theOrgMgr.fetchNext())

{ System.out.println(theOrgMgr.element().toString()); }

theOrgMgr.close();

// Add a new department

theOrg.setDeptnumb((short)31);

theOrg.setDeptname("VAJE");

theOrg.setManager(new Short("26"));

theOrg.setDivision("Red Team");

theOrg.setLocation("San Jose");

theOrg.add();

// delete department 10

theOrg.setDeptnumb((short)10);

theOrg.delete();

// retrieve department 66 and change its location

theOrg.setDeptnumb((short)66);

theOrg.retrieve();

theOrg.setLocation("Thornhill");

theOrg.update();

// List all orgs again to show changes

System.out.println("\nListing of all orgs, sorted by name,

after changes:");

theOrgMgr.open("ORDER BY DEPTNAME");

while(theOrgMgr.fetchNext())

{ System.out.println(theOrgMgr.element().toString()); }

theOrgMgr.close();

// Rollback the changes and disconnect

theOrgDatastore.rollback();

System.out.println("\nChanges rolled back");

theOrgDatastore.disconnect();

// All done

System.out.println("Done.\n");

}

// Catch all Throwables here and print out the information

catch (Throwable s)

{

System.out.println("Throwable caught:");

System.out.println("message: " + s.getMessage());

System.out.println("Stack Trace:");

s.printStackTrace();

}

}

}

Chapter 4. Data Access Builder 91

Data Access Beans in Handwritten Programs

Here is the output of the program:

Connecting to ORG database...

...Connected

Listing of all orgs, sorted by name:

42.Great Lakes.100.Midwest.Chicago

10.Head Office.160.Corporate.New York

20.Mid AtlanticXX.10.Eastern.Washington

84.Mountain.290.Western.Denver

15.New England.50.Eastern.Boston

66.Pacific.270.Western.San Francisco

51.Plains.140.Midwest.Dallas

38.South Atlantic.30.Eastern.Atlanta

Listing of all orgs, sorted by name, after changes:

42.Great Lakes.100.Midwest.Chicago

20.Mid AtlanticXX.10.Eastern.Washington

84.Mountain.290.Western.Denver

15.New England.50.Eastern.Boston

66.Pacific.270.Western.Thornhill

51.Plains.140.Midwest.Dallas

38.South Atlantic.30.Eastern.Atlanta

31.VAJE.26.Red Team.San Jose

Changes rolled back

Done

The sample handwritten program uses many methods of the data
access beans:

❑ Connect, disconnect, rollback, and setAutoCommit of the Org-
Datastore bean

❑ Open, fetchNext, close, and element of the OrgManager bean

❑ Add, delete, retrieve, update, toString, and many of the set
attribute methods of the Org bean

Use of the data access beans facilitates JDBC programming, even
without the power of the Visual Composition Editor of VisualAge
for Java.

92 VisualAge for Java Enterprise

Data Access Builder Advanced

Data Access Builder Advanced

Data Access Builder provides a number of additional functions
that are not covered in detail in this book. In this section we pro-
vide an overview of some of those functions.

Sharing Mappings among Developers

One way to share Data Access Builder mappings among develop-
ers is through a .Data Access Builder file. To export a .Data Access
Builder file, perform the following steps:

❑ In the Data Access Builder window, select Export from the File
menu.

❑ Enter the directory and file name in the Export window and
click on OK to export the mapping.

The Data Access Builder session with all its mappings will be
exported to the Data Access Builder file. You can use Import in the
File menu to read the .Data Access Builder file in another Data
Access Builder session.

Another way of sharing mappings is through the interchange file
(.dat) of the VisualAge for Java repository. A whole package (or
even a project) can be exported from the Workbench into an inter-
change file and imported into another developer’s repository.

Running Data Access Builder Stand-Alone

Data Access Builder can be run outside VisualAge for Java to cre-
ate source beans that can be imported into the Workbench.

To start Data Access Builder by itself, issue this command:

ivjdata

The Startup window is displayed (Figure 75).

You can create a new mapping or resume work on an existing
stored session. An existing stored session can be an exported map-
ping from a Data Access Builder session started from a Work-
bench package, or a session saved from a stand-alone run.

Chapter 4. Data Access Builder 93

Data Access Builder Advanced

Figure 75. Data Access Builder: Startup Window

The mapping process itself is unchanged:

• Map a schema (by table, or enter an SQL statement)
• Tailor the bean (driver, database location)

When you are ready to generate the Java source code, use the
Options pull-down to specify the directory where the code is gener-
ated. Select Generate All in the File pull-down to generate the
beans. The code is written into a subdirectory with the name of the
mapping.

Save the session in a user-defined directory, using Save in the File
pull-down. The assigned name is displayed in the Data Access
Builder window (Figure 76).

Figure 76. Data Access Builder: Save Session

94 VisualAge for Java Enterprise

Data Access Builder Advanced

The next time you use Data Access Builder you can resume work
on a saved or exported session by selecting Resume work on a pre-
viously stored session in the Startup window, or by selecting Open
in the File pull-down.

Import the generated beans into a project in VisualAge for Java. A
package with the name of the mapping is generated automatically.
The beans can be used in the same way as if they were generated
directly into the IDE from Data Access Builder.

Note: The session is not stored in the repository. Data Access
Builder must be started manually to update the mapping and
regenerated the beans.

Interesting Methods of the Manager Bean

The manager bean (<class>Manager) contains two interesting
methods: fill and append.

Both methods let you specify the number of rows to be retrieved.
The difference between fill and append is that the latter does not
overwrite the previously filled vector but rather appends the next
rows at the end of the vector.

All the methods that create a result set cause the items property of
the manager bean to fire. This is especially useful in the visual
programming environment.

Eliminating Attributes from the Mapping

Occasionally a mapping will provide you with more attributes
than you actually require. You can eliminate these to simplify the
interface of your bean by using the Attributes... option from the
pop-up menu of the bean in the mapping.

Select an attribute that you want to modify. Click on Delete
Attribute to remove it from the mapping. Click on Properties to
modify the attribute name or data type.

Customized SQL Statements

The persistent object bean can be extended with customized (user-
defined) SQL statements before the beans are generated.

Chapter 4. Data Access Builder 95

Data Access Builder Advanced

From the pop-up menu of the bean in the mapping, select Meth-
ods... Click on the Add button under Methods with customized
SQL statements.

Enter an SQL statement, using question marks as place holders
for any values to be substituted at run time (so-called host vari-
ables), and a method name. You can use INSERT, DELETE, or
UPDATE statements, as well as a single-row SELECT statement.
(Selects of multiple rows are added as methods to the <class>Man-
ager bean).

Validate the SQL statement; for each host variable (denoted by ?)
and retrieved column (if you entered a single-row SELECT state-
ment) a parameter is generated.

You can change the mapping of host variables by giving a user-
friendly name to the parameter or by mapping it to an attribute of
the bean.

The mapping of returned columns of a single-row SELECT state-
ment can be changed from parameter to an attribute of the bean,
or to the return value of the method. Only one column can be the
return value.

The remapping process consists of these steps:

❑ Select one of the parameters.

❑ Select the appropriate radio button for the type of mapping.

❑ For a parameter, update the item's name and optionally its
type.

❑ For an attribute, tie the item to a particular attribute of the
bean.

❑ For a return value, select the data type.

❑ Click on the Modify button.

For an example of a customized SQL statement, refer to “Adding
User-Defined Methods” on page 106.

Encapsulating an SQL Search Predicate

The manager bean can be extended with customized (user-
defined) SQL SELECT statements before the beans are generated.

From the pop-up menu of the bean in the mapping, select Manager
Methods.... Click on the Add button under Methods with SQL
predicates.

96 VisualAge for Java Enterprise

Data Access Builder Advanced

Enter an SQL predicate, for example, a WHERE clause, using
question marks (host variables) as place holders, and validate the
statement.

To modify the parameters that are generated for the host vari-
ables, assign user-friendly names and appropriate data types as
described in “Customized SQL Statements” on page 94.

Asynchronous Processing

Background thread support is provided so that you can execute
long-running methods asynchronously. You call setAsynchro-
nous(true) before invoking methods that execute SQL statements.

When you use asynchronous processing, a method is not necessar-
ily complete when control returns to the program; rather it is com-
lete when the background thread reports a method complete
event. Only one asynchronous thread per object is allowed at one
time.

Working with Stored Procedures

Stored procedures should be defined in the database system before
you use them in Data Access Builder. However, you can also add
their definitions manually.

Like the customized SQL statements, stored procedures can be
invoked as persistent object methods or manager methods. Param-
eters of stored procedures can be defined as input or output.

Let us look at the process of defining a method for a stored proce-
dure:

❑ Open the Methods window by selecting Methods... in the pop-
up menu.

❑ Click on Add under Methods with stored procedure calls.

❑ Click on Show Procedures in the Add Stored Procedure Call
window.

❑ In the Stored Procedures List window, click on Get Stored
Procedures, to retrieve the definitions from the database, or
on Add to define one stored procedure manually.

❑ To define a stored procedure, define all the parameters as
input or output with their SQL names.

❑ Select a stored procedure in the Add Stored Procedure Call
window to display its parameters.

Chapter 4. Data Access Builder 97

Application Design Considerations

❑ Change the mappings of the parameters. Input parameters
can be mapped as parameters or attributes of the bean. Out-
put parameters can be mapped as parameters, attributes, or
as a return value. Click on Modify for each change.

❑ Close the window when finished. Close the Methods window
as well.

❑ Generate the data access beans.

The methods for stored procedures are invoked in the application
in the same way as other SQL encapsulating methods. Connect an
event to the method and pass the input parameters.

Handling of the results is a little more tricky. Each output param-
eter is actually mapped to an array, not to a single value. In many
cases you need a script (a user-defined method in the application)
to retrieve the results from the array.

Application Design Considerations

Once your database-related beans have been generated, they are
ready to be used from within your business logic. They can also be
used directly from within your user interface beans, but we gener-
ally recommend against that in production-level code.

Production programs should be partitioned into user interface,
business logic, and persistence segments, and the user interface
portion typically should not have direct knowledge of persistence
issues. This approach makes the program more robust because the
persistence layer can be replaced without any impact on the user
interface layer (and vice versa).

Another approach to consider is to have your database-related
beans (and any business logic beans that use them) reside on a
server machine and your user interface beans reside on a client
machine. This approach can improve performance because your
business logic and database access run on a dedicated server
machine (where the database may also reside), and the amount of
code needed on the client machine is reduced.

Java’s RMI technology can provide the communication layer
between the client and server beans. RMI beans, like data access
beans, can be generated using the Enterprise Edition of VisualAge
for Java. For more information about generating and using RMI
beans in VisualAge for Java, refer to Chapter 6, “Remote Method
Invocation and RMI Access Builder”.

98 VisualAge for Java Enterprise

Application Design Considerations

© Copyright IBM Corp. 1998 99

5
ATM Application
with Data Access
Builder and JDBC

In Chapter 4, “Data Access Builder”, you discovered the power of
the tool, and you constructed a first sample application that used
the beans generated by Data Access Builder to manage data
stored in the DB2 sample database. Now it is the time to use this
new knowledge to build something more complex—the ATM appli-
cation.

In the first part of this chapter, we review the ATM application
requirements and, on the basis of these requirements, design the
application.

In the second part, we implement the design. We use Data Access
Builder to create the data access beans, and we use the Visual
Composition Editor to create the ATM application.

100 VisualAge for Java Enterprise

Designing the ATM Application

Designing the ATM Application

The design of the ATM application is based on Chapter 2, “Sample
ATM Application and Database”.

We assume that the ATM database exists, as described in “ATM
Database” on page 29. We implement the GUI described in “ATM
Application Requirements” on page 18 and shown in Figure 13 on
page 19.

We use a simple object model that is based on the underlying data-
base (Figure 77).

Figure 77. Object Model of the ATM Application

We did not actually design this model. The purpose of this chapter
is to explain how we can use the Visual Composition Editor to cre-
ate an application based on beans generated by Data Access
Builder from an existing relational database.

In Chapter 7, “ATM Application with RMI” we use a more realistic
design with a business model and a controller for the same appli-
cation.

 Customer

title
firstName
lastName

BankAccount

accountId
accountType

cardId

deposit
withdraw

SavingAccount CheckingAccount

overdraft

Transaction

transId
transType

transAmount

minAmount

balance

Card
card number

pinCard
checkPin

customerId

oldBalance

withdraw withdraw

accountId

Chapter 5. ATM Application with Data Access Builder and JDBC 101

Building the ATM Application

Building the ATM Application

After the application design phase, we are ready to start with the
implementation phase.

In our implementation we can identify four steps that we have to
follow to build the ATM application:

1. Construct database classes

2. Construct business logic classes

3. Construct user interface classes

4. Implement application flow

Because the ATM application uses a relational database to store
and retrieve the necessary information, we use Data Access
Builder to create the beans that access our database tables.

When we have built our database interface, we need to identify
the classes required by our business logic design and the classes
that will act as user interface.

In the end, we construct the application logical flow by connecting
objects of the previously constructed classes, so that they can com-
municate with each other by sending and receiving messages.

Database Classes

In this section we describe all the database classes created with
Data Access Builder and explain how we generate them.

Create a project named JDBC in the Workbench, and add two
packages, ATMDax and ATMApplication. You generate all data-
base classes in the ATMDax package. The ATMApplication pack-
age contains the application classes.

PIN Validation

The first information that the ATM application retrieves from the
database is the customer data and the PIN, starting from the card
ID that is used at the ATM. The customer information is needed
for the greeting, and the PIN is needed for validation (see “ATM
Application Requirements” on page 18).

102 VisualAge for Java Enterprise

Building the ATM Application

Based on the ATM database structure (see “Database Design” on
page 21), to retrieve all of the required data we have to join two
ATM tables: Customer and Card. Therefore, we create a mapping
schema starting from a join and use the following SQL statement:

SELECT A.PIN, B.TITLE, B.FNAME, B.LNAME

FROM ATM.CARD A, ATM.CUSTOMER B

WHERE A.CARDID = ? AND A.CUSTID = B.CUSTID

In this statement the ? represents the parameter, that is, the card
ID entered by the user. We name the mapping schema Pin-
CustInfo.

Now let us show you how we can construct this mapping schema
from the above SQL statement, using Data Access Builder.

When we start Data Access Builder to create the mapping schema,
the dialog shown in Figure 78 is displayed.

Figure 78. Data Access Builder SmartGuide Dialog

Chapter 5. ATM Application with Data Access Builder and JDBC 103

Building the ATM Application

In this dialog we select the ATM database and the mapping
method. We check the radio button indicating that we want to
map the schema by entering an SQL statement. We click on the
Next button to continue with the dialog shown in Figure 79.

Figure 79. Selecting the Tables for Mapping

We click on the Get tables button to display all tables in the list
box. We select the ATM.CARD and ATM.CUSTOMER tables in
the list box as the basis for the SQL statement.

We click the Next button to continue with the dialog shown in Fig-
ure 80.

104 VisualAge for Java Enterprise

Building the ATM Application

Figure 80. Validating the SQL Statement

In this dialog we enter the name of the SQL query and the com-
plete SQL statement. We validate the SQL statement by clicking
on the Validate the SQL statement button.

In the next dialog we can enter a description for the mapping
schema. This optional description is carried forward as Java com-
ments into the generated data access beans.

Click on the Finish button to terminate the SmartGuide dialog.

The Database Access Builder window now contains the mapping
schema icon that Data Access Builder has created from the SQL
statement.

We will follow this procedure for all mapping schemas of the ATM
application.

Chapter 5. ATM Application with Data Access Builder and JDBC 105

Building the ATM Application

List of Accounts

When the PIN is successfully validated, the system retrieves all
the account IDs that belong to the customer.

To retrieve all the account IDs, we need to create another schema,
which is based on the account table. This schema retrieves from
the account table all the accounts related to the customer. We cre-
ate this mapping class, using the following SQL statement:

SELECT ACCID FROM ATM.ACCOUNT WHERE CARDID = ?

In this statement the parameter is the card ID. We call this
schema QueryAccId.

Account Information

When the ATM application displays all the account IDs, the cus-
tomer selects one account to start the debit and credit transac-
tions. When an account is selected, the ATM application shows the
data related to the specified account, that is, account ID, account
type, and account balance.

To retrieve the account data, we have to map the ATM account
table. We do not enter an SQL statement; instead we just map the
account table itself. The bean generated by Data Access Builder
retrieves the required record, using the selected account ID. (See
“Building a JDBC Application” on page 61 for an explanation of
how to create a mapping from a table). The default name of this
mapping is ACCOUNT.

Transaction History

The ATM application provides information about all transactions
related to the specified account. This transaction history includes,
for each transaction, a transaction ID, an account ID, a transac-
tion type, and a transaction amount.

All of this information is stored in the Transaction table. To han-
dle the transaction list associated with an account, we have to cre-
ate another mapping schema. This schema is mapped based on the
following SQL statement:

SELECT * FROM ATM.TRANS WHERE ACCID = ?

The parameter in this SQL statement is the account ID. We call
this schema TransAcc.

106 VisualAge for Java Enterprise

Building the ATM Application

After creating all the database beans that we have discussed so
far, our Data Access Builder window contains the mappings (data-
base beans) shown in Figure 81.

Figure 81. Database Access Builder Window: Mappings

At this point we can open the mapped beans (select Attributes...
from the pop-up menu) to delete unused columns or change the
names of the properties to make them more readable than the col-
umn names in the database. We decided to leave the beans
unchanged.

Adding User-Defined Methods

The customer can also perform new transactions, such as, deposit
or withdrawal. When a transaction is completed, the system
updates the transaction list by adding it to the transaction table.
Therefore, the Transacc bean must be able to add a new transac-
tion record to the Transaction table when a deposit or withdrawal
operation occurs.

Data Access Builder allows us to add user-defined methods to the
mapping before generating the beans. Therefore, we add an
addTransaction method to the TransAcc bean. This method
inserts a new row into the Transaction table, based on the data-
base structure.

We create the unique transaction ID property, using the Time-
stamp database function. The account ID property is related to the
account of the transaction. The transaction type property comes
from the operation type performed by the customer (D for deposit,
W for withdrawal). The transaction amount property is the
amount specified by the customer.

Chapter 5. ATM Application with Data Access Builder and JDBC 107

Building the ATM Application

The addTransaction method performs the following SQL state-
ment:

INSERT INTO ATM.TRANS VALUES(CURRENT TIMESTAMP,?,?,?)

The three parameters of the statement are account ID, transaction
type, and transaction amount; therefore, the method that Data
Access Builder generates requires three input parameters.

Let us now explain in detail how we add this new method to the
Transacc bean.

In the Data Access Builder window we highlight the bean where
we want to add a method. From the pop-up menu (right mouse
button) select Methods... (Figure 82).

Figure 82. Context Menu of a Dax Bean

In the Methods window, we click on the Add button to add a
method that uses a customized SQL statement (Figure 83).

We enter the SQL statement that the method has to perform and
click on the Validate button to validate the statement. We can
change the names of the parameters by selecting each parameter
in the list, overtyping the name in the Name field, and clicking on
the Modify button.

For the addTransaction method we replace the default param1
with accountId, param2 with transactionType, and param3 with
transactionAmount. Later, when we connect to the generated bean
in the Visual Composition Editor, we can recognize the parame-
ters by their meaningful names.

108 VisualAge for Java Enterprise

Building the ATM Application

Figure 83. Validating the SQL Statement and Setting Parameter Names

To add the new method to the bean, we have to assign it a name,
in our case, addTransaction. We click on the OK button to add the
method to the Transacc bean.

Generating the Data Access Beans

We open the four mapping beans, set the table qualifier to ATM,
the driver to COM.ibm.db2.jdbc.net.DB2Driver, and the URL to
jdbc:db2://hostname:8888/ATM. We set the host name to localhost
to run on a stand-alone machine.

We generate the beans into the Workbench, using Save and Gen-
erate All in the File pull-down.

Chapter 5. ATM Application with Data Access Builder and JDBC 109

Building the ATM Application

Business Logic Classes

In this section we introduce the business logic classes used by the
ATM application. These classes do not have a visual interface, but
they enable us to build the application logic.

Our implementation requires the following objects:

❑ Card

❑ BankAccount

❑ SavingAccount

❑ CheckingAccount

The Customer and Transaction objects (see Figure 77 on page 100)
are never materialized. The information retrieved from the data-
base into the data access beans is used directly in the GUI.

Before we describe in detail how we implement each class, it is
necessary to understand their responsibilities, and how they are
related to each other.

In our implementation, Card is the class that knows the card
number entered by the user and the PIN related to that card num-
ber. Starting from this information, it must perform the PIN vali-
dation when the user enters the PIN. After validation, the Card
sends a successful or unsuccessful message.

BankAccount, SavingAccount, and CheckingAccount are closely
related to each other. In fact, the BankAccount class represents
the generic bank account, with all of the features of a bank
account, such as account ID, balance, and customer ID. SavingAc-
count and CheckingAccount inherit from BankAccount, but each
of them has additional information and behavior. The SavingAc-
count class contains the information related to the minimum
amount that it can reach; the CheckingAccount, instead, contains
its overdraft value. In other words, the instances of the SavingAc-
count and CheckingAccount classes represent the real accounts of
the customer.

When a customer uses the ATM application to perform a with-
drawal transaction, different answers can come from the system,
depending on the kind of account. The SavingAccount class per-
forms the withdrawal transaction only if the balance, after the
transaction, is still greater than the minimum amount; the Check-
ingAccount class checks that a resulting negative balance is
higher than the overdraft amount.

110 VisualAge for Java Enterprise

Building the ATM Application

When a customer requires a deposit transaction, both the Saving-
Account and CheckingAccount classes have the same behavior,
that is, they increase the balance by the deposit amount.

Let us describe how we implement the business classes, so that
you can do the same in your project.

Remember, you have to create all nonvisual classes in the
ATMApplication package.

Card Class

We implement the Card class as a nonvisual bean with the follow-
ing properties:

❑ cardNumber, of type String, bound

❑ pinCard, of type String, bound

The internal attribute name for a property has the prefix field, fol-
lowed by the property name with the first letter in upper-case. For
example, the pinCard property is represented by the fieldPinCard
attribute, and the get and set methods are called getPinCard and
setPinCard.

The Card class has to send messages to other objects about the
result of the PIN validation. We implement this behavior as two
events, pinCheckedOk and pinCheckedNotOk.

To define and fire an event, we perform the following steps:

❑ We create a new event listener interface, using the New Event
Listener SmartGuide (select New Listener Interface in the Fea-
tures pull-down). See Figure 84.

❑ In the first page of the dialog, we enter the name of the event,
pinCheckedOk (or pinCheckedNotOk), and click on Next.

❑ In the second page, we enter the name of the method that the
listener class has to implement, handlePinCheckedOk (or han-
dlePinCheckedNotOk), and click on Add, then on Finish.

The business logic classes are implemented as Java beans, that
is, the features (properties, methods, and events) are defined on
the BeanInfo page of the class. We create the properties as
read/write with get and set methods and define that they are
bound, that is, they fire the PropertyChange event whenever the
value changes.

Chapter 5. ATM Application with Data Access Builder and JDBC 111

Building the ATM Application

Figure 84. Defining an Event with an Event Listener

The system automatically generates the event and interface
classes and the supporting methods for us:

• PinCheckedOkEvent class
• PinCheckedOkListener interface
• fireHandlePinCheckedOk method
• addPinCheckedOkListener method
• removePinCheckedOkListener

All we have to implement is the logic for when to fire the events.
On the BeanInfo page we add a new method feature to the Card
class and call it checkPin. The checkPin method compares the
pinEntered parameter with the pinCard property and notifies the
caller by firing the pinCheckedOkEvent or the pinCheckedNo-
tOkEvent:

public void checkPin (String pinEntered)
{

if (getPinCard().trim().equals(pinEntered.trim()))
fireHandlePinCheckedOkEvent(new PinCheckedOkEvent(this));

else
fireHandlePinCheckedNotOk(new PinCheckedNotOkEvent(this));

return;
}

112 VisualAge for Java Enterprise

Building the ATM Application

BankAccount Class

We implement the BankAccount class as an abstract class.

SavingAccount and CheckingAccount are subclasses of BankAc-
count. In fact, we want to reuse the attributes and methods of the
BankAccount class in the SavingAccount and Checking-Account
classes. In the ATM application we create only instances of Savin-
gAccount or CheckingAccount, that is, the real accounts that
belong to a customer.

The properties of the BankAccount class reflect the data stored in
the account table of the ATM database, and two additional proper-
ties to hold the old balance and the decoded account type:

❑ accountId, of type String

❑ accountType, of type String

❑ balance, of type double

❑ cardId, of type String

❑ customerId, of type String

❑ oldBalance, of type double

❑ typeDecod, of type String (see below)

To initialize the attributes of a bank account object we add a con-
structor to the BankAccount class:

public BankAccount (String accType, String accId, String cardID,
String custId, java.math.BigDecimal bal) {

setAccountId (accId);
setAccountType(accType);
setCardId(cardID);
setCustomerId(custId);
setBalance (Double.valueOf(bal.toString()).doubleValue());
setOldBalance(getBalance());

}

Notice that we pass the bal parameter as BigDecimal because the
BankAccount object is initialized from the database and the bal-
ance column of the account table is defined as decimal.

We want to display the account type as a word, Checking or Sav-
ings, not just as code C or S. For this purpose we define a property,
called typeDecod, as a String, and a method, called DecodAccount-
Type, that converts the database code into the property value:

public void DecodAccountType (String type) {
if (type.trim().equals("C"))

setTypeDecod("Checking");
else

setTypeDecod ("Savings");
}

Chapter 5. ATM Application with Data Access Builder and JDBC 113

Building the ATM Application

Because the deposit transaction is not dependent on the account
type, we can implement the deposit method feature in the
BankAccount class and use the same implementation for Saving-
Account and CheckingAccount. This method stores the current
balance in the oldBalance property and then adds the amount
entered by the user:

public void deposit (String amount) {
double amnt = Double.valueOf(amount.toString()).doubleValue();
setOldBalance(balance);
setBalance(balance + amnt);

}

The withdrawal transaction is dependent on the account type.
Therefore, we define the withdraw method feature in the BankAc-
count class as abstract and provide the implementation in the
SavingAccount and CheckingAccount subclasses:

public abstract void withdraw (String amount);

BankAccount fires two events to inform the caller whether the
withdrawal transaction is allowed or not. If a withdrawal is not
allowed, the ATM application can display a message to the user.
We implement this behavior in the same way we implemented it
for the Card class:

❑ We create a new event listener interface for the withdrawal-
Failed event, with the handleWithdrawalFailed method.

❑ We create a new event listener interface for the withdrawal-
Done event, with the handleWithdrawalDone method.

After code generation we find the fireHandleWithdrawFailed and
fireHandleWithdrawDone methods in the BankAccount class. The
SavingAccount and CheckingAccount classes will use these meth-
ods in their own withdraw method to fire one of the two events.

At last, we need to add a converter method feature to the BankAc-
count class to convert a double value to a BigDecimal value. The
balance property is stored as double in the BankAccount class, but
the database implementation needs a BigDecimal value:

public java.math.BigDecimal converter (double arg) {
Double f = new Double(arg);
return java.math.BigDecimal.valueOf(f.longValue());

}

114 VisualAge for Java Enterprise

Building the ATM Application

CheckingAccount Class

CheckingAccount is a subclass of the BankAccount class. In addi-
tion to the function of the basic account class, it provides overdraft
protection.

We add a new property, called overdraft, as a double value.

In the constructor of the CheckingAccount class, we initialize the
overdraft property with the value from the ATM account table:

public CheckingAccount (String accType, String accId,
String cardID, String custId,
java.math.BigDecimal bal,
java.math.BigDecimal over) {

super(accType, accId, cardID, custId, bal);
setOverdraft (Double.valueOf(over.toString()).doubleValue());

}

The CheckingAccount class has to implement its own withdraw
method. This method checks whether the account balance can be
updated on the basis of the balance and overdraft properties. The
method notifies other objects of the result of the withdrawal trans-
action, using one of the events defined in the BankAccount class:

public void withdraw (String amount) {
double amnt = Double.valueOf(amount).doubleValue();
if (getBalance() + getOverdraft() > amnt)

{ setOldBalance (getBalance());
setBalance (getBalance() - amnt);
fireHandleWithdrawalDone(new WithdrawalDoneEvent(this)); }

else
fireHandleWithdrawalFailed(new WithdrawalFailedEvent(this));

}

SavingAccount Class

SavingAccount is a subclass of the BankAccount class. In addition
to the function of the basic account class, it has to maintain a min-
imum balance. We add a new property, called minAmount, as a
double value.

In the constructor of the SavingAccount class, we initialize the
minAmount property with the value from the ATM account table:

public SavingAccount (String accType, String accId,
String cardID, String custId,
java.math.BigDecimal bal,
java.math.BigDecimal min) {

super(accType, accId, cardID, custId, bal);
setMinAmount (Double.valueOf(min.toString()).doubleValue());

}

Chapter 5. ATM Application with Data Access Builder and JDBC 115

Building the ATM Application

The SavingAccount implements the withdraw method, consider-
ing the minAmount property value, and fires one of the events
defined in the BankAccount class:

public void withdraw (String amount) {
double amnt = Double.valueOf(amount).doubleValue();
if (getBalance() - amnt > getMinAmount())

{ setOldBalance (getBalance());
setBalance (getBalance() - amnt);
fireHandleWithdrawalDone(new WithdrawalDoneEvent(this)); }

else
fireHandleWithdrawalFailed(new WithdrawalFailedEvent(this));

}

User Interface Classes

Now it is the time to construct the user interface for the ATM
application. Based on the requirements (see “ATM Application
Requirements” on page 18), we have to build four visual classes to
implement the application flow:

❑ CardPanel

❑ PinPanel

❑ SelectAccountPanel

❑ TransactionPanel

All four classes inherit from the java.awt.Panel class, and we will
often refer to them simply as panels. Let us now examine each of
these classes.

CardPanel Class

When the ATM application starts, an instance of the CardPanel
class is created. The function of this panel is to allow the customer
to enter the card number. In fact, this panel simulates the real
ATM behavior, where the user slides the ATM card through a card
reader.

From the graphical point view, this panel is very simple. It con-
tains a label, a text field and two push buttons. To construct this
panel, we use the GridBagLayout manager to control the location
of the components when the panel is resized (Figure 85).

116 VisualAge for Java Enterprise

Building the ATM Application

Figure 85. Layout of the CardPanel

We assume that you know how to construct such a GUI. Therefore,
we explain in detail only how we build it from a functional point of
view, that is, which nonvisual model objects we use and how all
the objects are connected.

There are four major steps to complete the implementation of the
panel:

1. Add the nonvisual beans that represent the business logic and
the database.

2. Define an auxiliary property and method to format the cus-
tomer name.

3. Connect the visual and nonvisual beans.

4. Promote some of the features to make them accessible in the
ATM application (where the panel will be embedded).

Figure 86 shows the design of the panel inside the Visual Compo-
sition Editor.

Chapter 5. ATM Application with Data Access Builder and JDBC 117

Building the ATM Application

Figure 86. Visual Composition Editor: CardPanel

Nonvisual Beans

We start by adding three nonvisual beans to the free-form surface:

❑ A Card bean from the ATMApplication package, called Card
(1)

❑ A PincustinfoManager bean from the ATMDax package, called
PinCustInfoManager (2)

❑ A Pincustinfo bean variable from the ATMDax package, called
PinCustInfoRow (3)

Auxiliary Property and Method

We define a String property, called customerInfo, and a method,
called createCustomerName, in the CardPanel. The createCus-
tomerName method formats the customer’s full name from the
title, first name, and last name:

public void createCustomerName (String title, String fname,
String lname) {

String customer = title.trim()+" "+fname.trim()+" "+lname.trim();
setCustomerInfo(customer);

}

The input strings for this method will be retrieved from the cus-
tomer table in the ATM database.

1

2

3

4
5

6

7

8

9

10

11

13

12

14

118 VisualAge for Java Enterprise

Building the ATM Application

Connections

Applications are driven by events. The connection diagram is a
visual representation of the events that the application handles.

❑ We tear off the items property from the PinCustInfoManager
bean and call it itemsSelected (4). The selectedItems property
is a Vector. By tearing it off, we can access the methods of this
Vector directly. We do that when we select the first record
retrieved by the PinCustInfoManager.

❑ The Card bean stores the value entered by the user in its card-
Number property. We connect the actionPerformed event of the
Ok button with the cardNumber property of Card (5) and pass
the text attribute of the text field as a parameter (6).

❑ We use the PinCustInfoManager to retrieve the PIN value and
the customer data from the database when the card number is
entered. We connect the actionPerformed event of the Ok but-
ton with the select method of PinCustInfoManager (7). We con-
nect the cardNumber property of Card with the param1
property of PinCustInfoManager; this is the host variable that
is inserted into the SQL select statement (8).

❑ We store the one record retrieved by PinCustInfoManager in
PinCustInfoRow. (We are sure that the PinCustInfoManager
select function returns one record because of the unique keys.)
We connect the selectComplete event of PinCustInfoManager
with the elementAt method of itemsSelected (the Vector) and
set the parameter to 0 (9). In this way, the elementAt method
returns the first element selected by PinCustInfoManager. We
connect the normalResult of the previous connection (element-
At method) with the this property of PinCustInfoRow (10).

❑ We store the PIN value retrieved from the database in the
Card bean. We connect the normalResult of the previous con-
nection with the pinCard property of Card (11) and pass the
pin property of the PinCustInfoRow as a parameter (12).

❑ Now we can construct the customer’s full name from the Pin-
CustInfoRow. We connect the this event of PinCustInfoRow
with the createCustomer method of the CardPanel bean; this
is an event-to-script connection (13). We set the three parame-
ters of the method by connecting the properties title, lname,
and fname of PinCustInfoRow.

❑ In case the card number is invalid, we set the customer’s name
to an error message. We connect the exceptionOccurred of con-
nection 9 with the createCustomer method of the CardPanel
bean and set the three parameters to “Error:”, “Invalid card-”,
and “Press Cancel” (14).

Chapter 5. ATM Application with Data Access Builder and JDBC 119

Building the ATM Application

Promote Features

We need to make some features of the card panel available to the
ATM application. Therefore:

❑ We promote the actionPerformed events of the Ok and Cancel
buttons and name the promoted features OkClicked and Can-
celClicked.

❑ We promote the this property of Card and call it card, and the
text property of the text field and call it cardIdFieldText.

PinPanel Class

The PinPanel class allows the user to enter the PIN number asso-
ciated with the ATM card. The PinPanel is built by using six
labels, one text field for the PIN number, and two push buttons.
We define the layout manager as GridBagLayout. Figure 87 shows
the PinPanel GUI.

Figure 87. Layout of the PinPanel

Three of the labels display fixed text (“please verify your card and
enter your PIN #,” “Card ID,” and “PIN#”) and three labels display
variable text. We name the variable labels customerNameLabel,
cardNumLabel, and errorMessage. The error message is located
above the push buttons, but it is initialized with blanks.

To complete the implementation of the PinPanel, we have to con-
nect some beans and promote some features.

120 VisualAge for Java Enterprise

Building the ATM Application

Figure 88 shows the design of the panel inside the Visual Compo-
sition Editor.

Figure 88. Visual Composition Editor: PinPanel

Connections

The Ok and Cancel buttons have to clear the labels with varying
text (customer name and error message) and the PIN text field:

❑ We connect the actionPerformed event of the Ok button with
the text property of the error message label (errorMessage)
and set the parameter to a blank string (1).

❑ We do the same for the Cancel button (2).

❑ We connect the actionPerformed event of the Cancel button
with the text property of the customer full name label (custom-
erNameLabel) and set the parameter to a blank string (3).

❑ We connect the actionPerformed event of the Cancel button
with the text property of the PIN number text field and set the
parameter to a blank string (4).

Promote Features

We have to promote all the features of the PinPanel that have to
be accessed when the PinPanel is embedded in the application.
This customer full name label and the card ID label have to be set
when the panel is displayed, and the error message label, after
PIN validation. We also have to access the PIN number text field
and the two push buttons:

1 2

3
4

Chapter 5. ATM Application with Data Access Builder and JDBC 121

Building the ATM Application

❑ We promote the text property of the customer full name label
as customerNameLabelText, the text property of the card
number label as cardNumLabelText, and the text property of
the error message label as messageText.

❑ We promote the text property of the PIN number text field as
pinFieldText.

❑ We promote the actionPerformed events of the Ok and Cancel
buttons as OkClicked and CancelClicked.

SelectAccountPanel Class

The ATM application displays the SelectAccountPanel when the
user’s PIN is successfully validated. This panel is built from a
IList bean that lists the account IDs related to the ATM card, a
label associated with the IList bean, and two push buttons (Figure
89).

In the SelectAccountPanel the user selects an account from the
list and switches to the TransactionPanel by clicking on the Ok
button.

Figure 89. Layout of the SelectAccountPanel

Figure 90 shows the design of the panel inside the Visual Compo-
sition Editor.

122 VisualAge for Java Enterprise

Building the ATM Application

Figure 90. Visual Composition Editor: SelectAccountPanel

To complete the implementation of the panel we have to add the
nonvisual beans that represent the business logic and the data-
base, define an auxiliary method to construct the transaction
object, connect the visual and nonvisual beans, and promote some
of the features to make them accessible in the ATM application.

Nonvisual Beans

We add the following nonvisual beans to the free-form surface:

❑ A QueryaccidManager bean from the ATMDax package, called
QueryAccountIdManager (1)

❑ An AccountDataId bean from the ATMDax package, called
AccountKey (2)

❑ An Account bean from the ATMDax package, called Account-
Row (3)

❑ A BankAccount bean variable, called BankAccount (4)

❑ A MessageBox bean, called Error (5)

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16 17

Chapter 5. ATM Application with Data Access Builder and JDBC 123

Building the ATM Application

Auxiliary Method

We add a method feature called createAccount to the Select-
AccountPanel. This method creates and returns an instance of a
SavingAccount or CheckingAccount, using the account data
retrieved from the database:

public BankAccount createAccount (String accType, String accid,
String cardID, String custId,
java.math.BigDecimal bal,
java.math.BigDecimal min,
java.math.BigDecimal over) {

if (accType.trim().equals("S"))
return new SavingAccount(accType,accid,cardID,custId,bal,min);

else
return new CheckingAccount(accType,accid,cadID,cusId,bal,over);

}

We will use this method to initialize the BankAccount variable in
the free-form surface.

Connections

The following connections are necessary to implement the logic:

❑ QueryAccountIdManager has to populate the IList bean with
the account IDs retrieved from the database. We connect the
items property of QueryAccountIdManager with the elements
property of the IList bean (6).

❑ When the user selects an account, we have to retrieve from the
account table all the data related to the selected account. We
connect the itemStateChanged event of the IList bean with
the accid property of AccountKey, and we pass to this connec-
tion the selectedItem property of the IList bean as a parame-
ter (7).

❑ The AccountKey bean is used to set the key for operations of
the account bean. We connect the this property of AccountKey
with the dataId property of AccountRow (8).

❑ When the Ok button is clicked we retrieve the selected
account from the database. We connect the actionPerformed
event of the Ok button with the retrieve method of Account-
Row (9).

❑ When the retrieve is complete, AccountRow has all the infor-
mation related to the account that the user has selected. From
this information we create an instance of a SavingAccount or
CheckingAccount, based on the account type retrieved. We
connect the retrieveComplete event of AccountRow to the cre-
ateAccount method of the SelectAccountPanel (10). We connect

124 VisualAge for Java Enterprise

Building the ATM Application

the properties of AccountRow (acctype, accid, cardid, custid,
balance, minamt, overdraft) as parameters to the previous
connection (11).

❑ The createAccount method returns a BankAccount object that
we use to set the BankAccount variable. We connect the nor-
malResult of this createAccount connection to the this prop-
erty of the BankAccount variable (12).

❑ The BankAccount object has to decode the account type code
into the account type string. We connect the this event of the
BankAccount variable to its DecodeAccountType method and
pass the acctype property of AccountRow as a parameter (13).

❑ The BankAccount variable has to update the balance column
of the ATM account table when the user performs a transac-
tion and the account balance changes. Because the balance
property of BankAccount is double and the database balance
column is stored as BigDecimal, we have to convert the float
value to BigDecimal:

• We connect the balance event of the BankAccount variable
to its converter method and pass the balance property as a
parameter (14).

• We connect the normalResult of the previous connection to
the balance property of AccountRow (15) and to the update
method of AccountRow (16).

• We connect the exceptionOccurred feature of the last con-
nection (update method) to the showException method of
Error (17). We open the connection and click on the Pass
event data check box.

Promote Features

We have to promote all the features of the AccountPanel that need
to be accessed when the AccountPanel is embedded in the applica-
tion. The select method of the QueryAccountIdManager and its
parameter will be invoked from the application, and the BankAc-
count variable will be used in the TransactionPanel:

❑ We promote the select method and the param1 property of
QueryAccountIdManager. To make it simple we do not modify
the default names of the promoted features, that is, queryAc-
countIdManagerSelect and queryAccountIdManagerParam1.

❑ We promote the this property of the BankAccount variable.
The system calls the promoted feature bankAccountThis.

Chapter 5. ATM Application with Data Access Builder and JDBC 125

Building the ATM Application

TransactionPanel Class

The TransactionPanel is the last panel displayed by the ATM
application (see Figure 91). It displays all information about the
selected account and enables the user to perform withdrawal and
deposit transactions and to view the transaction history related to
the account.

To construct this panel we use the BorderLayout. In this way we
can identify two different panel areas: a customer area in the
North region of the BorderLayout, and an area for account trans-
actions in the central region. Both areas contain a subordinate
panel using the GridBagLayout. The customer area contains two
labels; the transaction area contains 10 labels, one text field, three
push buttons, and a choice (drop-down list). The layout is shown in
Figure 91.

Figure 91. Layout of the TransactionPanel

We create the TransactionPanel, using the names Deposit, With-
drawal, and Cancel for the buttons, amount for the text field,
TransactionList for the choice (history), and customerName,
accountId, accountType, oldBalance, newBalance, and message for
the labels with variable text data. The message label is used to
inform the user when a withdrawal is not allowed.

126 VisualAge for Java Enterprise

Building the ATM Application

Figure 92 shows the design of the panel inside the Visual Compo-
sition Editor.

Figure 92. Visual Composition Editor: TransactionPanel

To complete the implementation of the panel we have to add the
nonvisual beans that represent the business logic and the data-
base, define an auxiliary method to construct the transaction
object, connect the visual and nonvisual beans, and promote some
of the features to make them accessible in the ATM application.

Nonvisual Beans

We add the following nonvisual beans to the free-form surface:

❑ A BankAccount variable, called BankAccount (1)

❑ A Transacc bean from the ATMDax package, called Transac-
tionRow (2)

❑ A TransaccManager bean from the ATMDax package, called
TransactionManager (3)

❑ A MessageBox bean, called Error (4)

Auxiliary Method

To refresh the transaction history list, we add a new method called
fillTransactionList to the TransactionPanel. This method removes
all previous items from the TransactionList choice and then adds
to it all items selected from the database:

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18
19

Chapter 5. ATM Application with Data Access Builder and JDBC 127

Building the ATM Application

public void fillTransactionList(COM.ibm.ivj.javabeans.IVector arg1) {
int numItem = arg1.size();
getTransactionList().removeAll();
getTransactionList().addItem("Transaction History");
if (numItem != 0) {

for (int i=0;i<numItem; i++)
{ getTransactionList().addItem(arg1.elementAt(i).toString());

}
}
return;

}

Connections

The labels on the right side of the central region of the BorderLay-
out display the account data (account ID, account type, account old
balance, and account new balance). The values are copied from the
BankAccount variable (5):

❑ We connect the accountId property of the BankAccount vari-
able with the text property of the accountId label.

❑ We connect the typeDecod property from the BankAccount
variable with the text property of the accountType label.

❑ We connect the oldBalance property from the BankAccount
variable with the text property of the oldBalance label.

❑ We connect the balance property from the BankAccount vari-
able with the text property of the newBalance label.

The Deposit and Withdrawal buttons invoke the deposit and
withdrawal transactions of the BankAccount variable, and they
add the transactions to the transaction list:

❑ We connect the actionPerformed event of the Deposit button
with the deposit method of the BankAccount variable and pass
the text property of the amount text field as a parameter (6).
We connect the Withdrawal button in the same way with the
withdraw method (7).

❑ We connect the actionPerformed event of the Deposit button
with the addTransaction method of TransactionRow (8). This
connection requires three parameters. We pass to it the text
property of the accountId label, the constant string “D,” and
the text property of the amount text field.

❑ We connect the exceptionOccurred feature of the previous con-
nection with the showException method of Error (9) and pass
the event data (open the connection and select the check box).

❑ We connect the actionPerformed event of the Deposit button
with the text property of the message label and set the text to
blank (10). We create the same connection from the With-
drawal button.

128 VisualAge for Java Enterprise

Building the ATM Application

The Cancel button closes the panel and switches to the account
panel, but before that it has to remove all transactions from the
TransactionList and clean the amount text field and the message
label:

❑ We connect the actionPerformed event of the Cancel button to
the removeAll method of TransactionList (11).

❑ We connect the actionPerformed event of Cancel to the text
property of the amount text field bean and set the text to
blank (12).

❑ We connect the actionPerformed event of Cancel to the text
property of the message label and set the text to blank (13).

The BankAccount variable has to indicate the result of the with-
drawal transaction by signaling the withdrawalDone or with-
drawalFailed event. In the case of the withdrawalFailed event, the
message label displays a message to the user, otherwise the with-
drawal transaction is added to the transaction list:

❑ We connect the withdrawalFailed event of the BankAccount
variable with the text property of the message label and set
the text to the fixed string “You have insufficient funds” (14).

❑ We connect the withdrawalDone event of the BankAccount
variable with the addTransaction method of TransactionRow
(15). This connection requires three parameters. Pass to it the
accountId property, the fixed String “W,” and the text property
of the amount text field.

❑ We connect the exceptionOccurred feature of the previous con-
nection with showException method of Error and pass the
event data (16).

When the user selects the transaction history (choice drop-down),
the TransactionList displays all the transactions related to the
selected account. The TransactionManager selects these transac-
tions from the ATM trans table:

❑ We connect the mousePressed event of TransactionList with
the param1 property of the TransactionManager bean and
pass the accountId property of the BankAccount (17).

❑ We connect the mouseReleased event of TransactionList with
the select method of TransactionManager and complete the
connection with a blank parameter value (18).

❑ We connect the selectComplete event of the TransactionMan-
ager with the fillTransactionList method of the Transaction-
Panel and pass the items property as parameter (19).

Chapter 5. ATM Application with Data Access Builder and JDBC 129

Building the ATM Application

Promote Features

In the transaction panel the BankAccount variable is the account
selected by the user and the customerName label is the full name
of the customer. Therefore, we have to set these objects before the
TransactionPanel is displayed:

❑ We promote the this property of the BankAccount variable and
call the promoted feature bankAccountThis.

❑ We promote the text property of the customerName label and
call the promoted feature customerNameText.

In the TransactionPanel we use TransactionList to display the
transaction history. When the ATM application displays the
panel, we want to display the text “Transaction History,” so that
the user understands the function of this object.

❑ We promote the add(java.lang.String) method of the Transac-
tionList and call the feature transactionLis-
tAdd(java.lang.String).

❑ We promote the actionPerformed event of the Cancel button
and call the feature CancelClicked.

Application Flow

In this section we explain how to create the ATM applet by assem-
bling the four panels built in the previous section.

The ATM applet is a subclass of the Panel class. We use a Card-
Layout manager that enables the user to switch from one panel to
the next by using the push buttons available in each panel.

The design of the applet requires the following steps:

❑ Applet layout

❑ Panel switching

❑ Sharing the Card object

❑ Database connection

130 VisualAge for Java Enterprise

Building the ATM Application

Applet Layout

To build the applet we assemble the four panels in a card layout:

❑ We create an applet with the name ATMApplet in the ATMAp-
plication package.

❑ We change the layout property of the ATMApplet to CardLay-
out and we call the applet panel MainPanel. This panel con-
tains the four panels of the ATM application.

❑ We add to the MainPanel the four panels we built, that is,
CardPanel, PinPanel, SelectAccountPanel, and Transaction-
Panel. We call these beans CardPanel, PinPanel, SelectAc-
countPanel, and TransactionPanel.

❑ We add the following nonvisual beans to the free-form surface:

• An AccountDatastore bean from the ATMDax package,
called Connection (1)

• A Card variable, called Card (2)

• A CardLayout variable, called CardManager (3)

• A MessageBox bean, called Error (4)

Figure 93 shows the connection diagram for the main panel, and
Figure 94 shows the Beans List of the applet.

Figure 93. ATM Applet Main Panel and Beans

1

4

23

Chapter 5. ATM Application with Data Access Builder and JDBC 131

Building the ATM Application

Figure 94. ATM Applet Beans List

Panel Switching

The next step is to implement the switching from panel to panel in
the card layout of the applet. Use the Beans List (Figure 94) to
select one of the four panels to make additional connections.

Connecting the CardPanel

The CardPanel sets the Card variable and switches to the Pin-
Panel:

❑ We connect the card property of the CardPanel with the this
property of the Card variable. In this way, we transmit the
Card object instantiated by the CardPanel to all other panels
through the Card variable.

❑ We connect the customerInfo property of the CardPanel with
the customerNameLabelText property of the PinPanel to prop-
agate the full name of the customer to the PinPanel. When we
create this property-to-property connection, the system sets
the source event to the customerInfo event and the target
event to <none>. We change the target event to the Cancel-
Clicked event to make the connection bidirectional, that is, the
customerInfo event of the CardPanel sets the customerName-
LabelText property of the PinPanel, and the CancelClicked
event of the PinPanel sets the customerInfo property of the
CardPanel with the customerNameLabelText property value.

❑ We connect the customerInfo property of the CardPanel with
the customerNameText property of the TransactionPanel.

132 VisualAge for Java Enterprise

Building the ATM Application

❑ We connect the OkClicked event of the CardPanel with the
cardIdFieldText property of the CardPanel. We do not set the
parameter of the connection, and we leave the connection dot-
ted, that is, the cardIdFieldText is set to an empty string.

❑ We connect the OkClicked event of the CardPanel with the
next method of the CardManager variable. We connect the
parent parameter of this connection to the this property of the
MainPanel.

After these connections have been completed, the CardPanel Reor-
der connections window should look like that shown in Figure 95.

Figure 95. CardPanel Reorder Connections Window

Connecting the PinPanel

From the CardPanel the user switches to the PinPanel, where the
full name and the card number are displayed. The user then
enters the PIN to proceed to the SelectAccountPanel:

❑ We connect the cardNumber property of the Card variable
with the cardNumberLabelText property of the PinPanel to
display the card number entered in the CardPanel.

❑ We connect the CancelClicked event of the PinPanel with the
first method of the CardManager variable and connect the
parent parameter of this connection to the this property of the
MainPanel.

❑ We connect the OkClicked event of the PinPanel with the
checkPin method of the Card variable and pass the pinField-
Text property of the PinPanel as a parameter.

Notice that we do not make a connection to show the customer
name on the top of this panel because we already implemented
this behavior in the CardPanel.

Figure 96 shows the Reorder connections window of the PinPanel.

Chapter 5. ATM Application with Data Access Builder and JDBC 133

Building the ATM Application

Figure 96. PinPanel Reorder Connections Window

Connecting the SelectAccountPanel

When the ATM application displays the SelectAccountPanel, the
user selects an account ID and clicks on the Ok button to switch to
the TransactionPanel to see the account data and to perform
transactions. The user can also choose the Cancel button to
return to the CardPanel.

To implement this behavior, the SelectAccountPanel has to create
an instance of a BankAccount object (a SavingAccount or a Check-
ingAccount) after the user has selected an account ID. Then the
SelectAccountPanel has to forward this BankAccount object to the
TransactionPanel:

❑ We connect the CancelClicked event of the SelectAccountPanel
with the first method of the CardManager variable and con-
nect the parent parameter of this connection to the this prop-
erty of the MainPanel.

❑ We connect the OkClicked event of the SelectAccountPanel
with the last (or next) method of the CardManager variable
and connect the parent parameter of this connection to the
this property of the MainPanel.

❑ We connect the OkClicked event of the SelectAccountPanel
with the transactionListAdd method of the TransactionPanel.
We set the parameter as the fixed string “Transaction History”
to display an initial string in the TransactionList choice bean.

❑ We connect the bankAccountThis property of the SelectAc-
countPanel with the bankAccountThis property of the Trans-
actionPanel to forward the BankAccount object from the
SelectAccountPanel to the TransactionPanel.

Figure 97 shows the Reorder connections window of the SelectAc-
countPanel.

134 VisualAge for Java Enterprise

Building the ATM Application

Figure 97. SelectAccountPanel Reorder Connections Window

Connecting the TransactionPanel

The TransactionPanel displays the customer name and all data
related to the selected account (account ID, account type, account
balance). From this panel the user can switch to the previous
panel to select another account ID.

In this panel, the customer label at the top is initialized from the
customerInfo property of the CardPanel, and the account informa-
tion is initialized from the BankAccount variable. The BankAc-
count variable is already connected from the SelectAccountPanel.
We only have to implement the return switch to the SelectAc-
countPanel:

❑ We connect the CancelClicked event of the TransactionPanel
to the previous method of the CardManager variable and con-
nect the parent parameter of this connection to the this fea-
ture of the MainPanel.

Figure 98 shows the Reorder connections Window of the Transac-
tionPanel.

Figure 98. TransactionPanel Reorder Connections Window

Chapter 5. ATM Application with Data Access Builder and JDBC 135

Building the ATM Application

Sharing the Card Object

The Card object, represented by the Card variable, is instantiated
in the CardPanel and has information that the other panels need.
The PinPanel displays the card number to the user, and the Selec-
tAccountPanel need the card number to select and display all the
account IDs. In addition, the Card object contains the checkPin
method that fires the pinCheckedOk or pinCheckedNotOk event.

When the card variable validates the PIN successfully, it
switches the ATM application to the SelectAccountPanel and
selects all the account IDs related to the card number:

❑ We connect the cardNumber property of the Card variable
with the queryAccountIdManagerParam1 property of the
SelectAccountPanel.

❑ We connect the pinCheckedOk event of the Card variable with
the queryAccountIdManagerSelect method of the SelectAc-
countPanel.

❑ We connect the pinCheckedOk event of the Card variable with
the next method of the CardManager variable and connect the
parent parameter of this connection to the this feature of the
MainPanel.

Before switching from the PinPanel to the SelectAccountPanel, we
have to initialize the pinFieldText feature of the PinPanel for data
entry:

❑ We connect the pinCheckedOk event of the Card variable to
pinFieldText property of the PinPanel and set the parameter
to an empty string.

If the PIN validation is not successful, the ATM application dis-
plays an error message to the user and resets the PIN entry field:

❑ We connect the pinCheckedNotOk event of the Card variable
with the messageText property of the PinPanel and pass the
constant string “Pin not valid. Please, try again.”

❑ We connect the pinCheckedNotOk event of the Card variable
with the pinFieldText property of the PinPanel and set the
parameter to an empty string.

Figure 99 shows the Reorder connections window for the Card
variable.

136 VisualAge for Java Enterprise

Running the ATM Application

Figure 99. Card Variable Reorder Connections Window

Database Connection

To complete the ATM applet, we have to connect to and disconnect
from the database. The database connection is the first operation
that the applet has to perform when it starts, and the database
disconnection is the last operation before the applet is destroyed.
An error message is displayed if an error occurs during the data-
base connection.

❑ We connect the init event of the ATMApplet with the connect
method of Connection (the data store bean) and pass the user
ID and password as parameters.

❑ We connect the exceptionOccurred event of this connection
with the showException method of Error and pass the event
data (open the connection and select the check box).

❑ We connect the destroy event of the ATMApplet with the dis-
connect method of Connection.

Running the ATM Application

Now we are ready to run the applet and play with the sample
data. Hopefully it will work!

© Copyright IBM Corp. 1998 137

6
Remote Method
Invocation and
RMI Access
Builder

RMI is the feature in Java that enables you to create distributed
applications. In this chapter we explain what RMI is and how it is
supported by VisualAge for Java. After we look at the big picture,
we go into the details of its implementation in Java and build a
simple RMI application.

In the second part of the chapter, we explain how VisualAge for
Java Enterprise supports the use of RMI with the RMI Access
Builder. We explain the concept of the RMI Access Builder and
create a simple bank account applet.

138 VisualAge for Java Enterprise

Overview

Overview

In “Database Application Architectures” on page 34 we introduced
two-tier and three-tier architectures, and, using JDBC, we have
created applications that can access either a local or a remote
database. First, we used a stand-alone or two-tier architecture as
shown in Figure 100.

Figure 100. Two-Tier Architecture

A two-tier architecture requires that all functions are performed
and all data is accessed on the client, which then becomes a so-
called fat client. If we want to deploy an application over the Inter-
net or intranet, fat clients are not exactly what we are looking for.

One approach of shifting some processing to a server is to use a
three-tier architecture and the JDBC generic network protocol
driver (see page 43). All database requests are routed from the cli-
ent (applet) to a JDBC server connected to the DBMS client. In
such a design, all SQL is executed in the DBMS client and server.
The client application has to set up SQL statements and process
the results of SQL execution. All SQL data is communicated to the
DBMS client (Figure 101).

Figure 101. Three-Tier Architecture with JDBC Network Protocol Driver

To minimize the size of the applet, reduce network communica-
tion, and shift all SQL setup and processing to the second (middle)
tier, we need a different approach. We want to send tiny applets
over the network, instead of full-blown applications labeled as
applets.

Data storeApplication DBMS

 Client

Server

 Server
DBMS Data store

App.
DBMS
Client

Client

JDBC
ServerJD

BC
Driv

er

Chapter 6. Remote Method Invocation and RMI Access Builder 139

Overview

We have to divide the application into a thin client and a server
part. The server part processes all data access and sends only con-
solidated result objects to the thin client. The client handles the
presentation (GUI), validates input data, and communicates
requests to the application server.

Such a design makes it possible to spread the application over
multiple platforms, such as desktop PCs, departmental servers,
and enterprise host systems (Figure 102).

Figure 102. Three-Tier Architecture with Client/Server Application

Having said that, we have to think about how the thin client is
going to talk to its server counterpart. One implementation is
RMI, a Java-based client/server protocol.

Using RMI for Distributed Processing

To create object-oriented, distributed client/server applications,
the different parts of your application that run on different com-
puters and platforms must communicate with each other. This is
where RMI comes into play.

Basically you have three ways of implementing distributed pro-
cessing:

1. Create your own communication interface to some underlying
protocol (APPC, TCP/IP).

2. Buy an Object Request Broker (ORB).

3. Use Java’s RMI.

You might consider creating your own communication interface if
you are thinking of a rather small application, with clearly defined
and limited communication needs between the different parts of
the application. You also might consider that solution, if avoiding
any type of overhead is an issue. However, you will have to put a
lot of effort into a nonapplication area to build the interface, and
any changes (application, platform, or communication) will
require major effort to keep the application running.

 Server
DBMS Data store

Application DBMS
Client

Client

Server

140 VisualAge for Java Enterprise

Overview

Buying an ORB would work if you use different programming lan-
guages, on different platforms, or if you are building an enter-
prise-wide solution.

RMI enables you to implement communication between remote
objects in a pure Java environment. As you will see, Java provides
all the necessary classes and interfaces to send messages from one
object to another, even if these objects run in different computers.

How Does RMI Work?

From a conceptual point of view, RMI enables a Java application
to call a remote Java object as if it were on the local machine.
While, from an application point of view, one object invokes a
method in another object, RMI provides the necessary services to
locate the remote object, route the method call with all its parame-
ters through TCP/IP to the server, invoke the method on the
server object, and pass back the return object along the same path
(Figure 103).

Figure 103. RMI Conceptual View

Squeezing Objects through a Network

RMI sends objects over the network. As TCP/IP is not aware of
objects and knows only bits and bytes, objects have to be converted
into a stream of bytes. This is not too difficult as long as these
objects are simple data types, such as numbers or strings. In fact,
simple data types have been transmitted before in a feature
known as remote procedure call (RPC).

Client

Client RMI
System

Server RMI
System

Server

TCP/IP

Application
View

Chapter 6. Remote Method Invocation and RMI Access Builder 141

Overview

RPC lets you call programs on remote computers and transforms
parameters and return values into bytes and vice versa. In an
object-oriented environment, however, things get a little more
complicated. We want to send objects, which may have properties
that reference yet more objects, ending in a graph of referenced
objects. We call converting such a graph of objects into a stream of
bytes and restoring it at the target location, respectively, serializa-
tion and deserialization. If an object (or a graph of objects) is writ-
ten to or read from a buffer, this process of serialization and
deserialization is often referred to as marshaling and demarshal-
ing.

RMI enables the marshaling and demarshaling of objects. How-
ever, each object that is meant to use these services must ensure
that its state information can be transformed into a byte stream.
Therefore, the definition of the object’s class or of one of its super-
classes has to include the java.io.Serializable interface. This inter-
face has no methods defined; it just indicates that the objects of
the class can be handled by the readObject() and writeObject()
methods of the I/O stream classes. If a class implements serializa-
tion, all values of the instance variable of that class have to be
serializable. Therefore if an instance variable points to another
object, the class of that object has to be serializable too. Java’s
basic data types are serializable, as are all classes representing
basic data types (for example, java.lang.Integer), and arrays and
vectors.

If you want to exclude an instance variable from serialization, you
mark it with the transient keyword. A variable marked as tran-
sient will not be written to the output stream, and on deserializa-
tion a value is not assigned to the variable. In the context of RMI
this might be useful if you want an object to be passed as a param-
eter but do not need or want to pass the entire graph of referenced
objects over the network.

RMI Architecture

RMI calls are handled by different layers until they eventually are
communicated from the client to the server, where they cross the
same number of layers until they arrive at the server object.

Figure 104 illustrates the RMI architecture.

142 VisualAge for Java Enterprise

Overview

Figure 104. RMI Architecture

Stub and Skeleton

The stub and skeleton classes are the interfaces between the
application layer and the rest of the RMI system. The stub resides
on the client and marshals the arguments, triggers the call to the
remote object by calling the remote reference layer (RRL), and
unmarshals return objects and exceptions.

The skeleton on the server side is responsible for unmarshaling
the arguments, calling the server object, and marshaling the
return objects and the exceptions.

Remote Reference Layer

The RRL has a client and a server component. It is responsible for
maintaining a reference protocol between the components that is
independent of a specific stub or skeleton. It keeps references and
reconnects if a connection is lost.

Transport Layer

The transport layer creates and monitors the connections on
behalf of the RRL. It establishes socket connections and passes the
connections to the RRL. It also listens for incoming calls and sets
up connections for them.

RMI Client

Stub

Remote

Transport Layer

RMI Server

Skeleton

Reference Layer
Remote

Reference Layer

Transport Layer

Chapter 6. Remote Method Invocation and RMI Access Builder 143

Overview

Tools

JDK 1.1 includes two RMI tools, the RMI compiler and the RMI
registry.

RMI Compiler

The RMI compiler is used after the classes and interfaces to be dis-
tributed are compiled. It generates the stub and skeleton classes
you need for communication. To invoke the RMI compiler, use the
rmic command with the fully qualified class or interface name as a
parameter. For example, if you have a class named MyRmiObject
in the myRmiPackage package, the following command generates
MyRmiObject_Stub.class and MyRmiObject_Skel.class:

rmic myRmiPackage.MyRmiObject

The stub and skeleton classes are then used to finish the applica-
tion on both the client and server side.

RMI Registry

The RMI registry is a program that provides naming lookup ser-
vices at run time. It must be running before an RMI server object
can be instantiated. A server object has to register itself with the
RMI registry to be accessible from clients.

To start the registry program, use this command:

start rmiregistry (Windows)
start rmiregst (OS/2)

RMI Development Process

The development process for an RMI application, including regis-
tration of the server and lookup in the client, are best explained
with a simple example.

The development process consists of the following steps (Figure
105):

❑ Define the public interface of the server (1).

The public interface of the server defines the methods that can
be invoked from the client through RMI.

144 VisualAge for Java Enterprise

Overview

❑ Write the server implementation (2).

The server class implements the methods defined in the public
interface of the server. In addition, the server class uses spe-
cial RMI coding to set up a security manager and to register
the server with the RMI registry.

❑ Compile the server interface and the server classes with the
Java compiler (3).

❑ Run the RMI compiler on the compiled server class to create
stub and skeleton classes(4).

❑ Write and compile the client logic (5).

The client logic uses special RMI coding to look up the server
by name and get a reference to a local proxy object (the stub)
that represents the server object. It can then use the public
server methods through the local proxy object.

Figure 105. RMI Development Process

ServerClient Logic Server Interface

calls

SampClient.class SampServer.class SampServerIf.class

Java

SampClient.java SampServer.java SampServerIf.java

SampServer_stub.class SampServer_skel.class

RMI
Compiler

Stub Skeleton

2 1

3 35

5

4

implements

Implementation

Java CompilerCompiler

Chapter 6. Remote Method Invocation and RMI Access Builder 145

Overview

Special Coding

Both server and client classes require some special code to make
the RMI connection work:

❑ The server interface definition must be a subclass of
java.rmi.Remote:

public interface ServerInterface extends Remote

❑ Every public server method can throw the java.rmi.RemoteEx-
ception:

public returnType methodName(...parms...) throws RemoteException

❑ The server class must be a subclass of java.rmi.server.Remote-
Server; typically a subclass of java.rmi.server.UnicastRemo-
teObject is used:

public class ServerClass extends UnicastRemoteObject
implements ServerInterface

❑ The server class must set up a security manager:

System.setSecurityManager(new RMISecurityManager());

❑ The server class must register with the RMI registry:

serverInstance = new ServerClass(); // constructor
Naming.bind("rmi:///ServerName",(Remote)serverInstance);

The server registers under a user-defined name, ServerName,
with the java.rmi.Naming class.

❑ The client class must set up a security manager:

System.setSecurityManager(new RMISecurityManager());

❑ The client class must look up the server on the remote
machine to get a reference to a proxy object for invoking the
remote methods:

urlstring = "rmi://serverHostname/ServerName"
serverObject=(ServerClassInterface)Naming.lookup(urlstring);

The client must know the TCP/IP host name of the server
machine, serverHostname, and the name under which the
server registered, ServerName. After calling the lookup
method of the java.rmi.Naming class, the client can invoke the
public methods of the server, using the server proxy object
returned:

value = serverObject.methodName(...parms...)

146 VisualAge for Java Enterprise

Overview

Execution Environment

Figure 106 shows the RMI execution environment and the
sequence of operations.

Figure 106. RMI Execution Environment

The sequence of operations to run an RMI application is:

❑ Start the RMI registry on the server machine (1).

❑ Start the server application (2), which sets up a security man-
ager (3) and registers itself with the RMI registry (4).

❑ Start the client application or applet (5), which sets up a secu-
rity manager (6) and uses the RMI registry on the remote
machine to look up the server (7).

❑ The client can now use a local object to invoke methods
through the stub and skeleton on the server object (8). Result
objects of such calls are routed back to the client object (9).

&OLHQW PDFKLQH 6HUYHU PDFKLQH

Stub Skeleton

RMI Registry Server
Interface

4

2

7

6

8

8

8 9

3

1

5

9

9

ServerClient

Security
Manager

Security
Manager

Register
Server

Lookup
Server

Chapter 6. Remote Method Invocation and RMI Access Builder 147

Native RMI Example

Native RMI Example

To review the RMI development process and execution environ-
ment, and to understand more about RMI coding, let us look at a
simple, native RMI application.

We create an RMI server that concatenates an input string with
its reverse string and returns the concatenated string to the caller.
We use the Java package RMINative to implement this example.

Public Interface of the Server

The public interface of the server defines the methods that can be
invoked from the client. For our example the interface defines the
reverseAppend method:

/* RMINative\SampServerIf.java */
package RMINative;
import java.rmi.*;
public interface SampServerIf extends Remote
{
public abstract String reverseAppend(String str)

throws RemoteException;
}

Every public method can throw the RemoteException if the com-
munication breaks down, for example.

Server Implementation

Let us look at the server code in small pieces. The server must be a
subclass of a remote object and has to implement the public inter-
face:

/* RMINative\SampServer.java */
package RMINative;
import java.rmi.*;
import java.rmi.server.*;
public class SampServer extends UnicastRemoteObject

implements RMINative.SampServerIf
{

The main method has to set up a security manager, instantiate
the server object with the default constructor, and register the
server object with the registry under a name (Reverser) that will
be used by the client:

public static void main(String args[])
{

RMINative.SampServer reverserObject = null;
try
{
System.out.println("Setting up the Security Manager ...");

148 VisualAge for Java Enterprise

Native RMI Example

System.setSecurityManager(new RMISecurityManager());
System.out.println("Publishing the \"Reverser\" object:

rmi:///Reverser");
reverserObject = new RMINative.SampServer();
Naming.rebind("rmi:///Reverser",(Remote)reverserObject);
System.out.println("Reverser server is ready ...");

}
catch (Exception e)
{
System.out.println("Exception "+e+" caught: \n"+e.getMessage());

}
return;

}

The constructor allocates the server object:

public SampServer() throws RemoteException
{
super();
return;

}

The reverseAppend method is called by the client through the stub
and the skeleton. It can use other methods to perform the work:

public String reverseAppend(String str) throws RemoteException
{

String result = null;
try
{
System.out.println("Client "+getClientHost()+" says: "+str);
result = performWork(str);
return result;

}
catch (Exception e)
{
System.out.println("Exception "+e+" caught: \n"+e.getMessage());
return "Error";

}
}

The performWork method is a private method that does the actual
job of constructing the result string:

private String performWork(String in)
{

StringBuffer buf;
buf = (new StringBuffer(in)).reverse();
return in+":"+(new String(buf));

}
} // end of class

Note how an RMI server is registered:

Naming.rebind("rmi:///Reverser",(Remote)reverserObject);

Chapter 6. Remote Method Invocation and RMI Access Builder 149

Native RMI Example

The general format of an RMI server URL is:

rmi://hostname/ServerName

where hostname is the TCP/IP host name or address of the server
machine. This format will be used in the client to find the server
object.

Stub and Skeleton

After compiling both the public interface of the server and the
server implementation, we run the RMI compiler to create the
stub and skeleton classes:

javac SampServerIf.java
javac SampServer.java
rmic RMINative.SampServer

Note that we must give the complete qualified name of the server
class. The RMI compiler creates:

SampServer_Stub.class
SampServer_Skel.class

Client Logic

Now we can write and compile the client. The client class has no
special coding:

/* RMINative\SampClient.java */
package RMINative;
import java.rmi.*;
import java.io.*;
public class SampClient
{

In the main method we prepare all the local variables. The TCP/IP
host name of the server defaults to an empty string for the local
system, or it can be given as the only parameter when starting the
client:

public static void main(String args[])
{

RMINative.SampServerIf reverserObject = null;
BufferedReader infile = new BufferedReader(

new InputStreamReader(System.in));
String hostname = "";
String urlstring;
String userinput;
String result;
if (args.length == 1) { hostname = args[0]; };

150 VisualAge for Java Enterprise

Native RMI Example

We construct the RMI server URL, using the host name of the
server machine and the known server name, register a security
manager, and look up the client from the remote registry:

urlstring = "rmi://"+hostname+"/Reverser";
if (hostname == "") hostname = "(local)"; // for the message
try

{
System.out.println("Registering the Security Manager ...");
System.setSecurityManager(new RMISecurityManager());
System.out.println("Looking up the Reverser on "+hostname+

"... Please Wait !");
reverserObject= (RMINative.SampServerIf)Naming.lookup

(urlstring);

The lookup method creates a local proxy object that represents the
server. We can invoke the public methods on the server object as if
the server were on the local client machine:

do {
System.out.println("What should I say to the server ?

(or type: end)");
userinput = infile.readLine();
System.out.println(" - calling server: "+userinput);
result = reverserObject.reverseAppend(userinput);
System.out.println(" - server replied: "+result);

} while (!userinput.equals("end"));
}

Exceptions must be handled in case of communication, URL, or
I/O problems:

catch (RemoteException e1)
{System.out.println("Something is wrong with the RMI connection!");
System.out.println("Exception "+e1+" caught: \n"+e1.getMessage());}

catch (java.net.MalformedURLException e2)
{System.out.println("The URL is not valid: "+urlstring);
System.out.println("Exception "+e2+" caught: \n"+e2.getMessage());}

catch (Exception e3)
{System.out.println("Exception "+e3+" caught: \n"+e3.getMessage());}

System.out.println("End of RMI Client\n");
return;

}

The constructor allocates an object of the client class:

private SampClient() { return; } // constructor

} // end of class

Chapter 6. Remote Method Invocation and RMI Access Builder 151

Native RMI Example

Run the RMI Application

To run the native RMI application on a single machine, make sure
that:

❑ The RMINative package directory is a subdirectory in the
CLASSPATH

❑ The TCP/IP loopback interface has been configured

Start the registry process and the server and start the client when
the server is ready:

start rmiregistry (rmiregst on OS/2)
start java SampServer
pause (wait for the server ready message)
java SampClient

To run the native RMI application in a client/server configuration,
make sure that all the code is available on both systems in a sub-
directory of CLASSPATH. Start the registry and the server appli-
cation on the server machine and, when ready, start the client
application with the host name of the server as a parameter:

server: start rmiregistry (rmiregst on OS/2)
start java SampServer

client: java SampClient serverhostname

Stop the RMI Application

Stop the client program by entering end as user input. Stop the
server and the registry processes, using the Ctrl-C key combina-
tion in their respective windows.

More on Native RMI

For a detailed description of how to create native Java RMI appli-
cations, visit the following Web site:

http://java.sun.com/products/jdk/1.1/docs/guide/rmi

152 VisualAge for Java Enterprise

RMI with VisualAge for Java

RMI with VisualAge for Java

Using RMI to create a distributed application involves a number
of administrative tasks and tends to pollute application code with
RMI-specific code that is scattered over the application. Another
drawback of RMI is its lack of support of events. The VisualAge for
Java Enterprise RMI Access Builder solves these problems. It lets
you take advantage of RMI without forcing you to care too much
about what is going on under the covers.

RMI Access Builder

The RMI Access Builder generates distribution code from an exist-
ing server class (usually a Java bean) to support the distribution
of your application using RMI. The generated code includes a cli-
ent-side proxy bean that can be used in the Visual Composition
Editor as if the server were a local object.

The RMI Access Builder has the following advantages:

❑ A SmartGuide leads you through the process of creating all
classes and interfaces needed to distribute your application.

❑ Your existing server class is not changed during this process
and is not aware of any aspect of the distribution. All defini-
tions and tasks related to distribution are in a generated RMI
server class that wraps the server bean.

❑ Event services, which are not available in native RMI, are
available in the RMI Access Builder. An event fired by the cli-
ent object is propagated to the server, and an event fired on
the server is passed to the client.

❑ A Remote Object Instance Manager on the server provides a
GUI for administrative tasks of managing the server objects.

You find the classes providing the RMI Access Builder support in
the COM.ibm.ivj.eab.rmi.client and COM.ibm.ivj.eab.rmi.server
packages.

Development Process
The development process is quite simplified with the RMI Access
Builder because many of the required classes and interfaces are
generated automatically (Figure 107).

Chapter 6. Remote Method Invocation and RMI Access Builder 153

RMI with VisualAge for Java

Figure 107. Development Process with RMI Access Builder

❑ The application server (1) is developed without any special
RMI coding. All public methods are part of the RMI public
interface.

❑ The RMI Access Builder (2) generates the RMI server interface
(3) from the public methods of the application server, the
server proxy (4), and the client-side proxy bean (5) that repre-
sents the application server.

❑ The RMI Access Builder calls the RMI compiler (6) that gener-
ates the stub (7) and the skeleton (8) classes.

❑ The client application (9) is developed through the client-side
proxy (5) without any special RMI coding.

❑ The client application calls the methods of the client proxy
(10). The calls are routed through the stub and skeleton to the
server proxy (the RMI server) and from there to the applica-
tion server (dotted line).

Application ServerApplication Client

RMI Access Builder

RMI Compiler

Server

SkeletonStub

Client
Interface

Server

visual
composition

Proxy
Bean

1

2

345
6

7 8

9

10

10
Proxy

call

154 VisualAge for Java Enterprise

RMI with VisualAge for Java

Of all the generated classes, only two are really interesting for a
developer:

❑ The server proxy (4) is the actual RMI server. It includes the
RMI code to set up a security manager, register itself with the
RMI registry, and start the application server.

❑ The client proxy bean (5) is the class that stands in for the
server bean. It is used to develop an applet or application by
coding methods or by using the Visual Composition Editor.
The client proxy bean includes the RMI code to set up a secu-
rity manager and look up the server.

Created Classes and Interfaces

The RMI Access Builder takes as input an existing application
server class. You specify the name of the generated client proxy
bean; all other class names are derived from that.

The classes and interfaces generated by the RMI Access Builder
appear in the following list (we have specified MyProxy as the
name of the client proxy bean):

MyProxy: The name of the client proxy bean.

MyProxyBeanInfo: This BeanInfo class contains information
about the client proxy bean interface. Note that the client proxy is
a real Java bean that can be used in the Visual Composition Editor.

MyProxyS: The server proxy, that is, the actual RMI server class

MyProxyIf: This class defines the public interface of the server
object. It encapsulates the public methods of the server object. The
class is required by the RMI services; it is one of the supporting
classes needed by the server and client proxies.

MyProxy_ListenerInterfaceRmiIf: For each event class that
the server object supports, a corresponding interface class is
generated, for example, MyProxyChangedListenerRmiIf. This
interface supports the transmission of events from the server proxy
to the client proxy. The number of interfaces generated depends on
the number of event listeners involved with the client-side and
server-side server proxies. The application does not have to use this
interface directly.

MyProxyS_Stub: This is the RMI stub class generated by the
RMI compiler from the server proxy class. The stub class works
with the RMI services to communicate client requests to the server.

Chapter 6. Remote Method Invocation and RMI Access Builder 155

RMI with VisualAge for Java

MyProxyS_Skel: This is the RMI skeleton class generated by the
RMI compiler from the server proxy class.

MyProxy_Stub and MyProxy_Skel: These are RMI stub and
skeleton classes generated by the RMI compiler from the client
proxy class. They are needed to enable the server object to call back
to the client. They are generated only if the server object produces
events and has event listener registration methods. You do not
have to use these classes directly, but they must be included when
the application is deployed.

RMI Execution Environment with VisualAge for Java

Let us now draw the big picture to figure out how the server
object, the generated beans, and the components provided by Visu-
alAge for Java work together. First we take a look at the server
side (Figure 108).

Figure 108. RMI Server Execution Environment

Remote
Object
Instance
Manager

Server Object

Server Interface

Server Proxy

Server Proxy Skel

RMI
Access
Builder
Run Time

RMI
Registry

Java
Support RMI

Services
Transport
Support

Web Server

Java
Daemon
Process

Instantiate

Server
Machine

client

156 VisualAge for Java Enterprise

RMI with VisualAge for Java

VisualAge for Java provides a Java Daemon process that starts
the Remote Object Instance Manager.

The Remote Object Instance Manager starts the server proxy,
which is responsible for instantiating the application server object
and for registering itself with the RMI registry.

Calls from the client are delivered by TCP/IP to Java’s Transport
Support, passed through RMI Services to the server proxy skele-
ton object and to the server proxy. From there the original method
in the server object is called, and the return value is passed back
the same way.

Figure 109 shows the client machine.

Figure 109. RMI Client Execution Environment

Client Application

Server Interface

Client Proxy

Server Proxy Stub

RMI
Access
Builder
Run Time

Java
Support RMI

Services
Transport
Support

GUI

Instantiate

RMI

Client Machine

Browser Environment

Registry

Applet

server

Chapter 6. Remote Method Invocation and RMI Access Builder 157

RMI with VisualAge for Java

On the client side we have the applet that was downloaded from
the Web server. According to the current Java security restric-
tions, the RMI server objects must run on the same machine from
which the applet is downloaded.

Somewhere in the applet’s code the client proxy is instantiated.
The client proxy is responsible for locating the server proxy, using
the RMI registry on the server machine. The client proxy forwards
local method invocations to the server through the stub class, RMI
services, and transport support.

Using the RMI Access Builder

Before we move on to our masterpiece, the ATM application, we
create a simple applet to guide you through the steps from an ordi-
nary application to a distributed application.

Create the Server

We use a much simplified account class as the bean to go distrib-
uted. The account has nothing but a balance property, a deposit
method and a withdraw method. We create a new package called
RmiPrimer. In this package we create an RmiAccount bean:

❑ We create a new bean in RmiPrimer called RmiAccount.

❑ We go to the BeanInfo page and add
• A balance property of type double
• A void deposit(double amount) method
• A void withdraw(double amount) method

❑ We go to the methods page and code the methods:

public void deposit(double amount) {
setBalance(getBalance() + amount);

}

public void withdraw(double amount) {
setBalance(getBalance() - amount);

}

Create an Applet

Now we create a small account applet to work with the account
bean:

❑ We create a new applet bean called RmiAccountApplet

❑ We add two buttons labeled Deposit and Withdraw

❑ We add two labels, Balance and Amount.

158 VisualAge for Java Enterprise

RMI with VisualAge for Java

❑ We add a label to display the balance, and an entry field for
the amount.

❑ We add an RmiAccount bean to the free-form surface and con-
nect its features to the applet’s panel.

The applet should resemble that in Figure 110 and use the beans
as indicated in Figure 111.

Figure 110. Account Applet before Distribution

Figure 111. Beans List of Account Applet

We should be able to deposit, withdraw, and see the updated bal-
ance when running this applet.

Generate Proxy Bean

We now start the Create Proxy Bean SmartGuide by selecting
Tools -> Remote Bean Access -> Create Proxy Beans from the Rmi-
Account context menu:

Chapter 6. Remote Method Invocation and RMI Access Builder 159

RMI with VisualAge for Java

Figure 112. Start Create Proxy Bean SmartGuide

In the SmartGuide window (Figure 113) we define the name of the
proxy bean as RmiAccountProxy. This name will be used as the
prefix for the name of all generated beans.

The other entry fields define the source of the generation process
and are already set to the correct values.

In this window we also find three checkboxes to indicate what we
want the RMI Access Builder to generate.

❑ If we want to remotely access inherited methods, we select the
Include inherited methods in the proxy interface check box. We
do not need this in our example.

❑ If we want to generate RMI stub and skeleton classes from the
generated proxy classes, we ensure that the Create RMI stub
and skeleton for generated classes check box is selected. If this
check box is not selected, we must manually run the RMI com-

160 VisualAge for Java Enterprise

RMI with VisualAge for Java

piler against the server-side server proxy, and possibly against
the client-side server proxy, to create the stub and skeleton
classes required by the RMI run time. For this reason, we rec-
ommend that you always select this check box when generat-
ing a proxy bean.

❑ If we want to instantiate the generated server object, we select
the Instantiate server object check box. This starts both the
RMI registry and the Remote Object Instance Manager. We do
not check this box—we consider the manual process in “Run
the RMI Applet” on page 163.

Figure 113. Create Proxy Bean SmartGuide

Now we click on Finish to begin generating the proxy bean and
associated classes and interfaces.

Once the generation process has finished, our package has grown
considerably, as you see in Figure 114:

❑ RmiAccountProxy is the client-side proxy we will use in our
applet. It has an associated BeanInfo class that describes the
bean.

❑ RmiAccountProxyS is the RMI server that implements the
RmiAccountProxyIf interface.

For a description of the generated beans, refer to “Created Classes
and Interfaces” on page 154.

Chapter 6. Remote Method Invocation and RMI Access Builder 161

RMI with VisualAge for Java

Figure 114. Generated RMI Beans

Let us investigate the RmiAccountProxyIf, that is, the public
interface of the server. It includes these methods:

getBalance()
setBalance(double)
deposit(double)
withdraw(double)
addPropertyChangeListener(RmiAccountProxyPropertyChangeListenerRmiIf)
removePropertyChangeListener(RmiAccountProxyPropertyChangeListenerRmiIf)

Changes in the balance property of the server are propagated to
each client proxy through the propertyChange event (actually the
subclass RmiAccountProxyjava_beans_PropertyChangeEvent).
This is why there is also a set of stub and skeleton classes gener-
ated from the client proxy.

Now we are ready to use the beans in our applet.

Connect the Client with the Server

In the RmiAccountApplet we can now use the new RmiAccount-
Proxy bean exactly the same way we used the original Rmi-
Account. So we just add the new bean and redirect all connections
to and from the RmiAccount to and from the RmiAccountProxy
instead. Then we remove the old account bean (Figure 115).

162 VisualAge for Java Enterprise

RMI with VisualAge for Java

Figure 115. AccountApplet after Distribution

The changed applet looks identical to the applet we started with
(Figure 110 on page 158).

Finally we have to set the Properties of the proxy bean to enable
the connection to the server (Figure 116).

Figure 116. Properties of the RmiAccountBean

We have to set the Server Host IP Name and the RMI Registry
Port Number. We use localhost as the host name because we run
the client and server on one machine, and -1 as the port number
(1099 is the default port number if -1 is specified).

Note that we also set the parent component property here with the
value {this}. This setting is necessary because the proxy bean will
be loaded with the applet and will set up the security manager.
Expect to see exceptions if the parent component is not set to the
applet.

The Trace value can be set to True to get a console trace of all RMI
interactions between the client and the server.

Chapter 6. Remote Method Invocation and RMI Access Builder 163

RMI with VisualAge for Java

Run the RMI Applet

Before we can actually start the applet, the server bean has to be
instantiated and registered with the running RMI registry.

To start the RMI registry, select Options from the Workspace
menu and go to the RMI page (Figure 117).

If we select the Start RMI registry on VisualAge startup check box,
the RMI registry will start every time VisualAge for Java is
started from now on. If we select the Default port number radio
button, port 1099 will be used. If we change it to another port
number, we have to change the properties of the proxy bean
accordingly.

For a single RMI test we can also start the registry by using the
Restart RMI Registry push button.

Figure 117. The RMI Options Page

Once we have started the registry, we have to create an instance
of our server object.

We select the RmiAccountBeanS class—the generated RMI server
class, not the original RmiAccount—and on the context menu we
select Tools -> Remote Bean Access -> Instantiate Bean in Server.

164 VisualAge for Java Enterprise

RMI with VisualAge for Java

The first time we invoke this function the Remote Object Instance
Manager is started first, which takes quite some time (Figure
118).

In the lower part of its window a message eventually appears indi-
cating that the bean has been instantiated. Only after that, can
the client applet be run.

In the upper part of the window we find statistical information
about the number of server objects and RMI calls. If these statis-
tics do not show the numbers we expect, we use the refresh option
of the View menu as the statistics are not refreshed automatically.

We also suggest selecting Show Call Trace in the View menu to get
a trace of all RMI interactions.

Figure 118. The Remote Object Instance Manager

Now we start the RmiAccountApplet—it should work as it did
before the distribution.

If we start the applet twice, we can have two instances of the
applet running and see from the balance displayed that both
applets access the same server bean. A deposit from one applet
shows up immediately in both applet windows. The property-
Change event propagates any changes in the server bean’s balance
to all the clients (applets) that are connected to the server.

Chapter 6. Remote Method Invocation and RMI Access Builder 165

RMI with VisualAge for Java

Stop the Server

When the applet has finished, we stop the server in the Remote
Object Instance Manager by selecting Remove Server Object in the
Manager pull-down.

RMI Problems and Hints

If your applet does not run as smoothly as described above (ours
did not), here are some hints:

❑ The first time you access the server it may take quite a long
time, even more than 20 seconds. This is normal for the first
RMI call on a local machine; subsequent calls work much
faster.

❑ You can speed up RMI if you set up TCP/IP such that host
names are resolved locally instead of looking them up on a
name server. If you set up your TCP/IP to run in loopback
mode, do not define domain name server (DNS) entries, or cre-
ate a HOSTS file that maps host names to TCP/IP addresses.

❑ To ensure that all raised exceptions are displayed in the con-
sole window, remove the // in the comment lines in the handle-
Exception method of the applet generated by VisualAge for
Java:

private void handleException(Throwable exception) {
/* Uncomment the following lines to print uncaught exceptions */
// System.out.println("--------- UNCAUGHT EXCEPTION ---------");
// exception.printStackTrace(System.out);

}

❑ If your applet does not work as expected, turn on the trace
property of the client proxy bean. The console window will
show a trace of the RMI calls:

IVJ0205I: RmiPrimer.RmiAccountProxy: Debug trace is set on.
IVJ0204I: RmiPrimer.RmiAccountProxy: Looking up an RMI object

RmiPrimer.RmiAccountProxy.
IVJ0206I: RmiPrimer.RmiAccountProxy: Invoking remote method:

public synchronized void addPropertyChangeListener(...).
IVJ0206I: RmiPrimer.RmiAccountProxy: Invoking remote method:

public double RmiPrimer.RmiAccount.getBalance().
IVJ0206I: RmiPrimer.RmiAccountProxy: Invoking remote method:

public void RmiPrimer.RmiAccount.deposit(double).
IVJ0206I: RmiPrimer.RmiAccountProxy: Invoking remote method:

public double RmiPrimer.RmiAccount.getBalance().
IVJ0206I: RmiPrimer.RmiAccountProxy: Invoking remote method:

public void RmiPrimer.RmiAccount.withdraw(double).
IVJ0206I: RmiPrimer.RmiAccountProxy: Invoking remote method:

public double RmiPrimer.RmiAccount.getBalance().

❑ To debug server activity, start the server trace as well (View
menu). Sample output in the Remote Object Instance Manager
looks like this:

166 VisualAge for Java Enterprise

RMI with VisualAge for Java

IVJ0255I: Invoking RMI object -> RmiPrimer.RmiAccountProxy
IVJ0256I: RMI object (RmiPrimer.RmiAccountProxy) completed successfully

❑ The Security Manager already set error message indicates that
the parent component of the client proxy is not properly set to
be the applet. If you decide to set up the property through a
visual connection, and the message appears anyway, you have
a problem with the sequence in which the beans and their con-
nections are initialized. Because this sequence is determined
by methods created by VisualAge, you have to overrule the
sequence by opening the property window of the client proxy
and setting the value this directly.

❑ If you get the Error creating connection to <host:port> error
message on the first invocation, or an exception indicating
that a remote object cannot be found, you may not have set the
RMI registry port number property to the port, on which the
RMI registry is actually running on.

❑ If you get the AppletSecurityException: checkconnect.
networkhost1 error message when you are running the applet
in the VisualAge for Java applet viewer, the reason might be in
the settings of the applet viewer. Select Properties in the
Applet menu and set Network access to Applet Host or Unre-
stricted.

Running an RMI Application outside VisualAge for Java

A real RMI application runs outside the development environ-
ment. Let us see how we export the applet and the server from
VisualAge for Java to run stand-alone.

Export of Application Code

Select the RmiPrimer package and select Export in the File pull-
down. Export the class files into a directory that is in CLASS-
PATH and create the package subdirectory.

In our case the d:\java directory is in CLASSPATH, and export
creates the subdirectory RmiPrimer with all the class files.

Start the Registry and the Server

In a DOS (or OS/2) window we start the RMI registry and the Java
daemon provided by VisualAge for Java:

start rmiregistry (start rmiregst in OS/2)
java COM.ibm.ivj.eab.rmi.javad.javad

Chapter 6. Remote Method Invocation and RMI Access Builder 167

RMI with VisualAge for Java

The Java daemon starts the Remote Object Instance Manager.
Select Instantiate Server Object and By Name in the Manager pull-
down. Enter the name of the server as RmiPrimer.RmiAccount-
ProxyS to start the server.

Run the Applet

To start the applet we need an HTML file (RmiAccount.htm):

<APPLET code=RmiPrimer.RmiAccountApplet.class width=300 height=300>
</APPLET>

Start the applet, using the JDK applet viewer:

appletviewer RmiAccount.htm

If the applet does not connect properly to the server, review the
settings (select Properties in the Applet menu) and make sure that
network access is set to Applet Host or Unrestricted.

Note that we cannot run the applet from another machine because
we set the server host name to localhost.

Stop the applet and stop the server from the Remote Object
Instance Manager window.

Before You Use RMI to Build a Distributed Application

To complete the description of RMI with VisualAge for Java, we
discuss the design considerations and limitations you should be
aware of if you are going to use RMI to build an application. Most
of the issues originate from Java’s RMI Services and not from the
RMI Access Builder of VisualAge for Java.

Design Considerations

When designing RMI applications you need to consider the design
of both local and remote classes and understand how parameters
are passed from client to server:

❑ In general, server objects may reside as instances on different
server machines. However, because of security constraints
imposed by the Java RMI protocol, an applet can only access
server objects running on the host from which the applet code
is downloaded.

❑ Local objects are passed by copy to the server object. In a non-
distribution application, objects are passed by reference in
method invocations. The RMI run time only supports the pass-
ing of local objects by copy. When returning an object, the RMI

168 VisualAge for Java Enterprise

RMI with VisualAge for Java

run time creates a copy of the object on the client machine.
Therefore those client programs that depend on objects being
passed by reference will have to be modified. More specifically:
Changes made by the server object on a parameter will not be
visible to the client unless the server object method returns
the modified object to the client. Client programs should not
use the “==” operator to check equality between a local object
and an object returned from the server object. Instead, pro-
grams should use the equals() method. Note that RMI remote
objects are passed by reference. An RMI remote object is an
object that implements the remote interface and had RMI
stubs generated for it. Client-side server proxies are also
passed by reference.

❑ Objects passed as parameters to the server must be serializ-
able. The RMI run time uses serialization to send parameters
from the client program to the server. For this reason, any
objects passed as parameters in a method invocation must
implement the Serializable interface.

❑ System exceptions will be converted to IVJRException. Excep-
tions other than those thrown by the user will be converted to
IVJRException. Any RemoteException will also be converted
to IVJRException.

❑ Static methods defined in the server bean are encapsulated as
nonstatic methods. Because the server bean must be instanti-
ated before any client call is made, static methods on the
server bean are provided for client invocation as nonstatic
methods. You must make provisions to instantiate the client
proxy before invoking methods in the server bean that were
originally static.

❑ The library required by the Java native call must be accessible
to the Remote Object Instance Manager process. The server
bean runs in the Remote Object Instance Manager process
space and any DLL required because of the use of native calls
in the server bean must be accessible to the Remote Object
Instance Manager process. You must set the PATH environ-
ment variable accordingly.

❑ The RMI registry must be started again when there is a
change in the public interface of the server object. A change in
the server bean's public interface means that the proxy bean
will be regenerated. As a result of regeneration, new stub and
skeleton classes are created, and the RMI registry must be
restarted to pick up the new definitions. For additional infor-
mation about the RMI registry, see the Sun Javasoft Website.

❑ The Remote Object Instance Manager may need to be
restarted when there is a change in the implementation of the
server bean. When running outside the Workbench, changes in
the server bean's class object may not be picked up by the

Chapter 6. Remote Method Invocation and RMI Access Builder 169

RMI with VisualAge for Java

Remote Object Instance Manager. This may be true even if you
use the Remote Object Instance Manager to remove and then
reinstantiate the server object. It appears that the class loader
will not reload a class until the process is restarted. To over-
come this problem, you can end the Remote Object Instance
Manager and then restart it with the new implementation of
the server bean.

Limitations

Here is a list of limitations you need to be aware of when imple-
menting RMI applications:

❑ Server objects must be instantiated by using a default con-
structor. If properties must be set on the server object after
instantiation, public methods must be defined in the server
object to set these properties. Alternatively, the server object
can be serialized to a file. The Remote Object Instance Man-
ager will use this file to instantiate the server bean.

❑ Server objects must be instantiated before the client is run.

❑ Potential deadlock exists when a GUI client creates a modal
dialog in an event action routine for an event that originates
from the server object.

❑ Event listener action routine method signatures must be
unique across all event listener interfaces referred to by the
server bean. If the server bean generates several events, the
method signatures of the event listener interfaces must not be
repeated.

❑ Event listener action routines with more than one argument
are not supported in the BeanInfo classes.

170 VisualAge for Java Enterprise

RMI with VisualAge for Java

© Copyright IBM Corp. 1998 171

7
ATM Application
with RMI

In Chapter 6, “Remote Method Invocation and RMI Access
Builder” we explained the power of the RMI Access Builder, and
constructed a sample distributed application that used the beans
generated by the tool.

In this chapter we draw on that experience to use RMI to distrib-
ute the ATM application. We cover some design issues and explain
some more features of the RMI Access Builder.

172 VisualAge for Java Enterprise

Design for Distribution

Design for Distribution

When we developed the first ATM application, using Data Access
Builder with JDBC, we took a prototyping approach, without car-
ing too much about design issues. When we think of creating dis-
tributed applications, we have to think about how to distribute the
application, and we have to design for distribution from the begin-
ning.

Most likely the applet will run in a Web browser on a client, access
to the database will be on a server, and the actual database might
be in yet another computer, such as an enterprise server. There-
fore, the first step is to review the object model, restructure and
expand it, and make some design decisions.

Application Layers

One prerequisite for distributed applications—and for maintain-
able applications in general—is a layered architecture that
assigns responsibility for certain services to an appropriate appli-
cation layer. These responsibilities are similar to an object model,
where we assign responsibilities to each object.

First we want to separate the GUI part of the application from the
core business objects. All business logic and application knowledge
should be modeled in the business objects that we identified at an
early stage of development (Figure 77 on page 100).

The GUI objects, however, are responsible for handling all user
interactions and for presenting business objects in a nice format to
users. Whenever information from the business objects is
required, or an action is triggered by a user, the respective service
from the business objects is called.

This separation is quite obvious in the ATM application. If the
ATM application evolves over time to a real application, it is
unlikely that there will be a Web browser in the bank’s teller
machine. Therefore, it is necessary to replace the current user
interface with another one but still keep all of the business logic
that is modeled in the business objects.

We also want to separate the data access from the rest of the
application. Neither the GUI nor the business objects should be
aware of the details about where the persistent data is stored.
This separation makes it possible to have the core of the applica-
tion unchanged, even if we move from one database system to
another, distribute the application by using RMI, or use other ser-
vices such as a transaction system to access the enterprise data.

Chapter 7. ATM Application with RMI 173

Design for Distribution

Application Layer Architecture

We end up with three layers for the ATM application as shown in
Figure 119.

Figure 119. Layers of the ATM Application

Figure 119 also shows a cross-layer called the controller. The con-
troller is necessary to connect the layers. Basically there are three
ways of connecting the layers. The important principle is that
there be a crisp interface among the layers.

Here are the three basic ways of connecting the layers:

❑ Each object has all the knowledge required to access other
objects across the borders. This approach looks very appealing
at first sight but can become quite cumbersome because
changes at one point might affect multiple classes. Therefore,
this approach is only feasible for small applications.

❑ A framework provides the necessary interfaces and underlying
services. The application objects just connect to the frame-
work, by either inheritance or delegation. This is a great
approach if such a framework is available. However, the cre-
ation of a framework is difficult and requires another
approach and different skills from those required for an appli-
cation development project.

❑ The interfaces are modeled in objects that have some knowl-
edge of both sides. Such objects are often called mediators.
This approach has the advantage that we have only one place
to update, if the interface of a layer or subsystem changes. The
downside, of course, is a somewhat longer path for the mes-
sages.

View Layer (GUI)

Business Object Layer

System Service Layer

Applet, Panel, List, Push button, ...

Account, Transaction, Customer, ...

Data store, data access bean, RMI beans, ...

C
o

n
tr

o
ll

er

174 VisualAge for Java Enterprise

Design for Distribution

We decided to use mediator objects in the ATM application; these
objects are part of the controller layer. We explain their responsi-
bilities when we describe the beans in more detail.

The most encapsulated layer is the business object layer. Business
objects are not aware of the existence of the view layer, and they
have limited knowledge of the data access classes. The view layer
classes use the business objects but have no connection to the sys-
tem service layer. The system service layer knows about the busi-
ness objects, but not about the view layer.

We now give you a description of the beans in these layers.
Because you are already familiar with the Java language and the
VisualAge for Java development environment, we just list the fea-
tures of the beans in tables, as in Table 11. We do not list the gen-
erated beans or features, and we also omit the getter and setter
methods. Along with the table we give some general information
on the layers and beans, where we think it is worthwhile.

Business Object Layer

The beans in the business object layer are similar to those in the
preliminary object model (Figure 77 on page 100). However, we
made some minor changes, as shown in Figure 120.

If you compare the two models, you see two main differences:

❑ To concur with the requirements we had to introduce a rela-
tionship between Card and Customer. This change reflects the
fact that the cardholder does not have to be identical to the
owner of the related account. (This change had to be reflected
in the database as well.)

❑ We removed all information about foreign keys as they are
redundant because they are already modeled through rela-
tions.

Table 11. Bean Feature Table

Property Type Remarks
Property name Type/class referenced Any helpful information

Method Return type Parameters Remarks
Signature Type, class,

void
Type and
identifier

Any helpful informa-
tion

Event Event Interface Remarks
Event name Method to implement by

listener
Method where and condition
when event is thrown

Chapter 7. ATM Application with RMI 175

Design for Distribution

Figure 120. Object Model of the ATM Business Objects

Below we discuss the design and implementation details of the
classes in the object model of the ATM business objects. We use a
package named RmiModel.

BankAccount

BankAccount (Table 12) is an abstract class. The concrete classes
are CheckingAccount and SavingAccount.

 Customer

title
firstName
lastName

BankAccount

accountId

deposit
withdraw

SavingsAccount CheckingAccount

overdraft

Transaction

transId
transType

transAmount

minAmount

balance

Card
card number

pinCard
checkPin

oldBalance

withdraw withdraw

getAccountType

customerId

getNameString

validFor
holds

has has

Table 12. BankAccount Features

Property Type Remarks
accountId String Key in the database

accountType String Abstract, read only

balance BigDecimal

oldBalance BigDecimal

customer BankCustomer Customer (account owner)

transactions Vector Vector of transactions

176 VisualAge for Java Enterprise

Design for Distribution

CheckingAccount

CheckingAccount (Table 13) is a subclass of BankAccount and
therefore inherits all of its properties. In addition it has an over-
draft property, which is the maximum amount the account is
allowed to be overdrawn. If the customer attempts to withdraw an
amount that exceeds this limit, a LimitExceededEvent is fired.

SavingsAccount

SavingsAccount (Table 14) is a subclass of BankAccount. It has an
additional minAmount property, which is the minimum amount of
the account’s balance. If the customer attempts to withdraw an
amount that would leave a balance below the limit, a LimitEx-
ceededEvent is fired.

Method Return Type Parameters Remarks
deposit void String amount Calls deposit

 (BigDecimal)

deposit void BigDecimal
 amount

Updates balance and
creates new transac-
tion (private)

withdraw boolean String amount Calls withdraw
 (BigDecimal)

withdraw boolean BigDecimal
 amount

Abstract; imple-
mented in subclasses

Event Event Interface Remarks
limitExceeded handleLimitExceeded Thrown by withdraw if there

are not enough funds

Table 13. CheckingAccount Features

Property Type Remarks
overdraft BigDecimal

Method Return Type Parameters Remarks
getAccountType String Returns

 “Checking Account”

withdraw boolean
 (1 = OK)

BigDecimal
 amount

Can fire
 limitExceededEvent

Chapter 7. ATM Application with RMI 177

Design for Distribution

Card

The Card class can validate a PIN and knows the holder (cus-
tomer) and the accounts associated with the card.

Customer

From the ATM application’s point of view, there is hardly a reason
for having a Customer class. We created one anyway to complete
the model (Table 16).

Table 14. SavingAccount Features

Property Type Remarks
minAmount BigDecimal

Method Return Type Parameters Remarks
getAccountType String Returns

 “Savings Account”

withdraw boolean
 (1 = OK)

BigDecimal
 amount

Can fire
 LimitExceededEvent

Table 15. Card Features

Property Type Remarks
accounts Vector Vector of BankAccount

cardNumber String Database key

customer BankCustomer Customer (card holder)

pinCard String PIN code

Method Return Type Parameters Remarks
checkPin void String

 pinEntered
Fires pinCheckedOk or
pinCheckedNotOk
event

getAccount BankAccount int index Gets the account at
position index of the
accounts vector

getCustomerText String Calls the customer’s
getNameString
method

Event Event Interface Remarks
pinCheckedOk handlePinCheckedOK Thrown by checkPin if

correct PIN entered

pinCheckedNotOk handlePinCheckedNotOK Thrown by checkPin if
incorrect PIN entered

178 VisualAge for Java Enterprise

Design for Distribution

Transaction

In the ATM application the Transaction objects are no more than
a container of transaction data. Once they are created they are
just there for reporting (Table 17).

Testing the Business Objects

After the beans (classes) for the business objects are created, they
are ready for testing. If we ensure now that every bean performs
the task for which it is responsible, and the beans interact prop-
erly, it is easier to locate problems—if there are problems—as we
add the other layers.

To test the business objects we use the Scrapbook window, the
console, and inspectors. We can support the testing task some-
what if we save test scripts for the various test cases as either files
or methods. This approach can be helpful when we have to do
regression testing.

Table 16. Customer Features

Property Type Remarks
customerId String Customer identification

firstName String

lastName String

title String

accounts BankAccount Not used, get from Card

Method Return Type Parameters Remarks
getNameString String Returns a formatted

String with title, first
and last name

Table 17. Transaction Features

Property Type Remarks
accountId String Account number

transAmount BigDecimal

transId Timestamp Database key

transType String Indicates whether it is a
debit or credit transaction

Method Return Type Parameters Remarks
setupDaxTrans void Trans

 daxTransaction
Creates a new transac-
tion object for JDBC

Chapter 7. ATM Application with RMI 179

Design for Distribution

We also implemented a toString method in each bean; it displays
some of the attributes and is very handy for testing with the
Scrapbook.

System Service Layer

Now that we know that the business objects are working, we can
move on and create the beans for database access. You will see
that there will be only minor changes to the business objects once
we add the other layers.

Before we start, some preliminary remarks:

❑ We have in our application the ideal simple situation that one
class matches one table in the database. Because this is often
not the case in real-life projects, we suggest that you create
views in your database system that hide joins from the appli-
cations.

❑ We also decided to keep all of the logic in the application, even
if SQL had the capability to do more, for example, update the
account only if the balance has changed.

Given the above remarks, and after revisiting the requirements
(see “ATM Application Requirements” on page 18), we have the
following task list for the application:

1. Retrieve the data for a Card and a BankCustomer, represent-
ing the holder of that card, based on the cardid (card number)
from the CARD and CUSTOMER tables.

2. Retrieve data for all accounts based on a cardid from the
ACCOUNT table.

3. Update the balance property for an account in the ACCOUNT
table.

4. Retrieve a row from the ACCOUNT table with given values for
accid (account number) and balance.

5. Retrieve a row from the ACCOUNT table for an accid.

6. Retrieve all transactions from the TRANS table for an
account.

7. Insert a row for a new transaction into the TRANS table.

Creating the Data Access Beans

First we create a new package called RmiDax for the data access
beans, then we use Data Access Builder to map the four ATM
tables.

180 VisualAge for Java Enterprise

Design for Distribution

We start Data Access Builder for the RmiDax package by selecting
Tools -> DataAccess -> Create Data Access Beans from the pop-up
menu. We select all four ATM tables in the SmartGuide and let
Data Access Builder generate the schema mappings (Figure 121).

Figure 121. Data Access Builder Mappings for RMI ATM Application

Tailoring the Data Access Beans

We customize the mappings by adding user-defined SQL state-
ments to implement the actions necessary for the ATM applica-
tion.

Account

We tailor the account mapping by removing unnecessary methods
and adding the extra SQL statements:

❑ In the Methods window (select Methods... from the pop-up
menu) we hide the add and delete methods because they are
not used in the application; the retrieve method retrieves a
row from the account table (requirement 5).

❑ To update the balance property (requirement 3), we add a
method called updateBalance with this SQL statement:

update ACCOUNT set BALANCE = ? where ACCID = ?

After validating the SQL statement, we change the parameter
names to balance and accId and save the new method with
OK.

❑ To retrieve a row with given account ID and balance (require-
ment 4), we add a checkBalance method with this SQL state-
ment:

select count(*) from ACCOUNT where ACCID = ? and BALANCE = ?

Chapter 7. ATM Application with RMI 181

Design for Distribution

We change the parameter names to accId and balance, and the
result parameter to count, click on OK, and close the Methods
window. The method that will be created might not be what
you expect; it is a class method, and the result has to be passed
as an array parameter in the call to the method. Here is the
signature:

public static void checkBalance(String accountIdC,
BigDecimal balanceC, int resultC[])

throws DAException

❑ To retrieve all of the accounts for one ATM card (requirement
2), we select Manager - Methods... in the pop-up to open the
AccountManager Methods window and add a method called
getAccountsForCard with this SQL predicate:

where T1.CARDID = ?

We validate the SQL and change the name of the parameter to
cardId.

Card and Customer

We only need the retrieve method (requirement 1), so we can hide
the add and delete methods in the Methods window to avoid over-
head.

Trans

To add a new transaction, we use the add method (requirement 7).
To retrieve all the transaction of an account (requirement 6), we
add a new manager method (select Manager methods... in the pop-
up menu) with the following SQL predicate:

where T1.ACCID = ?

We name the method getTransactionsForAccount and change the
parameter name to accId.

Driver and Database Location

To select the correct DB2 JDBC driver and to specify the database
location, we open the Properties window of each bean (select Prop-
erties in the pop-up menu) and in the Access page set:

Driver: COM.ibm.db2.jdbc.net.DB2Driver
URL: jdbc:db2://localhost:8888/ATM

We must use the net driver when running under VisualAge for
Java, and for testing on a single machine we set the host name to
localhost. We always use port 8888 for the samples in this docu-
ment.

182 VisualAge for Java Enterprise

Design for Distribution

Generating the Beans

Now we let the Data Access Builder do its work and select Save
and Generate All from the File menu. The RmiDax package
becomes populated with the data access beans.

We also get the default visual beans and the access application
generated, but we will create our own GUI and have no need for
them.

Initialize Business Objects from Data Access Beans

The data access beans can be viewed as object wrappers around
database or result table rows. We assign the responsibility to map
the data from the database row to the property fields of the busi-
ness object beans to the business object. Therefore, we add a con-
structor to each business object that takes a Data Access Builder
persistent object as input and initializes the properties of the busi-
ness object.

BankAccount

public BankAccount (RmiDax.Account daxAccount) {
setAccountId(daxAccount.getAccid());
setBalance(daxAccount.getBalance());
setOldBalance(daxAccount.getBalance());

}

CheckingAccount

public CheckingAccount (RmiDax.Account daxAccount) {
super(daxAccount);
setOverdraft(daxAccount.getOverdraf());

}

SavingsAccount

public SavingsAccount (RmiDax.Account daxAccount) {
super(daxAccount);
setMinAmount(daxAccount.getMinamt());

}

Customer

public Customer (RmiDax.Customer daxCustomer) {
setCustomerId(daxCustomer.getCustid());
setFirstName(daxCustomer.getFname());
setLastName(daxCustomer.getLname());
setTitle(daxCustomer.getTitle());

}

Chapter 7. ATM Application with RMI 183

Design for Distribution

Card

public Card (RmiDax.Card daxCard) {
setCardNumber(daxCard.getCardid());
setPinCard(daxCard.getPin());

}

Transaction

public Transaction (String accountid, String transtype,
java.math.BigDecimal amount) {

setAccountId(accountid);
setTransType(transtype);
setTransAmount(amount);
setTransId(new java.sql.Timestamp(System.currentTimeMillis()));

}

When adding a tailored constructor, we make sure that each bean
also has a default constructor without any parameter.

Creating Transaction Data Access Beans from Business Objects

Transactions are the only database objects created in our applica-
tion. Therefore the transaction object also gets a setupDaxTrans
method to initialize a persistent object from the business object.

public void setupDaxTrans (RmiDax.Trans daxTransaction) {
daxTransaction.setAccid(getAccountId());
daxTransaction.setTransid(getTransId());
daxTransaction.setTranstype(getTransType());
daxTransaction.setTransamt(getTransAmount());
return;

}

Connecting the Layers

The next step is to connect the layers.

184 VisualAge for Java Enterprise

Design for Distribution

Data Access Classes for Business Objects

First we create a class (in the RmiModel package) for each busi-
ness object that provides a well-defined interface to the rest of the
application. We call these classes CustomerDB, CardDB,
AccountDB, and TransactionDB (Figure 122).

Figure 122. Data Access Classes for Business Objects

We explain these beans in the sections that follow, along with
additional information that is not obvious from the picture.

For testing purposes we create these classes visually, as sub-
classes of Panel. Then we add the public methods to use the
classes in a nonvisual way. All of the data access beans throw a
DAException if something goes wrong during a database access.
Therefore, when invoking a database access method, we always
connect the exceptionOccured event to the handleException
method of the bean, passing the event data as a parameter.

The application uses the public methods to perform the database
functions. For clarity, we used the prefix ext for these methods, for
example, extGetCustomer.

Chapter 7. ATM Application with RMI 185

Design for Distribution

Customer Access Class

The CustomerDB class retrieves a customer row for a given cus-
tomer ID from the database and constructs the business object
(Figure 123).

Figure 123. Visual Composition of CustomerDB Panel

Beans:

❑ DaxCustomer is of type RmiDax.Customer; its objectsDatas-
tore property is promoted as datastore.

❑ newCustomer is a factory bean of type BankCustomer; its this
property is promoted as newCustomer.

❑ The text property of the text field labeled Customer ID is pro-
moted as customerId.

Connections:

❑ From the getCustomer button to setCustid of DaxCustomer,
the text of the customer Id field is passed as a parameter (1).

❑ From the getCustomer button to retrieve of DaxCustomer (2).

❑ The normalResult is connected to the Customer(RmiDax.Cus-
tomer) constructor of the customer factory, with the DaxCus-
tomer this property as a parameter (3).

❑ The exceptionOccurred is connected to the handleException
method and sets the customer ID to “bad” (4).

Public Method:

❑ The extGetCustomer method performs the action of the push
button, using Java coding:

public RmiModel.Customer extGetCustomer(String customerId) {
getDaxCustomer().setCustid(customerId);
try { getDaxCustomer().retrieve(); }
catch (Exception e) { handleException(e); }
return new RmiModel.Customer(getDaxCustomer());

}

1

2

3

4

4

186 VisualAge for Java Enterprise

Design for Distribution

Card Access Class

The CardDB class retrieves a card row for a given card ID from
the database and constructs the business object (Figure 124).

Figure 124. Visual Composition of CardDB Panel

Beans:

❑ DaxCard is of type RmiDax.Card; its objectsDatastore prop-
erty is promoted as datastore, and custid as daxCustid.

❑ newCard is a factory of type Card, its this property is pro-
moted as newCard.

❑ The text property of the text field labeled Card ID is promoted
as CardId.

Connections:

❑ From the getCard button to setCardid of DaxCard, the text of
the card Id field is passed as a parameter (1).

❑ From the getCard button to retrieve of DaxCard (2).

❑ The normalResult is connected to the Card(RmiDax.Card) con-
structor of the card factory, with the DaxCard this property as
a parameter (3).

❑ The exceptionOccurred is connected to the handleException
method and sets the card ID to “bad” (4).

Public Method:

❑ The extGetCard method performs the action of the push but-
ton, using Java coding:

public RmiModel.Card extGetCard (String cardId) {
getDaxCard().setCardid(cardId);
try { getDaxCard().retrieve(); }
catch (COM.ibm.ivj.eab.data.DAException e1) { return null; }
catch (Exception e2) { handleException(e2); }
return new RmiModel.Card(getDaxCard());

}

1

2

34

Chapter 7. ATM Application with RMI 187

Design for Distribution

Account Access Class

The AccountDB class retrieves all bank accounts for a given card
ID or one bank account for a given account ID or updates the bal-
ance property of an account (Figure 125).

Figure 125. Visual Composition of AccountDB Panel

Beans:

❑ DaxAccountManager is of type RmiDax.AccountManager; its
objectsDatastore property is promoted as datastore.

❑ DaxAccount is of type RmiDax.Account.

❑ Accounts is a variable of type Vector and is promoted as
accounts.

❑ aBankAccount is a variable of type BankAccount and is pro-
moted as aBankAccount.

❑ The text property of the text field labeled Card ID is promoted
as accountCardId.

Connections:

❑ From the getAccounts button to selectGetAccountsForCard of
DaxAccountManager, the text of the Card Id field is passed as
a parameter (1).

1

2

3

4

5

6

188 VisualAge for Java Enterprise

Design for Distribution

❑ From the selectComplete event of DaxAccountManager to the
extCreateAccounts method (to create the accounts vector) and
to the setAccountId method with a null string (2).

❑ From the selectComplete event of DaxAccountManager to this
of aBankAccount, getting the parameter from the elemen-
tAt(0) method of the accounts vector (3).

❑ From the getAccount button to setAccid of DaxAccount with
the account ID as a parameter and to retrieve of DaxAccount
(4).

❑ From the updateBalance button to updateBalance of DaxAc-
count, accountId and balance of aBankAccount are passed as
parameters (5).

❑ From the objectsDatastore property of DaxAccountManager to
objectsDatastore of DaxAccount (6).

Public Methods:

❑ The extGetAccounts method retrieves all accounts for a given
card ID, calls the private extCreateAccounts method, and
stores the accounts vector into the card bean that is passed as
an argument:

public void extGetAccounts (RmiModel.Card card) {
try {getDaxAccountManager().selectGetAccountsForCard

(card.getCardNumber(), null);
extCreateAccounts();
card.setAccounts(getAccounts()); }

catch (Exception e) { handleException(e); }
}

❑ The extUpdateBalance method updates the account row with
the new balance:

public void extUpdateBalance (RmiModel.BankAccount account) {
try { getDaxAccount().updateBalance

(account.getBalance(), account.getAccountId()); }
catch (Exception e) { handleException(e); }

}

❑ The extCheckBalance method checks whether the database
has the same balance stored as the business object:

public boolean extCheckBalance (RmiModel.BankAccount account) {
int result[] = new int[1];
try { getDaxAccount().checkBalance(

account.getAccountId(), account.getBalance(), result); }
catch (Exception e) { handleException(e); }
return (1 == result[0]);
}

Chapter 7. ATM Application with RMI 189

Design for Distribution

❑ The extGetAccount method retrieves one account row for a
given account ID, calls the private extCreateAccount method,
and returns the business object created:

public RmiModel.BankAccount extGetAccount (String accountId) {
try {getDaxAccount().setAccid(accountId);

getDaxAccount().retrieve(); }
catch (Exception e) { handleException(e); }
return extCreateAccount(getDaxAccount());

}

Private Methods:

❑ The extCreateAccounts method creates the accounts vector
from the DaxAccount items retrieved by the DaxAccount Man-
ager:

private void extCreateAccounts () {
COM.ibm.ivj.javabeans.IVector accountRows =

getDaxAccountManager().items();
java.util.Vector accountVector = new java.util.Vector();
for (int row = 0; row < accountRows.size(); row++) {

RmiModel.BankAccount newAccount = extCreateAccount
((RmiDax.Account)accountRows.elementAt(row));

accountVector.addElement(newAccount);
}
setAccounts(accountVector);

}

❑ The extCreateAccount method creates a checking or savings
account from an account row:

private RmiModel.BankAccount extCreateAccount
(RmiDax.Account accountRow) {

RmiModel.BankAccount newAccount;
if (accountRow.getAcctype().trim().equalsIgnoreCase("C"))

newAccount = new RmiModel.CheckingAccount(accountRow);
else newAccount = new RmiModel.SavingsAccount(accountRow);
return newAccount;

}

190 VisualAge for Java Enterprise

Design for Distribution

Transaction Access Class

The TransactionDB class retrieves all transactions for a given
account or adds a new transaction to the database (Figure 126).

Figure 126. Visual Composition of TransactionDB Panel

Beans:

❑ DaxTrans is of type RmiDax.Trans.

❑ DaxTransManager is of type RmiDax.TransManager; its
objectsDatastore property is promoted as datastore.

❑ Transactions is a variable of type Vector and is promoted as
transactions.

❑ aTransaction is a variable of type Transaction.

❑ The text property of the text field labeled Account ID is pro-
moted as transactionAccountId.

Connections:

❑ From the getTransactions button to selectGetTransactionsFo-
rAccount of DaxTransManager, the text of the account ID field
is passed as a parameter (1).

❑ From the selectComplete event of DaxTransManager to the
extCreateTransactions method (2).

❑ From the addTransaction button to setupDaxTrans of aTrans-
action, the this of DaxTrans is passed as a parameter (3).

❑ From the addTransaction button to add of DaxTrans (4).

1

2

3

4

5

Chapter 7. ATM Application with RMI 191

Design for Distribution

❑ From the objectsDatastore property of DaxTransManager to
objectsDatastore of DaxTrans (5).

Public Methods:

❑ The extGetTransactions method retrieves all transactions for
an account and calls the private extCreateTransactions
method to create a vector of business objects:

public java.util.Vector extGetTransactions
(RmiModel.BankAccount account) {

try { getDaxTransactionManager().selectGetTransactionsForAccount
(account.getAccountId(), null); }

catch (Exception e) { handleException(e); }
extCreateTransactions();
return getTransactions();

}

❑ The extAddTransaction method creates the DaxTransaction
object from a transaction business object and adds it to the
database:

public void extAddTransaction (RmiModel.Transaction transaction) {
transaction.setupDaxTrans(getDaxTransaction());
try { getDaxTransaction().add(); }
catch (Exception e) { handleException(e); }

}

Private Method:

❑ The extCreateTransactions method creates a vector of trans-
actions objects from the rows retrieved by the DaxTransMan-
ager:

private void extCreateTransactions () {
COM.ibm.ivj.javabeans.IVector transRows =

getDaxTransactionManager().items();
java.util.Vector transVector = new java.util.Vector();
for (int row = 0; row < transRows.size(); row++) {

transVector.addElement (new RmiModel.Transaction
((RmiDax.Trans)transRows.elementAt(row)));

}
setTransactions(transVector);

}

192 VisualAge for Java Enterprise

Design for Distribution

ATM Service Bean

Now we can put the parts of the puzzle together and create a bean
that delivers all services concerning the ATM database. We call
this bean AtmDB (Figure 127).

Figure 127. The AtmDB Bean

Because we want to use the bean for testing, we create it as an
applet, and we drop the four database beans we just created onto
the main panel of AtmDB.

All variable beans on the free-form surface (Figure 128) are cre-
ated by using the Tear-Off Property... function against one of the
data access beans.

Chapter 7. ATM Application with RMI 193

Design for Distribution

Figure 128. AtmDB Visual Composition

The important new bean is the one labeled ATMDatastore (1).
Data Access Builder created a datastore bean for each table, for
example, CardDatastore and CustomerDatastore. Because our
tables all reside in the same database, we drop one of these datas-
tore beans on the free-form surface and name it ATMDatastore.

The datastore bean is responsible for the connection to the data-
base and for providing the appropriate database driver. Therefore
we set the driver and URL value in the beans property, if we did
not set them before generating the beans in Data Access Builder.
For our environment the name of the driver is
COM.ibm.db2.jdbc.net.DB2Driver and the URL or our database is
jdbc:db2://localhost:8888/ATM.

To ensure that our application is connected to the database, we
draw a connection from the applets init event to the connect
method of the ATMDatastore (2). This method expects password
and username as parameters. For the time being we add these as
constants “userid” and “password” by using the Set parameters
function in the Connections Properties window. We also catch the
exceptionOccurred event and display the event in a message box
(3). We also connect the applet’s destroy event to the disconnect
method (4).

1

2

3
5

5
5

6

6

6

4

5

194 VisualAge for Java Enterprise

Design for Distribution

Finally we have to ensure that our database access beans can
actually access the database. Remember that we promoted the
datastore property in all of our data access beans. Now we connect
the this property of the ATMDatastore to the datastore property
in each of the four subpanels (5).

The remaining connections (6) are used to test the database
access; we assume you can figure out how to do that. (We connect
the promoted card ID fields from the card panel to the customer
and account panels, and we connect the account ID from the
account panel to the transaction panel.)

The main purpose of this part, however, is to be the single entry
point for all services of our application that need access to the
database. The GUI part of this bean is only for some basic testing
of database access.

To make the AtmDB bean a real service bean, we have several
simple methods:

❑ The extConnect methods initializes the applet, for example it
connects to the database:

public void extConnect () {
init();

return;
}

❑ The extDisconnect method calls the applet’s destroy method.

❑ The extGetCard method creates the card and customer objects
from the database, connects the customer to the card, and
returns the card:

public RmiModel.Card extGetCard (String cardid) {
RmiModel.Card card = getCardDB().extGetCard(cardid);
if (card != null) {

String custid = getCardDB().getDaxCardCustid();
RmiModel.Customer customer =

getCustomerDB().extGetCustomer(custid);
card.setCustomer(customer);

}
return card;

}

❑ The remaining methods, extGetAccounts, extGetAccount,
extUpdateBalance, extCheckBalance, extGetTransactions,
and extAddTransaction redirect the call to the same named
method of an internal bean.

Chapter 7. ATM Application with RMI 195

Design for Distribution

These methods can be created by promoting the matching
method of the internal bean (AccountDB and TransactionDB)
in the Visual Composition Editor, or they can be created man-
ually:

public void extGetAccounts(Card card) {
getAccountDB().extGetAccounts(card);

}

public BankAccount extGetAccount(String accountId) {
return getAccountDB().extGetAccount(accountId);

}

public void extUpdateBalance(BankAccount account) {
getAccountDB().extUpdateBalance(account);

}

public boolean extCheckBalance(BankAccount account) {
return getAccountDB().extCheckBalance(account);

}

public java.util.Vector extGetTransactions(BankAccount account) {
return getTransactionDB().extGetTransactions(account);

}

public void extAddTransaction(Transaction transaction) {
getTransactionDB().extAddTransaction(transaction);

}

Now our database access subsystem is complete. Once it is tested,
we do not have to touch it as long as the database remains the
same and we do not need additional services from the database.
Later, when we use RMI to distribute the database access, there
will be no side effects on this subsystem.

Controller

The next step is to create the bean, the one that glues the layers
together and will be the starting point for implementing RMI. We
call this bean ATMApplicationController, the interface between
the business model and the GUI. This bean controls what is hap-
pening inside the application, but, if we have a closer look at the
internals, we see that the controllers main task is to delegate the
work. Our model seems to be quite close to real life.

Controller Features

We create the controller bean as a subclass of Object (in the Rmi-
Model package), with the design outlined in Table 18.

196 VisualAge for Java Enterprise

Design for Distribution

To start the implementation we add the atmDB property as a
read-only property (it will never change).

Most requests are routed to the AtmDB and/or the business object
beans; however, the AtmApplicationController checks the result
where necessary and takes appropriate action. If we ever have to

Table 18. Controller Features

Property Type Remarks
atmDB AtmDB Database interface, read-

only property

Method Return Type Parameters Remarks
connect void - Initialize AtmDB and con-

nect to the ATM database

disconnect void - Destroy AtmDB and discon-
nect from the database

getCard void String cardId Construct card object from
the database, fire cardFound
or cardNotFound event

getAccounts Card Card Retrieve the accounts of the
card, construct the accounts
vector in the card, return the
card

deposit BankAccount BankAccount,
String amount,
Card

Deposit amount, update bal-
ance, create new transaction,
fire newTransaction event

withdraw BankAccount BankAccount,
String amount,
Card

Check balance against data-
base, throw DBOutOfSynch
event if unequal. Try to with-
draw amount. If OK, update
balance, create new transac-
tion, fire newTransaction
event

getTransactions BankAccount BankAccount,
Card

Retrieve all transactions,
create objects, store in
account

Event Event Interface Remarks
cardFound handleCardFound Thrown by getCard if valid

card number entered

cardNotFound handleCardNotFound Thrown by getCard if invalid
card number entered

newTransaction handleNewTransaction Thrown by deposit (always)
and withdraw (if successful)

DBOutOfSynch handleDBOutOfSynch Thrown by withdraw if bal-
ance in database different
from account object

limitExceeded handleLimitExceeded Propagated from bank
account to controller

Chapter 7. ATM Application with RMI 197

Design for Distribution

access another database, database system, or another external
system such as a transaction system, the references to these would
also be placed in the AtmApplicationController.

Controller Methods and Events

Let us review the scenario of our application and implement the
methods and events step by step in the bean:

❑ The customer enters the card number. If the number is valid,
the system prompts for the PIN; otherwise an error message
appears.

This is an easy task. We ask the AtmDB to retrieve the card,
and, depending on the result, we fire an event. In the BeanInfo
page, we add the cardFoundEvent and the cardNotFoundE-
vent event features. Then we add the getCard method feature
and write the code:

public Card getCard(String cardid) {
Card newCard = getAtmDB().extGetCard(cardid);
if (newCard != null)

{ fireHandleCardFound(new CardFoundEvent(this)); }
else

{ fireHandleCardNotFound(new CardNotFoundEvent(this)); }
return newCard;

}

❑ The PIN is validated. If it is valid, the system shows a list of
the accounts the card is authorized to access.

The PIN is validated by the card (checkPin method). The con-
troller gets a request to retrieve the accounts only if the PIN is
valid. This request is passed to the AtmDB where the accounts
are created and added to the vector of accounts inside the card.
We add the getAccounts method feature and write the code:

public Card getAccounts(Card card) {
getAtmDB().extGetAccounts(card);
return card;

}

❑ The customer selects one account; the system displays the
account details. All information is already in the account
object. No services are needed.

❑ The customer performs a deposit transaction for the selected
account.

Another easy task. The controller calls the account bean to
update itself and to create the transaction. Account and trans-
action are handed over to AtmDB to be updated or inserted.
We create a newTransaction event so that the GUI can react
and display the transaction, and we add the deposit method
feature and write the code:

198 VisualAge for Java Enterprise

Design for Distribution

public BankAccount deposit(BankAccount account, String amount,
Card card) {

account.deposit(amount);
getAtmDB().extUpdateBalance(account);
getAtmDB().extAddTransaction

((Transaction)account.getTransactions().lastElement());
fireHandleNewTransaction(new NewTransactionEvent(this));
return account;

}

❑ The customer performs a withdraw transaction for the
selected account.

For a withdrawal, The system performs two levels of checks. If
the account has been updated in the meantime, the request is
rejected and the actual state of the account is displayed. If the
overdraft or minimum balance limit of the account would be
reached because of the withdrawal, the request is rejected;
otherwise the balance is updated and a new transaction is
added to the account history.

This implementation is a bit more complex. The manager first
checks with the AtmDB if the account’s balance on the data-
base has been changed since it was read. If this is the case, a
DBOutOfSynch event is fired and AtmDB is asked to update
the data in the account bean. If the database is still in synch,
the manager asks the account to perform the withdraw action.
If the withdraw was successful, the manager hands the
account and new transaction over to the AtmDB to update the
database. If the withdrawal was not allowed (the account fires
a limitExceeded event and returns false), we propagate the
event, and the manager returns the account unchanged.

We define the DBOutOfSynch event, add the withdraw
method feature, and write the code:

public BankAccount withdraw(BankAccount account, String amount,
Card card) {

//........
if (getAtmDB().extCheckBalance(account) == false) {

java.math.BigDecimal oldBal = account.getOldBalance();
account = getAtmDB().extGetAccount(account.getAccountId());
account.setOldBalance(oldBal);
fireHandleDBOutOfSynch(new RmiModel.DBOutOfSynchEvent(this));

}
else

withdrawPerform(account, amount, card);
return account;

}

WithdrawPerform is a private method to execute the withdraw
of funds:

Chapter 7. ATM Application with RMI 199

Design for Distribution

private BankAccount withdrawPerform(BankAccount account, String amount,
Card card) {

boolean ok = account.withdraw(amount);
if (ok) {

getAtmDB().extUpdateBalance(account);
getAtmDB().extAddTransaction

((Transaction)account.getTransactions().lastElement());
fireHandleNewTransaction(new NewTransactionEvent(this));

}
return account;

}

❑ The customer might want to look at the transaction history.

The system retrieves all transactions of the account and stores
them in the vector property. For this we add the getTransac-
tions method feature and write the code:

public BankAccount getTransactions(BankAccount account, Card card) {
account.setTransactions(getAtmDB().extGetTransactions(account));
return account;

}

All the above functions require a connection to the ATM database.
The controller implements a connect method that passes the
request to the AtmDB bean. We add a connect and a disconnect
method feature to the bean and write the code:

public void connect () {
getAtmDB().extConnect();

}
public void disconnect () {

getAtmDB().extDisconnect();
}

Now the AtmApplicationController bean is ready. You might won-
der why we pass the card along to most methods, even if it is not
used. The reason is a last minute request by the project sponsor to
be able at a later point in time to validate the card on the server in
every step.

Event Propagation

Our master plan is to move the controller to a server in the future.
In “Review the Events” on page 214, we explain that only events
that are fired in the server bean itself are propagated back to the
client proxy bean.

The limitExceeded event is fired by the BankAccount bean but
must be propagated to the client. Therefore, we have to define the
limitExceeded event as a feature of the controller as well, and
have to fire the event when it occurs in the withdraw method of
the bank account.

200 VisualAge for Java Enterprise

Design for Distribution

Here are the steps to propagate the event:

❑ Define the limitExceeded listener feature with a handleLimit-
Exceeded method.

❑ Change the withdraw method (of the controller) to listen for
the event:

public BankAccount withdraw(BankAccount account, String amount,
Card card) {

account.addLimitExceededListener(this);
if (...)

......................
else

......................
account.removeLimitExceededListener(this);
return account;

}

❑ The controller is a listener for this event. We add the LimitEx-
ceededListener interface to the class:

public class ATMApplicationController
implements RmiModel.LimitExceededListener { ...

❑ When the limitExceeded event is fired in the bank account, it
invokes the handleLimitExceeded method in the controller. We
implement the handleLimitExceeded method to fire the event,
that is, we propagate it:

public void handleLimitExceeded(RmiModel.LimitExceededEvent event) {
fireHandleLimitExceeded

(new LimitExceededEvent(this,event.getErrorMessage()));
}

Note that we have to create a new event, because we have to
set the controller as the source of the event.

Chapter 7. ATM Application with RMI 201

Design for Distribution

External Interface

Figure 129 shows the final interfaces of the AtmApplicationCon-
troller.

Figure 129. Application Controller Interfaces

Testing the Beans

Now the controller and business parts of the system have all the
functions they need, and it is time for another test, again from the
Scrapbook window.

The following script is based on the database content as listed in
“Sample Data of ATM Tables” on page 30. It can be used to test
the different cases, just by changing the numbers and/or com-
menting out lines:

202 VisualAge for Java Enterprise

Design for Distribution

System.out.println("------------- ATM Controller Test --------------");
RmiModel.ATMApplicationController control =

new RmiModel.ATMApplicationController();

control.connect();

RmiModel.Card card = control.getCard("1111111");

control.getAccounts(card);

for (int index = 0; index < card.getAccounts().size(); index++) {
RmiModel.BankAccount account =

(RmiModel.BankAccount)card.getAccounts().elementAt(index);
System.out.println(account);
control.getTransactions(account, card);
if (account.getTransactions() != null)

System.out.println(account.getTransactions());
}

RmiModel.BankAccount myAccount =
(RmiModel.BankAccount)card.getAccounts().elementAt(0);

System.out.println(" ");
System.out.println(myAccount);

control.deposit(myAccount, "101", card);
System.out.println(myAccount);

control.withdraw(myAccount, "100", card);
System.out.println(myAccount);

control.disconnect();

The business side of the model is done. Now let us look at the user
interface.

View Layer

Now that we are sure that our core application works as
requested, we are ready to connect it to the user interface. We
reuse as much as possible from Chapter 5, “ATM Application with
Data Access Builder and JDBC” (see “User Interface Classes” on
page 115). We create the classes in a new package named RmiGui.

We have to fit in our new AtmApplicationController and change
some connections accordingly. As we touch the beans, we also
rearrange some connections to reach a higher degree of encapsula-
tion.

You remember the structure of the applet as we left it (Figure 130,
left side). We keep the structure of the main panel but remove all
of the beans from the free-from surface and replace them with
beans suited for the distributed design (Figure 130, right side).

Chapter 7. ATM Application with RMI 203

Design for Distribution

Figure 130. ATM Applet Beans List: Old and New

We discuss the beans on the main panel later. Let us first concen-
trate on the common changes on all of the subpanels:

❑ We remove all existing beans from the free-form surface.

❑ Each subpanel gets a variable bean called Controller of type
AtmApplicationController, and its this property gets promoted
as controller. This is the bean that provides the database ser-
vices.

❑ Each panel gets a variable bean called Card of type Card, and
its this property gets promoted as card. The card is used in
most calls to the controller.

❑ Each panel gets a Variable bean called LayoutManager of type
CardLayout. The layout manager is used to switch between
the four panels.

❑ Each panel gets a variable bean called Main of type Panel, and
its this property gets promoted as main. The main panel is
used in all calls to the layout manager (as parent).

Three of the four beans (controller, card, and main) are initialized
by the main panel. The layout manager is initialized on each sub-
panel (connection 0 in Figure 131):

❑ We connect the this event of the Main bean with the this prop-
erty of the LayoutManager bean and pass the layout property
of Main as parameter. When the main variable is assigned, its
layout manager property sets the layout manager bean.

Now let us have a brief look at the four subpanels.

204 VisualAge for Java Enterprise

Design for Distribution

CardPanel Class

Figure 131 shows the CardPanel.

Figure 131. Visual Composition Editor: CardPanel

We initialize the welcome message and the card number entry
field from the componentShown event of the panel (1) and request
focus in the entry field (2).

The most important connection is from the Ok button to the get-
Card method of the controller (3), with the entry field as a parame-
ter. We connect the normalResult with the this property of the
card (4); now we have a card object for the other subpanels.

We connect the cardFound event of the controller with the next
method of the layout manager and pass the this property of the
main variable as a parameter (5). All calls to the layout manager
have a parent parameter.

We connect the cardNotFound event of the controller with the
message label to display an error message (6). In this case we do
not switch to the next panel.

The Ok button also displays a “please wait” message (7), and the
Cancel button resets the entry field (8).

1

2

1

0

34

5

8

6

7

Chapter 7. ATM Application with RMI 205

Design for Distribution

PinPanel Class

Figure 132 shows the PinPanel.

Figure 132. Visual Composition Editor: PinPanel

We initialize the message and the PIN entry field from the compo-
nentShown event of the panel and request focus in the PIN field
(1).

The card bean is where all the action is. Figure 133 shows the con-
nections of the card bean. First the card bean is used to initialize
the card number and the customer text. We connect the this event
of the card (when it is created) with the text of the card number (2)
and use the cardNumber property as a parameter. We also con-
nect the this event of the card with the customer welcome message
(3) and use the getCustomerText method as a parameter. The
dashed lines connect the exceptionOccurred result with the text
labels to set them to blank.

To validate the PIN, we connect the Ok button with the checkPin
method of the card (4) and pass the PIN entered as a parameter.
This method signals either a pinCheckedNotOk or a pinChecked-
Ok event. We connect the pinCheckedNotOk event of the card
with the message (5) and display an error (the panel will not
switch).

If the PIN is valid, we have three actions. We connect the
pinCheckedOk event with the getAccounts method of the control-
ler to retrieve the accounts associated with the card (6). We pass

1

1

4

3

2

9

8

6

75

206 VisualAge for Java Enterprise

Design for Distribution

the card number as a parameter and connect the normalResult
with the this property of the card. We also connect the pinChecke-
dOk event with the next method of the layout manager to switch
to the select account panel (7), and we set the message to blank (8).

Finally, we connect the Cancel button with the previous method
of the layout manager (9) to switch back to the card panel.

Figure 133. PinPanel: Connections from Card

SelectAccountPanel Class

Figure 134 shows the SelectAccountPanel.

Figure 134. Visual Composition Editor: SelectAccountPanel

1

8
2

2

3

5

6
9

10

4

72

Chapter 7. ATM Application with RMI 207

Design for Distribution

On this panel we need an additional variable bean on the free-
form surface. The variable bean is of type BankAccount and
named SelectedAccount (1). It will hold the account selected in the
list box. Its this property is promoted as selectedAccount.

We initialize the account ID and type from the componentShown
event of the panel and disable the Ok button (2). We also initialize
the customer text from the this event of the card and get the text
by calling getCustomerText (3), exactly as we did in the PIN panel.

The first application action is to fill the list box (named AcctList)
with account numbers. We connect the componentShown event of
the panel with a new method called createAccountList (4). The
accounts are already stored in the accounts property of the card:

private void createAccountList () {
java.util.Vector accounts = getCard().getAccounts();
String[] acctNumbers = new String[accounts.size()];
for (int i = 0; i < accounts.size(); i++)

acctNumbers[i] =
((RmiModel.BankAccount)accounts.elementAt(i)).getAccountId();

getAcctList().setElements
(new COM.ibm.ivj.javabeans.IVector(acctNumbers));

}

All this happens before the panel is displayed. The customer sees
the list of accounts and selects one. This selection triggers the
itemStateChanged event of the list box. We connect this event to a
new method called selectAccount, passing the selectedIndex prop-
erty as a parameter (5), and to the Ok button to enable it (6).

The selectAccount method sets the selected account variable bean
from the account object stored in the card:

private void selectAccount (int index) {
setSelectedAccount
((RmiModel.BankAccount)getCard().getAccounts().elementAt(index));

}

Two properties of the selected account are displayed on the panel.
We connect the this event of the selected account to the account ID
label passing accountId as a parameter (7), and to the account type
label, using the getAccountType method as a parameter (8).

Finally, we connect the Ok button to the next method (9) of the
layout manager to display the transaction panel, and the Cancel
button to the first method (10) to restart at the card panel.

208 VisualAge for Java Enterprise

Design for Distribution

TransactionPanel Class

Figure 135 shows the transaction panel; it is the most complex of
the application.

Figure 135. Visual Composition Editor: TransactionPanel

The TransactionPanel has two purposes: to display the balance
information of the account, and to perform transactions against it.
To display the properties is obvious for the most part; the transac-
tions and the transaction history are a bit more demanding.

Again we need an additional variable bean of type BankAccount
(1), named BankAccount, with the this property promoted as
bankAccount. The variable bean holds the account selected in the
previous panel.

From the componentShown event of the panel we initialize the
message and amount fields, and we empty the transaction history
list box using the removeAll method. We initialize the two balance
fields with the information from the BankAccount (2). We also ini-
tialize the customer text from the this event of the card with the
getCustomerText method (3).

We display the account ID and type on the panel from the this
event of the bank account (4); exactly the same as on the previous
panel. We also propagate the balance and oldBalance events of the
bank account to the panel’s label text (5); we pass the balance or
oldBalance properties as parameters. (Note that we connect the
events of the properties so that there are no initialization calls.)

1

2
2

2

3

4

5

6

7

8

10

9

11

12

13

14

2 2

Chapter 7. ATM Application with RMI 209

Design for Distribution

Now we react to customer actions, using the push buttons. We con-
nect the Deposit button with the deposit method of the controller
(6), passing the bank account, amount field, and card as parame-
ters (7). This method returns the bank account, but we disregard it
in the local implementation.

The withdrawal of funds is handled similarly; however, it can fail
because of insufficient funds or database synchronization.

We connect the Withdraw button with the withdraw method of
the controller, passing the bank account, amount field, and card as
parameters (8). We connect the handleLimitExceeded event of the
controller with the message label (9) and select the Pass event data
check box. The limitExceeded event contains a formatted error
message that we retrieve and set as value in the Set parameters
window:

"+arg1.getErrorMessage()+"

Note: We could also connect the limitExceeded event from the
bank account bean, where it actually originates. We explain in
“Review the Events” on page 214 that you have to capture this
event at the controller bean when you move the controller to a
server.

We also connect the DBOutOfSynch event of the controller with
the message label (10) and display the text “Account data has
changed - please verify - reenter transaction.”

Both deposit and withdraw methods create new transaction
objects in the bank account. To display the new transactions we
connect the newTransaction event of the controller with a new
method called buildTransactionList (11). This method retrieves
the transactions from the account and displays them in the trans-
action history list box (named TransactionList):

private void buildTransactionList () {
getTransactionList().removeAll();
for (int i=getBankAccount().getTransactions().size()-1; i>=0; i--)

getTransactionList().addItem
(getBankAccount().getTransactions().elementAt(i).toString());

return;
}

The transaction history list box displays new transactions only,
unless the customer asks for the full history. We connect the His-
tory button with the getTransactions method of the controller,
passing the bank account and card as parameters (12), and return-
ing the bank account. This method re-creates the transactions
property in the bank account. We connect the transactions event
of the bank account with the buildTransactionList method of the
panel to display all transactions (13).

210 VisualAge for Java Enterprise

Design for Distribution

Finally, we connect the Cancel button with the previous method
and the Exit button with the first method of the layout manager
(14).

Main Panel

Now we can construct the main panel (Figure 136).

Figure 136. Visual Composition Editor: Main Panel

The main panel uses a card layout with the four subpanels in it.
We need two beans, an AtmApplicationController (1) and a vari-
able of type Card (2). (Note that the controller is not a variable.)

We open the Beans List window (Figure 130 on page 203) to
switch between the subpanels; only one is displayed at a time.

The connections on the main panel pass information between the
subpanels. We tear off the promoted selectedAccount property of
the SelectAccountPanel (3) and connect the this property of select-
edAccount with the promoted bankAccount property of the Trans-
actionPanel (4). The direction of this connection is important
because the selectedAccount variable gets initialized first.

Now we make sure to initialize the controller, card, and main
beans on all subpanels. We connect the this property of the
AtmApplicationController with the promoted controller properties
of each subpanel (5). We connect the this property of the card vari-
able with the card properties (6) and the this property of the main
panel with the main properties of the subpanels (7). These last

1
2

3

4

5

6

7

8

Chapter 7. ATM Application with RMI 211

Design for Distribution

connections are hard to draw. First display the subpanel, using
the beans list, select the main panel, and then connect from it to
the subpanel displayed inside.

Finally, we connect the applet’s init event to the connect method
and the applet’s destroy event to the disconnect method of the
AtmApplicationController (8); these connections establish and
remove the database connection.

Testing the Stand-Alone Applet

Now we are ready to run the ATMApplet in the applet viewer and
test our work.

Figure 137 shows a sample sequence of panels when the applet is
run.

First tests seldom work and there are a number of potential prob-
lems:

❑ The database connection fails. Be sure to test the AtmDB
applet, because it connects to the database.

❑ A switch to the next panel does not occur. Check that the next
method of the layout manager is connected and that the condi-
tion that triggers the next method actually occurs.

❑ Another problem that could occur is related to the sequence in
which the beans are initialized through the connections. If you
face such a problem, you often can resolve it by reviewing the
sequence in the Reorder Connections From window of the criti-
cal bean. This does not help for events of different origins. You
might want to look into the VisualAge generated methods,
such as init, initConnections, and the getter method of the crit-
ical bean. These methods enable you to add user code indi-
cated by these comment lines:

// user code begin
// user code end

By writing user code between the two comment lines you can
overrule the code sequence generated according to VisualAge’s
internal algorithm.

❑ To catch all exceptions for testing, be sure to activate the com-
mented lines in the handleException method of the applet, the
subpanels, and data access classes.

After a successful test, we suggest that you version the classes.

212 VisualAge for Java Enterprise

Design for Distribution

Figure 137. Sample Run of ATMApplet

Chapter 7. ATM Application with RMI 213

Distributed ATM Application

Distributed ATM Application

The original master plan was to distribute the ATM application
and run the controller with all database accesses on a server
machine. This might seem difficult but, if the design is right, it
should be rather smooth.

Actually, this is the easy part. Once we have a well-structured
application with crisp interfaces, adding RMI function through the
RMI Access Builder of VisualAge for Java Enterprise does not
require much effort. We now guide you through the few steps nec-
essary.

We copied the existing GUI classes into a new package named
RmiGuiD and renamed the applet to AtmRmiApplet.

Application Changes

Before attempting to run the RMI Access Builder, we have to
make a few changes to the beans and the application.

Make the Beans Serializable

First we have to ensure that our beans can be serialized to be
transmitted over the network. Every class that is a parameter or
result in a call to the controller must be serializable. To make a
class (bean) serializable, we add to the class definition:

implements java.io.Serializable

We add this to all business objects, that is, Card, Customer,
BankAccount, CheckingAccount, SavingsAccount, and Transac-
tion. Because all the properties of our beans are either basic data
types or classes that have the Serializable interface granted from
Java or are references to our business objects, this is all we have to
do as far as serialization is concerned.

Mark the Methods That Update the Bank Account As Synchronized

Because the server bean can be invoked concurrently from multi-
ple clients, we mark all the methods of the ATMApplicationCon-
troller with the synchronized keyword, so that only one client can
update an account at any time. For example, we add the synchro-
nized keyword to the deposit method:

public synchronized BankAccount deposit(BankAccount account, ...)

214 VisualAge for Java Enterprise

Distributed ATM Application

Review the Events

In a distributed environment, we have to look at three ways in
which events are handled:

❑ Events with emitter and listener on the same system

If the event is both fired and listened to on either the client or
the server side, nothing has to be done; it just works the same
as before distribution. Examples of this are the pinCheckedOk
and pinCheckNotOk events the Card fires depending on
whether the check of the PIN was successful or not.

❑ Events fired by an RMI server bean

In this case, the RMI Access Builder generates the necessary
classes, methods and interfaces to handle the events, and to
ensure that events fired by the server bean are propagated to
the client proxy and fired there as well.

In our application, the cardNotFound and DBOutOfSynch
events of the controller bean are examples of this kind of
event.

❑ Events with emitter and listener on different systems

These are the events to watch for, because they require some
intervention. We have such an event in our application: the
limitExceeded event that is fired by the BankAccount bean
when a withdraw transaction is rejected due to a violation of
the limit set for that account.

Let us look first at what happens in this case:

• The withdraw method of the controller proxy bean is
called in the applet, with the account, amount, and card as
parameters.

• The execution of the method is delegated to the server
bean, and the parameters are passed to the server.
Because RMI passes the parameters as copy, and not as
reference, we now have a clone of the account bean on the
server.

• The actual withdraw method is performed against this
clone on the server, and on completion, the account is
passed back and the state information in the originating
account bean is updated.

• If, during the processing on the server side, the bank
account fires the limitExeeded event, a listener is not reg-
istered to handle this event, and, therefore, the account
bean in the applet never fires the event.

Chapter 7. ATM Application with RMI 215

Distributed ATM Application

The way we get around this problem is by propagating the
event to the controller, that is, the controller becomes a lis-
tener, and when the event arrives, the controller fires an event
of its own.

Note: We already implemented the limitExceeded event in the
design of the controller (see “Event Propagation” on page 199).

Create the Proxy Beans

The AtmApplicationController bean is responsible for connecting
the layers or subsystems of our application. Therefore, it is only
for this bean that we have to invoke the RMI Access Builder.

We select the bean and Tools -> Remote Bean Access -> Generate
Proxy Beans to get the SmartGuide (Figure 138). We enter Atm-
DistributedController as the proxy bean name and let the RMI
Access Builder do its job.

Figure 138. Creating the ATMDistributedController Proxy Bean

If we look at the generated beans we find:

❑ AtmDistributedController, the client proxy

❑ AtmDistributedControllerS, the RMI server bean

❑ The client side skeletons and stubs

❑ The server side skeletons and stubs

216 VisualAge for Java Enterprise

Distributed ATM Application

❑ A new listener interface for all events that the AtmApplica-
tionController fires or is a listener for.

❑ Event classes for all events that the AtmApplicationController
fires or is a listener for.

These beans are not meant to be changed. If you have to change
the application for whatever reason, make the changes in the orig-
inal beans and regenerate the RMI beans.

All that is left to do is to adjust the applet so that it accesses the
server through the client proxy.

Modify the GUI

Changing the ATM applet GUI to use the proxy bean instead of
the original controller is not much work. Basically we have to
replace the AtmApplicationController bean in all panels with the
generated proxy bean, the AtmDistributedController, and make a
few changes in the subpanels.

Using the Distributed Controller

Figure 139 shows the composition of the distributed applet.

Figure 139. Visual Composition of Distributed ATM Applet

Chapter 7. ATM Application with RMI 217

Distributed ATM Application

As you can see, there is only one change; instead of the old control-
ler bean we have the AtmDistributedController. We follow these
steps to make the changes:

❑ We drop the new controller bean on the free-form surface.

❑ We drag all connections from the AtmApplicationController to
the AtmDistributedController and delete the old controller.

❑ We open the properties of the AtmDistributedController bean:

• We set the parentComponent property to the value this.

• We set the host name and the port number properties
according to the settings of the RMI server; in our case,
localhost for the host name, and 1099 (or -1) for the port.
We also set the trace property to true for testing.

❑ In the four subpanels we change the type of the controller
bean from AtmApplicationController to AtmDistributedCon-
troller.

Changes in Subpanels

Some changes are necessary in the subpanels to deal with the
results of the remote methods.

In the PIN panel, the getAccounts method returns the modified
Card object. This object replaces the current Card object and stops
the firing of further connections for the pinCheckedOk event
because the source object (the Card) changes. The solution is to
attach the switching of subpanels to the normalResult of the
getAccounts method (Figure 140).

Figure 140. Visual Composition of the RMI PIN Panel

218 VisualAge for Java Enterprise

Distributed ATM Application

A similar problem exists in the TransactionPanel. The deposit,
withdraw, and getTransaction methods of the controller return
the modified BankAccount.

In the local solution we could disregard the result because all of
the changes occurred in the local BankAccount object. In the RMI
solution we have to capture the resulting BankAccount object and
modify the local object.

We could replace the local BankAcount object with the result of
the methods, but that creates a few problems. The first problem is
that the property events for the balances and transactions are not
fired, and the second is that the original account object in the
accounts vector of the card is not updated.

In our solution we create a new local BankAccount object in a vari-
able and then propagate the changed properties to the original
local BankAccount (Figure 141).

Figure 141. Visual Composition of the RMI Transaction Panel

The normalResult of the deposit, withdraw, and getTransaction
method invocations is assigned to the this property of a new
ResultAccount variable of type BankAccount (1).

The this event of the ResultAccount variable is connected to the
balance, oldBalance, and transaction properties of the Bank-
Account variable, passing the properties as parameters (2). These
connections propagate the changes to the panel fields and into the
accounts vector of the Card object.

1

1

2

1

Chapter 7. ATM Application with RMI 219

Distributed ATM Application

Test the Distributed ATM Application

First we must ensure that the RMI registry is running. Then we
instantiate the RMI server bean, AtmDistributedControllerS, in
the Remote Object Instance Manager.

Now we can start the ATMRmiApplet. The behavior should be the
same as in our stand-alone version. In the console window we can
follow the trace and check whether it works as required or just as
programmed.

There is, however, a common pitfall. The “Security Manager
already set” error message in the console window indicates that
the parentComponent property of the client proxy bean (AtmDis-
tributedController) is not set. Make sure that it is set to this (the
applet itself), or that a connection is made from the applet to the
property, and that the connection is fired before the call to the con-
nect method of the controller. You can edit the initConnections
method and copy the connection call into the first hook-up for user
code. After reloading the applet, the problem should be gone.

Running the Applet on a Client

If we want to run the applet on a real client machine, we have to
set the IP server name in the AtmDistributedController bean. We
can set the server name in the initConnections method at the very
start:

private void initConnections() {
// user code begin {1}
String hostname = "";
try { hostname = this.getCodeBase().getHost(); }
catch (Exception e) { }
if (!hostname.trim().equals(""))
getATMDistributedController().set__serverName(hostname);
// user code end
.....

Because an applet can only connect to the server from which it
came, we use the getCodeBase method of the applet to get the
URL of the server from which the applet was loaded. The getHost
method returns the host name that we use to set the server in the
controller bean. When testing under VisualAge for Java on the
same machine, the host name is returned as an empty string.

220 VisualAge for Java Enterprise

Distributed ATM Application

Running As an Application

When we created the applet using SmartGuide, we made sure that
we could also run the applet as an application.

An application can run on a client and connect to any server. One
way of passing the server TCP/IP host name to the application is
through a parameter of the main method. We edit the main
method and add the call to the AtmDistributedController to set
the host name:

public static void main(java.lang.String[] args) {
ATMRmiApplet applet = new ATMRmiApplet();
java.awt.Frame frame = new java.awt.Frame("Applet");
frame.addWindowListener(applet);
frame.add("Center", applet);
frame.resize(350, 250);
frame.show();
applet.init();
if (args.length == 1)

applet.getATMDistributedController().set__serverName(args[0]);
applet.start();

}

We start the application with this command:

java ATMRmiApplet servername

© Copyright IBM Corp. 1998 221

8
Host CICS
Access with the
CICS Access
Builder

The CICS Access Builder is the IBM VisualAge for Java feature
that generates classes to interact through the CICS Gateway for
Java with an MVS system running CICS. In this chapter we dis-
cuss the CICS Access Builder approach to CICS interaction and
explore how our ATM application might work if the underlying
database were accessed through a CICS host.

Before you read this chapter, please review “Installation and
Setup of CICS Components” on page 362.

222 VisualAge for Java Enterprise

Host CICS Access Overview

Host CICS Access Overview

In this section we look at how Java can interact with an existing
host CICS system. You will find that the three-tier model fits such
an application naturally. You will also find some constraints for
our Java program which are imposed by the host system.

CICS

CICS provides a transaction processing server, often for an MVS
host, although you can run a CICS server on a workstation server.
A typical CICS transaction starts when a user presses the Enter
key at a workstation. The workstation transmits the transaction
information to the CICS server, where CICS identifies the applica-
tion program to process the data. CICS starts the program, which
retrieves the transaction data, interacts with some data resource
(perhaps an SQL or DL/I database, or a VSAM file), and then
transmits some result information back to the workstation. CICS
looks after the data resources; the update’s synchronization, com-
mit, or rollback; and the allocation and deallocation of the
resources to run the application program.

Many existing host applications—so-called legacy applications—
use CICS. It is quite likely that a new enterprise Java application
will need to access legacy data resources handled by CICS.

CICS Gateway for Java and CICS Access Builder

The CICS Gateway for Java is part of CICS; the CICS Access
Builder is part of VisualAge for Java. These two components com-
plement each other:

❑ The CICS Gateway for Java provides communications and
data conversion between Java applications and CICS servers.

❑ The CICS Access Builder simplifies the Java programming by
encapsulating the CICS transactions and data as Java beans.

The CICS Access Builder provides a very simple way to map
resources managed by a CICS enterprise server into Java objects.
The Java application can manipulate the data like any other Java
objects, and then use the beans to cause CICS to process the
manipulated data (Figure 142).

The Gateway converts between Java data and the format needed
for CICS programs, starts the CICS transaction with the supplied
data, takes the result from CICS, converts it to Java data, and
returns that data to the Java application.

Chapter 8. Host CICS Access with the CICS Access Builder 223

Host CICS Access Overview

Figure 142. CICS Access Builder Beans and CICS Gateway for Java

How Does the CICS Access Builder Work?

The CICS Access Builder creates a Java bean, which encapsulates
the data transferred between the CICS processing program and
the Java application, together with classes to handle the data
marshaling and conversion. The Access Builder comes with a class
library including a bean corresponding to the CICS unit of work,
for synchronizing with the CICS processing program.

CICS ensures that the unit of work either completes successfully,
with all the data updates committed, or else CICS rolls back all of
the data updates, so that the underlying data store is never in an
inconsistent state.

A Java application using a CICS enterprise server is not con-
cerned with the database—that is the CICS server’s responsibil-
ity. The application simply collects the data, sends it to CICS for
processing, and receives the result from CICS.

This distribution of responsibilities leads to a very clear three-tier
architecture, as shown in Figure 143.

In this three-tier architecture, the Java client application is not
concerned with the database or data transfer; its sole concern is
the user interface and the client application.

Java
CICS
Access
Builder

 CICS
Gateway
for Java

CICS
Enterprise
Server

Beans

224 VisualAge for Java Enterprise

Host CICS Access Overview

Figure 143. Three-Tier CICS Java Application

Working with a CICS Enterprise Server

It is likely that your enterprise CICS server already manages
access to legacy application data and programs. Such resources
will have rules for and controls on their use. For example, if there
is an SQL database, its definition and contents will be an enter-
prise resource, so it will be important to conform to the existing
access controls.

The three-tier approach lets us comply with such enterprise rules
and controls. In particular:

❑ We should ensure that any data mapping is handled in the
data access layer.

❑ Data commit and rollback are handled by the CICS middle-
ware layer.

❑ The Java client handles all user interactions.

Enterprise
Database

CICS
Application

Java
User Interface Client application

Data access

Middleware

Chapter 8. Host CICS Access with the CICS Access Builder 225

Host CICS Access Overview

CICS Java Application Design

Unlike previous examples in this book, we should not be concerned
with SQL joins—or indeed with any SQL statements—in Java.
They belong in the CICS program or the SQL database itself.

We should also try to ensure that each interaction between the
Java application and CICS corresponds naturally to a CICS trans-
action.

The Java application’s interaction is through the bean that maps
between the Java and CICS data, and the bean that represents
the CICS unit of work. So, for an ideal application, we have the fol-
lowing breakdown of responsibilities:

❑ The Java application gets information from the user and sets
up the bean to transfer it to CICS.

❑ The Java application uses the unit of work bean to transfer the
data to the CICS enterprise server.

❑ The program that runs as a result in the CICS server performs
the business logic to interact with the enterprise database.

❑ The enterprise database retrieves the requested data, stores
the updates, or carries out whatever processing is appropriate.

❑ The CICS program completes the business logic and returns
the results to the Java client.

❑ The Java client retrieves the results from the CICS data bean
and presents them to the user.

226 VisualAge for Java Enterprise

CICS Access Builder

CICS Access Builder

VisualAge for Java provides the CICS Access Builder to simplify
creating CICS Java applications.

CICS Access Builder: Overview

The following description comes directly from the VisualAge for
Java CICS Access Builder: Overview help text.

Given the importance and wide-spread use of both Java and the
IBM Customer Information Control System (CICS), it is not sur-
prising to find that software developers are looking for ways to
enable their Java client programs to remotely access CICS trans-
actions. Unfortunately, accessing a CICS transaction from Java is
difficult because CICS programs are often written in COBOL and
reside on MVS hosts. The obvious disparity between the Java and
COBOL programming languages, plus the differences in internal
data representation between Java workstations and MVS hosts,
presents a real challenge to the development of any tool that can
effectively enable access between Java and CICS.

However, this challenge has recently been met by the development
of the CICS Access Builder. This VisualAge for Java tool makes it
easy for a Java client program, run as either an applet or as a
stand-alone application, to remotely and seamlessly access a CICS
transaction. The CICS Access Builder consists of two components:
the SmartGuide to create the COMMAREA bean and the run-time
class library.

Create COMMAREA Bean SmartGuide

The SmartGuide parses the communications area of a local
COBOL file that has been downloaded from an MVS host. The
SmartGuide imports the COBOL file and generates a COM-
MAREA bean and associated classes. The COMMAREA bean and
associated classes contain the Java representation of the COBOL
communications area, which consists of a group of records that
map COBOL data to Java data, one-to-one.

When a client program is run as either an applet or application,
the COMMAREA bean is passed as a parameter to the invokeTxn
or asynchInvokeTxn method of the IVJCicsUOWInterface bean,
the CICS unit of work. These class library methods convert the
contents of the COMMAREA bean to COBOL in a form that is
acceptable to the MVS host, and it passes the data as part of a
request to the IBM CICS Gateway for Java. The CICS Gateway
for Java passes the converted data to the CICS Client, which in

Chapter 8. Host CICS Access with the CICS Access Builder 227

CICS Access Builder

turn forwards the data to the CICS region on the MVS host. The
CICS region invokes the CICS transaction program to process the
data. Once the CICS transaction program processes the data, it
sends a reply back to the client program via the CICS Client and
the CICS Gateway for Java. The CICS Access Builder run-time
class library then converts the COBOL data to Java.

All conversion of the data takes place on the applet or application
client, so you must ensure that there is no conversion of the com-
munications area taking place on the CICS server or any interme-
diate server. The COMMAREA data built by the Java application
or applet is correct for targeting COBOL on the host.

Run-Time Class Library

The CICS Access Builder run-time class library provides execu-
tion-time support to the COMMAREA bean and other generated
classes. The class library hides the complexity of the generated
code and provides the generated classes with some generic ser-
vices.

Of the numerous run-time classes provided with the CICS Access
Builder, the IVJCicsUOWInterface class is particularly important.
This class contains invokeTxn and asynchInvokeTxn methods that
accept the COMMAREA bean as a parameter and synchronously
or asynchronously invoke a CICS transaction. The IVJCicsUOW-
Interface class also contains methods which are used to manage
logical units of work:

startUOW Starts a unit of work

endUOW Ends a unit of work

commitUOW Commits a unit of work

backoutUOW Rolls back a unit of work

The following scenario helps to clarify the relationship between
these four methods of the IVJCicsUOWInterface class:

❑ A unit of work is started by calling the startUOW method.

❑ One or more transactions are invoked using the invokeTxn or
asynchInvokeTxn method.

❑ If a transaction does not run correctly, as evidenced by incor-
rect results or a return code, the unit of work can be backed
out by using the backoutUOW method. Once the backoutUOW
method has completed, any changes that were made as a
result of invoking transactions are undone.

228 VisualAge for Java Enterprise

CICS Access Builder

❑ If all transactions run correctly and no problems are encoun-
tered, the unit of work can be committed using the commit-
UOW method.

Once the commitUOW method has completed, any changes that
were made as a result of invoking transactions will become perma-
nent. An alternative to using the commitUOW method is to use
the endUOW method. The endUOW method is used to send the
commit along with the last transaction invocation request. This is
accomplished by calling the endUOW method on the IVJCic-
sUOWInterface class prior to the last invokeTxn request for the
unit of work. This causes the last invokeTxn method to do an
implicit commit.

A unit of work cannot span operations directed to different hosts
and only one request in a unit of work can be outstanding at any
given time. For this reason, asynchronous requests should be used
with caution.

The IVJCicsUOWInterface class also contains methods which are
used to add and remove listeners for the following events:

❑ The invocation of a CICS transaction

❑ The starting of a unit of work

❑ The ending of a unit of work

❑ The committing of a unit of work

❑ The roll back of a unit of work

❑ The occurrence of an exception

Chapter 8. Host CICS Access with the CICS Access Builder 229

ATM Application with the CICS Access Builder

ATM Application with the CICS Access Builder

We encounter some ambiguity when we talk about our ATM appli-
cation with its credit and debit transactions, and our CICS logical
units of work corresponding to CICS transactions. In this section,
we use transaction when we talk about the ATM application and
the term interaction when we talk about the CICS program.

If we look at the ATM application data flow, we can see the follow-
ing interactions triggered each time the user presses the Enter
key (or an appropriate push button):

❑ Send the entered card ID to CICS and retrieve the customer
title and name.

❑ Send the stored card ID and the entered PIN to CICS for vali-
dation, retrieving the list of account IDs for this card (assum-
ing the PIN is valid).

❑ Send the card ID, PIN, and selected account ID to CICS and
retrieve the account type and balance.

❑ Send the card ID, PIN, account ID, current balance, and trans-
action type and amount to CICS and retrieve the new balance
(assuming the transaction is valid).

❑ Send the card ID, PIN, and account ID to CICS and retrieve
the transaction history.

There are probably two surprises in this list:

❑ We send the card ID and PIN with every interaction after the
initial logon. That is a normal part of security—we want to
ensure that each interaction is properly authorized. The CICS
program serves hundreds or thousands of ATMs, so it cannot
remember which ATMs have valid cards in them.

❑ We send the current balance with the transaction. Thus the
CICS program can check that there have been no changes
affecting this account from other banking systems. We do not
want to use SQL record locking, because the CICS program
wants to commit each unit of work as soon as it returns data to
the Java application; the CICS program has lots of other
ATMs to serve.

There is one other problem to consider. The CICS program returns
a list of items in two circumstances: the list of account IDs and the
history list of transactions. The CICS data mapping bean does not
allow the transfer of unlimited lists. We have to truncate the lists
at some point. There are two possibilities:

❑ The business imposes a limit on the number of accounts cov-
ered by one card and a limit on the number of transactions
listed in the history

230 VisualAge for Java Enterprise

ATM Application with the CICS Access Builder

or

❑ We run the retrieve account numbers and retrieve transaction
history interactions in a loop until we have retrieved all
records. Because the CICS program cannot remember how
much it has transferred to us already (remember, it has many
other ATMs to serve), we have to send it the highest account
ID or transaction ID retrieved so far.

For our sample ATM application we choose the first option and
impose a limit of up to 10 accounts per card and the last 20 trans-
actions listed in the history.

CICS Program Design

From the preceding discussion, we can see that the CICS pro-
gram’s responsibilities can thus be divided:

❑ Given the card ID, return the customer information

❑ Given the card ID and PIN, return the account numbers

❑ Given the card ID, PIN, and account ID, return the current
balance and account type

❑ Given the card ID, PIN, account ID, current balance, and
deposit or withdraw transaction, process the transaction and
return the new balance

❑ Given the card ID, PIN, and account ID, return the transaction
history

It is easy to treat these responsibilities as separate CICS pro-
grams. Such an approach ensures that the less frequently used
programs (such as the transaction history) can be released from
the CICS system if they are not in use.

We have ignored error conditions such as an invalid PIN in the list
of responsibilities; we will have to return an error indicator for
each program. We assume that we can send a clear PIN between
the Java client and the CICS server, and that this is sufficient for
security checking. Of course, for a real ATM system, we would
need a much more sophisticated security system that uses crypto-
graphic protocols.

Chapter 8. Host CICS Access with the CICS Access Builder 231

ATM Application with the CICS Access Builder

Accessing the Database

In this example, the CICS programs access an SQL database. We
need the following views and SQL statements for the programs
described in the preceding discussion:

❑ For the first interaction, to get the customer information for a
given card:

SELECT C.title, C.fname, C.lname

INTO :title, :fname, :lname

FROM Card K, Account A, Customer C

WHERE K.cardid = :cardid

AND A.cardid = K.cardid

AND C.custid = a.custid;

❑ To get the account numbers for a given card and PIN:

SELECT A.accid

FROM Card K, Account A

WHERE K.cardid = :cardid

AND K.pin = :pin

AND A.cardid = K.cardid;

❑ To get the account type and balance for a chosen account ID:

SELECT A.acctype, A.balance

INTO :acctype, :balance

FROM Card K, Account A

WHERE K.cardid = :cardid

AND K.pin = :pin

AND A.cardid = K.cardid

AND A.accid = :accid;

❑ To process a deposit or withdraw transaction:

• Validate card ID, PIN, and account ID, getting the account type and
balance (to check that it is unchanged):

SELECT A.acctype, A.balance

INTO :newacctype, :newbalance

FROM Card K, Account A

WHERE K.cardid = :cardid

AND K.pin = :pin

AND A.cardid = K.cardid

AND A.accid = :accid;

• Update the account transaction history:

INSERT INTO Trans(Transid, Accid, Transtype, Transamt)

VALUES (Current Timestamp, :accid, :transtype, :transamt);

• Update the account balance:

UPDATE Account

SET Balance = :balance

WHERE Accid = :accid;

232 VisualAge for Java Enterprise

ATM Application with the CICS Access Builder

❑ To retrieve the transaction history:

SELECT Date(T.transid), Time(T.transid), T.transtype, T.transamt

FROM Card K, Account A, Trans T

WHERE K.cardid = :cardid

AND K.pin = :pin

AND A.cardid = k.cardid

AND A.accid = :accid

AND T.accid = a.accid

ORDER BY T.transid DESC;

Building the CICS Programs

CICS programs communicate through the CICS COMMAREA.
The CICS Gateway for Java and the CICS Access Builder handle
the content conversion, and the CICS unit of work bean handles
the program scheduling and commit and rollback.

The programs must be written in a language supported by the
CICS program translator (which expands the EXEC CICS state-
ments into calls to CICS services, and so forth). COBOL has a par-
ticular advantage, because the CICS Access Builder handles
COBOL COMMAREA definitions directly. If we use another lan-
guage, such as PL/I, we must translate the COMMAREA defini-
tion between COBOL and PL/I ourselves. We choose COBOL
programs here but also show what is involved for the PL/I (or
other language) case.

COBOL Input to the CICS Access Builder

The Access Builder builds the COMMAREA bean and its support-
ing classes by finding the COMMAREA definition in a COBOL
program.

It expects to process the source code of a file containing a syntacti-
cally correct COMMAREA structure declaration alone, or a syn-
tactically correct enterprise system COBOL program.

For example, it accepts the short code shown in Figure 144 or the
full program code shown in Figure 145.

Figure 144. Sample CICS COMMAREA Structure Definition

01 DFHCOMMAREA.

02 name PIC X(20) DISPLAY.

02 persno PIC 99999 DISPLAY.

02 salary PIC S99999 DISPLAY.

02 message PIC X(64) DISPLAY.

Chapter 8. Host CICS Access with the CICS Access Builder 233

ATM Application with the CICS Access Builder

Figure 145. Sample CICS Program Including COMMAREA Definition

If the input is not a valid COBOL program or uses syntax exten-
sions specific to a workstation COBOL compiler, the Access
Builder program stops, usually (but not always) with an error
message. As an example of something it will not process, a copy
instruction for workstation COBOL might read:

copy �sqlca.cbl�.

compared with the mainframe version without quotes and file
extension:

copy sqlca.

The CICS Access Builder does not accept EXEC SQL ... statements
before the COMMAREA declaration, so if your CICS program uses
SQL resources, you may have to use the COBOL output from the
SQL preprocessor, rather than the original COBOL source input
to it.

identification division.

program-id. CICSSAMP.

environment division.

data division.

working-storage section.

01 tmp pic a(40).

LINKAGE SECTION.

01 DFHCOMMAREA.

02 name PIC X(20) DISPLAY.

02 persno PIC 99999 DISPLAY.

02 salary PIC S99999 DISPLAY.

02 message PIC X(64) DISPLAY.

procedure division.

start-para.

move 'Transaction finished' to message.

move 'ADDER transaction executed.' to tmp.

EXEC CICS WRITE OPERATOR TEXT(tmp) TEXTLENGTH(27)

ACTION(2) END-EXEC.

EXEC CICS RETURN

END-EXEC.

234 VisualAge for Java Enterprise

ATM Application with the CICS Access Builder

Restrictions

There are several restrictions on the field definitions permitted in
the COMMAREA. These are documented in the VisualAge for
Java online help. The most important restrictions are:

❑ COBOL level-88 records and REDEFINES clauses are
ignored.

❑ COBOL POINTER formats are not supported.

❑ COBOL OCCURS is supported (mapped to an array), but
OCCURS DEPENDING ON is not.

❑ COBOL copybook statements are not supported within the
COMMAREA.

❑ COBOL 85 object-oriented extensions are not supported.

❑ The code page in use at the enterprise system host should be
IBM-037, storing integer values in “Big-endian” format. You
get incorrect conversion if you communicate with a worksta-
tion CICS system (such as Transaction Server for OS/2)
instead of an enterprise CICS server. DBCS (graphical) char-
acter sets are not supported.

❑ There are no set or get methods for arrays; you must update or
retrieve array elements manually, using assignment state-
ments.

❑ COBOL level-66 and level-77 records terminate the COM-
MAREA definition.

❑ The CICS Access Builder does not support character variables
longer than 249 bytes. (This is a bug.)

Data Types and Non-COBOL Programs

The CICS Access Builder generates classes converting between
the data representations in the CICS system and Java. Table 19
shows the conversions provided in VisualAge for Java Version 1.0.

Table 19 also includes representations in SQL, C, and PL/I for the
common COBOL data types. This gives you information on how to
code a dummy COBOL program and COMMAREA equivalent to a
COMMAREA in a program in one of these other languages.

Chapter 8. Host CICS Access with the CICS Access Builder 235

ATM Application with the CICS Access Builder

Table 19. Data Types Supported by the CICS Access Builder

All forms of character strings map to Java strings. COBOL has no
data type for varying length strings, so mapping to COBOL results
in fixed-length strings.

Several conversions change from short to int or long, depending on
the width of the COBOL data type. The widths in the table are the
most typical values.

COBOL Java SQL C PL/I

pic 9(4)
usage comp

short smallint short int fixed bin(15)

pic S9(4)
usage comp
(or wider)

int integer long int fixed bin(31)

pic 9(4)
usage display

short pic'9(4)'

pic S9(4) int pic'S9(4)'

pic S9(5)
usage comp-3

int decimal(5) decimal(5) fixed dec(5)

pic S9(15)
usage comp-3

long decimal(15) decimal(15) fixed dec(15)

pic S999V99
usage comp-3

double decimal(5,2) decimal(5,2) fixed dec(5,2)

pic S999V99 double pic'S999V99'

usage comp-1 float real float float bin(21)

usage comp-2 double double double float bin(53)

pic x(1) String char(1) char char

pic x(249) String char(249) char[250] char(249)

String varchar(8) char var[8] char(8) var

pic x(10) String date char[11] char(10)

pic x(8) String time char[9] char(8)

pic x(26) String timestamp char[27] char(26)

236 VisualAge for Java Enterprise

ATM Application with the CICS Access Builder

Coded Decimal Data

If you need to transfer and manipulate financial data stored in
fixed-point decimal encoding in CICS, note that the CICS Access
Builder generates Java double-length floating-point numbers, not
BigDecimal values (unlike the Enterprise Access Builder for
Data). Therefore you may encounter rounding and truncation
effects in floating-point arithmetic results in any Java code you
write.

If your application manipulates such financial data, you may find
it easier to convert the data from floating point to BigDecimal
after retrieving it from CICS and then convert back again when
the calculations have completed.

If you pass character string data (COBOL usage display) rather
than fixed-point decimal data (usage comp-3), you can convert the
data by using BigDecimal(string), which is more predictable and
accurate than BigDecimal(double). If you use usage comp-3, the
marshaling methods convert to double precision floating point,
and you lose information about the intended number of decimal
places. For example, 12.50 decimal becomes 1.25E1.

Dates, Times, and Time Stamps

COBOL has no special data types for dates and times, so they map
to appropriate character strings or numbers. Table 19 includes the
COBOL string lengths for SQL dates, times, and time stamps;
other encoding, such as yyyy-mm-dd hh:mm:ss, are possible.
Whatever format you encounter, if you need to do date or time cal-
culations, you have to write Java code to convert the strings to
dates or times.

Dummy COBOL Programs

If your enterprise system host programs are written in a language
other than COBOL, you have to convert your COMMAREA defini-
tion to COBOL, using the target data types listed in Table 19.

Figure 146 shows a COBOL declaration for most of the data types
in Table 19.

Chapter 8. Host CICS Access with the CICS Access Builder 237

ATM Application with the CICS Access Builder

Figure 146. COBOL Example of Most Data Types Supported

Running the CICS Access Builder

We can run the CICS Access Builder from either the Workbench
or from the command line. We use the COMMAREA of the sample
program in “Sample COBOL CICS Transaction” on page 244:

01 DFHCOMMAREA.

05 cardID pic x(7).

05 PIN pic x(4).

05 PIN-OK pic x(1).

05 accounts pic s9(4).

05 accountInfo occurs 10 times.

10 account pic x(8).

Running the CICS Access Builder from the Workbench

We normally run the CICS Access Builder from the VisualAge for
Java Workbench so that the resulting beans are imported and
compiled automatically into a package.

We create a new package called AtmCICSAccess. The builder does
not work on the IBM-supplied packages.) We select the Selected
menu, or we use the pop-up menu on the package and select Tools
-> Host CICS Access -> Create COMMAREA Bean... as shown in
Figure 147.

01 DFHCOMMAREA.

05 VerySmall pic S9(3) usage comp.

05 UnsignedSmall pic 9(4) usage comp.

05 SmallInt pic S9(4) usage comp.

05 Integer pic S9(9) usage comp.

05 UnsignedLarge pic 9(9) usage comp.

05 SmallUSString pic 9(4).

05 SmallIntString pic S9(4).

05 IntString pic S9(9).

05 Decimal-5-0 pic S9(5) usage comp-3.

05 Decimal-5-2 pic S9(3)V99 usage comp-3.

05 Decimal-15 pic S9(15) usage comp-3.

05 Pict pic S999V99.

05 Real-4 usage comp-1.

05 Real-8 usage comp-2.

05 Char-1 pic X.

05 Char-249 pic X(249).

05 VarChar-8.

10 Len pic 9(4) usage comp.

10 Tex pic X(8).

238 VisualAge for Java Enterprise

ATM Application with the CICS Access Builder

Figure 147. Starting to Create the CICS COMMAREA Bean

This brings up the SmartGuide of the CICS Access Builder (Figure
148), appropriately completed for the COBOL program discussed
in “Sample COBOL CICS Transaction” on page 244.

Figure 148. Completing the COMMAREA Bean SmartGuide

Chapter 8. Host CICS Access with the CICS Access Builder 239

ATM Application with the CICS Access Builder

After clicking on Finish in the SmartGuide, we have new classes
created to access the COMMAREA data (Figure 149). Note the dis-
tinguishing icons at the end of each generated class.

Figure 149. The Result of Creating a COMMAREA Bean

Running the CICS Access Builder from the Command Line

Usually, when you have the source for a correct COBOL program
to work with, it is very easy to use the CICS Access Builder from
the Workbench.

If you are working with a particularly complex program written in
COBOL or some other language, you might need to run the CICS
Access Builder several times while you check your syntax or mod-
ify code until the Builder accepts it. In this case, it may be easier
to run the Builder from the command line.

The name of the CICS Access Builder is ivjdcics; it takes as input
the COBOL source and creates as output the Java source code for
the COMMAREA bean and its supporting classes.

The command line example shown in Figure 150 runs the CICS
Access Builder for the same COBOL source as the SmartGuide
example; the created Java source is stored in a named subdirec-
tory (AtmCICSAccess) of the originating path.

240 VisualAge for Java Enterprise

ATM Application with the CICS Access Builder

If your program source is in error, the CICS Access Builder
returns an error message in the command line output stream; oth-
erwise it displays “Import completed successfully!”

Figure 150. Running the CICS Access Builder from the Command Line

The parameters of the command line program are:

❑ Target Path - the path leading to (but not including) the direc-
tory for the package that will contain the generated java code.
(Default is the current directory.)

❑ Package - the name of the package (and therefore a directory
name) that will contain the generated code

❑ Class Name - the prefix used when building the CICS Access
Builder bean and conversion and marshaling classes

❑ COMMAREA Field Name - the name of a CICS structure (or
substructure) that maps the COMMAREA to be exchanged
with the Java program. Note that this need not be a 01 name,
though it often is. It does not have to be the actual COM-
MAREA; it may be another structure to which the CICS pro-
gram moves the passed COMMAREA data.

❑ Program Name - the name of the application program that will
be run in the CICS host. This name must be the correct name
for the program resource and defined to the CICS system
through the CEDA DEFINE PROGRAM command.

❑ COBOL File - the source file name

The program’s messages are written to the standard output
stream. The generated Java source code is written to the named
package directory stored in the named path.

D:\CICSTEST>ivjdcics

IVJ5500E: Usage: C:\IBMVJAVA\EAB\BIN\IVJDCICS.EXE

<Target Path>

<Package>

<Class Name>

<COMMAREA Field Name>

<Program Name>

<COBOL File>

D:\CICSTEST>ivjdcics . AtmCICSAccess AtmCICSAccount DFHCOMMAREA

ATMcard ATMcard.sqb

IVJ5504I: C:\IBMVJAVA\EAB\BIN\IVJDCICS.EXE:

Import completed successfully!

Chapter 8. Host CICS Access with the CICS Access Builder 241

ATM Application with the CICS Access Builder

Generated Classes

This example generates four classes. The main class is the Atm-
CICSAccount bean and its BeanInfo class. The bean class contains
the getter and setter methods for the basic data types and the
event triggering.

The two helper classes marshal and unmarshal the data
exchanged with CICS through the COMMAREA. We get one class
for each substructure; one for the COMMAREA itself,
AtmCICSAccount_DFHCOMMAREA, and one for the accountInfo
substructure, AtmCICSAccount_DFHCOMMAREA_accountInfo.
We do not usually use these classes in our application code; we
only access the main bean.

Note the naming convention for the generated properties. An
underscore is appended to the COBOL name (for example,
cardID_) and a dash is converted to two underscores (PIN__OK_).
There is no property for the accountInfo array.

The generated bean contains a variable, DFHCOMMAREA_, of
type AtmCICSAccount_DFHCOMMAREA. The actual data vari-
ables of the properties are defined in the helper classes.

Application Coding Techniques

For the ATM application we have to deal with exceptions thrown
in the CICS programs and with arrays in the COMMAREA.

Throwing Exceptions from the CICS Host

We want to throw an exception if the PIN is invalid. However, the
CICS host program, not the Java application, validates the PIN.
The CICS host program cannot raise a Java exception—it is in the
wrong machine. Instead, it sets a COMMAREA variable, PIN-OK,
to 0 or 1 depending on the result of the validation. We have to add
Java code in the ATM applet to investigate the matching property,
PIN__OK_, when we retrieve the data from CICS, and then throw
an exception if the value is not 1.

Here is one way to add the event generation to the COMMAREA
bean. Edit the generated bean and add the two existing PIN vali-
dation events on the BeanInfo page:

❑ Select New Event Set Feature... in the Feature menu. Enter
RmiModel.PinCheckedOkListener as the event listener, and
pinCheckedOK as the event name, then click on Finish.

❑ Do the same for the RmiModel.pinCheckedNotOk event.

242 VisualAge for Java Enterprise

ATM Application with the CICS Access Builder

❑ Update the setPIN__OK_ method to fire one of the events
when the PIN-OK value is set by the CICS transaction:

public void setPIN__OK_ (String aPIN__OK) {
String oldPIN__OK_ = DFHCOMMAREA_.PIN__OK_;

DFHCOMMAREA_.PIN__OK_ = aPIN__OK;

firePropertyChange("PIN__OK_", oldPIN__OK_, DFHCOMMAREA_.PIN__OK_);
if (aPIN__OK.trim().equals("0"))

fireHandlePinCheckedNotOk(new RmiModel.PinCheckedNotOkEvent(this));

else
fireHandlePinCheckedOk(new RmiModel.PinCheckedOkEvent(this));

return;

}

Defining the event features enables other beans to register with
the COMMAREA bean and handle the events.

Exchanging Array Data with CICS

The host program returns the bank accounts in the accountInfo
array, and the number of accounts in the accounts field.

The CICS Access Builder does not generate getter and setter
methods for the array, and we have to access the array elements
directly. For example, to create a new AtmCICSAccount where the
first element of the accountInfo is 2222222, we would code:

AtmCICSAccount atm = getCOMMAREA();
atm.DFHCOMMAREA_.accountInfo_[0].account_ = "2222222";

atm.setAccounts_(1);

Note that the propertyChange event is not fired automatically for
the accountInfo array at any point in the AtmCICSAccount bean.
The setAccounts_ method fires the propertyChange event for the
accounts_ property, which can be used to trigger the appropriate
actions.

We can make sure that the propertyChange event is fired for the
accounts_ property after the CICS transaction by setting its value
to -1 before the call.

We have to be careful with such techniques; although we know
that the accounts_ property contains the number of elements set
in the account_ array, the AtmCICSAccount bean does not. Any
relationship between the two and with the accounts_ property-
Change event is purely in our code, not the bean’s. If we use such a
mechanism, we should encapsulate it in getter and setter methods
that we code for the account_ array, as shown in Figure 151.

Chapter 8. Host CICS Access with the CICS Access Builder 243

ATM Application with the CICS Access Builder

Figure 151. Possible Coding for Array Element Get and Set Methods

public void setAccount_(int which, String newAccount) {
if (which < 0) { // New account number, add at end

which = getAccounts_();

DFHCOMMAREA_.accountInfo_[which].account_ = newAccount;
setAccounts_(which+1);

}

else
if (which < getAccounts_()) { // replace existing account

DFHCOMMAREA_.accountInfo_[which].oldAccount_ =

DFHCOMMAREA_.accountInfo_[which].account_;
DFHCOMMAREA_.accountInfo_[which].account_ = newAccount;

// fire property change, number of accounts does not change

firePropertyChange("accounts_", -1, getAccounts_());
}

return;

}

public String getAccount_(int which) {

if (which < getAccounts_())
return DFHCOMMAREA_.accountInfo_[which].account_;

else return null;

}

244 VisualAge for Java Enterprise

ATM Application with the CICS Access Builder

Sample COBOL CICS Transaction

For this example (Figures 152 and 153), we look at the transaction
where the Java application sends the card ID and PIN to the
enterprise CICS, which returns an array of up to 10 account num-
bers if the PIN is valid, and nothing if the PIN is invalid.

Figure 152. COBOL Transaction ATMcard: Declarations

**

** Source File Name = ATMcard.sqb

**

** Called by the CICS Gateway for Java

**

** Arguments are passed and returns in the CICS COMMAREA

** This program retrieves information for a chosen account,

** provided the card ID and PIN are valid for the account.

** Note: this is a hybrid between host COBOL for CICS/ESA

** and workstation COBOL for CICS for OS/2.

** It is probably not correct without modification in either

** environment.

Identification Division.

Program-ID. ATMcard.

Environment Division.

Data Division.

Working-Storage Section.

* Copy Files for Constants and Structures.

copy sql.

copy sqlenv.

copy sqlca.

Linkage Section.

* The DFHCOMMAREA contains the host variables we wish to share

* with SQL. However, the CICS Access Builder does not accept

* EXEC SQL statements, so they are commented out for the run

* of the CICS Access Builder.

*

* EXEC SQL BEGIN DECLARE SECTION END-EXEC.

*

01 DFHCOMMAREA.

05 cardID pic x(7).

05 PIN pic x(4).

05 PIN-OK pic x(1).

05 accounts pic s9(4).

05 accountInfo occurs 10 times.

10 account pic x(8).

01 prog-name pic x(12) value "ATMcard".

01 accID pic x(8).

*

* EXEC SQL END DECLARE SECTION END-EXEC.

*

77 errloc pic x(80).

Chapter 8. Host CICS Access with the CICS Access Builder 245

ATM Application with the CICS Access Builder

Figure 153. COBOL Transaction ATMcard: Procedure Division

Procedure Division.
Main Section.

* Initialise the account info array.
Move 0 to accounts.
Move "0" to PIN-OK.

* Declare the cursor for the accounts we identify
EXEC SQL DECLARE c1 CURSOR FOR

SELECT A.accID
FROM card K, account A
WHERE

K.cardID=:cardID
AND K.PIN=:PIN
AND A.cardID = K.cardID

END-EXEC.
move "DECLARE CURSOR" to errloc.
call "checkerr" using SQLCA errloc.

* Open the cursor
EXEC SQL OPEN c1 END-EXEC.
move "OPEN CURSOR" to errloc.
call "checkerr" using SQLCA errloc.

* Loop to process the cursored selection
Perform Acct-Loop thru End-Acct-Loop

until SQLCODE not equal 0.
* If we found no accounts, the cardID and PIN combination
* were invalid.
* A real system would incorporate cryptographic authentication.
*

If accounts equal 0
move "0" to PIN-OK.

* Close the cursor and commit the work done.
EXEC SQL CLOSE C1 END-EXEC.
Move "CLOSE CURSOR" to errloc.
Call "checkerr" using SQLCA errloc.
EXEC SQL COMMIT WORK END-EXEC.
Move "COMMIT WORK" to errloc.
Call "checkerr" using SQLCA errloc.

End-Main.
go to End-Prog.

*--- The loop to fetch up to 10 account numbers
Acct-Loop Section.

EXEC SQL FETCH c1 INTO :accID END-EXEC.
If SQLSTATE equal SQL-NODATA-EXCEPTION

go to End-Acct-Loop.
Move "FETCH" to errloc.
Call "checkerr" using SQLCA errloc.

* Only take up to 10 account numbers.
If accounts equal 10

go to End-Acct-Loop.
* Providing there is space, store this account number

Add 1 to accounts.
Move accID to account(accounts).

End-Acct-Loop. exit.
*--- End of the loop to fetch up to 10 account numbers
End-Prog.

exit program.

246 VisualAge for Java Enterprise

ATM Application with the CICS Access Builder

ATM Applet Using Host CICS Access

Now that we have a COMMAREA bean, we can combine it with a
CICS unit of work bean, and build an applet. This example models
the ATM function where the user sends the card ID and PIN to the
server and gets a display of valid account IDs in return.

Visual Composition

The applet is almost entirely a visual construction; it needs an
event-to-script connection to propagate the account ID list from
the COMMAREA, because the CICS Access Builder provides no
properties or methods to access the array of account numbers (Fig-
ure 154).

Figure 154. Building the CICS Applet

The applet components are:

❑ The COMMAREA bean, of type AtmCICSAccount (1).

❑ The CICS unit of work bean, called CICSUnitOfWork (2). You
select the bean from the Enterprise Access palette (the bottom
one). You need one CICS unit of work bean for each host sys-
tem—you cannot share this bean. The bean’s properties must
be set to conform to your CICS Gateway for Java and CICS
host server’s configuration. See “Properties of the CICS Unit of
Work Bean” on page 248 for our applet.

❑ A message box bean, called CICSMessages, from the Enter-
prise Access palette (3). This will produce a pop-up window to
display error information from the CICSUnitOfWork bean, if
necessary.

1

2

3

4

5
6

7

8

9

10

11

Chapter 8. Host CICS Access with the CICS Access Builder 247

ATM Application with the CICS Access Builder

❑ A property connection between the card ID entry field and the
COMMAREA bean’s cardID_ property, using the textVal-
ueChanged event for the source event (4). This ensures that
the COMMAREA is updated when the text field changes.

❑ A similar property-to-property link for the PIN entry field.

❑ A property connection between the applet’s this property and
the CICSUnitOfWork bean’s parent property (5). You need this
for the CICSUnitOfWork constructor to work correctly when
the Applet opens.

Now we implement the logic of the applet:

❑ An event-method connection between the OK button and the
accounts_ property of the COMMAREA, setting it to -1 (6).

❑ An event-method connection between the OK button and the
CICSUnitOfWork bean’s invokeTxn method, passing the
COMMAREA as a parameter (7).

❑ An event-method connection between the exceptionOccurred
event of the transaction invocation with the CICSMessages’
showException method, passing the event data as a parameter
(8).

❑ Two event-method connections to capture the pinCheckedOk
and pinCheckedNotOk events of the COMMAREA, displaying
an appropriate message in a text label (9).

❑ A property-script connection between the COMMAREA’s
accounts_ property (the number of accounts in the bean) and a
new method, setAccounts, in the applet. Pass the event data,
that is, the number of accounts. The script in Figure 155 popu-
lates the account ID list from the AccountInfo array (10). There
are no bean properties for the array elements in the COM-
MAREA, so the applet needs a script to populate the Account
ID list. Figure 155 shows the code of the setAccounts method.

Figure 155. Populating a List from a COMMAREA Array

private void setAccounts (int accounts) {

// Code to set the accounts list from the accounts in the COMMAREA

// The parameter is the number of accounts from the COMMAREA
AtmCICSAccount atm = getCOMMAREA();

List accountList = getAccountList();

accountList.removeAll(); // clear the account list

for (int i=0; i<accounts; i++) // Add items from the COMMAREA
accountList.addItem(atm.DFHCOMMAREA_.accountInfo_[i].account_);

return;

}

248 VisualAge for Java Enterprise

ATM Application with the CICS Access Builder

We also add an event-method connection from the Cancel button
to a new script called simulateCICS (11). The simulateCICS
method can be used to test the logic without having a CICS Gate-
way and server running (see “Simulating a CICS Server” on page
249).

Properties of the CICS Unit of Work Bean

The CICS unit of work bean’s properties control the connection
from the applet through the CICS Gateway for Java to the Enter-
prise system CICS host are shown in Figure 156.

Figure 156. CICS Unit of Work Bean Properties

We must set the properties of the CICS unit of work bean:

❑ dest is the CICS server destination.

❑ gatewayHostName is the TCP/IP host name where the CICS
Java Gateway runs.

❑ gatewayPortNumber is the TCP/IP port (default 2006).

❑ parent is the applet, either this or through a connection.

❑ password is the password for the CICS server transaction.

❑ targetCodePage is 037 for now; VisualAge for Java 1.0 only
supports a CICS MVS server.

❑ userid is the user ID for the CICS server transaction.

Chapter 8. Host CICS Access with the CICS Access Builder 249

ATM Application with the CICS Access Builder

Simulating a CICS Server

If a real CICS server is not available, we can use a small user-
written method to simulate the execution of the CICS transaction.

In our case we connect the Cancel button to a new script method,
simulateCICS (Figure 157). This method accepts a few card ID
and PIN combinations and fills the COMMAREA with account
numbers.

Figure 157. Script to Simulate a CICS Transaction

The simulateCICS method uses the setAccount_ method shown in
Figure 151 on page 243 to add account numbers. The setAccount_
method sets the number of accounts, which triggers the execution
of the setAccounts script to fill the list box with account numbers.
Finally the simulateCICS method sets the PIN__OK_ property,
which triggers one of the two PIN events.

Simulation lets you test the logic of the application and the propa-
gation of events, such as the property change event of the number
of accounts and the PIN events that are fired by PIN validation.

private void simulateCICS () {

AtmCICSAccount atm = getCOMMAREA();

atm.setAccounts_(0);
if (atm.getCardID_().equals("1111111") &&

atm.getPIN_().equals("1111")) {

atm.setAccount_(-1, "101-1001");
atm.setAccount_(-1, "101-1002");

atm.setAccount_(-1, "101-1003");

atm.setPIN__OK_("1");
return;

}

if (atm.getCardID_().equals("2222222") &&
atm.getPIN_() .equals("2222")) {

atm.setAccount_(-1, "102-2001");

atm.setAccount_(-1, "102-2002");
atm.setPIN__OK_("1");

return;

}
atm.setPIN__OK_("0"); // all others: pin not OK

}

250 VisualAge for Java Enterprise

Installing CICS and Java Components

Installing CICS and Java Components

Our Java application needs two components to build the communi-
cations path between it and the enterprise CICS system (Figure
158):

❑ The CICS Gateway for Java

❑ A CICS client—in our case the CICS Client for Windows NT

Figure 158. CICS Server, CICS Client, and CICS Java Gateway

The installation of the CICS Client for Windows NT and the CICS
Java Gateway and the setup of the components for communication
with a CICS server are discussed in “Installation and Setup of
CICS Components” on page 362.

CICS

CICS Client
for Windows NT

CICS Gateway
for JavaJava

application
server

Chapter 8. Host CICS Access with the CICS Access Builder 251

Current Restrictions

Current Restrictions

VisualAge for Java 1.0 supports only a CICS server on MVS. The
CICS unit of work bean must be set to use code page 037.

Note that some common browsers do not support code page 037.
This restricts the usage of applets with CICS transaction access.
The current support is designed for applications installed on client
machines or running on middle-tier servers.

252 VisualAge for Java Enterprise

CICS Host Access Topologies

CICS Host Access Topologies

Now that we have discussed the components for CICS host access
(the VisualAge for Java CICS Access Builder, the CICS Gateway
for Java, the CICS Client and the host CICS enterprise system),
we can review the connectivity and topology options, and see how
they might fit into client/server strategies.

CICS Gateway for Java and CICS Client Topologies

The CICS Gateway for Java comes in two flavors:

❑ CICS Gateway for Java for MVS

❑ CICS Gateway for Java Workstation

The MVS version allows a Java client to connect across a TCP/IP
network to the MVS host, and hence directly to the enterprise
CICS system. This direct connection offers simplicity where all
Java applications connect to the same server.

The workstation version usually connects to a CICS Client on the
same workstation, which in turn connects to the CICS server. The
Java clients connect to the Gateway through TCP/IP; the Gateway
connects to the CICS server through APPC, TCP62, or TCP/IP,
depending on the type of server and the network constraints. This
configuration offers flexibility, because the Gateway can provide
unchanged connections to the Java clients while the server topol-
ogy changes. It also provides a parallel topology where the Java
clients are loaded from a Web server; the Gateway and the Web
server can coexist.

The CICS Gateway for Java can coexist with a CICS for OS/2
server, bypassing the need for a CICS Client on the workstation.
This configuration offers the same simplicity as the CICS Gateway
for Java for MVS offers with an enterprise system host. However,
the CICS Access Builder of VisualAge for Java Version 1.0 does
not support CICS for OS/2.

Client/Server Tier Topology

The VisualAge for Java enterprise access tools offer flexibility on a
grand scale, so that a Java application can mix CICS, SQL, C++,
and RMI access. With the CICS connectivity options, we can have
the Gateway for Java on a workstation CICS client or an enter-
prise CICS server. With this flexibility a complex web of intercon-
nected application components can evolve: Web servers using

Chapter 8. Host CICS Access with the CICS Access Builder 253

CICS Host Access Topologies

CGIBIN scripts to deliver Java applications that exchange data
with RMI servers, which coordinate CICS and SQL hosts and so
forth, until the web becomes too complex to manage.

What is needed is a methodical approach to evolving a simple and
maintainable architecture. The method and the architecture are
your choice, as a developer. In this section we look at the Visu-
alAge for Java CICS Access Builder in the three-tier client/server
context.

Presentation Logic Tier

The VisualAge for Java CICS Access Builder generates the trans-
action bean, which places final display and data editing in the
Java user interface—which is as expected. The presentation logic
tier of a three tier strategy is in the workstation.

Data Logic Tier

The host CICS enterprise system provides coordinated and con-
trolled access to enterprise data. For some applications, such as
the simple client/server ATM example, the CICS host can manage
all of the enterprise data. Our data logic tier resides at the CICS
host. This is fine when our Java development is a new user inter-
face to an existing CICS system.

We might use Java to enable a new application that takes data
from more that one source. For example, the ATM application
might get customer details directly from an SQL database on a
separate server, while using the CICS host for all account data.
Future development may therefore increase the components in the
data logic tier.

Business Logic Tier

In the case where we build a new presentation logic tier for an
existing CICS application, the business logic will already reside in
that CICS application.

Business Logic in the Workstation

When developing a new application where the data logic tier has
more than one server, we might have the business logic in the
user’s workstation. For simple situations this will be manageable.
Our biggest problem will probably be network management,
because each workstation will be using communication paths to
two or more servers.

254 VisualAge for Java Enterprise

CICS Host Access Topologies

This could become very complex if there are several servers; for
example, our ATM application might get its account information
from two central CICS servers, one for checking accounts, and one
for savings accounts, while getting the customer information from
one of several SQL databases, depending on the country from
which the customer requests the ATM transaction. This might be
workable, but it is potentially unmanageable. The workstation
business will need to take the network complexity into account in
its logical unit of work (LUW) commit strategy, as well as han-
dling communications failures.

Business Logic in the Server

Where the business logic resides in the data servers, our worksta-
tion presentation logic may be simplified to only marshaling and
demarshaling the data to be exchanged with each server. The pre-
sentation logic is simpler, but the business logic is now distributed
across several data servers. Such a configuration requires a care-
ful approach to application change-control, because the servers
and the workstation must keep their application components syn-
chronized.

Business Logic in an RMI Server

We can put an RMI server in between the workstation presenta-
tion logic tier and the host servers’ data logic tier. If we put the
business logic tier here, we have a manageable network topology.
Each workstation connects to one RMI server. Each RMI server
connects to the necessary data servers, and we have a fixed
arrangement of connections to monitor to ensure that the RMI
servers are working.

Existing host-based systems, with the business logic tier at the
host server, can evolve to this topology by first introducing an RMI
server to marshal and demarshal data from the host servers and
then evolving the RMI server’s function to include progressively
more business logic.

As such an RMI server tier evolves, its usage will grow, and so the
resources it needs will grow. One of the outstanding benefits of
using a Java RMI is that such a server can grow from perhaps a
humble Windows workstation through UNIX servers up to a com-
plete enterprise system—all using the same write-once-run-every-
where Java code.

© Copyright IBM Corp. 1998 255

9
C++ Servers and
C++ Access
Builder
Although Java is a great language, there are situations where
Java alone cannot meet all needs or where programmers are faced
with a legacy environment that they want to integrate into new
applications.

Sun has defined an API that allows Java code to interoperate with
applications and libraries written in other programming lan-
guages, such as C or C++. However, a programmer’s task to
achieve this integration is not easy. VisualAge for Java contains
the C++ Access Builder for generating Java beans from C++ code,
so that programmers do not have to deal with this API.

In this chapter we briefly explain the concepts of the Java Native
Interface (JNI) and develop sample applications to illustrate the
use of the C++ Access Builder. We can then apply this knowledge
to our ATM application by wrapping existing C++ server code.

256 VisualAge for Java Enterprise

Java Native Interface Overview

Java Native Interface Overview

The objective of the Sun team, as stated in the JNI specifications,
was to offer an interface to interoperate with applications and
libraries written in other programming languages:

❑ In a standardized way across all Java Virtual Machine (JVM)
implementations

❑ To make the time critical capabilities of languages such as C
or C++ available to Java programs

The previous level of JNI in JDK 1.0 has been changed and
improved with JDK 1.1. We deal here with the JDK 1.1 level.

According to the specifications, the JVM can invoke native meth-
ods following a standard naming and calling convention, and
native functions can access Java objects through standard inter-
face functions.

When to Use?

Here are some examples of when to use the JNI:

❑ Access to platform dependent feature

❑ Reuse of a legacy server written in C++

❑ A device already has a driver that needs to be accessed from
Java.

❑ Some portion of the application is CPU intensive and therefore
needs to be compiled for faster execution.

Before you consider using JNI to develop new applications, you
must carefully evaluate the following issues:

❑ You lose the benefit of the Java write once, run everywhere
paradigm. The code is tightly linked to some operating-sys-
tem- dependent libraries.

❑ You give up the Java intrinsic security features. The code can
access memory outside the sandbox of the JVM, you can
manipulate pointers, and arrays and strings do not check for
bounds. Therefore the Java class cannot be downloaded as an
applet.

❑ The development teams must master two different environ-
ments that are close enough to each other to create confusion.

❑ The application will be difficult to maintain.

Chapter 9. C++ Servers and C++ Access Builder 257

Java Native Interface Overview

❑ A careful design using efficient class libraries, which leads to
leaner code, can often overcome the performance penalty of a
Java-interpreted environment.

❑ Just-in-time compilers become faster with every new release of
the JDK, and soon static compilers will be commercially avail-
able.

After all that, you may wonder why you should use JNI and the
C++ Access Builder. Well, everything is not perfect in the Java
world, and C++ has the advantage of maturity. In addition, Java
will not make years of development obsolete, and you cannot just
throw away all that work and start from scratch. Like the other
enterprise tools, the C++ Access Builder makes it easier for you to
extend existing applications rather than rewrite them.

Java Native Interface Programming

In this section we cover the basics of programming the JNI, with
examples to illustrate the main points. We describe how to access
C code from Java, and Java code from C or C++.

Declaring and Loading Native Methods

A method written in a native programming language must be
declared as native in its definition, for instance:

public native double nativeHypotenuse(int i, int j);

The method definition provides only the method signature, but no
implementation; it is terminated by a semicolon. The implementa-
tion for this method, which returns the value of the hypotenuse of
a triangle, given the length of its sides, is provided in a separate
native C language source file.

We compile the C code and create a shared library or DLL (we
present the necessary steps in “Simple JNI Example” on page
258). This DLL is loaded into the Java class with the following
statement:

System.loadLibary("NativeTest");

The loadLibrary method must be put in a Java static initializer,
with the shared library DLL name as argument; here the DLL is
called NativeTest. The name is converted to a name compatible
with the platform on which you are running (Windows, UNIX,
OS/2). The JVM runs this static initializer when it loads the class.

258 VisualAge for Java Enterprise

Java Native Interface Overview

Simple JNI Example

Figure 159 shows the complete code of a simple Java application.
The Java class gets its input from the command line, calls the
native method, and returns the result to the standard output.

Figure 159. Simple JNI Example: Java Code

We can write and save this code inside the VisualAge for Java IDE
(or we use an editor and the javac compiler).

Now we have to use the javah utility program, provided with the
JDK:

javah -jni NativeTest

The -jni option instructs javah to generate a JNI-compatible
header file. This header file defines the function prototype that
you implement, that is, the native Hypotenuse method declared in
the Java class.

By default the name of the generated header file is the Java class
name with a .h appended at the end of it. The file is located in the
current directory.

Figure 160 shows the NativeTest.h header file.

class NativeTest
{

public static void main(String[] args)
{
NativeTest aTest = new NativeTest();
int i0 = Integer.valueOf(args[0]).intValue();
int i1 = Integer.valueOf(args[1]).intValue();
double d = aTest.nativeHypotenuse(i0,i1);

System.out.println("The value for the Hypotenuse for a triangle
of sides " + args[0] + " and " + args[1] + " is " + d);

}

public native double nativeHypotenuse(int i, int j);

static {
System.loadLibrary("NativeTest");

}
}

Chapter 9. C++ Servers and C++ Access Builder 259

Java Native Interface Overview

Figure 160. Simple JNI Example: Generated C Header File

Java_NativeTest_nativeHypotenuse is the name generated for the C
function to implement.

Notice that the function has four parameters, instead of two in the
Java method definition. The first parameter is always a pointer of
type JNIEnv. It points to an array of pointers to JNI functions for
accessing Java objects. It makes the JNI functions available to the
native program (a more detailed explanation of this mechanism is
given in the JNI specifications). The second parameter, jobject, is a
reference to the java object (or Java class in case of a static native
method). The third and fourth parameters are of type jint and not
int. We cover this subject in “Type Mapping between Java and
C/C++” on page 262.

JNIEXPORT and JNICALL are used for handling functions
exported from DLLs on platforms such as Windows. We have to
use the same keywords in the implementation of the program.

Now, we can implement the native method in a file named Native-
Hypotenuse.c (Figure 161).

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class NativeTest */
#ifndef _Included_NativeTest
#define _Included_NativeTest
#ifdef __cplusplus
extern "C" {
#endif
/*
* Class: NativeTest
* Method: nativeHypotenuse
* Signature: (II)D
*/

JNIEXPORT jdouble JNICALL Java_NativeTest_nativeHypotenuse
(JNIEnv *, jobject, jint, jint);

#ifdef __cplusplus
}
#endif
#endif

260 VisualAge for Java Enterprise

Java Native Interface Overview

Figure 161. Simple JNI Example: C Function

We compile and link this file into a DLL, whose name is the name
in the System.loadLibrary method, that is, NativeTest.dll. We use
a makefile generated for a Windows system with the VisualAge
C++ makefile generator (Figure 162).

Figure 162. Simple JNI Example: Makefile

#include "NativeTest.h"
/*header file given by javah -jni */
#include <math.h>

JNIEXPORT jdouble JNICALL Java_NativeTest_nativeHypotenuse
(JNIEnv *env, jobject obj , jint i, jint j)

{
return sqrt(i*i + j*j) ;

}

NativeTest.mak
Created by IBM WorkFrame/2 MakeMake at 11:02:37 on 12/16/97
The actions included in this make file are:
Compile
Make exp a
.SUFFIXES:

.all: \
.\NativeTest.dll

.\NativeTest.obj: \
C:\VAJResid\tests\NativeTest.C \
{C:\VAJResid\tests;$(INCLUDE);}NativeTest.h
@echo " Compile "
icc.exe /Gm /Ti /Ge- /Gf- /Fo".\%|fF.obj"

/C C:\VAJResid\tests\NativeTest.C

.\NativeTest.exp: \
.\NativeTest.obj
@echo " Make exp and lib files "
ilib.exe /Gi:NativeTest .\NativeTest.obj

.\NativeTest.dll: \
.\NativeTest.obj \
.\NativeTest.exp
@echo " Link "
icc.exe @<<
/B" /de /pmtype:vio /noe /code:RX /data:RW /dll"
/B" /def"
/B" /nod:NativeTest.lib"
/FeNativeTest.dll
.\NativeTest.obj
.\NativeTest.exp

Chapter 9. C++ Servers and C++ Access Builder 261

Java Native Interface Overview

Before testing the Java application, we have to ensure that the
DLL is in a path accessible for loading. Then we run the Java
application:

java NativeTest 2 3

The value for the Hypotenuse for a triangle of sides 2 and 3 is 3.6055

JNI Development Process

Figure 163 summarizes the JNI development process.

Figure 163. JNI Development Process

NativeTest.java

System.loadLibrary(“NativeTest”);

public native double
 nativeTest(int i, int i);

nativeHypotenuse(i0,i1);

javah -jni

C header

NativeTest DLL

NativeTest.h

Java source

C implementation file

NativeTest.c

calls

returns result

#include jni.h

of native method

Java_NativeTest_nativeHypotenuse
definition of

receives and returns
java data types
through JNI types

C source

refers
to DLL

DLL

262 VisualAge for Java Enterprise

Java Native Interface Overview

Type Mapping between Java and C/C++

Whenever you pass an argument in a native method or return a
result, the method must be able to access or create primitive data
types as well as strings, arrays, or any Java object. Therefore, JNI
defines mapping between Java and C/C++ types.

Java Primitive Data Types

Native methods that use Java primitive data types, such as int,
boolean, float, double as arguments, or return a value, access
native types, such as jint, jboolean, jfloat, and jdouble. In our pre-
vious example, Java_NativeTest_NativeHypotenuse takes two
jints as arguments and returns a jdouble.

Java String Types

Java strings map to jstring, with JNI functions to support the con-
version between Java character encoding and the C char type. For
instance, if you want to use a jstring named aName that was
coded in Java Unicode, you have to write C code, such as:

char *aCName = (*env)->GetStringChars(env, aName,0);
print(�%s�,aCName);
(*env)->ReleaseStringChars(env,aName,aCName);

The last statement releases the resources associated with the
string.

Java Array Types

Java arrays map to corresponding types of jarrays. For instance,
an array of integers maps to a jintArray. JNI functions enable you
to access each element of the array:

jint *aCIntArray = (env*)->GetIntArrayElements(env,anIntArray,0)

Remember to release the resources by using the ReleaseIntAr-
rayElements function.

Accessing Java Methods and Fields from Native Code

The native method can make a call back to a Java method, using a
pointer of type JNIEnv with JNI specific functions.

For this purpose, we must first access a Java class object. Having
a pointer, obj, to a jobject, we must obtain the class of the object
with:

jclass jc = (*this)->GetObjectClass(this, obj)

Chapter 9. C++ Servers and C++ Access Builder 263

Java Native Interface Overview

Now we can get a pointer to the method of the jc class:

anId = (env*)->getMethodId(env,jc,�aJMethod�, �(II)D�)

The last argument represents the signature of the method. (II)D
indicates that this method takes two integers as input and returns
a double. You can form the method symbolic signature according
to the JNI specifications by using the javap tool on the java class.
This method ID can then be used for any call to the Java method.

In the same way you can get and set Java fields, with specific JNI
functions. A field identifier can be retrieved with a GetFieldID
function, giving the field class, name, and type signature. The field
type signature, defined by Java type, can be found in the JNI spec-
ification or by using the javap tool.

Exception Handling

Java handles exceptions in a very clean way with try and catch
blocks, but this is not the case for most native programs. Therefore
the JNI provides functions to check for possible exceptions after a
JNI function returns. JNI also provides functions to throw Java
exceptions that can be handled by the JVM.

The JNI specification insists that it is important to handle excep-
tions from a native call, before a new native call is issued; other-
wise you may get unexpected results.

Object References and Java Garbage Collector

Another major difference between Java and the native program-
ming languages is that Java has a garbage collector that cleans up
unreferenced objects. In our previous examples, we created data
types such as jstring or jobject to reference Java objects. This
would prevent the Java objects from being garbage collected
unless the native code frees them.

Fortunately, objects passed to or returned from native methods
are local references. Local references end when the native function
returns. The Java garbage collector can then free the resources.
But this means that consecutive native methods cannot reuse a
local reference. For that purpose, native methods can create a glo-
bal reference, but they have to explicitly free the references when
they are no longer needed. JNI provides functions such as New-
GlobalRef or DeleteGlobalRefs to ensure that these cleanup tasks
are accomplished.

264 VisualAge for Java Enterprise

Java Native Interface Overview

 How to Make Your Life Easier?

We hope that by now you understand the basics of native pro-
gramming in Java, that is:

❑ You are aware of the limitations imposed by security and port-
ability.

❑ You know the restrictions concerning the types and functions
you can access.

❑ You can evaluate the tasks to make use of native calls.

It is now time to explain how the C++ Access Builder of VisualAge
for Java can help you write applications that use the JNI, and
save you work by providing you with clean wrappering of C++
code.

Chapter 9. C++ Servers and C++ Access Builder 265

C++ Access Builder Overview

C++ Access Builder Overview

JNI alone does not address the instantiation of C++ classes, access
to methods and data members of C++ objects from Java, passing of
objects by value or reference, and many other operations of C++
development.

The C++ Access Builder is a tool designed to simplify the task of
calling existing C++ code from Java.

High-level View

The C++ Access Builder generates three files per C++ class:

❑ A C++ wrapper that maps method invocations from a Java
representative class to the matching method of the corre-
sponding C++ class.

❑ A Java bean that represents the public interface of a C++
class. It can be used from other Java beans to access the C++
object. The Java bean contains native method signatures for
each public method in the corresponding C++ class, and set
and get methods for public data members. The native methods
in the Java bean are implemented in the matching C++ wrap-
per file.

❑ A makefile to compile and link the C++ wrapper into a DLL
and to compile the Java bean source into a class file.

The C++ Access Builder is implemented as a command line utility,
ivj2cpp, that generates the Java bean, the C++ wrapper, and the
makefile.

The generated Java bean can be imported into VisualAge for Java
and used in the Visual Composition Editor through standard con-
nections. The public methods and data members of the original
C++ object are visible as the interface of the Java bean.

The generated source code works in conjunction with the JNI
Specifications, Release 1.1.

A run-time class library provides support to the access beans and
associated files generated by the C++ Access Builder. This class
library, called ivjdjs10.dll, must be deployed with the application
when running outside of the VisualAge for Java development envi-
ronment.

As for any application using the Enterprise Access Builder Java
classes, the ivjeab.zip file must be in CLASSPATH so that classes
from COM.ibm.ivj.eab.j2cpp are accessible.

266 VisualAge for Java Enterprise

C++ Access Builder Overview

Figure 164 shows the code generation process of the C++ Access
Builder.

Figure 164. C++ Access Builder Code Generation

Command Line Utility

The ivj2cpp command line utility takes C++ source and header
files as input and generates a Java bean in a Java package and a
DLL as output:

ivj2cpp outputname headerfile.hpp -s source.cpp -p packagename

The input files are the header file (headerfile.hpp) and source code
(source.cpp). The final output of the process is the DLL (output-
name.dll) and the Java bean (outputname.java) in the Java pack-
age (packagename). The DLL is produced by running the makefile
that is generated.

For a complete listing of the possible flags see the online documen-
tation of VisualAge for Java,or type ivj2cpp -h.

We can now test this tool with the simple example that we devel-
oped in “Declaring and Loading Native Methods” on page 257.

Native C++ Source
C++ Wrapper Class

Generated
Java Bean

Java Application

DLL

Makefile

call

call

generate

Visual Composition Editor

make

C++
Acc

ess
Bu

ild
er

Chapter 9. C++ Servers and C++ Access Builder 267

C++ Access Builder Overview

Revisiting the Native Example with the C++ Access Builder

Let us apply the C++ Access Builder to our very simple nativeHy-
potenuse example.

First we need to make the hypotenuse function a method of a C++
class, which should be the case anyway in any real-life application
where a company wants to reuse an existing set of complex mathe-
matical calculation classes that have been developed over time.

The nativeHypotenuse method is embedded in a nativeops.cpp
class:

#include "nativeops.hpp"
#include <math.h>
class _Export nativeops;
double nativeops::nativeHypotenuse(int i, int j)
{
return sqrt(i*i + j*j);

}

The nativeops class has a corresponding nativeops.hpp header file:

#pragma library("nativeops.lib")
class nativeops

{
public:

double nativeHypotenuse(int i, int j);
};

From the directory where the nativeops.hpp and nativeops.cpp files
are located, we invoke the C++ Access Builder on the command
line:

ivj2cpp nativeops nativeops.hpp -s nativeops.cpp -p opsserver

The first parameter is the name of the DLL to create. The p flag
indicates that the generated Java bean should be in the opsserver
package.

The following files are generated:

❑ nativeops.java, the Java bean that represents the public inter-
face of the native class, for use in the client applet

❑ nativeopsWrapper.cpp, a C++ wrapper called by the bean

❑ nativeops.mk, a makefile to compile and link the C++ code
(making a nativeops.dll) and to compile the java source into
nativeops.class

❑ Makefile, a makefile to launch nativeops.mk

The generated files get their names from the C++ classes declared
in the header file.

268 VisualAge for Java Enterprise

C++ Access Builder Overview

We compile the C++ object and generate a new DLL by entering on
the command line:

nmake

During the compilation of the Java source, some classes of the
COM.ibm.ivj.eab.j2cpp package are used and must be accessible
with the CLASSPATH variable. They are located in:

\IBMVJava\Ide\program\lib

To access the generated DLL, a definition file (.def) and a shared
library file (.lib) are also generated. Moreover, on Windows 95 and
Windows NT, an export file (.exp) is generated.

Now we are ready to test the native code. Note that we have not
written a single line of JNI functions; everything has been done
under the cover by the C++ Access Builder. Let us first test this
application, and then we can look at the generated code.

We have to create a simple Java class to call the generated native-
ops bean. The ivj2cpp command used the opsserver package name.
We create an opsserver subdirectory and move the nativeops.class
into it. We check that CLASSPATH includes the current directory
(“.”). We create the OpsTest class in VisualAge for Java, or with an
editor:

class OpsTest
{
public static void main(String[] args)
{
opsserver.nativeops anOp = new opsserver.nativeops();
int i0 = Integer.valueOf(args[0]).intValue();
int i1 = Integer.valueOf(args[1]).intValue();
double d = anOp.nativeHypotenuse(i0,i1);
System.out.println("Hypotenuse of " + args[0] + " and " + args[1] +

" is " + d);
}

}

We compile the OpsTest program and run it:

javac OpsTest.java
java OpsTest 3 4

Hypotenuse of 3 and 4 is 5.0

We discuss the details of the C++ wrapper code in “Considerations
for C++ Class Wrappering” on page 272.

Chapter 9. C++ Servers and C++ Access Builder 269

C++ Access Builder Overview

Reverse String Example

In the reverse string example, we create another C++ access bean
by using the ivj2cpp utility. The purpose of this example is to show
that more complex classes, such as IString.cpp from the IBM Open
Class Library, can be used inside the C++ server objects, as long
as they are not exposed in the interface.

You are now familiar with the steps to generate the Java bean, so
we give only a short explanation of this process. We show you how
to use this Java bean inside the Visual Composition Editor.

The reverse.hpp header file and the reverse.cpp C++ program are
listed here:

//---
// reverse.hpp - Header file for a C++ DLL
//---
#pragma library("reverse.lib")
// #include <istring.hpp>
class Reverse

{
public:

char* reverse(char* str1);
};

//--
// reverse.cpp - Source file for a C++ DLL
//--
#include <istring.hpp>
#include "reverse.hpp"
/*---*/
/* This file defines 1 classe Reverse */
/* Identify the classes we wish to export */
/*---*/
class _Export Reverse;
char* Reverse::reverse(char* str1)

{
char* t;
IString* myString = new IString(str1);
t = ((*myString).reverse());
return t;

}

This C++ program takes a string and reverses it by using the
reverse method of the IString class. Instead of passing an IString
as a parameter and return value, we pass a char*, because IString
cannot be parsed by ivj2cpp. We explain in “Accessing a Complex
Class by Header File Modification” on page 281 how a class such
as IString can be parsed.

From the directory where the reverse.hpp and reverse.cpp files are
located, we run the ivj2cpp utility:

ivj2cpp Reverse reverse.hpp -s reverse.cpp -p cppserver

270 VisualAge for Java Enterprise

C++ Access Builder Overview

Because we use the IString class in the reverse code, we need to
modify the reverse.mk file to ensure that the VisualAge for C++
compiler uses the multithreading libraries at linkedit.

We edit the reverse.mk file and modify the CXXFLAGS line by add-
ing the /Gm+ flag:

CXXFLAGS = $(CXXINCLUDE) /Ge- /C /O /Q /Fo$* /Gm+

We compile the C++ server object and generate the DLL.

Now we are ready to use the C++ DLL with a Java applet. First we
make sure that the directory where the DLL is located is in PATH,
so that it can be accessed when dropping the reverse Java bean in
the Visual Composition Editor; remember that the default con-
structor is called, and it loads the reverse DLL. If the Java con-
structor cannot find the DLL, the debugger opens up and we get
an error message:

Uncaught exception
(java.lang.UnsatisfiedLinkError : no Reverse in shared library path)

In the Workbench, we create a C++ Access Builder project and
import the reverse Java bean code generated by ivj2cpp. Notice
that the cppserver package is created automatically during
import.

❑ We create a new applet called ReverseApplet, using Smart-
Guide, open the Visual Composition Editor, and build the
applet as shown in Figure 165.

❑ We add two text fields to the applet, add a push button to the
bottom of the panel, and change the label to "Reverse String."

❑ Using the Add Bean menu choice, we add the reverse bean and
name it ReverseBean.

❑ We connect the Reverse String button to the reverse method
of the reverse bean (1).

❑ We connect the text property of the first text field bean to the
arg1 parameter of the previous connection (2). When the
Reverse String button is clicked, the reverse method of the
C++ server is called with the text of the first text field as a
parameter.

❑ We connect the normalResult of the reverse call connection to
the text property of the second text field (3). The resulting
reversed string is sent back to the second text field.

Chapter 9. C++ Servers and C++ Access Builder 271

C++ Access Builder Overview

Figure 165. Test Applet for Reverse Bean

We run the ReverseApplet applet, type a string into the first text
field, and click on the Reverse String button. The reversed string
should be displayed in the second text field.

Note that we have been using a Java applet with JNI calls for test
purposes. The applet did not break Java security rules because we
are running in the same local machine. (An applet in a Web
browser cannot use the JNI.)

1

2

3

272 VisualAge for Java Enterprise

C++ Access Builder Advanced

C++ Access Builder Advanced

We have seen that the JNI defines some rules to make native C++
calls from Java. One of these rules defines a naming convention
for the C++ functions. The JVM must be able to find the C++ func-
tions, so they cannot have just any name.

Another issue is the parameter (or argument) types. The C++ and
Java types are close, but they are not always identical. The C++
Access Builder creates a Java class with all the functions of a C++
class, keeping the same function names in C++ and in Java. But to
do this, an intermediate C++ wrapper file has to be generated.
This is the only piece of code that accesses the existing C++
objects. We explain here how the C++ wrapper works with some
code extracts from the previous examples. We also explain the
rules to follow to successfully generate a wrapper.

Considerations for C++ Class Wrappering

Remember that in “Java Native Interface Programming” on page
257 we used some C primitives types and function calls but did not
talk about support for such things as:

❑ Accessing C++ objects

❑ Instantiation of classes

❑ Accessing members and methods of objects

❑ Overloading operators

❑ Passing objects by value and reference

We have seen that, given a C++ class, the C++ Access Builder gen-
erates an access bean and a C++ wrapper file to be compiled and
linked as a DLL. This generation is done by parsing header files
and their hierarchy of include files.

All generated Java beans inherit from a __J2CPP_ class in the
COM.ibm.ivj.eab.j2cpp package. This class has methods to invoke
the construction and destruction of C++ and Java objects. The
inheritance tree of the server class is reflected from C++ to Java as
shown in Figure 166.

Chapter 9. C++ Servers and C++ Access Builder 273

C++ Access Builder Advanced

Figure 166. Mapping between C++ and Java Inheritance

All classes provided as part of the j2cpp package also inherit from
__J2CPP_. For instance, PCHAR, which is a Java class represent-
ing a pointer to a char and is used when passing a char* as a
parameter in a C++ call, inherits from __J2CPP_.

Details of the Generated Code

Let us go back to the Reverse string example and examine the
generated code. Figure 167 shows the code for Reverse.java, and
Figure 168 on page 275 shows the code for ReverseWrapper.cpp.

We do not detail all lines of the JNI code generated by the C++
Access Builder; we simply give you the flow of calls made as well
as some of the classes used.

The Java class has a constructor, a reverse method, and a finalize
method. The Reverse constructor calls a private native method
InitReverse_p:

private native void InitReverse_p() ;
public Reverse() {

super(_null_constructor_);
InitReverse_p();

}

Here is the code to call the native method from the Java bean:

private native PCHAR reverse_ppC(PCHAR arg0);
public PCHAR reverse(PCHAR arg1) {

return reverse_ppC(arg1);
}

Java C++

__J2CPP_

A.java

B.java

A.cpp

B.cpp

Object

274 VisualAge for Java Enterprise

C++ Access Builder Advanced

The finalize method deletes the C++ object:

delete (Reverse*) hndl.

Figure 167. Code for Reverse.java

Now let us look at the generated C++ wrapper code (Figure 168).
The wrapper class defines the InitReverse method as:

Java_cppserver_Reverse_InitReverse_1p

This is the name that the command javah -jni would generate on
the Reverse.class file. The C++ wrapper file calls the constructor
of the C++ object:

(jint)new Reverse()

PCHAR is a class provided with VisualAge for Java Enterprise and
represents a pointer to a char. PCHAR can be constructed from a
string and used in Java to represent the C++ char*. The Reverse
method takes a PCHAR as argument and returns a PCHAR. As you
will see in “Mapping the ATM C++ Classes to Java” on page 292,
many classes like this are provided to map C++ types to Java
classes.

/*

* This file was generated by the IVJ2CPP tool.
* DO NOT EDIT THIS FILE.

*/

package cppserver;
import COM.ibm.ivj.eab.j2cpp.*;

public class Reverse extends __J2CPP_ {

protected Reverse(__NullConstructor_ _null_constructor_) {
super(_null_constructor_);

}

private native PCHAR reverse_ppC(PCHAR arg0);
public PCHAR reverse(PCHAR arg1) {

return reverse_ppC(arg1);

}
private native void InitReverse_p() ;

public Reverse() {

super(_null_constructor_);
InitReverse_p();

}

public native void finalize ();
static {

System.loadLibrary("Reverse");

fixFloat();
}

}

Chapter 9. C++ Servers and C++ Access Builder 275

C++ Access Builder Advanced

Figure 168. Code for ReverseWrapper.cpp

/* This file was generated by the IVJ2CPP tool.
* DO NOT EDIT THIS FILE.*/

#include <jni.h>
#include <stdlib.h>
#include <wcstr.h>
#include <string.h>
#include "ivjdjdct.hpp"
#include "ivjdjutl.hpp"
#include "reverse.hpp"
extern "C" {
JNIEXPORT void JNICALL

Java_cppserver_Reverse_finalize(JNIEnv *env, jobject that) {
jfieldID fid;
jint hndl;
jobject globobj;
jclass cls = env->GetObjectClass(that);
hndl = IVJDJgetHandle(env, that);
globobj = IVJDJGetJavaObject(hndl);
fid = env->GetFieldID(cls,"delete_c_object","Z");
if (env->GetBooleanField(that, fid) == JNI_TRUE)

delete (Reverse *)hndl;
IVJDJRemoveEntry(hndl);
if (globobj != NULL) env->DeleteGlobalRef(globobj);

}
extern "C" {
JNIEXPORT void JNICALL

Java_cppserver_Reverse_InitReverse_1p(JNIEnv *env, jobject that) {
jfieldID fid;
jint hndl;
jclass cls = env->GetObjectClass(that);
fid = env->GetFieldID(cls,"handle","I");
hndl = (jint)new Reverse();
env->SetIntField(that, fid, (jint) hndl);
IVJDJEnterObjectPair(env->NewGlobalRef(that),hndl);

}
extern "C" {
JNIEXPORT jobject JNICALL

Java_cppserver_Reverse_reverse_1ppC
(JNIEnv *env, jobject that, jobject arg0) {

jclass ret_cls;
jmethodID ret_mid;
jfieldID ret_fid;
jobject ret_obj;
char *ret_val;
char *parm0 = (char *) IVJDJgetHandle(env, arg0);
jint hndl;
hndl = IVJDJgetHandle(env, that);

ret_val = (char *)((Reverse *) hndl)->reverse(parm0);
ret_obj = IVJDJGetorCreateJavaObject

(env,"COM/ibm/ivj/eab/j2cpp/PCHAR",(jint) ret_val);
return ret_obj;

}}
/*
* End of file generated by the IVJ2CPP tool.
*/

276 VisualAge for Java Enterprise

C++ Access Builder Advanced

The public reverse method calls the native method, reverse_ppC,
defined in the C++ wrapper:

....java_cppserver_Reverse_Reverse_1ppc(...) {
.....

ret_val = (char *)((Reverse *) hndl)->reverse(parm0);
ret_obj = IVJDJGetorCreateJavaObject

(env, "COM/ibm/ivj/eab/j2cpp/PCHAR", (jint) ret_val);
return ret_obj;

}

The return value of type PCHAR can be used in the client applet
as:

setText(String.valueOf(COM.ibm.ivj.eab.j2cpp.PCHAR result));

The generated code makes this mapping fully transparent.

Design Considerations

Although the C++ Access Builder improves the mapping from C++
to Java, the differences between the two languages present some
limitations (see “Limitations of the C++ to Java Mapping” on page
280). You should consider creating a thin interface layer that
accesses your C++ code.

If the C++ class uses multiple inheritance, a complete hierarchy
mapping cannot be done because Java does not support multiple
inheritance. Instead you can create a wrapper class that owns an
instance of the object that is multiply inherited. The wrapper class
can be defined to expose all inherited public methods. In “Another
Way of Exposing the C++ Interfaces” on page 281, we explain how
you can hide this inheritance from the parser and nevertheless
use the C++ class and the inherited methods.

Java can only use native code provided as a DLL. When building a
DLL from the wrapper files, we have two choices:

❑ We can rebuild the existing C++ library with the additional
files. This is what we do in “Reverse String Example” on page
269. Because we have the source file of everything, we enter:

ivj2cpp Reverse reverse.hpp -s reverse.cpp -p cppserver

❑ We can build a new C++ library that can access the existing
DLL. This is what we do in “Using a Class That Accesses a
Wrapped C++ Library” on page 284 because we do not have
the source code of everything (note the usage of the -l flag):

ivj2cpp WordReverse WordReverse.hpp -s WordReverse.cpp
-l String.lib -p StringTest

Chapter 9. C++ Servers and C++ Access Builder 277

C++ Access Builder Advanced

Another important feature is the way in which the ivj2cpp utility
parses the source files. Only header files are parsed, but all
included header files are also processed. Therefore, the header
files should not have any #include statement other than the state-
ments that correspond to types passed as parameters or return
values. We can put the include statements for the files that do not
have to be parsed in the implementation file, just before the
#include statement of the parsed header file.

Type Mapping between C++ and Java

Table 20 summarizes of the C++ types that are mapped to Java
classes. It provides a first insight into the design decisions you
have to make to create effective interfaces to C++ classes that can
be processed to generate Java beans.

Public member variables of primitive types are made accessible
with a get and set method in the Java bean (except that no set
method is generated for the const keyword).

Pointers to C++ primitive types are provided as Java classes, with
methods to get and set the value of the equivalent C++ value.
There are 12 classes of this type. The complete list is shown in
Table 20; for more details, see the reference section of the online
documentation.

Table 20. C++ Primitive Type to Java Class Mapping

C++ Type Java Class Name
char PCHAR

unsigned char PUCHAR

signed char PSCHAR

wchar_t PWCHAR

unsigned int PUINT

signed int PINT

unsigned short PUSHORT

signed short

unsigned long PULONG

signed long PLONG

double PDOUBLE

float PFLOAT

278 VisualAge for Java Enterprise

C++ Access Builder Advanced

For arrays, get and set methods are generated to allow access to
each element. For instance, if we have in C++ a matrix declared as

int Matrix[2][3]

we can set each element with

setMatrix(1,1,45);

We provide an array example in “Using a C++ Server in the ATM
Application” on page 290.

The generated get and set methods for pointer data members refer
to and can change the address of the corresponding C++ data
member. There are also methods on each P<TYPE>.class for
changing the value pointed to. Here is an example of using the
PCHAR class, where the C++ class A has a constructor, A::A(char*
name). The code of the Java client is:

String str = "C++ Access Builder";
PCHAR toolName = new PCHAR(str);
A anA = new A(toolName);
String itsName = toolName.toString();

References are treated the same way as pointers, with specific
classes. The generated C++ wrapper classes make the difference
between passing by value or by reference.

In the case of a pointer or reference to a class other than the base
classes (that is, a class that has already been mapped), the C++
Access Builder generates a PointerToCLASS_<Name> or
ReferenceToCLASS_<Name>. For instance, if the C++ class A has
been parsed, and in the C++ class B a method, m1, returns a
pointer to class A, we can write in Java:

B aB = new B();
PointerToCLASS_A pA = B.m1()

Public methods in the Java bean call corresponding native meth-
ods in the C++ wrapper and forward the calls to the methods of
the C++ objects, as we have seen in “Reverse String Example” on
page 269.

Additional Java files are generated if the class has static func-
tions:

❑ Statics.java—contains Java access for each C++ declaration
that is not part of any C++ class. (For static methods no object
has to be instantiated.)

❑ StaticsWrapper.cpp—contains the C++ wrapper corresponding
to the Java class static functions

Chapter 9. C++ Servers and C++ Access Builder 279

C++ Access Builder Advanced

The example described in “Reverse String Example” on page 269
also shows that a constructor and a finalize method are generated
to manage the life of their corresponding C++ object. Any time a
C++ object is allocated as a result of using the new operator on a
wrapping Java object, the C++ object is deleted when the Java
object is garbage collected. If the C++ object is created on the C++
side and returned to Java, the C++ object is (by default) not
deleted when its matching Java object is garbage collected. We
can, however, override this default action by calling the Enabl-
eCDestructor method of __J2CPP_ in the Java code.

Note: There are cases when the C++ object holds a reference on
the Java object, preventing it from being garbage collected, and
therefore freeing the memory allocated by C++. The update
release of VisualAge for Java (see “C++ Access Builder” on page
379) has a native delete method added to the parent class of all
generated Java classes. To ensure that the resource allocated to
the C++ object are freed, we can call the delete method on the Java
object.

C++ overloaded operators are mapped to Java methods with spe-
cial names, for example:

aClass operator+ (aClass A) in C++ gives x = y.Operator_PLUS(z)

The Java client cannot construct a union or enum or access their
value. It can only receive a union or enum as a return value or
parameter (by their address of type int). In other words, enum and
union are opaque and can only be passed between Java and C++,
not accessed by Java.

Cast operators are mapped to the method of the corresponding
Java class, with a name that is derived from the target type of the
conversion function, for example:

operator long() {return (long v); //C++

long b = a.operatorCAST_LONG(); //Java

We show an example of casting in “Accessing a Complex Class by
Header File Modification” on page 281.

Exception Handling

Because IVJJException exceptions may be raised by classes of
COM.ibm.ivj.eab.j2cpp, the client code must be ready to handle
them.

The C++ code can also throw an exception, and the exception
should be handled by the C++ wrapper code. This is not currently
done in the current release but should be part of a future enhance-

280 VisualAge for Java Enterprise

C++ Access Builder Advanced

ment. In “Using a C++ Server in the ATM Application” on page
290, we show an example of how to modify the generated code to
handle an exception thrown by the C++ code.

Compiler Support

When generating the makefile, ivj2cpp assumes that the IBM
VisualAge for C++ product is used for compilation and linkage. If
you are using the Microsoft Visual C++ compiler, you must specify
the -v option with ivj2cpp. If you are using another compiler, you
must manually edit the makefile.

The online documentation of VisualAge for Java gives the condi-
tions under which another compiler can be used.

Limitations of the C++ to Java Mapping

In regard to direct parsing of the C++ server header files, a com-
plete and up to date list of the limitations of the C++ Access
Builder is given in the online documentation of VisualAge for
Java. These limitations are due in part to the inherent differences
between C++ and Java

When the C++ Access Builder parses the include files it tries to
map all types and functions to something meaningful in Java. We
have seen that a good way to circumvent these restrictions is to
write a C++ interface class, and we extend this in “Accessing a
Complex Class by Header File Modification” on page 281.

Here are the features that are not supported by the C++ Access
Builder:

❑ Object serialization—If you require object serialization, you
need to wrap the generated Java classes and provide an inter-
face that supports serialization.

❑ Multiple inheritance

❑ Templates

❑ Default arguments in method calls—You must supply the
default values because the call is made on the Java side.

❑ Parsing of files that contain incorrect syntax—You may get
unpredictable results if your source files contain syntax errors.

❑ Exceptions—C++ exceptions are not transmitted to the Java
code.

❑ Nested class definitions or typedefs—More specifically, there is
no support for class definitions or typedefs within a class defi-
nition.

Chapter 9. C++ Servers and C++ Access Builder 281

C++ Access Builder Advanced

❑ Inheritance across the Java/C++ boundary—You cannot
invoke protected methods, and there is no programming model
for abstract base classes.

❑ Direct access to data members—You must use accessory meth-
ods.

❑ Multidimensional arrays—Three-dimensional arrays or larger
are not supported when passed as parameters.

Another Way of Exposing the C++ Interfaces

There is a way of using the C++ Access Builder other than the way
described in the online help delivered with VisualAge for Java.
Remember that the goal is to generate a wrapper class that can be
processed by the C++ Access Builder. The solution described in the
online help implies that you rewrite a new class that exposes the
interface you want to make available and that can be correctly
processed by the tool.

Another solution, explained here, is a good alternative. It requires
some changes in the header files of the classes you want to use so
that they can be processed by the C++ Access Builder. The modi-
fied header file must contain only simple C++ types or other
classes that can be processed by the C++ Access Builder. Even if
we introduce changes to the class definition, all the calls we
invoke on the class must be unchanged.

Accessing a Complex Class by Header File Modification

As a first example, we take a C++ string class and try to make it
usable from Java. For instance, working with VisualAge for C++,
we often use the IString class. The definition file is in D:\IBM-
CPPW\INCLUDE. We copy ISTRING.HPP to a working directory as
STRING.HPP because we are going to modify it and do not want to
change the original header file.

From the very long definition of Istring, we keep only some simple
methods, for example:

❑ Three constructors (the default, the constructor from a set of
characters, and the constructor from a preexisting IString)
and the destructor

❑ The reverse method

❑ The cast operator to char*

❑ The word method that extracts one word from an IString sen-
tence

282 VisualAge for Java Enterprise

C++ Access Builder Advanced

Figure 169 shows the reduced header file.

Figure 169. Reduced IString Header File

We parse the modified header file with the ivj2cpp command:

ivj2cpp String String.hpp -p stringtest

Because we named the header file String.hpp, so that there is no
confusion with the real IString.hpp, ivj2cpp generates IString-
Wrapper.cpp with:

#include �String.hpp�

However, the real code is required at link time, otherwise we get
many error messages. Therefore, we change the include statement
to:

#include <IString.hpp>

Because the IString class is a multithreaded class, we have to tell
the compiler to use the multithreaded library. By default the gen-
erated makefile does not set this flag. We edit String.mk and
change the line:

CXXFLAGS = $(CXXINCLUDE) /Ge- /C /O /Q /Fo$* (old)

CXXFLAGS = $(CXXINCLUDE) /Ge- /C /O /Q /Fo$* /Gm+ (new)

We compile the code with nmake and get:

❑ An IString.class Java bean in package stringtest

❑ String.dll and String.lib, which we put into a directory accessi-
ble for this type of file

We test the bean inside the Visual Composition Editor of Visu-
alAge for Java. We create an applet called StringUsage and add
the buttons, text fields, and labels as shown in Figure 170.

class IString {
public:
//------------------------- Constructors --------------------//
IString ();
IString (const IString &aString);
IString (const char *pChar);
~IString ();

//------------------------- Methods -------------------------//
IString &reverse ();
operator char* () const;
IString word (unsigned int wordNumber) const;

};

Chapter 9. C++ Servers and C++ Access Builder 283

C++ Access Builder Advanced

Figure 170. Applet Using the IString Bean

We drop two nonvisual components:

❑ A factory. We change its type to StringTest.IString and name it
anIString. This component is used to instantiate an IString
with the value of an entry field.

❑ A variable. We change its type to StringTest.IString and name
it aWord. This component holds a reference to the IString that
is created by the word method of IString.

Now we can draw the connections:

❑ Set string button to IString(PCHAR) constructor of anIString
(1), passing the text of the first entry field as a parameter
(PCHAR and String can be safely connected)

❑ Reverse button to reverse method of anIString (2)

❑ Reverse button to operatorCAST_ConstPointerToCHAR
method of anIString (3), and the normalResult of this connec-
tion to text of the second entry field (4)

❑ Get word button to word method of anIString (5), passing the
text of the third entry field as a parameter, and the normalRe-
sult of this connection to this of aWord (6)

❑ Get word button to IString(PCHAR) of aWord (7), and the
normal result of the connection to the text of the second entry
field (8)

1 2

3

4

5 6

7

8

284 VisualAge for Java Enterprise

C++ Access Builder Advanced

We save and run this applet. We enter a string with blank separa-
tors between each word, click on the Set string button, then the
Reverse button, and verify that the applet works correctly. We
enter a number, click on Get word, and we should get the corre-
sponding word in the sentence.

We have demonstrated that it is possible to access a complex C++
class with the C++ Access Builder by modifying the header file of
the class.

Using a Class That Accesses a Wrapped C++ Library

Let us now reuse a piece of C++ code that has an IString as a
parameter or a return value. We describe how we can make it
work. This sample program takes an IString as input and returns
one word of this IString reversed (not a very useful example, but it
uses the methods we have mapped and shows all the principles).

Figure 171 shows the header file (WordReverse.hpp) and the
source file (WordReverese.cpp).

Notice that the header file includes String.hpp and not IString
.hpp, so that the parser accesses the modified file. We use the
ivj2cpp utility to generate a new C++ library named WordReverse
that can access the existing C++ library String:

ivj2cpp WordReverse WordReverse.hpp -s WordReverse.cpp -l String.lib

-p StringTest

The generated makefile, WordReverse.mk, rebuilds the IString
objects. However we already did that with modifications in the
wrapper code, so we remove all references to making these objects
(in GENCFILES, GENJFILES, OBJECTS, INTOBJECTS) with an edi-
tor and add /Gm+ to CXXFLAGS as in the previous example.

The linker needs to access the real IString, therefore we change
WordReverse.hpp back to:

#include <IString.hpp>

We create a subdirectory of the name of the Java package
(StringTest), put the String.class in it, and make sure that the
CLASSPATH includes the current directory.

Now we run nmake to compile the classes and link the DLL. We
make the generated DLL and LIB file available through PATH.

Chapter 9. C++ Servers and C++ Access Builder 285

C++ Access Builder Advanced

Figure 171. WordReverse Header and Source Files

We test the new bean with VisualAge for Java in an applet called
WRTest.

First we import the new WordReverse.class bean into the Work-
bench and drop three nonvisual beans on the free-form surface:

❑ A factory of type IString, named anIString

❑ A factory of type WordReverse, named aWordReverse

❑ A variable of type IString, named aWord

See Figure 172 for the layout of the applet.

/*-------------------------------*/
/* WordReverse.hpp header file */
/*-------------------------------*/

#pragma library("WordReverse.lib")
#include <String.hpp>
class WordReverse
{

public:
WordReverse();
WordReverse(const IString & str);
IString getWR(int i);

private:
IString aString;
IString aWord;

};

//--
// WordReverse.cpp - Source file for a C++ DLL
//--
//#include "String.hpp"
#include "WordReverse.hpp"

class _Export WordReverse;

WordReverse::WordReverse() {}
WordReverse::WordReverse(const IString & str)
{
aString = str

}
IString WordReverse::getWR(int i)
{
aWord = aString.word(1);
return aWord.reverse();

}

286 VisualAge for Java Enterprise

C++ Access Builder Advanced

Figure 172. Applet Using the WordReverse Bean

We draw the following connections:

❑ Set String button to the IString(PCHAR) constructor of anIS-
tring (1), passing the text of the first entry field as a parameter
(PCHAR and String can be safely connected)

❑ Set String button to the WordReverse(StringTest.IString)
constructor of aWordReverse (2), passing this of anIString as a
parameter

❑ Reverse Word button to the getWR method of aWordReverse
(3), passing the text of third entry field as a parameter, and the
normalResult of this connection to this of aWord (4)

❑ Reverse Word button to the operatorCAST_PointerToCHAR
method of aWord (5), and the normalResult of the connection
to the text of the second entry field (6)

We save and run the applet. We enter a string with blank separa-
tors between each word, click on the Set string button, give the
number of the word we want to reverse, and click on the Reverse
Word button.

1

2
3

4

6

5

Chapter 9. C++ Servers and C++ Access Builder 287

C++ Access Builder Advanced

We hope it has become clear how we can help the C++ Access
Builder parse complex classes by simplifying the header files.
With the technique we illustrate, we can use classes from a library
as parameters of other classes and therefore reuse parts of an
existing C++ project.

Accessing a Class with Templates

Let us now illustrate how we can work with template classes. Fig-
ure 173 shows the full header file of a SortedList class, which we
want to use in VisualAge for Java to sort Java strings.

Figure 173. Full Header File of a SortedList C++ Class

#include <IString.hpp>
#ifndef LISTH
#define LISTH
template <class T> class Element;
template <class T> class List
{ public:

List(T& elmt);
~List();
virtual void add(T& elmt);
int getSize();
T& goFirst();
T& getCurrent();
T& goNext();
virtual void destroy();
int size;
Element <T> * first;
Element <T> * current;

};
template <class T> class SortedList : public List <T>
{ public:

SortedList(T& elmt);
virtual void sort();

};
class SortedListString : public SortedList <IString>
{ public: SortedListString(IString& elmt);
};
template <class T> class Element
{ public:

Element(T *elmt, Element <T> *prv, Element <T> *nxt);
~Element();
Element <T> *getNext();
Element <T> *getPrevious();
T *getData();
void setNext(Element <T> *nxt);
void setPrevious(Element <T> *prv);
protected:

T * data;
Element <T> * next;
Element <T> * previous;

};
#endif

288 VisualAge for Java Enterprise

C++ Access Builder Advanced

Figure 174 shows the subset that we need to expose to the C++
Access Builder. This code uses the IString class that we built.

Figure 174. Reduced SortedList Header File

There is a big difference between the two header files, but, when
you look carefully, you notice that only the unnecessary informa-
tion has been removed.

For use in VisualAge for Java, the parser does not need to know
which class is the parent class of SortedList; therefore we remove
the inheritance declaration. However, we have to redeclare the
parent features that are inherited and that we plan to use.

In Java, we can never use the List <T>, SortedList <T>, or Ele-
ment <T> classes; therefore we hide these definitions.

In Java, we cannot use the private and protected features. There-
fore we can omit these declarations. (This does not mean that Java
does not support private or protected features. It simply means
that all of the Java classes we create are not allowed to access
these private and protected data and functions because Java
classes do not inherit from this class.)

We also remove any unnecessary #define or #include statements.

#include "String.hpp"
class SortedListString
{

public:
SortedListString(IString& elmt);
~SortedListString();
virtual void add(IString& elmt);
virtual void sort();
int getSize();
IString& goFirst();
IString& getCurrent();
IString& goNext();

};

Chapter 9. C++ Servers and C++ Access Builder 289

C++ Access Builder Advanced

C++ Access Builder Supported Environments

The C++ Access Builder generates some code that is specific to a
compiler. In the C++ wrapper files, there is a #include statement
for including wide character functions. For VisualAge for C++, this
file is wcstr.h; for Microsoft Visual C++, this file is wchar.h.

If the C/C++ compiler that is used has a different header file for
wide character functions, modify the #include statement as appro-
priate in each generated C++ wrapper file.

The supported IBM C++ compilers are:

❑ VisualAge for C++ 3.5 with Fixpak 2 on Windows 95 or NT 4.0

❑ VisualAge for C++ 3.0 with Fixpak 6 on OS/2 Warp Version 4

The OS/2 JDK has implemented the JNI jlong as a structure
with C functions to perform casting operations. Therefore, the
generated C++ wrapper code is different on OS/2 and is not
portable to Windows 95 or NT 4.0.

The C++ Access Builder has been tested with and supports the fol-
lowing or later versions of the Microsoft Visual C++ compiler:

❑ Visual C++ 5.0 on Windows 95 or NT 4.0

290 VisualAge for Java Enterprise

Using a C++ Server in the ATM Application

Using a C++ Server in the ATM Application

You have already seen many ways of building and accessing
server objects from a Java applet in the ATM application.

In this section we replace one of those server objects with a Java
bean that accesses a C++ library, and we show that it can be done
quite easily with the C++ Access Builder.

Indeed, one of the great strengths of C++ is its speed of execution,
and we could, for example, develop an interest calculation pro-
gram, but that would not teach you more about the tool, because
we would basically have some numbers as input and a number as
output.

We want to show you that it is possible to integrate an existing
C++ business object in the same way as we have done with a Java
program.

There is one server object in the ATM application that fits well in
this context, the card object. The card object should be kept secret,
because it holds the relationship between the card number, the
customer ID, and the accounts of the customer and can check for
the validity of the PIN.

Environment

Let us assume that there is a C++ application program, which was
written a long time ago, and which the company cannot change
because it must run on a specific computer with limited access.

We simulate this situation by providing a DLL and its associated
header files. This program is not meant to be elaborate and per-
fectly written; it is just meant to illustrate that we can access a
C++ DLL easily from VisualAge for Java, even without having its
source code.

The C++ program stores all of the card information in a flat file
and retrieves the information with the help of some methods. The
C++ classes of this program are somewhat similar to what the
Data Access Builder generates when we map the card table. In
this C++ program, a CardManager can retrieve a row from a file,
and a Card object can be constructed to hold the card, customer,
and account information associated with one ATM card.

Chapter 9. C++ Servers and C++ Access Builder 291

Using a C++ Server in the ATM Application

Approach

We show you how to map the CardManager and Card C++ classes
with the C++ Access Builder to corresponding Java beans, and we
implement a sample applet that tests the function of these beans.

For the ATM application we use some of the methods of these
beans to demonstrate how a C++ server could replace the JDBC
database access used in Chapter 7, “ATM Application with RMI”.

C++ Header Files

The existing C++ card class can validate a PIN and retrieve the
customer and the accounts associated with the card.

The implementation consists of two classes, CardManager and
Card, in a CardAccess library. The header files are shown in Fig-
ure 175 (CardManager) and Figure 176 (Card).

Figure 175. CardManager Header File

#pragma library("CardAccess.lib")

#include <istring.hpp>
#include <fstream.h>
#include "Card.hpp"

class CardManager
{
public:
CardManager();
~CardManager();
CardManager & close();
CardManager & open(IString newFileName);
CardManager & readLine();
CardManager & setCurrentLine(const IString & aNewLine);
CardManager & setFileName(const IString & aFileName);
IString fileName() const;
IString currentLine() const;
IString cardLine(const IString & aCardId) ;

private:
IString iFileName;
IString iCurrentLine;
fstream aFile;
Boolean eofReached;
Boolean CardFound;
Boolean aFileIsOpen;
IString endOfFile;

};

292 VisualAge for Java Enterprise

Using a C++ Server in the ATM Application

The CardManager class can open and close a file, read a line,
return the current line, and return the line that matches a card
ID. It has private methods that we do not expose to Java but that
will be used in the interface code.

If the file cannot be opened, the C++ code raises an exception. If
the card cannot be found, the C++ code returns “NoCardFound.”

Figure 176. Card Header File

The Card class constructs a card object from a line read by the
CardManager. The card object can return its card number, the
customer ID of its card holder, and a list of associated bank
accounts. The card also has a checkPin method to validate the
PIN.

Mapping the ATM C++ Classes to Java

Because these header files contain types that are not directly
understood by the ivj2cpp utility, we write interface classes to
access the methods and return valid data types. We do this rather
than using header file reduction, because of the size of these inter-
faces.

We create two new classes, which we call J_CardManager and
J_Card.

#pragma library("CardAccess.lib")

#include <istring.hpp>

class Card
{
public:
Card(IString aLine);
~Card();
const IString cardNumber();
const IString customerId() ;
IString* accounts() ;
Boolean checkPin(const IString & aPin) ;

private:
IString iCurrentLine;
IString iCardNumber;
IString iCustId;
Boolean PinOk;
IString iAccounts[10];

};

Chapter 9. C++ Servers and C++ Access Builder 293

Using a C++ Server in the ATM Application

Mapping the CardManager Class

We create the J_CardManager class from the CardManager class:

❑ In the header file we omit any inclusion of files and instead
put all #include statements into the source file:

#include <istring.hpp>
#include "J_CardManager.hpp"
#include "CardManager.hpp"

❑ We transform IString into char*:

IString cardLine(const IString & aCardId) (old)

char* cardLine(char* aJCard); (new)

❑ We declare two private pointers to a line and a file. These
pointers can only be of type char or void.

❑ We create a constructor and a destructor that call the con-
structor and destructor of the C++ class (the pointer to a Card-
Manager class must be cast to void):

J_CardManager::J_CardManager() {
CardManager* aFFile = new CardManager();
aFF = (void *)aFFile;

}
J_CardManager::~J_CardManager() { delete aFF;}

❑ We access the methods of CardManager with this pointer,
which we have to recast to its correct type. The same mecha-
nism is true for the pointer to a line, for instance:

char* J_CardManager::cardLine(char* aJCard)
{

return((char*)((CardManager*)aFF)->cardLine((IString) aJCard));
}

Figure 177 shows the header file and Figure 178 shows the source
of the J_CardManager class. We add two additional methods for
test purposes, currentLine and fileName.

Figure 177. CardManager Interface Class Header File

class J_CardManager {
private :
char* aJline;
void* aFF;

public :
J_CardManager();
~J_CardManager();
char* currentLine();
char* cardLine(char* aJCard);
char* fileName();
J_CardManager & open(char* JnewFileName);
J_CardManager & close();

};

294 VisualAge for Java Enterprise

Using a C++ Server in the ATM Application

Figure 178. CardManager Interface Class Source Code

Mapping the Card Class

The process we used to map the CardManager applies here as
well; we define a C++ interface class with types that the C++
Access Builder can understand.

Two additional data types must be handled: the Boolean data type
and the array of IString:

❑ The checkPin method takes a char* as input and returns an
int, 1 for true, 0 for false.

❑ In the current release of the product, array declaration is sup-
ported only as type x[][num], and not as type* x[num]. In our
program we would like to retrieve an array of character
strings, char* iAccounts[10]. We made a slight modification in
the interface class, as indicated below. Although it retrieves all
the accounts initially, it returns only one in each call, given the
index as a parameter in the accounts method. The Java client
has to call the methods as many times as there are accounts to
fill up the list.

IString* accounts() // method declaration in Card.hpp

char* accounts(int i) // method declaration in J_Card.hpp

// implementation in J_Card.cpp
IString* astrAccounts = ((Card*)aC).accounts();
return (char*)astrAccounts[i];

#include <istring.hpp>
#include "J_CardManager.hpp"
#include "CardManager.hpp"

class _Export J_CardManager;

J_CardManager::J_CardManager()
{ CardManager* aFFile = new CardManager();
aFF = (void *)aFFile; }

J_CardManager::~J_CardManager() { delete aFF; }
char* J_CardManager::currentLine()
{ return ((char*) ((CardManager *)aFF)->readLine().currentLine()); }

char* J_CardManager::cardLine(char* aJCard)
{ return ((char*) ((CardManager*)aFF)->cardLine((IString) aJCard)); }

char* J_CardManager::fileName()
{ return ((char*) ((CardManager *)aFF)->fileName()); }

J_CardManager & J_CardManager::open(char* JnewFileName)
{ ((CardManager*)aFF)->open((IString) JnewFileName);
return *this; }

J_CardManager & J_CardManager::close()
{ ((CardManager*)aFF)->close();
return *this; }

Chapter 9. C++ Servers and C++ Access Builder 295

Using a C++ Server in the ATM Application

Figure 179 shows the header file and Figure 180 shows the source
of the J_Card class.

Figure 179. Card Interface Class Header File

Figure 180. Card Interface Class Source File

We run ivj2cpp on these two interface classes:

ivj2cpp J_CardAccess J_Card.hpp J_CardManager.hpp
-s J_Card.cpp J_CardManager.cpp -p CardServer

We check that the ivj2cpp.log was generated without error mes-
sages.

If we take a look at the C++ source code we can see that the open
file method can throw an exception:

IAccessError exc = IAccessError("Could not open file : " + iFileName);
ITHROW(exc);

class J_Card
{
private:
char* aJLine;
void* aC;
int PinOK;

public:
J_Card(char* aCLine);
~J_Card();
const char* customerId();
const char* cardNumber();
char* accounts(int i);
int checkPin(char* aJPin);

};

#include <istring.hpp>
#include "J_Card.hpp"
#include "Card.hpp"

class _Export J_Card;

J_Card::J_Card(char* aCLine)
{ Card* aCard = new Card((IString) aCLine);
aC = (void *) aCard; }

J_Card::~J_Card() { delete aC; }
const char* J_Card::customerId()

{ return ((char*) ((Card*)aC)->customerId()); }
const char* J_Card::cardNumber()

{ return ((char*) ((Card*)aC)->cardNumber()); }
const char* J_Card::accounts(int i)

{ IString* astrAccounts = ((Card*)aC)->accounts();
return (char*)astrAccounts[i]; }

int J_Card::checkPin(char* aJPin)
if (((Card*)aC)->checkPin((IString) aJPin) == true) return PinOK = 1;
else return PinOK = 0;

296 VisualAge for Java Enterprise

Using a C++ Server in the ATM Application

Currently the C++ Access Builder does not generate a try and
catch block in the wrapper code, although it is planned for a later
release. Therefore, we must do it ourselves in the meantime.

We find that the open method in J_CardManager.java calls a pri-
vate native method, called private native open_ppC(PCHAR arg2).
If we run javah -jni on the compiled class file, we find that the
native method in the header file is called:

Java_cardserver_J_1CardManager_open_1ppC(JNIEnv *env, jobject that,
jobject arg0)

We look for this name in J_CardManagerWrapper.cpp:

J_CardManager& ret_hndl = ((J_CardManager *) hndl)->open(parm0);

We surround this call with a try and catch block:

try {
J_CardManager& ret_hndl = ((J_CardManager *) hndl)->open(parm0);
ret_obj = IVJDJGetorCreateJavaObject (env,

"carderver/J_CardManager", (jint) &ret_hndl);
}
catch(...) {

jclass ExceptionClass = env->FindClass
("COM/ibm/ivj/eab/j2cpp/IVJJException");

env->ThrowNew(ExceptionClass,
"C++ call to open threw an exception");

return NULL;
}
return ret_obj;

The catch clause catches any exception thrown by the call to open.
The two lines within the catch are JNI calls. The first call finds
the name of an exception class. We use the class that is provided
by the C++ Access Builder class library. The second call constructs
an exception object from the given class, with the message string
passed, and then throws the exception. The exception can then be
handled in the java code that made the call to open.

In Java code J_CardManager.java, we indicate that open_ppC and
open throw an IVJJException:

private native J_CardManager open_ppC(PCHAR arg2) throws IVJJException;
public J_CardManager open(PCHAR arg3) throws IVJJException

We compile and link the application by issuing nmake on the com-
mand line and ensure that the CardAccess and J_CardAccess
DLLs can be accessed with the PATH environment variable.

We test the two generated beans and the DLL with an applet in
VisualAge for Java.

Chapter 9. C++ Servers and C++ Access Builder 297

Using a C++ Server in the ATM Application

Testing the Card Beans

In the same project where we developed the previous examples, we
import the generated Java beans, J_Card.class and
J_CardManager.class.

We create a new applet called CardTest, open the Visual Composi-
tion Editor, and draw the graphical interface with buttons, text
fields, and an IList for the list of accounts (Figure 181).

We also drop five nonvisual beans:

❑ A factory of type PCHAR, named aFileName

❑ A bean of type J_CardManager (J_CardManager1)

❑ An IMessageBox

❑ A variable of type PCHAR, which holds a reference to a card,
called TheCard

❑ A factory of type J_Card, named aCard

Figure 181. Test of Generated Beans for the ATM Application

1

2

3

4

5 6

7

8
9

10

11
12

13

14

15

16

17

18

19

20

298 VisualAge for Java Enterprise

Using a C++ Server in the ATM Application

We draw the connections illustrated in Figure 181:

❑ Open button to PCHAR(java.lang.String) of aFileName (1),
passing the full path name of cards.txt file as a parameter
(c:\VAJResid\CPPCard\cards.txt)

❑ The this event of aFileName to open(PCHAR) of
J_CardManager (2), passing this of aFileName as a parameter
(3), and exceptionOccurred of the connection to the showEx-
ception method of the IMessageBox (4) (passing the event
data)

❑ Close button to close method of J_CardManager (5)

❑ Get Card button to cardLine(PCHAR) method of
J_CardManager (6), passing the text of the Card ID text field
as a parameter (7), the normalResult of the connection to this
of TheCard (8), and the exceptionOccurred of the connection to
showException of the IMessageBox (9) (passing the event
data)

❑ Get Card button to the J_Card(PCHAR) constructor of the
aCard Factory (10), passing this of TheCard as a parameter
(11), and the exceptionOccurred of the connection to showEx-
ception of the IMessageBox (12) (passing the event data)

❑ Customer ID button to the customerId method of aCard (13),
and return the normal result to the Customer ID text field (14)

❑ Check Pin button to the checkPin method of aCard (15), pass
the text of the Enter Pin text field as a parameter (16), and the
normalResult to the Return Value Check PIN text field (17)

❑ Accounts button to removeAll method of the Ilist (18)

❑ Accounts button to the CardTest applet as event-to-script (19)
to a new accounts method to build a vector of accounts from
each call to the wrapped C++ code:

public java.util.Vector accounts() {
java.util.Vector result = new java.util.Vector();
for (int i=0; i<10; i++) {
java.lang.String anAccount =

String.valueOf(getaCard().accounts(i));
if (anAccount.compareTo("0")==0) break;
result.addElement(anAccount);

}
return result;

}

❑ normalResult of previous connection (19) to the elements prop-
erty of the Ilist (20)

We save and test the applet and check that the result are correct
against the cards.txt file. Here is the test sequence:

1. Click on Open to read the cards.txt file.

Chapter 9. C++ Servers and C++ Access Builder 299

Using a C++ Server in the ATM Application

2. Enter a card ID (1111111), and click on Get Card.

3. Click on Customer ID to fill the customer ID field (101).

4. Enter a PIN (1111), and click on Check Pin. The result (in
the Return Value Check PIN field) is either 1 (OK) or 0
(failed).

5. Click on Accounts to fill the list box with account numbers
(101-1001, etc).

6. Click on Close.

Against a nonexisting cards.txt file, the applet should not break
but should show an exception in the IMessageBox with this mes-
sage:

C++ call to open threw an exception

Wrapping the Beans for the ATM Application

The two Java beans cannot be put directly inside the ATM appli-
cation; they need to have an interface defined so that the control-
ler of the ATM application can delegate the work to the new beans.

C++ Card Server Bean

We create a CPPCard bean that integrates all C++ functions with
the IDE of VisualAge for Java. The public interface of the CPP-
Card bean consist of:

❑ CPPCard(java.lang.String)—a constructor that retrieves the
card information from the cards.txt file

❑ cardId and customerId—two readable properties of type
String, not bound

❑ accounts—a readable property of type Vector (account num-
bers), not bound

❑ checkPin(String)—a method returning a boolean

In addition to the public interface, there are a private field and a
private method:

❑ aJ_Card—a field of type J_Card (the Java bean generated for
the Card class)

❑ fillTheAccounts—a method to fill the accounts vector

Most of the code is generated with SmartGuide by creating the
properties. The tailored code can be cut and paste from the
CardTest applet with minor modifications.

300 VisualAge for Java Enterprise

Using a C++ Server in the ATM Application

The most important method is the constructor. The constructor
allocates the J_CardManager and calls it to open the file and
retrieve the card with the given card ID. Then it allocates the
J_Card and calls it to retrieve the customer ID and list of
accounts:

public CPPCard (java.lang.String aCardId) {
try {
COM.ibm.ivj.eab.j2cpp.PCHAR aCCardId = new

COM.ibm.ivj.eab.j2cpp.PCHAR(aCardId);
COM.ibm.ivj.eab.j2cpp.PCHAR aFileName = new

COM.ibm.ivj.eab.j2cpp.PCHAR("C:/VAJResid/CPPCard/cards.txt");
cardserver.J_CardManager aJ_CardManager = new

cardserver.J_CardManager();
aJ_CardManager.open(aFileName);
COM.ibm.ivj.eab.j2cpp.PCHAR TheCard =

aJ_CardManager.cardLine(aCCardId);
aJ_Card = new cardserver.J_Card(TheCard);
if ((String.valueOf(aJ_Card.cardNumber()).

compareTo("NoCardFound")) == 0)
fieldCardId = "Incalid Card";

else {
fieldCardId = aCardId;
fieldCustomerId = String.valueOf(aJ_Card.customerId());
fillTheAccounts();
aJ_CardManager.close();

} catch (java.lang.Throwable exc) {
System.out.println("--------- UNCAUGHT EXCEPTION -------");
exc.printStackTrace(System.out);

}
return ;

}

The checkPin method calls the J_Card to validate the PIN:

public boolean checkPin(String aPin) {
/* Perform the checkPin method. */

COM.ibm.ivj.eab.j2cpp.PCHAR aCPin = new
COM.ibm.ivj.eab.j2cpp.PCHAR(aPin);

if (aJ_Card.checkPin(aCPin) == 1) return true;
else return false;

}

The private fillTheAccounts method calls the J_Card to retrieve
the list of accounts into the accounts Vector:

private java.util.Vector fillTheAccounts () {
fieldAccounts = new java.util.Vector();
for (int i=0; i<10; i++) {

java.lang.String anAccount =
String.valueOf(aJ_Card.accounts(i));

if (anAccount.compareTo("0")==0) break;
fieldAccounts.addElement(anAccount);

}
return fieldAccounts;

}

Chapter 9. C++ Servers and C++ Access Builder 301

Using a C++ Server in the ATM Application

Testing the C++ Card Server Bean

Before we integrate the CPPCard bean into the ATM application,
we test it with a small applet called CardTest2 (Figure 182).

Figure 182. Testing the C++ Card Server

The Request Card Info button is connected to the CPPCard con-
structor, with the card ID field as a parameter (1). This action
retrieves the customer ID and the list of accounts and displays the
information in the panel through property connections (2).

The Check Pin button is connected to the checkPin method with
the PIN field as a parameter (3), and the result of the validation is
displayed in the panel (4).

Integrating the C++ Card Server into the ATM Application

The example developed here does not fit easily into the design
implemented in the distributed ATM application:

❑ In the ATM application, PIN validation is done locally after
the card information is retrieved from the DB2 server data-
base; the C++ card server implements validation in the C++
code.

❑ The card object in the ATM application holds real account
objects; the C++ card server holds account numbers only.

In the local ATM application we could replace the card bean with
the C++ card server bean for PIN validation, but to make the rest
of the application work we would have to construct a card object
for the other panels and functions.

1

2

2
2

3

4

302 VisualAge for Java Enterprise

Using a C++ Server in the ATM Application

© Copyright IBM Corp. 1998 303

10
Access to
VisualAge
Generator
Servers

In this chapter we introduce you to VisualAge Generator, explain
how support for Java clients is provided as part of VisualAge Gen-
erator, and show how Java, combined with VisualAge Generator
Java support, can play a significant role in the development and
implementation of robust e-business solutions.

Detailed information about VisualAge Generator and Java clients
can be found in Unlimited Enterprise Access with Java and Visu-
alAge Generator, SG24-5246, to be published mid 1998.

304 VisualAge for Java Enterprise

VisualAge Generator Support for Java

VisualAge Generator Support for Java

The real challenge facing Java computing today is how to use Java
to marry the advantages of electronic commerce to robust, scal-
able, transaction systems. After all, these transaction systems
have been providing support for mission-critical application and
data management processes for decades.

VisualAge Generator provides a seamless interface for Java pro-
grammers to extend existing transactions and rapidly deploy new
transactions for Java clients.

We begin with a quick overview of VisualAge Generator and the
Java support it provides.

VisualAge Generator

VisualAge Generator is a full-function rapid application develop-
ment environment used to build and deploy multitier client/server
application systems. VisualAge Generator can deliver a full range
of application architectures, from stand-alone 3270 and batch
application systems to GUI-based client/server application sys-
tems.

For client/server systems, VisualAge Generator builds high perfor-
mance server programs that can be implemented natively on OS/2,
Windows NT, OS/400, AIX, and HP-UX platforms as well as in
transaction processing environments such as CICS and IMS. GUI
and text clients use the VisualAge Generator PowerServer API
(VisualAge Generator middleware) to easily connect server pro-
grams running on Windows and/or OS/2 (and now Java clients as
well).

The VisualAge Generator programmer uses IBM’s VisualAge “con-
struction from parts” visual programming paradigm and the Visu-
alAge Generator fourth generation language (4GL) to develop and
test all tiers of the client/server application on the development
workstation. The visual development environment is built on top
of the same visual builder used by VisualAge Smalltalk, Visu-
alAge C++, and VisualAge Java. The VisualAge Generator pro-
grammer codes business applications in this scripting language
while receiving all the benefits of visual programming provided by
VisualAge.

Application systems are developed with a focus on the required
business logic and not the complexities of the target run-time envi-
ronment or system configuration. VisualAge Generator improves
the ease of development by:

Chapter 10. Access to VisualAge Generator Servers 305

VisualAge Generator Support for Java

❑ Generating all of the system-dependent code necessary for the
functions implemented in a program for the chosen target run-
time environment

❑ Implementing client/server communication, using the Pow-
erServer API.

This isolation from the complexity of the target run-time environ-
ment and the implementation of intersystem and interprocess
communications leaves the programmer free to focus on business
logic. Removing the programmer from the system-dependent
details of file and database access and client/server program-to-
program communications is what makes VisualAge Generator a
rapid application development tool.

The programmer has a wide range of development options. The
application system can be constructed and entirely tested on a sin-
gle development platform independent of the target run-time envi-
ronment or client/server configuration. When ready, server
programs can be deployed to the target run-time environment and
then accessed by the development platform to support client pro-
gram testing. This mix of pure source debugging and access to the
run-time code for servers, when available, provides the program-
mer with a highly productive development environment.

Once the application system has been constructed and tested, the
programmer generates a single set of source components for use in
one or more of the client and/or server platforms shown in Figure
183.

Figure 183. VisualAge Generator Client/Server Support

306 VisualAge for Java Enterprise

VisualAge Generator Support for Java

During the generation of application system components, the 4GL
scripting language is transformed to COBOL or C++ as required
for the target run-time platform.

Clients and servers communicate using the VisualAge Generator
PowerServer API, which maps all client requests to the appropri-
ate middleware option for the target server and run-time environ-
ment. For example, if the client is communicating with a server
program on MVS CICS, the client call creates a CICS ECI block
and passes the request to the CICS client/server programs that
access DB2, DL/I, or indexed file data through a common I/O para-
digm that is easy for programmers to understand.

VisualAge Generator Java Support

VisualAge Generator participates in multiple solutions for Web-
based access to application systems:

❑ For existing 3270 text interfaces implemented in CICS, the
CICS Internet Gateway can be used to provide distributed
user interface access in a Web browser.

❑ VisualAge Generator GUI clients can make use of the HTML
parts provided by VisualAge Smalltalk to implement Web
browser access to Smalltalk and server program functions.

❑ VisualAge Generator can generate Java beans that wrap Visu-
alAge Generator server programs to provide a direct connec-
tion between a Java client and a VisualAge Generator server
program.

VisualAge Generator Java support provides direct access to server
programs in a Java environment. Using the server definition as
input, VisualAge Generator generates Java beans that wrap calls
to server programs. You can import the Java beans generated by
VisualAge Generator into your favorite Java development envi-
ronment and develop applets or applications that call VisualAge
Generator server programs.

In fact, once you have written the Java client, it can call the Visu-
alAge Generator server on any of the supported run-time plat-
forms. The Java client code used to call the VisualAge Generator
server program is generic. The VisualAge Generator run-time con-
figuration controls where the server will be (platform) and how it
will be called (middleware implementation option). The same Java
client could call a server program on CICS (MVS, VSE, AIX, NT or
OS/2), IMS, OS/400, AIX, HP-UX, OS/2, and Windows NT (see Fig-
ure 184).

Chapter 10. Access to VisualAge Generator Servers 307

VisualAge Generator Support for Java

Figure 184. Java Client and VisualAge Generator Server Support

VisualAge Generator support for generating Java beans provides
a very exciting and attractive way of providing an end-to-end Java
transactional computing solution in an e-business environment.

The flexibility of Java client delivery, combined with robust, scal-
able servers that can be implemented in any of the target run-time
platforms supported by VisualAge Generator, provides the Java
programmer with a rapid application development (RAD) solution
for the complete enterprise. Not only can you extend the legacy
application systems that already exist on your enterprise servers,
you can create new transactions on these servers for both your
internal operational systems and your external (Web accessible) e-
business computing solutions.

Implementation of Java Support

In this section we review the implementation of VisualAge Gener-
ator support for Java. Two key components provide support for
Java client access to VisualAge Generator servers:

❑ VisualAge Generator CSO Java classes (PowerServer API
enablement)

❑ VisualAge Generator generated Java beans (wrappers for
servers and server parameters)

308 VisualAge for Java Enterprise

VisualAge Generator Support for Java

VisualAge Generator CSO Java Classes

The VisualAge Generator CSO Java classes are shipped with the
VisualAge Generator Developer and VisualAge Generator Server
products. These products provide development and run-time sup-
port for the OS/2, Windows NT, Windows 95, AIX, and HP-UX
platforms.

The Java support currently shipped with VisualAge Generator
enables Java applications and Java applets delivered by Web serv-
ers running on these systems to access the PowerServer API. The
PowerServer API is the published server interface in a VisualAge
Generator client/server environment. This server interface pro-
vides access to the function and middleware connectivity options
provided by VisualAge Generator.

VisualAge Generator Generated Java Beans

VisualAge Generator provides access to VisualAge Generator
server programs in a Java environment by generating Java beans
that wrap the server programs and their parameters. These wrap-
pers, when combined with the CSO Java classes, provide access to
the VisualAge Generator PowerServer API.

The server program is developed in VisualAge Generator and gen-
erated for the chosen target run-time platform. A second genera-
tion step generates the Java beans required to access the server
program from a Java client. These VisualAge Generator Java
beans are then imported into your favorite Java development tool
and used during the development of a Java applet or application.

The generated Java bean classes represent:

❑ Servers

❑ Record parameters

❑ Rows in substructured record arrays

Accessing VisualAge Generator Servers from Java Clients

The VisualAge Generator CSO Java classes and generated server
and record parameter Java beans can be used in either a Java
application or applet (an applet is running in a Web browser). The
differences in how a VisualAge Generator server is called from an
application or an applet are implemented and managed by the
VisualAge Generator CSO Java classes.

Chapter 10. Access to VisualAge Generator Servers 309

VisualAge Generator Support for Java

From a Java Application

When a VisualAge Generator server Java bean is used in Java
application, the server bean calls the VisualAge Generator Pow-
erServer API on the platform where the Java application has been
implemented. Therefore VisualAge Generator CSO support (Visu-
alAge Generator Common Services) must be installed and config-
ured on the client workstation.

Figure 185 provides an overview of the complete process of imple-
menting and using VisualAge Generator Java beans in a Java
application client.

Figure 185. Developing a Java Application

Java Application Client or Development Platform

VisualAge Generator Server Platform

Generation

Server
Source

Server
Bean

Parameter
Beans

VisualAge Generator

Unit of Work Bean

Development Platform

Middleware
Connectivity

CSO Application

1

2

4

6

7

5

Server
Program

VisualAge Generator

PowerServer API
CSO 3

310 VisualAge for Java Enterprise

VisualAge Generator Support for Java

Here are the steps depicted in Figure 185:

❑ VisualAge Generator has been used to develop a server pro-
gram. The server is generated twice: once for the target run-
time platform (1) and once to produce the Java beans for the
server and record parameters (2).

❑ A Java application client run-time or development platform
has been established. VisualAge Generator Common Services
has been installed to enable the PowerServer API (3).

❑ The VisualAge Generator CSO classes and the generated Java
beans have been imported into the VisualAge for Java work-
bench. A Java client is developed by using the generated Java
beans and the VisualAge Generator CSO application unit of
work bean (4).

❑ During Java client testing in the development environment (or
during execution on a run-time platform), a request to call a
VisualAge Generator server is triggered (5).

❑ The request to call the VisualAge Generator server program is
implemented by both the generated VisualAge Generator Java
bean for the server and the VisualAge Generator CSO applica-
tion unit of work bean (6). Data is marshaled and converted
(Unicode to ASCII or EBCDIC, as required), and the Pow-
erServer API is accessed locally on the same platform as the
Java client. The call is routed to the server platform through
the middleware connectivity option specified in the VisualAge
Generator client/server configuration (7).

From a Java Applet

When a VisualAge Generator server Java bean is used in a Java
applet, the server wrapper runs on a Web client. When a server
call is triggered, Java RMI processing is used to talk with the
VisualAge Generator CSO gateway that is running on the Web
server (that delivered the Java applet to the browser). The Pow-
erServer API request for the server call is issued by the CSO gate-
way that was started on the Web server. Therefore VisualAge
Generator CSO support (VisualAge Generator Common Services)
must be installed and configured on the Web server that was used
to load the Java applet.

Figure 186 provides an overview of the complete process of imple-
menting and using VisualAge Generator Java beans in a Java
applet client.

Chapter 10. Access to VisualAge Generator Servers 311

VisualAge Generator Support for Java

Figure 186. Developing a Java Applet

Java Applet Client or

VisualAge Generator

Applet Server

Server Platform

Generation

Server
Source

Server
Bean

Parameter
Beans

RMI

VisualAge Generator

Development Platform

Development Platform

Middleware
Connectivity

Web Server or

CSO Gateway

VisualAge Generator

Unit of Work Bean
CSO Application

2

1

3

4

7

8

8

9

6

Server
Program

VisualAge Generator

PowerServer API
CSO

5

312 VisualAge for Java Enterprise

VisualAge Generator Support for Java

Here are the steps depicted in Figure 186:

❑ VisualAge Generator has been used to develop a server pro-
gram. The server is generated twice: once for the target run-
time platform (1) and once to produce the Java beans for the
server and record parameters (2).

❑ A Java applet client run-time (applet viewer in a Web browser)
or development platform has been established (3). VisualAge
Generator Common Services is not required on this platform.

❑ The VisualAge Generator CSO classes and the generated Java
beans have been imported into the VisualAge for Java work-
bench. A Java client is developed by using the generated Java
beans and the VisualAge Generator CSO application unit of
work bean (4).

❑ A Web server capable of delivering the Java applet (for a run-
time Web browser client) is established. VisualAge Generator
Common Services has been installed on the Web server to
enable the PowerServer API and the implementation of the
VisualAge Generator CSO Java gateway (CSO UnitOfWork-
Server) (5).

❑ On the Web server platform the VisualAge Generator CSO
Java gateway is started (6). This gateway responds to RMI
requests from the Java applet client.

❑ During Java applet client testing in the development environ-
ment (or during execution on a run-time platform), a request
to call a VisualAge Generator server is triggered (7).

❑ The request to call the VisualAge Generator server program is
implemented by both the generated VisualAge Generator Java
bean for the server and the VisualAge Generator CSO applica-
tion unit of work bean. An RMI message is sent to the Visu-
alAge Generator CSO Java gateway (8). At the gateway the
data is marshaled and converted (Unicode to ASCII or
EBCDIC, as required), and the PowerServer API is accessed
on the same Web server platform as the gateway. The call is
routed to the server platform through the middleware connec-
tivity option specified in the VisualAge Generator client/server
configuration (9).

Chapter 10. Access to VisualAge Generator Servers 313

VisualAge Generator Support for Java

The e-Business Solution: Java and VisualAge Generator

To appreciate the e-business solution provided by the combination
of Java and VisualAge Generator, you need to understand how the
solution works and why it is appropriate for your business
demands.

Run-time Configuration for Java Applets and VisualAge Generator
Servers

Adding VisualAge Generator to an e-business environment based
on Web-enabled application systems that use Java is not that diffi-
cult. The Java beans are generated for you, and the implementa-
tion of RMI messaging between a Web browser and the CSO Java
gateway has already been written. All that is left for you to do is
configure a working e-business system as shown in Figure 187.

Figure 187. The e-Business Solution: Java Applets and VisualAge Gener-
ator Servers

As shown in Figure 187, the VisualAge Generator CSO Java gate-
way uses RMI to connect Java applets with the PowerServer API.
This gateway provides you with a mechanism that extends the
middleware connectivity options supported by a VisualAge Gener-
ator client/server communication configuration to Java clients.

As more platforms, such as AIX, and possibly MVS, are supported
by the VisualAge Generator CSO Java gateway, additional config-
urations similar to that shown in Figure 187 will be available.

314 VisualAge for Java Enterprise

VisualAge Generator Support for Java

Value of VisualAge Generator in an e-Business Solution

Now that you understand what VisualAge Generator is capable of,
and how easy it is to access VisualAge Generator servers from
Java clients, it should be obvious that the best solution for net-
work-enabled enterprise computing application systems (or
robust e-business solutions) is a marriage of Java program-
ming technology for the client and VisualAge Generator program-
ming technology for the server.

To support this view consider these attributes of a Java and Visu-
alAge Generator e-business client/server solution:

❑ Java programming technology provides a common program-
ming platform without concern for the run-time platform or
operating system. In other words, Java clients can run on any
Java-enabled platform or web browser.

❑ VisualAge Generator programming technology, as enabled by
the generation function, provides a common programming
platform without concern for the run-time platform or the
operating system. In other words, VisualAge Generator serv-
ers can run on any of the run-time platforms supported by
VisualAge Generator, that is, AIX, OS/2, Windows NT, HP-UX,
IMS/ESA, and just about any CICS platform (MVS, VSE, Win-
dows NT, OS/2, and AIX).

❑ Non-Java clients that might be required for internal opera-
tional systems can be developed with VisualAge Generator.
These can be text (3270-style) client programs or full function
GUI systems implemented using VisualAge Generator (which
includes access to the full functions of VisualAge for Small-
talk).

❑ As demand on your server platform changes, VisualAge Gen-
erator generation technology can be used to move server func-
tions to the appropriate run-time platform. With VisualAge
Generator you can scale your server platform from a depart-
mental solution (Windows NT) to an enterprise solution (AIX,
CICS, IMS), without changing the Java clients! The Java cli-
ents are not affected by the change in the server run-time plat-
form. VisualAge Generator and the PowerServer API
automatically, and transparently, provide the appropriate data
conversion and middleware connectivity support.

Chapter 10. Access to VisualAge Generator Servers 315

ATM Application with a VisualAge Generator Server

ATM Application with a VisualAge Generator
Server

We implemented the ATM application, using a VisualAge for Java
applet and VisualAge Generator servers.

The design of the application is based on the designs used in other
chapters of this redbook:

❑ The server design is based on the design used in “ATM Appli-
cation with the CICS Access Builder” on page 229.

❑ Access to the server from the GUI is based on encapsulating
the server into Java beans, similar to the design used in
Chapter 7, “ATM Application with RMI,” on page 171.

❑ The GUI uses individual frame windows that look similar to
the panels used in “User Interface Classes” on page 115 for the
JDBC implementation or in “View Layer” on page 202 for the
RMI implementation.

Figure 188 shows the configuration used to support development
and production. The same applet was tested with development
servers on Windows NT and production servers under CICS on
Windows NT.

Figure 188. Development and Production Environment Configuration

We do not describe the implementation of the ATM application in
detail in this redbook. Detailed description will be available in the
redbook Unlimited Enterprise Access with Java and VisualAge
Generator, SG24-5246, to be published mid 1998.

316 VisualAge for Java Enterprise

ATM Application with a VisualAge Generator Server

© Copyright IBM Corp. 1998 317

11
Access to
Distributed
CORBA Objects

In previous chapters we describe how VisualAge for Java helps
you access enterprise data and business logic directly or through
RMI. However, for a large enterprise intranet deployment, you
face certain challenges, regardless of the architectural approach
you choose. The challenges are security, scalability, concurrent
access to resources, multiplatform support, and application man-
agement.

The CORBA standard architecture defines the specifications for
interoperability and its associated services, and IBM provides an
implementation through its Component Broker. In this chapter we
describe how this environment can be used with VisualAge for
Java.

318 VisualAge for Java Enterprise

The Case for CORBA

The Case for CORBA

Figure 189 shows the various ways of accessing enterprise
resources from Java. We have covered three of them so far. Now
we discuss why we should consider a distributed CORBA object
environment.

Figure 189. Enterprise Access from a Java Client

Why CORBA?

Because of mergers and acquisitions, companies are faced with
disparate or duplicate solutions and systems that make distrib-
uted and heterogeneous computing over a network a requirement.
Although groups with different business requirements have differ-
ent set of systems and tools (NT, UNIX, mainframes, COBOL,
4GLs Oracle, DB2, CICS), nevertheless it makes sense for busi-
ness analysts to incorporate customer service trends directly into
their analyses, or for accounting to incorporate marketing projec-
tions directly into accounting budget spreadsheets.

With the emergence of the Web, there is a strong push to provide
ubiquitous access from dealers and customers through the Inter-
net, in addition to corporate intranet access, with an integrated
view of many servers. The Web architecture replaces the tradi-
tional client/server architecture with leaner clients. This shift to
Web-based technologies forces IT organizations to make transi-
tions from old to new that are not easy and offer benefits that out-
weigh the cost of replacement or modification. Twenty or thirty

Chapter 11. Access to Distributed CORBA Objects 319

The Case for CORBA

years of development cannot be thrown away; previous large
investments in CICS or IMS transactional services have to be pre-
served. Existing data, business logic, and resource managers from
many vendors must be leveraged. Figure 190 shows an example of
the integrated view of services a bank is expect to provide, hiding
the variety of systems.

Figure 190. The Enterprise Distributed Environment

The traditional client/server approach (two-tier architecture) lets
client applications written in 3GL or 4GL languages access rela-
tional databases with SQL and stored procedures or CICS transac-
tion services. Business functions are implemented in a language-,
middleware-, network-, and operating-system-dependent manner,
often in the client-side application space. Such a fat client deploy-
ment has become a nightmare to distribute and manage. Some
companies also have developed their own middleware.

How can information technology ensure a better evolution and
integration? Building applications from components has tremen-
dous appeal because it provides a natural way to encapsulate busi-
ness functions. Starting everything from scratch with object
orientation can be an overwhelmingly difficult task. Incremental
development is necessary, leaving the system as is, improving the
interface, integrating the existing functions, and adding new func-
tions.

Tools such as the VisualAge family of products can reduce soft-
ware development costs, using rapid prototyping and visual devel-
opment environments. We have seen with VisualAge for Java
Enterprise that business logic on servers can be reused, providing
flexible interfaces to existing (legacy) applications. Such a strategy
also allows the incorporation of new technology and promotes new
styles of applications.

320 VisualAge for Java Enterprise

The Case for CORBA

For some applications it maybe sufficient, but, for building a glo-
bal intranet and extranet, a common infrastructure, relying on a
standard, open architecture as a corporate backbone is often nec-
essary to incorporate and manage all these components. This
leads to a logical three-tier distributed application model as shown
in Figure 191. This three-tier model, which is appropriate for
meeting business needs, can be consolidated in a two-tier physical
environment, by using large, central servers for reduced opera-
tions and maintenance costs.

Another factor to consider is that the client side evolves very
quickly, every Web year (three months!), and the server side
evolves more slowly. A middle tier could also provide a buffer that
isolates the evolution of these two tiers.

Figure 191. Three-Tier Architecture

Java has been the answer to providing an object implementation
independent of platform and operating system, and CORBA is the
answer to providing a complete, standard, distributed object infra-
structure. Facilities provided by the relational database or the
transaction system have to be extended at the distributed object
level. These facilities include:

❑ Creating, locating, and sharing objects

❑ Querying object collections

❑ Ensuring authentication and authorized access to objects

❑ Preventing conflicting use of shared resources (with locking,
accounting of deadlock, race conditions, and performance
issues)

Chapter 11. Access to Distributed CORBA Objects 321

The Case for CORBA

❑ Managing thread pools for servicing multiple client requests

❑ Choosing the caching policy on a server or client

❑ Ensuring scalability (System throughput should be able to
grow to accommodate new demands and users, efficient use of
resources, adding new servers transparently, and load balanc-
ing.)

Management of applications is also a critical piece of a robust
deployment environment and includes performance tuning, load
balancing, dynamic installation of new services, and quality of ser-
vice monitoring.

What Is CORBA?

Let us now look at the origins of CORBA.

Object Management Group

The Object Management Group (OMG), established in 1989, is an
open consortium of more than 800 companies that work together
to define open standards for an architectural framework for object
computing: CORBA/IIOP, Object Services, Internet Facilities, and
Domain Interface specifications. The first publication of the
OMG’s Object Management Architecture Guide (OMA) dates from
1990.

CORBA 1.1 was introduced in 1991 and defined the Interface Def-
inition Language (IDL) that enables client/server object interac-
tion within a specific implementation of an object bus, called an
Object Request Broker (ORB). CORBA 2.0, adopted in December
1994, defines true interoperability by specifying how ORBs from
different vendors can interoperate.

This architecture has four main elements, as shown in Figure 192:

❑ The Object Request Broker for objects to intercommunicate

❑ CORBA Object Services (COS) that define system-level ser-
vices that are added on to the ORB, such as security, naming,
and transaction

❑ CORBA facilities, which define application-level services, such
as compound documents and other vertical facilities

❑ Application (or business) objects, which describe real-world
objects and applications, such as an airplane or a bank account

322 VisualAge for Java Enterprise

The Case for CORBA

Figure 192. The Object Management Architecture

Object Request Broker

The ORB is the middleware that establishes the client/server rela-
tionship between objects. The ORB intercepts the call and is
responsible for finding an object that can implement the request,
pass it the parameters, invoke its method, and return the results.
The client does not have to be aware of where the object is located,
its programming language, its operating system, or any other sys-
tem aspects that are not part of an object's interface.

The ORB is the only portion of CORBA that must be present in
order to build a CORBA-compliant application. Many ORBs ship
without any of the CORBA services or facilities, and you must cre-
ate (or purchase) these services yourself. However, without the
ORB, a CORBA application cannot function. The most visible
function of a CORBA ORB is to respond to requests from your
application or from another ORB. During the life-cycle of a
CORBA application, the ORB may be asked to do many different
things, including:

❑ Look up and instantiate objects on remote machines

❑ Marshal parameters from one programming language (such as
Java) to another language (such as C++)

❑ Invoke methods on a remote object, using the static method
invocation described by a downloaded stub

Chapter 11. Access to Distributed CORBA Objects 323

The Case for CORBA

❑ Invoke methods on a remote object, using dynamic method
invocation

❑ Automatically start objects that are not up and running

❑ Route callback methods to the appropriate local object that it
is managing

The great thing about the ORB is that nearly all of the implemen-
tation details for all of these duties are hidden from the software
developer. Simply providing the appropriate “hooks” in your code
to initialize the ORB and register your application with the ORB
opens your application up to a vast galaxy of distributed objects.

Interface Definition Language

The key to language indulgenced is the IDL. This wrapper exposes
the services the application can offer and provides a standard
interface for initiating methods from clients. CORBA objects can
be written in any programming language that a CORBA software
manufacturer supports, such as C, C++, Java, or Smalltalk. As
other languages grow in popularity, CORBA vendors undoubtedly
will release bindings for those languages as well. The CORBA
objects can exist on any platform that a CORBA software manu-
facturer supports, such as Windows 95 and NT, OS/2, AIX,
Solaris, and MVS.

IDL is a descriptive language, with a syntax close to C++. Just as
properties and methods are grouped together into classes in Java,
these items are contained within interfaces in IDL. A module can
group one or more interfaces, just as Java packages group classes.
An operation is the equivalent of a Java method, with its signa-
ture, that is, parameters and return type. A parameter is defined
as in, when the value is passed from client to server, out from
server to client, and inout for both directions. These operations
can raise exceptions. CORBA data types are defined and map to
native data types through the appropriate language bindings.

The following code snippet shows a simple IDL module with a
basic interface (we expand on this code in “Java Client Accessing a
CBConnector Server” on page 337):

module MyBank
{

interface Account
{

attribute string accountNumber;
exception anException {string reason;};
void changeBalance(in double anAmount)

raises (anException);
};

};

324 VisualAge for Java Enterprise

The Case for CORBA

When we compile this IDL module using an IDL-to-Java compiler,
we get a Java-language-specific stub and skeleton. The client IDL
stub defines how clients invoke corresponding services on the
server; a client has one IDL stub per interface it uses on the
server. This stub performs marshaling. It also includes header
files that enable you to call methods on the server from the chosen
language (C++, Smalltalk, Java). The server skeleton provides
interfaces to each service as well as demarshaling. The interfaces
are registered in the ORB Interface Repository. Clients can invoke
the methods through the ORB without ever knowing that the
implementation is in a legacy environment.

The Object Adapter provides the run-time environment for instan-
tiating server objects, passing requests to them, and assigning
CORBA object references (IDs). These IDs are registered in the
server implementation repository. CORBA defines interoperable
object references (IORs) that each vendor must use to pass object
references across heterogeneous ORBs. Figure 193 shows how all
these elements interoperate.

Figure 193. Client/Server Invocation with IDL

CORBA also has a dynamic invocation API that allows a client
program to dynamically build requests on an object. It provides
maximum flexibility but is less efficient. It is primarily used in
tools, and we do not cover it further in this book.

Chapter 11. Access to Distributed CORBA Objects 325

The Case for CORBA

IIOP Communication Protocol

Because CORBA 1.1 completely left the implementation of the
ORBs to the vendors, components could not properly interoperate
across various ORBs. CORBA 2.0 added interoperability by speci-
fying a mandatory Internet Inter-ORB Protocol (IIOP). IIOP is a
particular implementation of the General Inter-ORB Protocol
(GIOP) over TCP/IP.

GIOP specifies message formats and common data representation
(CDR) so that two ORBs can communicate with each other. In par-
ticular CDR takes care of different data representations across
heterogeneous platforms.

GIOP defines the format for IORs. An IOR is created from an
object reference and used whenever an object is referenced across
an ORB, in order to find the object.

CORBA Services

CORBA services are a collection of system-level services that you
can integrate with the business components through the IDL. If
you want to develop an account that is persistent, transactional,
and can manage concurrency, the interface must use multiple
inheritance or add before and after callbacks to those services.

Naming Service

The naming service is one of the basic services because when
objects are first started they need to find other objects. The nam-
ing service maps human readable names to IOR by a mechanism
called name binding.

To help you manage a large number of distributed objects, the
naming service allows you to put objects into a hierarchy of con-
texts. Each context groups a set of related objects just as a direc-
tory or a folder in an ordinary file system stores related files. For
example, you can put all objects executing the same application or
all objects providing the same type of services in the same context.

Life Cycle Service

To create a new object, a client must find a factory object that
knows how to instantiate an object of that class and get back a ref-
erence. The life cycle service provides object creation, as well as an
interface for copying, moving, and deleting existing objects.

326 VisualAge for Java Enterprise

The Case for CORBA

Security Service

The security service protects critical resources from intentional or
unintentional misuse:

❑ Authentication makes sure that you are who you claim to be
when you use a service. This aspect guarantees that servers
can trust their clients.

❑ When a client is authenticated, the server uses access control
lists (ACLs) to ensure that the client is allowed to access
resources.

❑ No client or server can deny having been involved in a commu-
nication, that is, the sender has a proof of delivery, and the
receiver has proof of the server’s identity. This is called non-
repudiation.

❑ The data is securely transmitted (with encryption) and
checked for corruption (checksum).

❑ Audit services allow system managers to monitor activities.

Event Service

The event service allows processes and objects to be notified when
particular events occur during the execution of a method or appli-
cation. Different parties are involved in the communication
between objects through events.

The event service decouples the communication between event
suppliers and event consumers. The event suppliers produce event
data, and the event consumers process event data. Event data is
communicated between event suppliers and event consumers
through standard CORBA requests.

Suppliers do not need to know about consumers interested in the
events they generate. Consumers do not necessarily need to know
in which object a particular event occurred. They only need to
inform the event service about their interest in specific events.

There are two approaches to initiate event communication: the
push model and the pull model. The push model allows a supplier
of events to initiate the transfer of the event data to the event con-
sumer. The pull model allows a consumer of events to request the
event data from the event supplier.

An event channel is an intervening object that allows multiple
event suppliers to communicate with multiple consumers asyn-
chronously. An event channel is both an event consumer and an
event supplier.

Chapter 11. Access to Distributed CORBA Objects 327

The Case for CORBA

Identity Service

In a distributed system, a task as simple as checking whether two
references point to the same object needs special handling. Only
the identity service, with specific methods such as is_identical, can
safely indicate whether or not two different object references rep-
resent the same real object.

Externalization Service

The externalization service has two main purposes:

❑ Create a new object with the state of another object and move
or copy the state of objects to different memory locations
between hosts

❑ Move the state of objects in and out of a persistent store

This is similar to the serialization mechanism of Java.

A standard stream data format defines how to exchange streams
across different operating systems.

Transaction Service

One of the most important components of any distributed environ-
ment is the object transaction service (OTS). To provide robust-
ness in a distributed system, participants at different locations of
the system should work together in a coordinated fashion. The
OTS provides this coordination. We have already seen in “Host
CICS Access with the CICS Access Builder” on page 221 that
CICS provides a transaction environment for procedural applica-
tions. In the same way, OTS defines when a transaction starts as
a unit of work from a client, all the servers involved, how it ends
successfully, or how it recovers in case of failure (with commit or
rollback). OTS also defines a two-phase commit protocol to coordi-
nate a commit or abort of transactions across multiple servers so
that they all fail or succeed.

OTS defines four key interfaces—Current, TransactionalObject,
Coordinator, and Resource—that the client object can use. For
instance, in the case of a transfer of money from one account to
another account:

❑ Account inherits from Resource and TransactionalObject
interfaces; this makes the account recoverable.

❑ The client invokes a begin on the Current object to maintain
an active transaction.

328 VisualAge for Java Enterprise

The Case for CORBA

❑ The client calls the debit and credit methods implemented in
the account object. Because accounts are recoverable objects,
they use services from the Current and Coordinator objects.

❑ When the client issues the commit, the commit method of the
Current object is invoked, and the Coordinator performs the
two-phase commit. The operation fails or succeeds completely.

Concurrency Service

The concurrency service provides a means of coordinating access
to resources. When several clients try to use a resource, the clients
will be serialized in a way that keeps the resource in a consistent
state. The concurrency service is intended primarily for use in a
transactional environment, where locks can be acquired on behalf
of the transaction. When the transaction ends, those locks are
freed. You can use the concurrency service to control access to
resources without transactions. In this case, you have to release
the locks yourself at the appropriate time.

Query Service

The query service provides predicate-based query operations on
collections of objects. Queries can be specified using object deriva-
tives of SQL and/or other styles of object query languages, includ-
ing direct manipulation query languages.

The term “query” has read-only connotations, but we use it to
denote general manipulation operations including selection, inser-
tion, update, and deletion on collections of objects.

Persistence Object Service

The persistence object service (POS) allows the state of an object
to be persistent across multiple instantiations. The object can be
saved in a data store and recovered when it is needed. POS can
handle multiple storage mechanisms to object databases as well as
relational databases or flat file systems. A persistent object must
inherit from some interfaces defined in POS in order to get a
mechanism for externalizing its state.

Other Services

Multiple other services are defined today (17 in total), and more
are expected to be standardized or improved through the OMG
request for proposal (RFP) mechanism. All those services enrich
the behavior of components and provide a robust environment in
which they can thrive.

Chapter 11. Access to Distributed CORBA Objects 329

The Case for CORBA

CORBA and RMI

We have seen that RMI:

❑ Allows a Java client to instantiate objects that may be located
on a remote server

❑ Interacts with remote objects through their published inter-
face

But RMI has limitations for building a complete three-tier envi-
ronment:

❑ The server application must be written in Java.

❑ RMI does not include any services to manage server objects.

❑ RMI provides only a limited, nonpersistent naming service to
let you locate remote objects. You can look up only instantiated
objects registered with the RMI registry. Unlike CORBA, an
RMI Java client cannot create an instance on a server.

❑ RMI does not support self-describing objects, dynamic invoca-
tions, and interface repositories (a limitation of lesser impor-
tance in most enterprise applications).

However:

❑ RMI uses a reference-counting garbage-collection scheme that
keeps track of all external live references to server objects,
that is, an active client/server connection. As long as the refer-
ence exists, the remote object cannot be garbage collected (but
a broken link can cause undesired server object garbage collec-
tion).

❑ With RMI you do not have to deal with CORBA IDL or with
Java-to-CORBA type translations.

In short, RMI is a viable option for smaller-scale applications to be
written entirely in Java. CORBA provides the foundation for inte-
grating existing objects with new code and the ability to scale for
the future through its services, and Sun has publicly stated its
long term goal to allow RMI objects to communicate through IIOP.

How Java Complements CORBA

Java and CORBA fit well together because Java has a strong com-
ponent model, Java beans, and CORBA treats such objects as well-
defined services with standard calling interfaces. Java and
CORBA also complement and strengthen each other, and CORBA
is a good solution for deploying and managing distributed Java
objects. Java emphasizes implementation transparency, and
CORBA provides network transparency and services.

330 VisualAge for Java Enterprise

Component Broker

Therefore, it is a good idea to build a solution on top of these two
pillars, as we explain in “Java Client Accessing a CBConnector
Server” on page 337. But first let us describe how the IBM Compo-
nent Broker implements the CORBA specifications.

Component Broker

Component Broker is IBM’s CORBA implementation. It provides a
middleware solution for distributed object computing in a multit-
ier environment. It includes a CORBA 2.0-compliant ORB that
permits a variety of clients to collaborate with business objects
residing in multiple servers. It is aimed at highly scalable, robust
environments. Business objects can be generated by modeling
tools. Their manageability is tool-generated by inclusion inside a
framework. Their essential state is provided through tool-gener-
ated data objects that map to various back-end systems, data
sources, and transactions (DB2, CICS, IMS). Therefore, Compo-
nent Broker coexists with existing environments and facilitates
the transition to component-based programming. Configurable
CORBA services are integrated in the overall solution, which
includes a development, run-time, and systems management
dimension.

These features are grouped in two elements, CBConnector and CB
Toolkit.

CBConnector

CBConnector is the application run-time environment, providing

❑ Execution

❑ Integration and management of object services, resource allo-
cation, and unit of work definition

❑ Delivery, installation, monitoring

CB Toolkit

CB Toolkit is a set of development tools that enable developers to
add run-time policy and deployment infrastructure to the basic
business logic. It also enables the generation of proxies for inclu-
sion in Java Web clients, C++ clients, and Active X clients.

Chapter 11. Access to Distributed CORBA Objects 331

Component Broker

VisualAge for Java, on top of its intrinsic functions, complements
Component Broker by allowing the creation of Java applets and
applications that run on the first-tier clients that make use of the
generated server objects.

Run-time Architecture Components

Component Broker provides a CORBA 2.0 compliant server ORB,
written in C++ for efficiency, which supports C++ server objects
and allows for in-process efficient interaction between C++ and
Java server objects. To easily accommodate Java, the object model
does not use multiple implementation inheritance.

Programming Model

In the Component Broker programming model, the business logic
has a number of visible client interfaces and an implementation
executing in the CBConnector run-time environment according to
the OMG CORBA architecture. The Component Broker object
model provides memory and thread management, serialization,
exception handling, and other operations, inside a framework.

The programming model defines:

❑ The set of tasks to be completed

❑ The set of roles (for example, connect the object model to the
relational database tables)

❑ A set of classes to extend (for example, to participate in a
transaction-extended framework with methods to implement,
called by the transaction engine)

The programming model is provided through a Managed Object
Framework (MOFW) and Application Adapter Frameworks.

Managed Object Framework

CBConnector cleanly separates the concerns of the client program-
mer from those of the business object implementer and the pro-
vider of the system plumbing. One very important consequence of
this strategy is that you can run the same server-side business
logic on top of widely varying back ends with the quality of service
that they provide.

The MOFW is the core of the Component Broker programming
model. Frameworks by themselves usually do not constitute an
executable environment. Rather, they exist as a set of configurable
and extensible classes that are adapted to the case at hand.

332 VisualAge for Java Enterprise

Component Broker

A Component Broker component completes the MOFW by imple-
menting framework methods that enable components to be man-
aged. It is completed by Application Adapter Frameworks that we
describe in the next section. Figure 194 shows the features of the
Component Broker Managed Execution Environment.

Figure 194. Component Broker Managed Execution Environment

The business object represents the business logic interface and
implementation. A business object can have state objects, called
data objects, that map business object attributes to different back
ends. Data objects, using a caching technique, take care of syn-
chronizing data with database systems. A data object might also
retrieve the information needed by a business object through invo-
cation of a back-end CICS transaction program.

A business object is assigned to a container to make it a manage-
able object. An managed object inherits from a business object and
implements interfaces of its container. Most operations are not
directly implemented within a managed object but instead are del-
egated to methods in another object known as a mixin object, so
that no multiple implementation inheritance is required. The
mixin object implements interfaces in components such as CORBA
object services or the CBConnector Application Adapter Frame-
work. The good news is that you generally do not have to concern
yourself with framework-provided plumbing. It is pulled in for
free, and the necessary code is generated through the CB Toolkit,
in particular the Object Builder.

Chapter 11. Access to Distributed CORBA Objects 333

Component Broker

As explained in “Systems Management” on page 336, CBConnec-
tor does not forget the systems management dimension; what is
generated (or already present within the CBConnector frame-
works) contains all the necessary hooks for configuring it at instal-
lation time and controlling it during run-time.

Application Adapter Framework

While you design and code the business part of the objects man-
aged by a CBConnector server, the Application Adapter Frame-
work supplies the environment within which aspects such as an
object’s transactional, persistence, or security characteristics are
handled. In true framework fashion, the Application Adapter
Framework invokes methods within your code at the appropriate
time, for example, when it is time to write information out to per-
sistent storage.

Application adapters map external data and transaction services
to components so that they allow component-based applications to
interoperate with existing procedural applications that use the
same back-end systems. The first application adapter that is pro-
vided is for DB2, but IBM and other vendors will provide adaptors
for resource managers such as CICS, IMS, MQSeries, Oracle, and
SAP.

Application adapters consist of:

❑ Containers for objects of similar environments and allow for
operations like create, update, retrieve, and delete of
instances. They bring a quality of service to managed objects
as well as policies for passivation, caching, and locking.

❑ Homes, the “birthplace” of your objects. In other words, you
use homes to create business objects. Homes give you a collec-
tion-type interface that allows you to iterate over the objects
within the home.

Object Services

Based on the COS specifications, CBConnector provides for object
services required for distributed applications including creating,
identifying, and controlling access to components, ensuring that
updates are atomic, and maintaining state information. This is the
most complete implementation of COS on the market today, in
terms of number of services, depth of functions, integration, and
inherent management. It currently supports 9 of the 17 services
(naming, security, events, identity, life cycle, externalization,
transaction, concurrency, and query).

334 VisualAge for Java Enterprise

Component Broker

Workload Management

Large-scale, commercial application environments clearly need
transaction processing (TP) monitor functions for scalable perfor-
mance and high availability. Object Application and Transaction
Monitor (OATM) brings these capabilities to the world of com-
posed business objects.

OATM concentrates and dynamically dispatches large numbers of
client connections into servers that can service those requests.
Multiple servers present a single, logical image of a server group
to clients. The decision that determines which server will execute
a method is based on so-called bind policies defined through sys-
tems management facilities. Server groups provide not only a load
balancing feature but also improved availability (for instance, by
avoiding servers that become unavailable).

Client Enablement

Component Broker is designed to facilitate access from most popu-
lar types of clients in distributed application scenarios. Microsoft
Windows and OS/2 desktops, and Internet and intranet browser
clients are supported.

ActiveX and CORBA-compliant C++ client applications can use
CBConnector server objects without further adaptation. ActiveX
clients can be developed with popular tools such as Visual Basic
and Visual C++. Java applets and Java applications are supported
for Internet and intranet access.

Proxies are used to support client use of server-side objects. As we
see in the next section, CBConnector provides all the facilities to
generate proxies. Client proxies do not implement any business
logic themselves; they forward requests to their server counter-
parts for execution.

The code for this system infrastructure gets to the client in a vari-
ety of ways. It can be downloaded from a Web server, as in the
case of a Java applet running inside a Web browser, or it can be
installed through the management facilities of CBConnector.

A C++ client ORB, a client Java ORB, and an ORB translating
Microsoft Component Object Model (COM) interface calls into
object requests on IIOP are shipped with Component Broker for
distribution to client systems.

We explain in “Java Client Accessing a CBConnector Server” on
page 337 how Java beans generated by CB Toolkit are used to
build a client application.

Chapter 11. Access to Distributed CORBA Objects 335

Component Broker

Developing Distributed Object Applications with
Component Broker

Developing a large-scale enterprise-level application involves dif-
ferent tasks that are accomplished by various groups of people:

❑ Object developers write business components on the basis of
their business domain knowledge.

❑ System developers build system infrastructures, implement-
ing specific qualities of service.

❑ Application assemblers integrate all these elements to meet
the requirements

We explain in this section how the work of object developer can be
integrated in the system infrastructure provided by CBConnector
and automatically provide the persistence, recoverability, man-
ageability, and quality of service to the business model.

Modeling, Analysis, and Design

Component Broker allows object models that have been developed
through industry leading tools such as Rational Rose to be
imported for implementation. Once a model has been imported, it
can be further developed over time. ERWin by Logitech is another
example of a tool that can be used to reengineer relational data-
base management system tables into the CBConnector realm.

Object Builder

The Object Builder is specifically designed to build server objects.
Because it understands the CBConnector framework architecture,
it can generate most of the code needed to make the application
you produce work within the CBConnector frameworks. This
approach is called programming by framework completion.

SmartGuides generate skeletons that make use of the MOFW so
that the complexity of accessing standard CORBA services and
CBConnector management facilities is masked to enhance produc-
tivity.

Support for persistent data and legacy systems is also generated
by Object Builder. If access to a data source is necessary for cer-
tain business objects, the Object Builder facilitates the mapping of
relational database tables to the data object. Mappings for trans-
actions (screen definitions and COMMAREA structures) are also
enabled through SmartGuides. You will find similarities between
the SmartGuides of Object Builder and VisualAge for Java Enter-
prise.

336 VisualAge for Java Enterprise

Component Broker

Edit, Compile, and Debug

The IBM VisualAge family of products complements CBConnector
tools for these tasks. However, nothing prevents you from working
with other widely used edit-compile-debug (ECD) environments.
CB Toolkit also provides you with a remote debug and test envi-
ronment.

You can also use IBM VisualAge for C++ and VisualAge for Java
or other development environments for constructing your end-user
interface.

Systems Management

It is one thing to develop robust applications by using a mature set
of tools, but is quite another matter to deploy software for a large-
scale production system network and keep it up and running.
CBConnector has been built from the start with reliability, avail-
ability, and serviceability (RAS) and systems management in
mind. The instrumentation hooks for vital management informa-
tion have been architected into the product. Through these,
CBConnector ensures that error reports, trace information, and
performance data can be collected and sent. CBConnector systems
management provides you with the ability to configure servers
and server groups, deploy software, and monitor and control all
aspects of a CBConnector network.

Chapter 11. Access to Distributed CORBA Objects 337

Java Client Accessing a CBConnector Server

Java Client Accessing a CBConnector Server

Now it is time to do some real work again. We are going to see how
easy it is to use VisualAge for Java to deal with CBConnector
server objects.

Because the purpose of this book is to describe how to reuse enter-
prise business logic, we are going to reuse existing objects. These
objects have been developed and described in CBConnector Cook-
book Volume 1, SG24-2033, which teaches you how to use CBCon-
nector to develop distributed object CORBA applications.

We do not reimplement the ATM application but rather describe
how to build a Java client that reuses an account object running
on a CBConnector server.

Account Interface Definition

In CBConnector, we deal with CORBA objects described in IDL.
For our purpose, we are reusing an account object defined in
Rational Rose and imported into the CBConnector object builder.
This operation produces the following IDL:

#ifndef _Account_idl
#define _Account_idl
// Generated from Account.idl
// on 11/12/97 17:56:31
// by Object Builder
#include "IManagedClient.idl"
interface Account : IManagedClient::IManageable
{
exception NotEnough { }; // end exception NotEnough
readonly attribute string<10> accountNumber;
attribute string<30> accountHolder;
double getBalance();
void changeBalance(in double anAmount) raises (Account::NotEnough);

}; // end interface Account
#endif

This Account definition represents a very simplistic banking
account that has two attributes, accountNumber and
accountHolder, both strings.

Two actions are possible on an account object: retrieve its current
balance through the getBalance method, and modify the balance
through changeBalance. This last operation returns a NotEnough
exception if the balance goes below zero.

The use of the account object is trivial, and we are going to focus
on how to create the necessary environment on the client side to
access the CORBA world.

338 VisualAge for Java Enterprise

Java Client Accessing a CBConnector Server

Account Development with CBConnector

Our goal in this document is not to show you how to develop the
server side. Therefore, we assume that someone has done that job
and has given us two IDL files: Account.idl, which describes our
business object, and AccountKey.idl, which uniquely identifies
account instances.

Now that the server side is done, we can start developing the cli-
ent side.

Java Client

In this section we deal with the specifics of using a Java client to
access managed CORBA objects on a CBConnector server.

Preparing VisualAge for Java

Before developing our client with VisualAge for Java, we have to
do some work.

The first step consists of importing the CORBA Java ORB classes
(provided in a large file called somojor.zip) into VisualAge for
Java. This is easy to do but requires about one hour on a Pentium
166 MHz! After this import, you have to import a second small file
(somojod.zip) that contains a missing security class.

The second step is to generate a few Java files containing classes
that represent our objects on the server and are commonly called
proxies.

Generating Java Proxies

The first way to generate a proxy is by instructing the CBConnec-
tor Object Builder to generate a Java client proxy for the managed
account object.

The second way to generate a proxy is to use the IDL compiler
directly. This is a basic tool provided by every ORB vendor.

In our account example, the developers of the account business
object provide us with the IDL files Account.idl and Account-
Key.idl.

The key, for a Java client developer, is to run the IDL files through
the IDL-to-Java compiler.

Chapter 11. Access to Distributed CORBA Objects 339

Java Client Accessing a CBConnector Server

We already are familiar with Account.idl, which describes our
account business object, but not with AccountKey.idl, which is also
generated by the Object Builder. For the moment, consider that
we need to generate proxy classes for these two IDL files. For that
purpose, CBConnector provides an IDL-to-Java compiler that is
used from the command line:

java -classpath%CLASSPATH% COM.ibm.idl.toJava.Compile
-i%IDLC_INCLUDE% drive:\CBConnector\Account.idl

The emitter produces Java source files and a Java package:

Account.java
AccountHelper.java
AccountHolder.java
_AccountStub.java
AccountPackage with

NotEnough.java
NotEnoughHelper.java
NotEnoughHolder.java.

To generate the proxy classes for the AccountKey.idl file, we use
the IDL-to-Java compiler with the following command:

java -classpath%CLASSPATH% COM.ibm.idl.toJava.Compile
-i%IDLC_INCLUDE% drive:\CBConnector\AccountKey.idl

The emitter produces the following Java files:

AccountKey.java
AccountKeyHelper.java
AccountKeyHolder.java

Now we can start VisualAge for Java and import the source files
into our VAJEnterpriseRedbook project. This operation results in
the creation of a new package called AccountPackage, which con-
tains the NotEnough, NotEnoughHelper, and NotEnoughHolder
classes.

A default package is also created and contains the _AccountStub,
AccountHelper, AccountHolder, AccountKeyHelper, and Account-
KeyHolder classes, and the Account and AccountKey interfaces.

Before we continue, we are going to move all these classes and
interfaces to a new package named Account.

Everything is not yet ready. You have probably noticed that the
AccountKeyHelper class is marked by the Workbench with a red
cross. After expanding the class, you see that the _create method
has a problem. It returns an object of type _AccountKeyImpl,
which does not exist. So we have to create it. Remember, after
importing the Java files created by the IDL compiler, we got two

340 VisualAge for Java Enterprise

Java Client Accessing a CBConnector Server

interfaces. The Account interface has an implementation called
_AccountStub, but the AccountKey interface has no implementa-
tion. So let us create a new class that implements this interface.

We create a class named _AccountKeyImpl, with the superclass
COM.ibm.IManagedLocal._IPrimaryKeyImpl, and we implement
the AccountKey interface.

However, this is not all. We have extended COM.ibm.IManaged-
Local._IPrimaryKeyImpl, and this abstract class requires imple-
menting the externalize_to_stream and internalize_from_stream
methods. We need these methods for when we invoke the
_toString method that implicitly calls externalize_to_stream to
generate a byte array that is shipped to the CBConnector server.
That is how a primary key is passed to the server object.

Here are the implementations:

public void externalize_to_stream (org.omg.CosStream.StreamIO arg1) {
arg1.write_string(anAccount);

}

public void internalize_from_stream
(org.omg.CosStream.StreamIO arg1,
org.omg.CosLifeCycle.FactoryFinder arg2)

throws org.omg.CosStream.StreamDataFormatError {
anAccount = arg1.read_string();

}

We also have to create the String variable called anAccount, which
holds the account number used by the two methods. We do not
describe this simple task! Now we implement the methods of the
AccountKey interface:

public void accountNumber(String newAccountNumber) {
anAccount=newAccountNumber;

}

public String accountNumber() {
return anAccount;

}

public static _AccountKeyImpl _create () {
return new _AccountKeyImpl();

}

Chapter 11. Access to Distributed CORBA Objects 341

Java Client Accessing a CBConnector Server

Creating the Java Client

The CBConnector account client is developed in two steps:

❑ Develop a nonvisual bean called BuildCBC, which encapsu-
lates all CBConnector initialization up to the point where a
factory able to create account instances is found.

❑ Develop an applet called AccountView allowing the user to cre-
ate, update, and find account objects (Figure 195).

Figure 195. AccountView Applet

The user fills in the account number and the account holder and
requests the creation of the server object by clicking on Create.

Once the server is created, the user can enter an update amount
and click on Update. The account balance is updated from the
previous balance and the update amount.

To retrieve an existing account, the user fills in the account num-
ber field and clicks on Find. In return, the account holder and the
account balance are updated.

Error messages are displayed in three situations:

❑ If the balance becomes negative, the request is rejected, an
exception is thrown, and a message box displays: Account-
Package.NotEnough.

342 VisualAge for Java Enterprise

Java Client Accessing a CBConnector Server

❑ If an object already exists with the same account number, a
message box informs the user that it is a duplicate key:
COM.ibm.ImanagedClient.IDuplicateKey.

❑ If the specific account instance does not exist, a message box
informs the user that no object exists with the specified key:
COM.ibm.ImanagedClient.INoObjectWKey.

This trivial application example is sufficient to show how to
develop a Java client that creates and uses objects on a CBConnec-
tor server and to demonstrate the power of visual programming, a
unique feature of the VisualAge family of tools!

Creating the Java Bean for the Applet

We create a new package named Model and a nonvisual bean that
extends Object and call it BuildCBC. This bean is going to be
passed two parameters required for the ORB initialization. There-
fore, we create two properties that hold these parameter values:

❑ orbArgs, of type java.lang.String[], holds the arguments pro-
vided in the command line (if started as an application) or the
applet parameters.

❑ orbProps, of type java.util.Properties, holds the CBConnector
server host name and port number.

Now we define a method called passingOrbArgs to set orgArgs and
orbProps:

public void passingOrbArgs(java.lang.String[] args,
java.util.Properties props) {

setOrbArgs(args);
setOrbProps(props);

}

Because BuildCBC encapsulates all of the initialization, we have
to create an event that is used to trigger it. We create a new lis-
tener interface named CBCinit, with an initializeCBC method to
be implemented.

VisualAge for Java generates most of the code to handle events.
However, it cannot guess that we want to fire this event at the end
of the passingOrbArgs method. We go back to the passingOrbArgs
method and change the code to:

public void passingOrbArgs(java.lang.String[] args,
java.util.Properties props) {

setOrbArgs(args);
setOrbProps(props);
fireInitializeCBC(new CBCinitEvent(this));

}

Chapter 11. Access to Distributed CORBA Objects 343

Java Client Accessing a CBConnector Server

Now, we open the Visual Composition Editor for the BuildCBC
bean. From an empty free-form surface, we build step by step
what is shown in Figure 196. The flow is from top left, down, and
then to the right.

Figure 196. Visual Composition of BuildCBC

We start by initializing the CBConnector environment; that is,
getting access to the Java ORB:

❑ We add a bean variable of type COM.ibm.CORBA.iiop.ORB
(ORB1) (1)

❑ We connect the CBCinit event of the free-form surface to the
init(java.lang.String[],java.util.Properties) method of ORB1.
The two parameters are the orbArgs and orbProps properties
of the free-form surface (the BuildCBC bean) (2).

❑ We drop a second COM.ibm.CORBA.iiop.ORB variable (ORB2)
and connect the normalResult of the init method to its this
property. In fact we use a static method of the ORB class to
create a new instance returned in ORB2 (3).

Now we have a Java ORB in our client machine and a connection
set up during the initialization with what is called a Bootstrap
server. The Bootstrap server becomes our anchor point.

As you already know, CORBA provides naming services used to
create well-known objects registered in the naming tree. So, we
access this naming tree and retrieve a remote object reference to
the name space root. We hold this object reference in a variable
called iExtendedNC.

1
2

3
4

5 6

7

12

8

9

11

10

13

14
15

16

344 VisualAge for Java Enterprise

Java Client Accessing a CBConnector Server

❑ We connect the CBCinit event of the free-form surface to the
resolve_initial_references(java.lang.String) method of ORB,
and we set the parameter to "NameService." (4)

❑ We drop a variable of type org.omg.CORBA.Object (COR-
BAobj.) and connect the normalResult of the previous connec-
tion to CORBAobj. (5)

❑ We add a bean of type COM.ibm.IExtendedNaming
(NamingContextHelper1) (6).

❑ We connect the CBCinit event of the free-form surface to the
narrow method of NamingContextHelper1 and connect COR-
BAobj to the parameter (7).

❑ We add a variable of type COM.ibm.IExtendedNam-
ing.NamingContext (IExtendedNC) and connect the normal-
Result of the previous connection to IExtendedNC (8).

Now IExtendedNC gives us access to objects registered in the
naming tree. During the installation of CBConnector, some well-
known objects are bound in the naming tree. One of these objects
is a default FactoryFinder.

A factory finder knows how to retrieve factories that can create
instances for specific interfaces (IDL). The default factory finder is
identified in the naming tree by “host/resources/factory-finders/host-
scope.” This is what we could use if we had only one factory that
could create instances for the account interface. However, in our
case, the Account interface has been associated with its own fac-
tory finder. We do not use the default factory finder but instead
“host/resources/factory-finders/AccountTRScope.”

❑ We connect the CBCinit event of the free-form surface to the
resolve_with_string(java.lang.String) method of IExtend-
edNC and set the parameter to “host/resources/factory-find-
ers/AccountTRScope” (9).

❑ We drop a CORBA object variable, call it CORBAobj2, and con-
nect the normalResult to CORBAobj2 (10).

❑ We drop a COM.ibm.IExtendedLifeCycle.FactoryFinderHelper
bean (FactoryFinderHelper1), connect the CBCinit event to
the narrow method, and pass CORBAobj2 as a parameter (11).

❑ We add a COM.ibm.IExtendedLIfeCycle._FactoryFinderStub
variable (_FactoryFinderStub1) and connect the normalResult
to _FactoryFinderStub1 (12).

What we are looking for is a factory that can create instances of
the account class.

Chapter 11. Access to Distributed CORBA Objects 345

Java Client Accessing a CBConnector Server

Every CBConnector managed object class has an instance of a fac-
tory associated with it. The factory provides a set of interfaces for
creating instances of a managed object. The factory gets some of
its interface from the base class, CosLifeCycle.GenericFactory.
The method we will use (createFromPrinaryKeyString) is part of
the IManagedClient.IHome interface supplied by CBConnector.
This interface specializes the COSLifeCycle.GenericFactory inter-
face and plays the role of a factory for CBConnector-managed
objects. Object providers can implement and provide a tailored
subclass of this interface, or they may simply use the implementa-
tion of IHome. A client programmer must know how to find the
right IHome for object creation. Homes are at well-known loca-
tions in the name service. The input required for the factory finder
is the name of the implementation class for which we want this
factory to create instances.

There are several ways to retrieve the home account factory. We
are going to use find_factory_from_string and pass a parameter
specifying the IDL interface in which we are interested.

❑ We connect the CBCinit event of the free-form surface to the
find_factory_from_string method of the _FactoryFinderStub1
and set the parameter to "Account.object interface" (13).

❑ We drop a CORBA object variable (CORBAobj3), and connect
the normalResult to CORBAobj3 (14).

❑ We drop a bean of type COM.ibm.IManagedClient.IHome-
Helper (IHomeHelper1), connect the CBCinit event to its nar-
row method, and pass CORBAobj3 as a parameter (15).

❑ We add a variable of type COM.ibm.IManagedClient.IHome
(AccountHome) that will hold the searched account home and
connect the normalResult to AccountHome (16).

At this point the BuildCBC bean is finished. AccountHome is the
factory we need to create account instances on the server. We have
to promote two methods of AccountHome so that they can be used
by the GUI: findByPrimaryKeyString and CreateFromPrima-
ryKeyString.

346 VisualAge for Java Enterprise

Java Client Accessing a CBConnector Server

Creating the Applet

We now have the BuildCBC bean, which encapsulates all of the
initialization and the lookup for an account factory.

It is time to create a GUI in the form of an applet. We create a
Views package and an applet named AccountView (Figure 197).

Figure 197. Visual Composition of the AccountView Applet

We start by creating two methods, buildArgs and buildProps, that
will provide the required information for the ORB initialization:

public java.lang.String[] buildArgs() {
String[] theArgs = new String[2];
theArgs[0] = getParameter("hostName");
theArgs[1] = getParameter("port");
return theArgs;

}

public java.util.Properties buildProps() {
/* Perform the buildProps method. */
java.util.Properties props = new java.util.Properties();
String serverHostName = "";
String serverPort="";
serverHostName = getParameter("hostName");
serverPort = getParameter("port");
props.put("org.omg.CORBA.ORBClass", "COM.ibm.CORBA.iiop.ORB");
props.put("com.ibm.CORBA.BootstrapHost", serverHostName);
props.put("com.ibm.CORBA.BootstrapPort", serverPort);
return props;

}

1

2

Chapter 11. Access to Distributed CORBA Objects 347

Java Client Accessing a CBConnector Server

We use the Visual Composition Editor to build the applet:

❑ We drop a BuildCBC bean (BuildCBC1) (1).

❑ We connect the applet’s init event to the passingOrbArgs
method of BuildCBC1 and connect the two parameters to the
applet’s buildArgs and buildProps methods (2).

We chose to use the init event generated by the browser to call
the passingOrbArgs method, which in turn generates the
CBCinit event used by most of the beans in BuildCBC.

When we return from this method, the ORB is initialized, we have
access to the naming tree, and we have access to the account fac-
tory called AccountHome.

Creating Account Objects

Before going into the process of manipulating account objects, let
us build the GUI interface shown in Figure 198.

Figure 198. Creation of Account Objects

We drop four labels, entry fields, and push buttons.

CBConnector managed objects can be created in a number of
ways. In the sections that follow we describe the default way in
which we can easily create managed objects.

Before we can create an account object, we need to prepare a key.
In general, only a very small subset of the object instances in a dis-
tributed system will be in the name service. These will typically be
large well-known objects such as collections of business objects or
important object instances in the object model.

1

2

3

4

56

8 9

7

348 VisualAge for Java Enterprise

Java Client Accessing a CBConnector Server

The client programmer creates a primary key object to define the
identity of the object that will be created. Then, the createFrom-
PrimaryKeyString call is made on the home and the key is passed.
The createFromPrimaryKeyString method is defined by the
IHome class, and all business objects can be created by this
method. Instances of a given class or home are managed by the
home through primary keys.

Key helper classes are generated by using the IDL-to-Java emitter
run on IDL files. In this case, the key helper class is named
AccountKeyHelper and has been generated from AccountKey.idl
provided by the implementer of the account server object.

In our example, the creation of an account object is done by using
a primary key. This key is created by using an AccountkeyHelper
and you probably remember that earlier we provided an imple-
mentation for this class generated by the IDL-to-Java compiler.

All user-defined IDL types have a helper Java class with the suffix
Helper appended to the type name generated. Several static meth-
ods needed to manipulate the type are supplied. These include any
insert and extract operations for the type, getting the repository
ID, getting the type code, narrowing, and reading and writing the
type from and to a stream.

All key instances are created with a static method call named
_create. Once an instance of a primary key is created, the key
must be set by one or more attributes on the primary key object.
Once all of the key attributes have been set, the primary key
object is now usable. The account home uses this primary key to
create the account object.

❑ We drop an AccountKeyHelper bean and connect the Create
button to the _create method (1).

❑ We drop an _AccountKeyImpl variable and connect the nor-
malResult to _AccountKeyImpl. After calling the static class
method _create, we have an _AccountKeyImpl instance that is
used to set the account number (2).

❑ We connect the Create button to _AccountKeyImpl Account-
Number(java.lang.String) and pass the account number entry
field as a parameter (3).

At last, we are ready to create an instance of account in the server.
We call createFromPrimaryKeyString on the AccountHome object.
Remember this method has been promoted from AccountHome,
which is itself encapsulated in BuildCBC.

❑ We connect the Create button to the createFromPrimaryKey-
String method of BuildCBC. This method returns a CORBA
object that represents an account (4).

Chapter 11. Access to Distributed CORBA Objects 349

Java Client Accessing a CBConnector Server

❑ We drop a CORBA object variable (ObjectCORBA) and connect
the normalResult to ObjectCORBA (5).

To ensure that the returned object is really an account, we need to
use an AccountHelper. This class has a narrow method that
checks the type and returns a proxy of the requested object.

❑ We add an AccountHelper bean (AccountHelper1), connect the
Create button to the narrow method, and pass the
ObjectCORBA as a parameter (6).

❑ We add an Account variable (Account1) and connect the nor-
malResult to Account (7).

We are done! The result of the narrowing is a proxy of the account
object just created on the server.

The first thing we do with the account is to set the account holder
and the balance:

❑ We connect the Create button to the AccountHolder method
and get the parameter from the account holder entry field (8).

❑ We connect the Create button to the getBalance method and
connect the normalResult to the balance entry field (9).

Updating Account Objects

In this section we show you how to update the balance of an
account object.

Figure 199 shows the connections for the update function.

Figure 199. Updating Account Objects

1

2

350 VisualAge for Java Enterprise

Java Client Accessing a CBConnector Server

For this purpose:

❑ We connect the Update button to the changeBalance method
and pass the amount field as a parameter (1).

❑ We connect the Update button to the getBalance method and
connect the normalResult to the account balance field (2).

Finding Account Objects

In this section we add the connections so that we can find account
objects based on the account number. Once objects have been cre-
ated from any client, we might want to retrieve them (Figure 200).

Figure 200. Finding Account Objects

Because the first user action, after the applet is started, may be to
find an object, we need to create an instance of _AccountKeyImpl:

❑ We connect the Find button to the _create method of Account-
KeyHelper and connect the normalResult to
_AccountKeyImpl1 (1).

❑ We set the account number from the corresponding text field
by connecting the Find button to the accountNumber method
of _AccountKeyImpl (2).

❑ To find the object, we invoke findByPrimaryKeyString on the
BuildCBC bean. We connect the Find button to the findByPri-
maryKeyString method of BuildCBC, passing AccountKey-
Impl._toString as a parameter, and we connect the
normalResult to ObjectCORBA (3).

❑ We narrow the result by connecting the Find button to the
narrow method of AccountHelper1, passing ObjectCORBA as a
parameter, and we connect the normalResult to Account1 (4).

1

2

3

4

5

Chapter 11. Access to Distributed CORBA Objects 351

Java Client Accessing a CBConnector Server

❑ We update the account holder and balance text fields with two
connections in the same way as in “Updating Account Objects”
on page 349 (5).

Releasing and Deleting Objects

Eventually, a client application will no longer need an object that
was created or found. CBConnector supports two ways of cleanup:

❑ The remove method asks the object to delete itself and its
instance data.

❑ The release method informs the object that the client applica-
tion no longer references the object. The object still exists in
the server, and other applications may use it.

This is easy enough so we do not explain how to implement the
cleanup.

Now we can run the applet and start playing with CBConnector
objects running in a distributed environment!

352 VisualAge for Java Enterprise

Java Client Accessing a CBConnector Server

© Copyright IBM Corp. 1998 353

12
Deployment of
Java Applications
and Applets

In this chapter we describe the steps that are necessary to deploy
applications and applets from VisualAge for Java.

354 VisualAge for Java Enterprise

Deployment of Applications

Deployment of Applications

The basic characteristics of applications are:

❑ They run in a platform JVM.

❑ They must be installed on a client or server machine.

❑ They have normal access to the machine they run on and to
other machines on the network.

Prerequisites for Applications

To run applications deployed from VisualAge for Java, the
machine must have:

❑ A JVM; VisualAge for Java requires at least JDK 1.1.1

❑ VisualAge for Java run-time libraries if Enterprise Access
Builders were used. Copy the file to the machine and add it to the
CLASSPATH environment variable:

d:\IBMVJava\eab\runtime\ivjeab.zip

Design for Portability

If an application has to run on multiple platforms, you must
observe certain restrictions:

❑ No native methods, that is, no C++ or other non-Java language
calls

❑ No calls to the operating system

❑ Use Java support for portability, for example, to retrieve the
separator character (forward or backward slash) for file names
code:

String sep = System.getProperty("file.separator")

Exporting an Application from VisualAge for Java

The steps to export an application are:

❑ Create a master directory for the exported classes.

❑ Select the classes in the Workbench and export the class files.
Use the Create package subdirectories option so that classes of
the same package are exported into the same subdirectory of
the master directory.

Chapter 12. Deployment of Java Applications and Applets 355

Deployment of Applications

Deployment Process for Applications

Copy the exported directories to the machine where the applica-
tions will run. Set up a master directory that is in CLASSPATH
and copy the package subdirectories into the master directory.

Figure 201 shows the process of deploying applications from a
VisualAge for Java development machine to an execution machine.

Figure 201. Application Deployment Process

A setup like that in Figure 201 guarantees that all classes are
found by the JVM. A proper setup that follows the Java class nam-
ing rules is required for successful operation.

Development Machine

VisualAge

d:\Export

PackageA

PackageB

Execution Machine

d:\JavaApp

PackageB

PackageC

A1.class

A2.class

B1.class
B2.class
B3.class

C1.class
Java Virtual Machine

CLASSPATH=.;.....;

d:\JavaApp;

...

RUN

PackageA

A1.class
A2.class

B1.class
B2.class
B3.class

for Java
Export

356 VisualAge for Java Enterprise

Deployment of Applets

Deployment of Applets

The basic characteristics of applets are:

❑ They run in a Web browser on a client machine.

❑ They are downloaded from a server machine.

❑ They have limited access to the client machine.

❑ They have limited access to the network—only to the server
machine from which they come.

Note: Some of the restrictions can be lifted for trusted applets;
such security facilities are, however, beyond this document.

The biggest advantage of applets is that they are automatically
distributed to the client machine. There is no maintenance bur-
den; new versions of applets have to be installed only on Web serv-
ers.

Exporting an Applet from VisualAge for Java

The steps to export an applet are the same as for an application:

❑ Create a master directory for the exported classes.

❑ Select the classes in the Workbench and export the class files.
Use the Create package subdirectories option so that classes of
the same package are exported into the same subdirectory of
the master directory.

Deployment Process for Applets

Copy the exported directories to the Web server machine Set up a
master directory where the Web server looks for HTML files and
applets and copy the package subdirectories into the master direc-
tory.

Expand the VisualAge for Java enterprise library and the DB2
JDBC library into a subdirectory called COM\ibm of the master
directory. See “Run-time Libraries” on page 358 for detailed
instructions.

In the master directory, create an HTML file for each applet that
points to the applet’s class.

Figure 202 shows the process of deploying applets from a Visu-
alAge for Java development machine to a Web server and a Web
browser.

Chapter 12. Deployment of Java Applications and Applets 357

Deployment of Applets

Figure 202. Applet Deployment Process

Development Machine

VisualAge

d:\Export

PackageX

PackageY

Web Server Machine

d:\WWWHome

PackageY

COM.ibm....

X2.class

Y1.class
Y2.class
Y3.class

aa.class

Web Server

PackageX

X1.class

X2.class

Y1.class
Y2.class
Y3.class

for Java
Export

X2.html

Web Browser Client

Web Browser
X1.html

http:

X1 Applet

X1.html

X1.class
<HTML>

<applet

code=PackageX.X1.class

...>

...

download

358 VisualAge for Java Enterprise

Deployment of Applets

Run-time Libraries

For applets that use Enterprise Access Builder functions or JDBC,
the Web server needs access to the run-time libraries so that the
run-time classes can be downloaded with the applet.

When you expand the enterprise access library (ivjeab.zip) and the
DB2 JDBC library (db2java.zip) into the master directory of the
Web server, you end up with this directory structure:

COM\ibm\ivj\eab\cics
\data
\j2cpp
\rmi\client

\javad
\server

\javabeans

COM\ibm\db2\app
\jdbc\app

\net

Jar Files

As an alternative to downloading individual runtime classes with
the applets, you can deploy the following compressed Java archive
files:

❑ ivjdata.jar—contains the core set of data access classes, with-
out any editors, forms, access application, or BeanInfo classes
(COM.ibm.ivj.eab.data)

❑ ivjbeans.jar—contains the javabeans classes (COM.ibm.ivj.jav-
abeans)

The names of these archive files can be added in the HTML code
that accesses the applet. The classes that are in the files will be
accessed faster than they would be if the applet was looking for
them on the server. Classes that are not in the archive files are
still accessed on the server. The disadvantage is that potentially
too many classes are downloaded with the archive; however, the
browser caches them for other enterprise applets.

© Copyright IBM Corp. 1998 359

A
Installation,
Setup, and
Prerequisites

In this appendix we describe the prerequisites for JDBC applica-
tions and the installation and setup activities for CICS compo-
nents and redbook samples.

Installation of VisualAge for Java

We do not cover the basic product installation in this book because
it is straightforward.

360 VisualAge for Java Enterprise

Prerequisites for JDBC Applications

Prerequisites for JDBC Applications

In this section we present the prerequisites for developing and
running JDBC applications.

DB2 Prerequisites

The prerequisites to develop and run JDBC applications with DB2
are:

❑ DB2 must be installed on a server, or on a stand-alone client.
DB2 must be at Version 2.1.2 with a fix pack, or DB2 Univer-
sal Database (UDB).

❑ In a two-tier architecture, you can have a DB2 client on the cli-
ent machine, and a DB2 server on a server; or you can have
the client with just a browser, and the DB2 client and server
on the server.

❑ In a three-tier architecture, you have a client with a browser, a
middle tier with a DB2 client, and a DB2 server.

❑ Make sure DB2 is started. Issue DB2START on OS/2 and Win-
dows 95. On Windows NT issue NET START DB2 and NET
START DB2NTSECSERVER (or have DB2 automatically
started as a service).

❑ Start the DB2 Java daemon on the DB2 client machine. Issue
the DB2JSTRT 8888 command, where 8888 is the port we use
for DB2 JDBC communication.

❑ Make sure that the db2java.zip file is in CLASSPATH. This
file is located in d:\SQLLIB\JAVA, where SQLLIB is the DB2
installation directory.

VisualAge for Java Prerequisites

To develop and run JDBC applications with VisualAge for Java
and DB2, you must import the DB2 Java classes into the Work-
bench:

❑ Expand the db2java.zip file (in d:\SQLLIB\JAVA) into subdi-
rectories. Use the -d option in most unzip utilities. This creates
a subdirectory structure, COM\ibm\db2\jdbc\...

❑ Create a project in the Workbench, for example, IBM DB2
JDBC Drivers.

❑ Select the new project and import the COM directory with all
subdirectories.

Appendix A. Installation, Setup, and Prerequisites 361

Prerequisites for JDBC Applications

ODBC Prerequisites

To use ODBC in your JDBC applications, you have to install
ODBC drivers when you install VisualAge for Java. You also have
to use the ODBC Data Source Administrator (available from the
Windows control panel) and its associated online help to configure
your data sources. Note that VisualAge for Java automatically
does this for you in the case of the SAMPLEDBASE database that
is shipped with the product.

You have to specify an ODBC driver (for example,
sun.jdbc.odbc.JdbcObdcDriver) in the Access page of the Data
Access Builder's Property pop-up menu for the database bean.

For more information about configuring ODBC drivers (including
considerations for Sybase and Oracle) see the online help for Visu-
alAge for Java. Select Tasks -> Accessing Enterprise Data -> Rela-
tional Databases -> 6. End a Data Access Builder Session and look
for the Deploy Applications topic.

VisualAge for Java Enterprise ships Intersolv ODBC drivers with
the product.

362 VisualAge for Java Enterprise

Installation and Setup of CICS Components

Installation and Setup of CICS Components

The setup for a VisualAge for Java and CICS configuration
includes three CICS components:

❑ CICS server

❑ CICS Client

❑ CICS Java Gateway

We do not discuss the installation of a CICS server, assuming that
it already exists.

There are several sources for the CICS Client and CICS Java
Gateway products, including CD-ROM. We chose to download
them over the Web:

http://www.hursley.ibm.com/cics/downloads/index.html

This Web site offers the latest versions, provided that you are a
licensed user of appropriate software. The download registration
process gives you all the details. You can download the CICS Gate-
way for Java as a separate item, or the CICS Client for Windows
NT, which includes the Gateway.

We downloaded the CICS Client for Windows NT, Version 2.0.2,
update UQ07699. You need to download LOADDSKF.EXE from the
same source and use it to load each of the five downloaded files to
diskette, for example:

loaddskf c:\download\cclint_1.exe a:

Installing the CICS Client for Windows NT

You install the CICS Client on Windows NT by running a:INSTALL.
Select an execution directory, for example, C:\CICSCLI.

We need a CICS server, of course, for our CICS client to talk to.
The definitions below cover two servers:

❑ An enterprise host CICS/ESA server

❑ A workstation CICS for OS/2 server

The CICS for OS/2 server is not officially supported as a
target for the CICS Access Builder in VisualAge for Java
1.0. We supply it here as an example of an easily configured test
system that communicates through TCP/IP. We found it useful,
provided we transferred only character-coded data, for testing our
applications with a CICS for OS/2 server, instead of splitting our

Appendix A. Installation, Setup, and Prerequisites 363

Installation and Setup of CICS Components

attention across a CICS Gateway for Java, a CICS Client for Win-
dows NT, and an APPC (LU 6.2) communication link to a
CICS/ESA host.

Configuring the CICS Client for TCP/IP Connections

You need to configure the client. Our recommendation is to modify
a copy of C:\CICSCLI\BIN\CICSCLI.INI and set the CICSCLI environ-
ment variable to point to this copy. You have to enter the host
name or IP address of your CICS server (or servers) and give your
client a name that will be used for the terminal resource created in
the CICS server by the AutoInstall process.

You specify a value for MAXBUFFERSIZE, the size of a communica-
tion buffer (in KB); in particular, it limits the size of the COM-
MAREA your application programs can pass through the CICS
Gateway for Java. The valid range is 4 KB to 32 KB, and the
default is 32 KB. Therefore, the maximum amount of data you
can pass from Java over the CICS Gateway for Java to the
CICS application is 32 KB in each call. (This is a CICS restric-
tion on the size of COMMAREAs, rather than a Gateway limita-
tion.)

In our configuration, the CICS server has the TCP/IP host name
banda.almaden.ibm.com. Our Web server machine, which carries
the CICS Client for Windows NT and the CICS Gateway for Java,
has the host name senegal.almaden.ibm.com.

Our copy of CICSCLI.INI is called SENEGAL.INI, and it reads:

;* IBM CICS Client - Initialization File

Client = SENEGAL ; Auto-install client on the server

MaxServers = 1 ; Only allow one server connection

MaxRequests = 20 ; Limit maximum server interaction

MaxBufferSize = 32 ; Allow for a 32K maximum COMMAREA

LogFile = CICSCLI.LOG ; Set the error log file name

TraceFile = CICSCLI.TRC ; Set the trace log file name

DumpFile = CICSCLI.DMP ; Set the memory dump file name

DumpMemSize = 16 ; Allow for 16k of trace in memory

Server = BANDA ; Arbitrary name for the server

Description = Banda CICS TCP/IP Server; Arbitrary description

Protocol = TCPIP ; Matches a Driver section below

NetName = banda.almaden.ibm.com ; The server�s TCP/IP address

Port = 0 ; Use the default TCP/IP CICS port

Driver = TCPIP ; Matches the Server�s Protocol value

DriverName = CCLWNTIP ; Use WinNT TCP/IP comm.s DLL

; End of initialization file

364 VisualAge for Java Enterprise

Installation and Setup of CICS Components

We can test that the client works in three steps:

❑ Run CICSCLI /s, which starts the client.

❑ Run CICSCLI /s=banda, which starts the connection to the banda
CICS server.

❑ Run CICSCLI /l, which lists the active server status; it should
show the banda machine active.

The installation program registers the client as a Windows NT
service. After rebooting the server, we can configure it to automat-
ically start the CICS client.

Configuring the CICS Client for APPC Connections

If you are working with an Enterprise CICS system, you are prob-
ably working with CICS/ESA on a System/390 architecture host.
CICS/ESA supports Systems Network Architecture—Advanced
Program to Program Communications (SNA APPC) links instead
of TCP/IP for the CICS Client for NT. (You can also use a hybrid,
TCP62, which looks like TCP/IP at the CICS Client end and APPC
at the enterprise server end.) The setup details are very different,
though once set up, you test it exactly as before.

The CICS Client for NT requires another layer of software to pro-
vide the SNA communications. It supports:

❑ IBM Communications Server Version 5.0 or later, which may
be installed on the workstation; or Communications Server
Client for Windows NT, which may be installed on the CICS
Client for Windows NT workstation.

❑ IBM Personal Communications for Windows NT Version 4.2
(or Version 4.1 with an APAR fix).

❑ Microsoft SNA Server Version 2.11, or later, with Service Pack
1 or later, which may be installed on the workstation; or SNA
Server Client, which may be installed on the CICS Client for
Windows NT workstation.

We used IBM Personal Communications Version 4.2. The defini-
tions across it, the CICS Client, the CICS/ESA system and SNA
VTAM must be synchronized. The numbers in the tables that fol-
low identify parameters that should have the same values.

The five programs involved have different configuration tools:

❑ The VTAM network definitions at the CICS/ESA system are
defined in library members in the VTAMLST file; in particu-
lar, the application definitions in the ATCSTRxx member,
where xx is usually 01 (Table 21).

Appendix A. Installation, Setup, and Prerequisites 365

Installation and Setup of CICS Components

❑ Personal Communications has a node configuration program
that uses Windows notebook pages for each parameter
(Table 22).

❑ CICS/ESA provides the CEDA transaction which has a line-
mode command language and paged panel display for almost
all CICS system resources (Table 23).

❑ The CICS Client for NT parameters are defined in an .INI file
(Table 24).

❑ The VisualAge for Java application parameters are defined in
the CICS Logical Unit of Work bean (Table 25).

Table 21. VTAM Definitions for the SNA Network in CICS/ESA

Table 22. Personal Communications Definitions

ID Parameter Example

1 NetID: the name of the SNA domain containing the
CICS/ESA system. This is in the ATCSTRxx mem-
ber of the VTAMLST library used to start the SNA
VTAM node.

GBIBMFG

2 APPL: the CICS system’s logical unit name FGBZ1C32

3 LU: the CICS client’s logical unit name for the LU
6.2 connection

SC02JAVA

4 LogMode: the logmode entry suitable for LU 6.2.
LU62PS is usually correct.

LU62PS

ID Parameter Example

1
.
2

Partner LU 6.2: the full name (two components sep-
arated by a dot, “domain.LU”) for the server
CICS/ESA system

GBIBMFG
.
FGBZ1C32

3 Local LU 6.2: the CICS client’s LU name. Leave the
dependent flag unset.

SC02JAVA

4 Mode: the logmode for LU 6.2 LU62PS

366 VisualAge for Java Enterprise

Installation and Setup of CICS Components

Table 23. CICS/ESA Definitions

Table 24. CICS Client INI File Definitions

ID Parameter Example

2 APPLID: set in the System Initialization Table
(SIT)

FGBZ1C32

5 Connection name: an arbitrary name JAVA

3 Connection netname: the CICS client’s logical unit
name for the LU 6.2 connection. Use CEDA to
define it.

SC02JAVA

5 Sessions connection: refers to the connection for
which this session specifies parameters. Use CEDA.

JAVA

4 Sessions modename: the logmode entry suitable for
LU 6.2. LU62PS is normally correct. Use CEDA.

LU62PS

ID Parameter Example

1
.
2

NetName: the full name (two components separated
by a dot, “domain.LU”) for the server CICS/ESA sys-
tem

GBIBMFG
.
FGBZ1C32

3 Local LUName: the CICS client’s logical unit name
for the LU 6.2 connection

SC02JAVA

5 Protocol: an arbitrary name referring to the appro-
priate Driver statement in the .INI file

SNA

4 ModeName: the logmode entry suitable for LU 6.2.
LU62PS is usually correct.

LU62PS

5 Driver: agrees with the Protocol name SNA

6 DriverName: CCLWNTSN is the APPC driver for
Windows systems.

CCLWNTSN

7 Server: an arbitrary name for the CICS server, used
in the CICSCLI /S= start command

CICShost

Appendix A. Installation, Setup, and Prerequisites 367

Installation and Setup of CICS Components

Table 25. VisualAge for Java CICS Unit of Work Bean Properties

Installing the CICS Gateway for Java

The Gateway code comes as a single self-extracting zip file, JG-
11NT.EXE, in the CICSCLI\JAVA directory. Running it creates a deep
directory structure starting at CICSCLI\JAVA\JGate\... You can
move the JGate directory to the boot drive to slightly simplify
things:

move CICSCLI\JAVA\JGate c:\

The installation and configuration information is in the User’s
Guide, an HTML file. You have to add JGate\classes to the CLASS-
PATH environment variable.

We start the gateway by running Jgate.cmd from the JGate\bin
directory, and we test the gateway to see whether it finds the
CICS server:

java ibm.cics.jgate.test.TestECI jgate=senegal status

ID Parameter Example

7 dest: the server name for the CICS host system in
the CICS Gateway for Java .INI file

CICShost

8 gatewayHostName: the TCP/IP name for the sys-
tem running the CICS Gateway for Java

thulium.
almaden.
ibm.com

9 targetCodePage: the host CICS system’s code page.
Only page IBM-037 is supported in VisualAge Ver-
sion 1.0.

037

10 Userid: the user ID, registered on the host CICS
system, under which the host transaction will run

USERID

11 Password: password for the host CICS system PASS
WORD

368 VisualAge for Java Enterprise

Installation of the Redbook Samples

Installation of the Redbook Samples

The samples used in this document are distributed in a zip file
called sg245081.zip. Unzipping the file on a hard drive creates an
SG245081 directory with subdirectories as listed in Table 26.

Table 26. Redbook Sample Code

Directory Subdirectory Description

DAT Import files for VisualAge for Java
(see Table 27 for details)

JDBC Supporting material for JDBC

AtmDB Defines the DB2 ATM database and
tables and load the sample data

JdbcConnect JDBC connection sample

SampleOrg Sample ORG application (native
and with Data Access Builder)

OrgApplet Sample ORG applet

JdbcTest JDBC update, insert, delete sample

StatementTest Prepared statement

SampleApplication ORG applet exported from
VisualAge for Java

SampleDax Beans generated by Data Access
Builder

StoredProc Stored procedure example

RMI Supporting material for RMI

RMINative RMI native sample

RmiPrimer RMI account sample

Scrapbook Java code for testing the model

CICS Supporting material for the CICS

Cicscli Sample .INI files for clients

Cobol COBOL sample source

Pli PL/I sample source

CPP Supporting material for JNI/C++

NativeTest Sample using Java native interface

NativeOps Hypotenuse sample

Reverse Reverse string sample

IString Samples using IString

CPPCard ATM sample with C++ server

Appendix A. Installation, Setup, and Prerequisites 369

Installation of the Redbook Samples

The import files can be loaded into VisualAge for Java. We used a
project named VAJEnterpriseRedbook. The samples are struc-
tured into the files and packages listed in Table 27.

Table 27. Packages of the Redbook Samples

File Package Description

jdbc.dat SampleDax Data Access Builder classes for JDBC
samples

SampleApplication JDBC sample applet and application

ATMDax Data Access Builder classes for JDBC
ATM application

ATMApplication GUI classes for JDBC ATM applica-
tion

rmi.dat RMINative RMI native sample

RmiPrimer RMI account sample

RmiDax Data Access Builder classes for RMI
ATM application

RmiModel Business model classes for RMI ATM
application

RmiGui GUI classes for nondistributed ATM
application

RmiGuiD GUI classes for distributed ATM
application

cics.dat AtmCICSAccess CICS Access Builder ATM application
sample

cpp.dat cppserver C++ Access Builder reverse string
sample

stringtest C++ Access Builder samples using
IString

cardserver C++ Access Builder ATM application
sample

cbc.dat Account CBConnector account beans

AccountPackage CBConnector generated classes

Model BuildCBC beans and events

Views CBConnector AccountView applet

370 VisualAge for Java Enterprise

Installation of the Redbook Samples

© Copyright IBM Corp. 1998 371

B
Enterprise
Access Builder
Changes in
Version 1.0.1
This book was developed with the VisualAge for Java Enterprise
Version 1.0 generally available since July 1997.

Version 1.0.1 became available January 1998. As the main feature
Version 1.0.1 provides support for national languages, but it also
includes enhancements for the enterprise access builders.

In this appendix we summarize the enterprise access builders
improvements in Version 1.0.1. You can find the complete descrip-
tion in the release notes of the product.

372 VisualAge for Java Enterprise

AS/400 Feature

AS/400 Feature

VisualAge for Java Enterprise 1.0.1 includes a unique AS/400 Fea-
ture that supports Java development for both client and server
applications. The AS/400 Feature runs on Windows 95 and Win-
dows NT and enables you to:

❑ Create a Java GUI for existing 5250 displays

The 5250 to AWT conversion SmartGuide converts your exist-
ing Data Description Specification (DDS) display files of your
current RPG or COBOL program into Java AWT files. In just a
few minutes you can get your first Java GUI screens without
writing a single line of code. This will jump start your Java
project and facilitate the move. This function requires Applica-
tion Development ToolSet/400 (ADTS/400) V3R2 or later on
the AS/400 machine.

❑ Call your AS/400 programs in Java programs

The Remote Program Call SmartGuide enables you to reuse
your hundreds and thousands of lines of RPG and COBOL
code with no additional coding. Simply fill in the AS/400 name,
the program your Java program wants to call, and the param-
eters you want to pass. The SmartGuide generates the code
and performs the data conversion between AS/400 data type
and Java data type as well.

❑ Deploy Java programs to AS/400

Using the Export and Compile SmartGuides, Java files can be
exported to AS/400 IFS and compiled to machine instructions
for better performance. When you run your Java application
on AS/400, you can use the cooperative debugger to debug the
AS/400 Java program on the workstation. It is the same pow-
erful, graphical debugger found in CODE/400.

❑ Immediately use the IBM Toolbox for Java classes, which are
available in VisualAge for Java

The AS/400 Toolbox for Java is a set of Java programs that
enables the Internet programming model. These programs can
be used to easily access AS/400 data and resources, such as
DB2/400 data, data queues, the integrated file systems, RPG
or COBOL programs, batch commands, and print queues.

All Toolbox for Java classes are loaded into the VisualAge for
Java Workbench at install time. Thus you can use the classes
in the workbench as well as in the Visual Composition Editor
without downloading from the AS/400 and importing into
VisualAge for Java.

This information was extracted from:

http://www.software.ibm.com/ad/as400/vajava

Appendix B. Enterprise Access Builder Changes in Version 1.0.1 373

Data Access Builder

Data Access Builder

A few changes affect the user-defined methods window of the Data
Access Builder.

The windows previously used to add and modify user-defined
methods have been changed to notebooks to improve readability.
The same fields exist in the notebook as in Release 1.0, but now
they are on three or four pages of the notebook, depending on the
type of user-defined method.

There is a new Display Name field to specify a name for the
method. This field can contain double-byte characters.

If you want to add a comment to the new user-defined method, you
can enter it on the Comment Page of the notebook (rather than by
clicking on the Comment icon).

There are notebooks for building:

❑ Customized SQL statements

❑ SQL predicate methods

❑ Stored procedure call methods

374 VisualAge for Java Enterprise

CICS Access Builder

CICS Access Builder

A number of improvements have been made to the CICS Access
Builder.

Changes to the IVJCicsUOWInterface Class

The CICS unit of work bean has been improved in several ways.

Additional Version of Transaction Invocation

There are additional versions of the invokeTxn and asynchIn-
vokeTxn methods with the following signatures:

invokeTxn(IVJCicsEciCommArea In, IVJCicsEciCommArea Out)
asynchInvokeTxn(IVJCicsEciCommArea In, IVJCicsEciCommArea Out)

The new methods provide support for transactions that require
different input and output COMMAREAs. The parameters (In,
Out) are named as though they are being looked at from the host
perspective; that is, the first (In) parameter is destined for the
host; the second parameter (Out) comes from the host.) These
should not refer to the same instance of the IVJCicsEciCom-
mArea.

The size of the input COMMAREA must be equal to or larger than
the size of the output COMMAREA, otherwise the run-time will
throw an exception with message IVJC0085E. You can extend
your input COMMAREA definition without affecting the process-
ing, by adding a COBOL FILLER field to the end of the input
COMMAREA, large enough to make the lengths match.

DFHCNV Support

It is possible to invoke transactions that use the DFHCNV macro
to convert data between workstation and host formats.

The IVJCicsUOWInterface class now provides two properties that
control conversions:

❑ targetCodePage—controls the format of the character data.
For the transactions that use DFHCNV, the value of this prop-
erty can be set to the code page that the client is expected to
produce. Numeric-edited and numeric-display types (for exam-
ple, PIC $99, PIC 99999 DISPLAY) are treated as character
strings for the purpose of this translation.

Appendix B. Enterprise Access Builder Changes in Version 1.0.1 375

CICS Access Builder

❑ targetIntEndian—controls the endian of 2- and 4-byte integers
sent to the host. To cause no endian conversion to the MVS for-
mat, set this value to:

IVJCicsUOWInterface.UOW_LITTLE_ENDIAN

All other data types are translated on the workstation to the cor-
rect host format.

Closing the CICS Gateway for Java

The CICS Gateway for Java can now be closed directly by the pro-
gram, through the closeGateway method. Invoking the following
methods of the IVJCicsUOWInterface bean restores the connec-
tion:

invokeTxn(...)
asynchInvokeTxn(...)

Warning: closeGateway terminates the connection immediately. If
any program threads are waiting for the results from the Gate-
way, they will return an error.

Setting the CICS Transaction ID

The CICS transaction ID (under which the application program
runs) can now be set with the transactionToInvoke property.
Methods to set and get the transactionToInvoke are:

void setTransactionToInvoke(String arg)
String getTransactionToInvoke()

Therefore, the transactionToInvoke property can be set in the
IVJCicsEciCommArea bean (as an argument to either invokeTxn
or asynchInvokeTxn) or in the IVJCicsUOWInterface (with set-
TransactionToInvoke). If the transactionToInvoke property is set
in the IVJCicsEciCommArea bean by invokeTxn or asynchIn-
vokeTxn, its value will be used, regardless of the value in the
IVJCicsUOWInterface.

When the two argument versions of either the invokeTxn or
asynchInvokeTxn method are used, only the first IVJCicsEciCom-
mArea bean is looked at for this information. The order in which
the transaction ID is used is as follows:

❑ transactionToInvoke of the IVJCicsEciCommArea object

❑ transactionToInvoke of the IVJCicsUOWInterface object

❑ default CICS transaction (CPMI), when none of the above is
set

376 VisualAge for Java Enterprise

CICS Access Builder

Specifying a Program to Execute

The specification of the program to be invoked can now be
attached to either the IVJCicsEciCommArea or the IVJCicsUOW-
Interface, through the programToCall property. The access meth-
ods are:

void setProgToCall(String arg)
String getProgToCall()

If the progToCall property is set on the IVJCicsEciCommArea
bean, passed as an argument to either invokeTxn or asynchIn-
vokeTxn, its value will be used, regardless of the value in the
IVJCicsUOWInterface. When the two argument versions of either
the invokeTxn or asynchInvokeTxn method are used, only the first
IVJCicsEciCommArea bean is looked at for this information. The
order in which the progToCall is used is as follows:

❑ progToCall of the IVJCicsEciCommArea object

❑ progToCall of the IVJCicsUOWInterface object

❑ empty string, when none of the above is set

There are two ways to use the IVJCicsUOWInterface:

❑ As though it represents a single program acting (serially) on
one or more COMMAREA parts

❑ As though it represents a CICS system, acting (serially) on one
or more program parts. (A program part in this context refers
to the COMMAREA data, plus optionally the program name to
be used for the transaction ID.)

Either form can be used. The form you choose will depend on the
nature of your application. If you are invoking multiple transac-
tions on the host CICS system and want to keep the number of
gateway connections to your Web server to a minimum, consider
using a single IVJCicsUOWInterface. If the number of connections
is not critical, you can use a separate IVJCicsUOWInterface for
each invocation. If you are using the unit of work model (that is,
you can commit or backout a series of program invocations), each
member of the unit of work must be passed through the same
IVJCicsUOWInterface.

To accommodate both styles, the CICS transaction ID and pro-
gram name can be specified on either the IVJCicsUOWInterface
or in the bean representing the COMMAREA. For each of these
values, if the COMMAREA has a value specified, it will be used; if
no value is specified, the IVJCicsUOWInterface’s value will be
used.

Appendix B. Enterprise Access Builder Changes in Version 1.0.1 377

CICS Access Builder

The CICS Enterprise Access Builder COBOL parser requires a
program name to be specified (either in the IDE GUI or as a man-
datory argument at the command line). To use the value in the
IVJCicsUOWInterface bean, the developer must clear the value of
the program name (and transaction ID, if set) of the IVJCicsEci-
CommArea bean, so that it does not override the IVJCicsUOWIn-
terface value(s). This can be done by calling the
IVJCicsEciCommArea’s setProgToCall (and setTransactionToIn-
voke, if appropriate), passing a blank or empty string (for exam-
ple, setProgToCall('' '')).

Regardless of the form you elect to use, every IVJCicsUOWInter-
face will result in a socket connection to the server (or the Web
server when the Java program is run as an applet) where the
server side of the CICS Java Gateway is running. This connection
will remain open indefinitely. Again, depending on the nature of
your application, you may want to close the connection after some
situation has occurred (timer interrupt, button clicked), rather
than waiting for the application to end (thus destroying the
IVJCicsUOWInterface and gateway). To close the connection, call
IVJCicsUOWInterface.closeGateway. This does not end the
IVJCicsUOWInterface, and subsequent reuse of invokeTxn or
asyncInvokeTxn causes the gateway to be reopened.

Changes to IVJCicsEciCommArea Bean

The communications area bean has been improved in several
ways.

Setting the CICS Transaction ID

The CICS transaction ID (under which the application program
runs) can now be set with the transactionToInvoke property.
Methods to set and get the transactionToInvoke:

void setTransactionToInvoke(String arg)
String getTransactionToInvoke()

If this property is set, its value will be used, regardless of the
value in the IVJCicsUOWInterface. The order in which the trans-
action ID is used is as follows:

❑ transactionToInvoke of the IVJCicsEciCommArea object

❑ transactionToInvoke of the IVJCicsUOWInterface object

❑ default CICS transaction (CPMI), when none of the above is
set

378 VisualAge for Java Enterprise

CICS Access Builder

Double-Byte Character Set Support

This release of CICS Enterprise Access Builder includes support
for DBCS characters. The imported COBOL transactions can con-
tain the following COBOL data types:

PIC G(nn) USAGE DISPLAY-1. PIC N(nn).

Because these types can only contain double byte characters, an
exception with message IVJC0086E will be thrown if an attempt
is made to pass single-byte characters in the string corresponding
to one of the above COBOL types. The VALUE clause can be used
with PIC G(nn) and PIC N(nn) data types subject to the limita-
tions described in the product documentation’s Limitations sec-
tion.

JDK restriction: Due to JDK limitations, the supported DBCS
does not include 37 ‘itaiji’ characters. See the JDK documentation
for further information.

Changes to Limitation on Code Page

The target host code page is no longer restricted to IBM-037. It
can be any of the code pages supported by the JDK.

Appendix B. Enterprise Access Builder Changes in Version 1.0.1 379

C++ Access Builder

C++ Access Builder

There are a number of changes in the C++ Access Builder.

Compatibility between Versions

The 1.0.1 NL version of the C++ Access Builder run-time library
(ivjdjs10.dll) and the C++ Access Builder Java class library
(ivjeab.zip) support code generated using the 1.0 or 1.0.1 NL C++
Access Builder importer (ivj2cpp.exe).

The 1.0 version of the C++ Access Builder runtime library only
supports code generated using the 1.0 version of the C++ Access
Builder importer.

When installing a DLL built with the 1.0.1 NL version of the C++
Access Builder, ensure that it picks up the correct class library
(with the CLASSPATH environment variable) and the correct
runtime library (with PATH on Windows, and BEGINPATH or LIB-
PATH on OS/2).

Deleting C++ Objects Allocated in Java

A native delete method has been added to the parent class of all
generated Java representative classes. In order for Java to free
the space used by a C++ object that was allocated by a new method
on the Java representative object, the delete method must be
called.

For example, if you had a C++ class named Person, which has been
wrapped, its Java representative class would be Person. In Java, if
you had this code:

Person x = new Person(�John Doe�);

it would allocate a C++ Person object to which x would point.
Because this C++ object was allocated in Java, to free the C++
object you must at some point in your Java code have this code:

x.delete();

When the delete method has been invoked, the C++ object will be
deleted, and you should no longer reference the variable x.

Character Arrays

Only character arrays of type wchar_t will support DBCS charac-
ters. Although a Java char array can hold DBCS characters, when
mapped to C++ each Java character is mapped to a C++ character.

380 VisualAge for Java Enterprise

C++ Access Builder

Because a C++ character is 1 byte, the flow from Java to C++ is
constrained to single-byte character set for the types char,
unsigned char, and signed char.

Signed Characters

Signed characters (SCHAR) are treated as a byte. Therefore, there
is no code page conversion when an SCHAR is constructed or set
using a Java byte.

Pointers

In Version 1.0, the generated set method for pointers to primitive
types was setting by value instead of by address. The correspond-
ing get method was getting by address.

Since the P<PrimitiveType> classes already contain methods for
getting and setting by value, the generated set method in Version
1.0.1 sets by address.

With Version 1.0.1 the generated set method in the C++ wrapper
files for the types PSCHAR, PUCHAR, and PWCHAR compile
properly.

Exceptions

As part of the support for national languages, conversion to differ-
ent code pages has been added. Code page conversion has caused
more methods in the C++ Access Builder library to throw an
exception. For many classes in the C++ Access Builder library, the
toString method throws a Java.lang.IllegalArgumentException. In
all other cases where an exception was added, the exception
thrown is IVJJException. Therefore you have to add try and catch
blocks or rethrow the IVJJException.

Appendix B. Enterprise Access Builder Changes in Version 1.0.1 381

Migration to Version 1.0.1?

 Migration to Version 1.0.1?

You may decide not to migrate immediately to Version 1.0.1
because:

❑ You do not need other language support

❑ You consider that Version 1.0.1 has a larger memory require-
ment and decide that Version 1.0 is good enough

We determined that the additional features of Version 1.0.1 did
not offer us significant benefits and decided to use Version 1.0 for
our sample applications.

382 VisualAge for Java Enterprise

Migration to Version 1.0.1?

© Copyright IBM Corp. 1998 383

C
Special Notices

This publication is intended to help application developers create
Java-based enterprise applications. The information in this publi-
cation is not intended as the specification of any programming
interfaces that are provided by VisualAge for Java Enterprise. See
the PUBLICATIONS section of the IBM Programming Announce-
ment for VisualAge for Java for more information about what pub-
lications are considered to be product documentation.

References in this publication to IBM products, programs or ser-
vices do not imply that IBM intends to make these available in all
countries in which IBM operates.

Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or
service may be used. Any functionally equivalent program that
does not infringe any of IBM's intellectual property rights may be
used instead of the IBM product, program or service.

This document has not been subjected to any formal review and
has not been checked for technical accuracy. Results may be indi-
vidually evaluated for applicability to a particular installation.
You may discuss pertinent information from this document with a

384 VisualAge for Java Enterprise

customer, and you may abstract pertinent information for presen-
tation to your customers. However, any code included is for inter-
nal information purposes only and may not be given to customers.
If included code is identified as incidental programming, its use
must conform to the guidelines in the relevant section of the sales
manual.

References in this publication to IBM products, programs or ser-
vices do not imply that IBM intends to make these available in all
countries in which IBM operates. Any reference to an IBM prod-
uct, program, or service is not intended to state or imply that only
IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellec-
tual property rights may be used instead of the IBM product, pro-
gram or service.

Information in this book was developed in conjunction with use of
the equipment specified, and is limited in application to those spe-
cific hardware and software products and levels.

IBM may have patents or pending patent applications covering
subject matter in this document. The furnishing of this document
does not give you any license to these patents. You can send
license inquiries, in writing, to the IBM Director of Licensing, IBM
Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it
for the purpose of enabling: (i) the exchange of information
between independently created programs and other programs
(including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms
and conditions, including in some cases, payment of a fee.

The information contained in this document has not been submit-
ted to any formal IBM test and is distributed AS IS. The informa-
tion about non-IBM ("vendor") products in this manual has been
supplied by the vendor and IBM assumes no responsibility for its
accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsi-
bility and depends on the customer's ability to evaluate and inte-
grate them into the customer's operational environment. While
each item may have been reviewed by IBM for accuracy in a spe-
cific situation, there is no guarantee that the same or similar
results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own
risk.

Appendix C. Special Notices 385

Any performance data contained in this document was obtained in
a controlled environment based on the use of specific data and is
presented only to illustrate techniques and procedures to assist
IBM personnel to better understand IBM products. The results
that may be obtained in other operating environments may vary
significantly. Users of this document should verify the applicable
data in their specific environment. No performance data may be
abstracted or reproduced and given to non-IBM personnel without
prior written approval by Business Practices.

Any performance data contained in this document was determined
in a controlled environment, and therefore, the results that may
be obtained in other operating environments may vary signifi-
cantly. Users of this document should verify the applicable data
for their specific environment.

The following document contains examples of data and reports
used in daily business operations. To illustrate them as completely
as possible, the examples contain the names of individuals, compa-
nies, brands, and products. All of these names are fictitious and
any similarity to the names and addresses used by an actual busi-
ness enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through
the normal distribution process does not imply general availabil-
ity. The purpose of including these reference numbers is to alert
IBM customers to specific information relative to the implementa-
tion of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

You can reproduce a page in this document as a transparency, if
that page has the copyright notice on it. The copyright notice must
appear on each page being reproduced.

The following terms are trademarks of the International Business
Machines Corporation in the United States and/or other countries.

IBM CICS
DB2 MVS
OS/2 OS/390
S/390 ThinkPad
VisualAge

386 VisualAge for Java Enterprise

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorpo-
rated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are
trademarks or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trade-
marks or registered trademarks of Intel Corporation in the U.S.
and other countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

© Copyright IBM Corp. 1998 387

D
Related
Publications

The publications listed in this section are considered particularly
suitable for a more detailed discussion of the topics covered in this
redbook.

388 VisualAge for Java Enterprise

International Technical Support Organization Publications

For information on ordering these ITSO publications see “How To
Get ITSO Redbooks” on page 391.

❑ Programming with VisualAge for Java, SG24-2232, Prentice
Hall, 1998, ISBN 0-13-911371-1

❑ VisualAge for Java Enterprise Team Support, SG24-5245 (July
1998)

❑ Creating Java Applications with NetRexx, SG24-2216

❑ Unlimited Enterprise Access with Java and VisualAge Genera-
tor, SG24-5246 (June 1998)

❑ VisualAge Generator Client/Server Communications, SG24-
4237

❑ VisualAge Generator Version 3.0 System Development Guide,
SG24-4230

❑ CBConnector Overview, SG24-2022

❑ CBConnector Cookbook Volume 1, SG24-2033

❑ Connecting the Enterprise to the Internet with MQSeries and
VisualAge for Java, SG24-2144

❑ Factoring JavaBeans in the Enterprise, SG24-5051

❑ JavaBeans by Example, Cooking with Beans in the Enterprise,
SG24-2035, Prentice Hall, 1997

❑ Java Network Security, SG24-2109, Prentice Hall, 1998

❑ Building AS/400 Applications with Java, SG24-2163

❑ Accessing the AS/400 System with Java, SG24-2152

❑ World Wide Web Programming: VisualAge for C++ and Small-
talk, SG24-4734, Prentice Hall, 1997

❑ Programming with VisualAge for C++ for Windows, SG24-4782,
Prentice Hall, 1997

❑ Object-Oriented Application Development with VisualAge for
C++ for OS/2, SG24-2593, Prentice Hall, 1996

❑ VisualAge and Transaction Processing in a Client/Server Envi-
ronment, GG24-4487, Prentice Hall, 1995

Appendix D. Related Publications 389

Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription
and receive updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177

Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022

Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038

Lotus Redbooks Collection SBOF-6899 SK2T-8039

Tivoli Redbooks Collection SBOF-6898 SK2T-8044

AS/400 Redbooks Collection SBOF-7270 SK2T-2849

RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040

RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041

RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043

Application Development Redbooks Collection SBOF-7290 SK2T-8037

390 VisualAge for Java Enterprise

Other Publications

These publications are also relevant as further information
sources:

❑ Developing JavaBeans Using VisualAge for Java, by Dale Nils-
son and Peter Jakab. John Wiley & Sons, 1998. ISBN 0-471-
29788-7.

❑ Database Programming with JDBC and Java 1.1, SR23-8029,
by George Reese. O’Reilly, 1997.

❑ Java Database Programming with JDBC, SR23-8101, by Pra-
tik Patel and Karl Moss. Coriolis, 1997.

❑ JDBC Database Access with Java, A Tutorial and Annotated,
SR23-8106, by Graham Hamilton, Rick Cattell, and Maydene
Fisher. Addison-Wesley, 1997.

❑ Client/Server Programming with Java and CORBA, SR23-
7787, by Robert Orfali and Dan Harkey. John Wiley & Sons,
1997.

❑ Java Network Programming, SR23-7798, by Elliote Rusty
Harold. O’Reilly, 1997.

❑ Advanced Java Networking, SR23-8034, by Prashant Sridha-
ran. Prentice Hall, 1997.

❑ Java 1.1 Networking and Communications, SR23-8126, by
Todd Curtis. Prentice Hall, 1997.

❑ Enterprise Java, SR23-8198, by Jaff Savit, Sean Wilcox, and
Bhuvana Jayaraman. McGraw-Hill, 1997.

❑ Java Distributed Computing, SR23-8316, by Jim Farley.
O’Reilly, 1998.

❑ Core Java 1.1, Volume II - Advanced Features, SR23-8311, by
Cay S. Hortsmann and Gary Cornell. Prentice Hall, 1998.

❑ Developing Java Beans, SR23-8021, by Robert Englander.
O’Reilly, 1997.

© Copyright IBM Corp. 1998 391

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about
ITSO redbooks, CD-ROMs, workshops, and residencies.

This information was current at the time of publication, but is continually subject to
change. The latest information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-
ROMs) and information about redbooks, workshops, and residencies in the following
ways:

❑ PUBORDER — to order hard copies in United States

❑ GOPHER link to the Internet
- type GOPHER.WTSCPOK.ITSO.IBM.COM

❑ Tools disks

To get LIST3820s of redbooks, type:
TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE

TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks:
TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:
TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

❑ Redbooks Web Site on the World Wide Web
http://w3.itso.ibm.com/redbooks

❑ IBM Direct Publications Catalog on the World Wide Web
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

❑ REDBOOKS category on INEWS
❑ Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

❑ Internet Listserver — With an Internet E-mail address, anyone can subscribe to an
IBM Announcement Listserver. To initiate the service, send an E-mail note to
announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of the note (leave
the subject line blank). A category form and detailed instructions will be sent to you.

392 VisualAge for Java Enterprise

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs)
and information about redbooks, workshops, and residencies in the following ways:

❑ Online Orders (Do not send credit card information over the Internet)—send
orders to:
 IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

❑ Telephone orders

United States (toll free) 1-800-879-2755 United States (toll free)
Canada (toll free) 1-800-IBM-4YOU Canada (toll free)

Outside North America (long distance charges apply) Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

❑ Mail Orders — send orders to:

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Aller⁄d
Denmark

❑ Fax — send orders to:

United States (toll free) 1-800-445-9269 United States (toll free)
Canada 1-403-267-4455 Canada
Outside North America (+45) 48 14 2207

(long distance charge)
Outside North America

❑ 1-800-IBM-4FAX (United States) or (+1) 415 855 43 29 (Outside USA) — ask
for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

❑ Direct Services - send note to softwareshop@vnet.ibm.com

❑ On the World Wide Web
Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

❑ Internet Listserver
With an Internet E-mail address, anyone can subscribe to an IBM Announcement List-
server. To initiate the service, send an E-mail note to announce@webster.ibmlink.ibm.com
with the keyword subscribe in the body of the note (leave the subject line blank).

 393

IBM Redbook Order Form
Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit
card not available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to

394 VisualAge for Java Enterprise

© Copyright IBM Corp. 1998 395

Glossary

This glossary defines terms and abbrevia-
tions that are used in this book. If you do not
find the term you are looking for, refer to the
IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions
from the American National Standard Dic-
tionary for Information Systems, ANSI
X3.172-1990, copyright 1990 by the Ameri-
can National Standards Institute (ANSI).
Copies may be purchased from the American
National Standards Institute, 1430 Broad-
way, New York, New York 10018.

A

abstract class. A class that provides com-
mon behavior across a set of subclasses but
is not itself designed to have instances that
work. An abstract class represents a concept;
classes derived from it represent implemen-
tations of the concept. See also base class.

access application. Generated by the Data
Access Builder for each schema mapping, an
executable GUI that provides access to the
database using the other classes generated
for the mapping.

accessor methods. Methods that an object
provides to define the interface to its
instance variables. The accessor method to
return the value of an instance variable is
called a get method or getter method, and the
accessor method to assign a value to an
instance variable is called a set method or
setter method.

applet. A Java program designed to run
within a Web browser. Contrast with appli-
cation.

application. In Java programming, a self-
contained, stand-alone Java program that
includes a main() method. Contrast with
applet.

argument. A data element, or value,
included as a bean in a method call. Argu-
ments provide additional information that
the called method can use to perform the
requested operation.

attribute. A specification of a property of a
bean. For example, a customer bean could
have a name attribute and an address
attribute. An attribute can itself be a bean
with its own behavior and attributes. In the
Data Access Builder, the aspect of a schema
mapping that represents a column in a data-
base table.

B

base class. A class from which other classes
or beans are derived. A base class may itself
be derived from another base class. See also
abstract class.

bean. A definition or instance of a Java-
Beans component. See also JavaBeans.

BeanInfo. (1) A companion class for a bean
that defines a set of methods that can be
accessed to retrieve information on the
bean’s properties, events, and methods. (2)
In the VisualAge for Java IDE, a page in the
class browser that provides bean informa-
tion.

beans palette. In the Visual Composition
Editor, a two-column pane that contains pre-
fabricated beans that you can select and
manipulate to create programs. The left col-
umn contains categories of beans, and the
right column contains beans for the selected
category. The default set of beans generally
represents JDK AWT components. You can
add your own categories and beans to the
beans palette.

break point. A point in a computer pro-
gram where the execution can be halted.

browser. (1) In VisualAge for Java, a win-
dow that provides information on program
elements. There are browsers for projects,
packages, classes, methods, and interfaces.
(2) An Internet-based tool that lets user
browse Web sites.

396 VisualAge for Java Enterprise

C

C++ Access Builder. A VisualAge for Java
Enterprise tool that generates beans to
access C and C++ DLLs.

category. In the Visual Composition Editor,
a selectable grouping of beans represented
by an icon in the left-most column. Selecting
a category displays the beans belonging to
that category in the next column. See also
beans palette.

CICS Access Builder. A VisualAge for Java
Enterprise tool that generates beans to
access CICS transactions through the CICS
Gateway for Java and CICS Client.

CICS Client. A server program that pro-
cesses CICS ECI calls, forwarding transac-
tion requests to a CICS program running on
a host.

CICS ECI. An API that provides C and C++
programs with procedural access to transac-
tions.

CICS Gateway for Java. A server program
that processes Java ECI calls and forwards
CICS ECI calls to the CICS Client.

class. An aggregate that defines properties,
operations, and behavior for all instances of
that aggregate.

class hierarchy. The relationships between
classes that share a single inheritance. All
Java classes inherit from the Object class.

class library. A collection of classes.

class method. See method.

CLASSPATH. In your deployment environ-
ment, the environment variable that speci-
fies the directories in which to look for class
and resource files.

client/server. The model of interaction in
distributed data processing where a program
at one location sends a request to a program
at another location and awaits a response.
The requesting program is called a client,
and the answering program is called a server.

client-side server proxy. Generated by the
RMI Access Builder, a local representative of
a remote bean. This proxy provides access to
the operations of the server bean, allowing a
Java client to work with it as if it were the
server bean. See also proxy bean and server-
side server proxy.

Class Browser. In the VisualAge for Java
IDE, a tool used to browse the classes loaded
in the workspace.

collection. A set of features in which each
feature is an object.

commit. The operation that ends a unit of
work and updates the database such that
other processes can access any changes
made.

Common Object Request Broker Archi-
tecture (CORBA). A middleware specifica-
tion which defines a software bus—the
Object Request Broker (ORB)—that provides
the infrastructure.

communications area (COMMAREA). In
a CICS transaction program, a group of
records that describes both the format and
volume of data used.

component model. An architecture and an
API that allows developers to define reus-
able segments of code that can be combined
to create a program. VisualAge for Java uses
the JavaBeans component model.

composite bean. A bean that is composed
of a bean and one or more subbeans. A com-
posite bean can contain visual beans, nonvi-
sual beans, or both. See also nonvisual bean,
bean, and visual bean.

concrete class. A subclass of an abstract
class that is a specialization of the abstract
class.

connection. In the Visual Composition Edi-
tor, a visual link between two components
that represents the relationship between the
components. Each connection has a source, a
target, and other properties. See also event-
to-method connection, event-to-property con-

Glossary 397

nection, parameter connection, property-to-
method connection, and property-to-property
connection.

console. In VisualAge for Java, the window
that acts as the standard input (System.in)
and standard output (System.out) device for
programs running in the VisualAge for Java
IDE.

construction from parts. A software
development technology in which applica-
tions are assembled from existing and reus-
able software components, known as parts.
In VisualAge for Java, parts are called
beans.

constructor. A special class method that
has the same name as the class and is used
to construct and possibly initialize objects of
its class type.

container. A component that can hold other
components. In Java, examples of containers
include applets, frames, and dialogs. In the
Visual Composition Editor, containers can be
graphically represented and generated.

current edition. The edition of a program
element that is currently in the workspace.
See also open edition.

cursor. A database control structure used by
the Data Access Builder to point to a specific
row within some ordered set of rows and to
retrieve rows from a set, possibly making
updates or deletions.

D

data abstraction. A data type with a pri-
vate representation and a public set of oper-
ations. The Java language uses the concept
of classes to implement data abstraction.

Data Access Builder. A VisualAge for Java
Enterprise tool that generates beans to
access and manipulate the content of
JDBC/ODBC-compliant relational data-
bases.

DB2 for MVS/ESA. An IBM relational data-
base management system for the MVS oper-
ating system.

double-byte character set (DBCS). A set
of characters in which each character is rep-
resented by 2 bytes. Languages such as Jap-
anese, Chinese, and Korean, which contain
more symbols than can be represented by
256 code points, require double-byte charac-
ter sets. Compare with single-byte character
set.

dynamic link library (DLL). A file con-
taining executable code and data bound to a
program at run time rather than at link
time. The C++ Access Builder generates
beans and C++ wrappers that let your Java
programs access C++ DLLs.

E

edition. A specific “cut” of a program ele-
ment. VisualAge for Java supports multiple
editions of program elements. See also cur-
rent edition, open edition, and versioned edi-
tion.

encapsulation. The hiding of a software
object’s internal representation. The object
provides an interface that queries and
manipulates the data without exposing its
underlying structure.

enterprise access builders. In VisualAge
for Java Enterprise, a set of code-generation
tools. See also C++ Access Builder, CICS
Access Builder, Data Access Builder, and
RMI Access Builder.

event. An action by a user program, or a
specification of a notification that may trig-
ger specific behavior. In JDK 1.1, events
notify the relevant listener classes to take
appropriate actions.

event-to-method connection. A connec-
tion from an event generated by a bean to a
method of another bean. When the connected
event occurs, the method is executed. See
also connection.

event-to-property connection. A connec-
tion that changes the value of a property
when a certain event occurs. See also connec-
tion.

398 VisualAge for Java Enterprise

F

feature. (1) A major component of a soft-
ware product that can be installed sepa-
rately. (2) In VisualAge for Java, a method,
field, or event that is available from a bean’s
interface and to which other beans can con-
nect.

field. A data object in a class. For example, a
customer class could have a name field and
an address field. A field can itself be an
object with its own behavior and fields. By
default, a field, in contrast to a property,
does not support event notification.

free-form surface. The large open area of
the Visual Composition Editor where you
can work with visual and nonvisual beans.
You add, remove, and connect beans on the
free-form surface.

framework. A set of cooperative classes
with strong connections that provide a tem-
plate for development.

G

garbage collection. A Smalltalk process
for periodically identifying unreferenced
objects and deallocating their memory.

gateway. A host computer that connects
networks that communicate in different lan-
guages. For example, a gateway connects a
company’s LAN to the Internet.

graphical user interface (GUI). A type of
interface that enables users to communicate
with a program by manipulating graphical
features, rather than by entering commands.
Typically, a graphical user interface includes
a combination of graphics, pointing devices,
menu bars and other menus, overlapping
windows, and icons.

H

hypertext. Text in a document that con-
tains a hidden link to other text. You can
click a mouse on a hypertext word and it will
take you to the text designated in the link.

Hypertext is used in Windows help programs
and CD encyclopedias to jump to related ref-
erences elsewhere within the same docu-
ment. The wonderful thing about hypertext,
however, is its ability to link–using HTTP
over the Web–to any Web document in the
world, with only a single mouse click.

Hypertext Markup Language (HTML).
The basic language that is used to build
hypertext documents on the World Wide
Web. It is used in basic, plain ASCII-text
documents, but when those documents are
interpreted (called rendering) by a Web
browser such as Netscape, the document can
display formatted text, color, a variety of
fonts, graphic images, special effects, hyper-
text jumps to other Internet locations, and
information forms.

Hypertext Transfer Protocol (HTTP).
The protocol for moving hypertext files
across the Internet. Requires an HTTP client
program on one end, and an HTTP server
program on the other end. HTTP is the most
important protocol used in the World Wide
Web.

I

inheritance. (1) A mechanism by which an
object class can use the attributes, relation-
ships, and methods defined in more abstract
classes related to it (its base classes). (2) An
object-oriented programming technique that
allows you to use existing classes as bases
for creating other classes.

instance. Synonym for object, a particular
instantiation of a data type.

Integrated Development Environment
(IDE). In VisualAge for Java, the set of win-
dows that provide the user with access to
development tools. The primary windows are
Workbench, Log, Console, Debugger, and
Repository Explorer.

interchange file. A file that you can export
from VisualAge for Java that contains infor-
mation about selected projects or packages.
This file can then be imported into any Visu-
alAge for Java session.

Glossary 399

interface. A set of methods that can be
accessed by any class in the class hierarchy.
The Interface page in the Workbench lists all
interfaces in the workspace.

Internet. The vast collection of intercon-
nected networks that use TCP/IP protocols
and evolved from the ARPANET of the late
1960s and early 1970s.

intranet. A private network, inside a com-
pany or organization, that uses the same
kinds of software that you would find on the
public Internet. Many of the tools used on the
Internet are being used in private networks;
for example, many companies have Web
servers that are available only to employees.

Internet Protocol (IP). The rules that pro-
vide basic Internet functions. See Transmis-
sion Control Protocol/Internet Protocol.

IP number. An Internet address that is a
unique number consisting of four parts sepa-
rated by dots, sometimes called a dotted
quad (for example: 198.204.112.1). Every
Internet computer has an IP number, and
most computers also have one or more
domain names that are plain language sub-
stitutes for the dotted quad.

J

Java. A new programming language
invented by Sun Microsystems that is specif-
ically designed for writing programs that can
be safely downloaded to your computer
through the Internet and immediately run
without fear of viruses or other harm to your
computer or files. Using small Java pro-
grams (called applets), Web pages can
include functions such as animations, calcu-
lators, and other fancy tricks. We can expect
to see a huge variety of features added to the
Web through Java, because you can write a
Java program to do almost anything a regu-
lar computer program can do and then
include that Java program in a Web page.

Java archive (JAR). A platform-indepen-
dent file format that groups many files into
one. JAR files are used for compression,

reduced download time, and security.
Because the JAR format is written in Java,
JAR files are fully extensible.

JavaBeans. In JDK 1.1, the specification
that defines the platform-neutral component
model used to represent parts. Instances of
JavaBeans (often called beans) may have
methods, properties, and events.

Java Database Connectivity (JDBC). In
JDK 1.1, the specification that defines an
API that enables programs to access data-
bases that comply with this standard.

Java Native Interface (JNI). In JDK 1.1,
the specification that defines a standard
naming and calling convention so that the
Java virtual machine can locate and invoke
methods written in a language different
from Java. See also native method.

K

keyword. A predefined word reserved for
Java, that may not be used as an identifier.

L

legacy code. Existing code that a user
might have. Legacy applications often have
character-based, nongraphical user inter-
faces. Usually they are written in a non-
object-oriented language, such as C or
COBOL.

listener. In JDK 1.1, a class that receives
and handles events.

local area network (LAN). A computer
network located on a user’s establishment
within a limited geographical area. A LAN
typically consists of one or more server
machines providing services to a number of
client workstations.

log. In VisualAge for Java, the window that
displays messages and warnings during
development.

400 VisualAge for Java Enterprise

M

mapping. See schema mapping.

member. (1) A data object in a structure or a
union. (2) In Java, classes and structures can
also contain functions and types as mem-
bers.

method. A fragment of Java code within a
class that can be invoked and passed a set of
parameters to perform a specific task.

method call. A communication from one
object to another that requests the receiving
object to execute a method. A method call
consists of a method name that indicates the
requested method and the arguments to be
used in executing the method. The method
call always returns some object to the
requesting object as the result of performing
the method. Synonym for message.

message. A request from one object that the
receiving object implement a method.
Because data is encapsulated and not
directly accessible, a message is the only way
to send data from one object to another. Each
message specifies the name of the receiving
object, the method to be implemented, and
any arguments the method needs for imple-
mentation. Synonym for method call.

model. A nonvisual bean that represents
the state and behavior of an object, such as a
customer or an account. Contrast with view.

N

native method. Method written in a lan-
guage other than Java that can be called by
a Java object through the JNI specification.

named package. In the VisualAge for Java
IDE, a package that has been explicitly
named and created.

nonvisual bean. In the Visual Composition
Editor, a bean that has no visual representa-
tion at run time. A nonvisual bean typically
represents some real-world object that exists
in the business environment. Compare with
model. Contrast with view and visual bean.

notification framework. In JDK 1.1, a set
of classes that implement the notifier/lis-
tener protocol. The notification framework is
the base of the construction from beans tech-
nology (Visual Composition Editor).

O

object. (1) A computer representation of
something that a user can work with to per-
form a task. An object can appear as text or
an icon. (2) A collection of data and methods
that operate on that data, which together
represent a logical entity in the system. In
object-oriented programming, objects are
grouped into classes that share common data
definitions and methods. Each object in the
class is said to be an instance of the class. (3)
An instance of an object class consisting of
attributes, a data structure, and operational
methods. It can represent a person, place,
thing, event, or concept. Each instance has
the same properties, attributes, and methods
as other instances of the object class,
although it has unique values assigned to its
attributes.

object class. A template for defining the
attributes and methods of an object. An
object class can contain other object classes.
An individual representation of an object
class is called an object.

object factory. A nonvisual bean capable of
dynamically creating new instances of a
specified bean. For example, during the exe-
cution of an application, an object factory
can create instances of a new class to collect
the data being generated.

object-oriented programming (OOP). A
programming approach based on the con-
cepts of data abstraction and inheritance.
Unlike procedural programming techniques,
object-oriented programming concentrates
on those data objects that constitute the
problem and how they are manipulated, not
on how something is accomplished.

Object Request Broker (ORB). A CORBA
term designating the means by which objects
transparently make requests and receive
responses from objects, whether they are
local or remote.

Glossary 401

ODBC driver. An ODBC driver is a DLL
that implements ODBC function calls and
interacts with a data source.

Open Database Connectivity (ODBC). A
Microsoft developed C database API that
allows access to database management sys-
tems calling callable SQL, which does not
require the use of an SQL preprocessor. In
addition, ODBC provides an architecture
that allows users to add modules (database
drivers) that link the application to their
choice of database management systems at
run time. Applications no longer need to be
directly linked to the modules of all the data-
base management systems that are sup-
ported.

open edition. An edition of a program ele-
ment that can still be modified; that is, the
edition has not been versioned. An open edi-
tion may reside in the workspace as well as
in the repository.

operation. A method or service that can be
requested of an object.

overloading. An object-oriented program-
ming technique that allows redefinition of
methods when the methods are used with
class types.

P

package. A program element that contains
related classes and interfaces.

palette. See beans palette.

parameter connection. A connection that
satisfies a parameter of an action or method
by supplying either a property’s value or the
return value of an action, method, or script.
The parameter is always the source of the
connection. See also connection.

parent class. The class from which another
bean or class inherits data, methods, or both.

part. An existing, reusable software compo-
nent. In VisualAge for Java, all parts created
with the Visual Composition Editor conform
to the JavaBeans component model and are

referred to as beans. See also nonvisual bean
and visual bean. Compare with Class Editor
and Composition Editor.

primitive bean. A basic building block of
other beans. A primitive bean can be rela-
tively complex in terms of the function it pro-
vides.

private. In Java, an access modifier associ-
ated with a class member. It allows only the
class itself to access the member.

process. A collection of code, data, and other
system resources, including at least one
thread of execution, that performs a data
processing task.

program. In VisualAge for Java, a term
that refers to both Java applets and applica-
tions.

project. In VisualAge for Java, the topmost
kind of program element. A project contains
Java packages.

promote features. Make features of a sub-
bean available to be used for making connec-
tions. This applies to subbeans that are to be
included in other beans, for example, a sub-
bean consisting of three push buttons on a
panel. If this sample subbean is placed in a
frame, the features of the push buttons
would have to be promoted to make them
available from within the frame.

property. An initial setting or characteristic
of a bean; for example, a name, font, text, or
positional characteristic.

property sheet. In the Visual Composition
Editor, a set of name-value pairs that specify
the initial appearance and other bean char-
acteristics. A bean’s property sheet can be
viewed from the Properties secondary win-
dow.

property-to-method connection. A con-
nection that calls a method whenever a prop-
erty’s value changes. It is similar to an
event-to-method connection because the
property’s event ID is used to notify the
method when the value of the property
changes. See also connection.

402 VisualAge for Java Enterprise

property-to-property connection. A con-
nection from a property of one bean to a
property of another bean. When one property
is updated, the other property is updated
automatically. See also connection.

property-to-method connection. A con-
nection from a property of a bean to a
method. When the property undergoes a
state change, the method is called. See also
connection.

protected. In Java, an access modifier asso-
ciated with a class member. It allows the
class itself, subclasses, and all classes in the
same package to access the member.

protocol. (1) The set of all messages to
which an object will respond. (2) Specifica-
tion of the structure and meaning (the
semantics) of messages that are exchanged
between a client and a server. (3) Computer
rules that provide uniform specifications so
that computer hardware and operating sys-
tems can communicate. It is similar to the
way that mail, in countries around the
world, is addressed in the same basic format
so that postal workers know where to find
the recipient’s address, the sender’s return
address, and the postage stamp. Regardless
of the underlying language, the basic proto-
cols remain the same.

prototype. A method declaration or defini-
tion that includes both the return type of the
method and the types of its arguments.

proxy-bean. A group of client-side and
server-side objects that represent a remote
server bean. The top-level class that imple-
ments the proxy bean is the client-side
server proxy. See also client-side server proxy
and server-side server proxy.

R

Remote Method Invocation (RMI). In
JDK 1.1, the API that enables you to write
distributed Java programs, allowing meth-
ods of remote Java objects to be accessed
from other Java virtual machines.

remote object instance manager. Creates
and manages instances of RMI server beans
through their associated server-side server
proxies.

repository. In VisualAge for Java, the stor-
age area, separate from the workspace, that
contains all editions (both open and ver-
sioned) of all program elements that have
ever been in the workspace, including the
current editions that are in the workspace.
You can add editions of program elements to
the workspace from the repository.

Repository Explorer. In VisualAge for
Java, the window from which you can view
and compare editions of program elements
that are in the repository.

resource file. A noncode file that can be
referred to from your Java program in Visu-
alAge for Java. Examples include graphic
and audio files.

RMI Access Builder. A VisualAge for Java
Enterprise tool that generates proxy beans
and associated classes and interfaces so you
can distribute code for remote access,
enabling Java-to-Java solutions.

RMI compiler. The compiler that generates
stub and skeleton files that facilitate RMI
communication. This compiler can be auto-
matically invoked by the RMI Access Builder
or from the Tools menu item.

RMI registry. A server program that allows
remote clients to get a reference to a server
bean.

roll back. The process of restoring data
changed by SQL statements to the state at
its last commit point.

S

schema. In the Data Access Builder, the
representation of the database that will be
mapped.

schema mapping. In the Data Access
Builder, a set of definitions for all attributes
matching all columns for your database
table, view, or SQL statement. The mapping

Glossary 403

contains the information required by the
Data Access Builder to generate Java
classes.

Scrapbook. In VisualAge for Java, the win-
dow from which you can write and test frag-
ments of code, without having to define an
encompassing class or method.

server. A computer that provides services to
multiple users or workstations in a network;
for example, a file server, a print server, or a
mail server.

server bean. The bean that is distributed
using RMI services and deployed on a server.

server-side server proxy. Generated by
the RMI Access Builder, a companion class to
the client-side server proxy, facilitating cli-
ent-side server proxy communication over
RMI. See also client-side server proxy and
proxy bean.

service. A specific behavior that an object is
responsible for exhibiting.

single-byte character set. A set of charac-
ters in which each character is represented
by a 1- byte code.

SmartGuide. In IBM software products, an
interface that guides you through perform-
ing common tasks.

SQL predicate. The conditional part of an
SQL statement.

sticky. In the Visual Composition Editor, the
mode that enables an application developer
to add multiple beans of the same class (for
example, three push buttons) without going
back and forth between the beans palette
and the free-form surface.

stored procedure. A procedure that is part
of a relational database. The Data Access
Builder can generate Java code that accesses
stored procedures.

superclass. See abstract class and base
class.

T

Transmission Control Protocol/Inter-
net Protocol (TCP/IP). The basic program-
ming foundation that carries computer
messages around the globe through the
Internet. The suite of protocols that defines
the Internet. Originally designed for the
UNIX operating system, TCP/IP software is
now available for every major kind of com-
puter operating system. To be truly on the
Internet, your computer must have TCP/IP
software.

tear-off property. A property that a devel-
oper has exposed to work with as though it
were a stand-alone bean.

thread. A unit of execution within a process.

tool bar. The strip of icons along the top of
the free-form surface. The tool bar contains
tools to help an application developer con-
struct composite beans.

transaction. In a CICS program, an event
that queries or modifies a database that
resides on a CICS server.

type. In VisualAge for Java, a generic term
for a class or interface.

U

Unicode. A character coding system
designed to support the interchange, pro-
cessing, and display of the written texts of
the diverse languages of the modern world.
Unicode characters are normally encoded
using 16-bit integral unsigned numbers.

Uniform Resource Locator (URL). A
standard identifier for a resource on the
World Wide Web, used by Web browsers to
initiate a connection. The URL includes the
communications protocol to use, the name of
the server, and path information identifying
the objects to be retrieved on the server. A
URL looks like this:

http://www.matisse.net/seminars.html
or telnet://well.sf.ca.us.br
or news:new.newusers.question.br

404 VisualAge for Java Enterprise

user interface (UI). (1) The hardware, soft-
ware, or both that enables a user to interact
with a computer. (2) The term user interface
normally refers to the visual presentation
and its underlying software with which a
user interacts.

V

variable. (1) A storage place within an
object for a data feature. The data feature is
an object, such as number or date, stored as
an attribute of the containing object. (2) A
bean that receives an identity at run time. A
variable by itself contains no data or pro-
gram logic; it must be connected such that it
receives run-time identity from a bean else-
where in the application.

versioned edition. An edition that has
been versioned and can no longer be modi-
fied.

versioning. The act of making an open edi-
tion a versioned edition; that is, making the
edition read-only.

view. (1) A visual bean, such as a window,
push button, or entry field. (2) A visual rep-
resentation that can display and change the
underlying model objects of an application.
Views are both the end result of developing
an application and the basic unit of composi-
tion of user interfaces. Compare with visual
bean. Contrast with model.

visual bean. In the Visual Composition Edi-
tor, a bean that is visible to the end user in
the graphical user interface. Compare with
view. Contrast with nonvisual bean.

visual programming tool. A tool that pro-
vides a means for specifying programs
graphically. Application programmers write
applications by manipulating graphical rep-
resentations of components.

Visual Composition Editor. In VisualAge
for Java, the tool where you can create
graphical user interfaces from prefabricated
beans and define relationships (connections)
between both visual and nonvisual beans.
The Visual Composition Editor is a page in
the class browser.

W

Workbench. In VisualAge for Java, the
main window from which you can manage
the workspace, create and modify code, and
open browsers and other tools.

workspace. The work area that contains all
the code you are currently working on (that
is, current editions). The workspace also con-
tains the standard Java class libraries and
other class libraries.

© Copyright IBM Corp. 1998 405

List of Abbreviations
ANSI American National Standards

Institute

API application programming inter-
face

ATM automated teller machine

AWT Abstract Windowing Toolkit

CAE Client Access Enabler

URL uniform resource locator

CB Component Broker

CICS Customer Information Control
System

CLI call level interface

COM Component Object Model

CORBA Common Object Request Bro-
ker Architecture

COS CORBA object services

DB2 DATABASE 2

DBCS double-byte character set

DBMS database management system

DL/I Data Language/I

DLL dynamic link library

DNS domain name server

DRDA Distributed Relational Data-
base Architecture

ECD edit-compile-debug

ECI external call interface

FTP File Transfer Protocol

GUI graphical user interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business
Machines Corporation

IDE integrated development envi-
ronment

IDL interface definition language

IIOP Internet inter-ORB protocol

IMS Information Management Sys-
tem

IOR interoperable object reference

ITSO International Technical Sup-
port Organization

JAR Java archive

JDBC Java Database Connectivity

JDK Java Developer’s Kit

JNI Java Native Interface

JVM Java Virtual Machine

LAN local area network

MOFW managed object framework

MVS Multiple Virtual Storage

NLS National Language Support

NT new technology

ODBC Open Database Connectivity

OMG Object Management Group

OMT object modeling technique

OO object-oriented

OOA object-oriented analysis

OOD object-oriented design

ORB Object Request Broker

OS/2 Operating System/2

OTS object transaction service

PIN personal identification number

RAD rapid application development

RDBMS relational database manage-
ment system

RMI Remote Method Invocation

SBCS single-byte character set

SDK Software Developer’s Kit

SQL structured query language

TCP/IP Transmission Control Proto-
col/Internet Protocol

TP transaction processing

UOW unit of work

URL Uniform Resource Locator

WWW World Wide Web

406 VisualAge for Java Enterprise

© Copyright IBM Corp. 1998 407

Index

A

access application 75
account interface definition 337
APPC 139, 364
applet

ATM with JDBC 129
ATM with RMI 216
C++ sample 270
CBConnector sample 341, 346
CICS 246
code base 219
deployment 356
IString sample 282
JDBC 61
JDBC with Data Access Builder 80
RMI sample 157
viewer 51, 167, 211

application
adapter framework 333
architectures 34
deployment 354, 355
design considerations 97
JDBC 89
layers 172

array data 234, 242, 262, 294
AS/400

feature 372
toolbox 372

asynchronous processing 96
ATM application

account information 105
business logic 109
C++ Access Builder 290
C++ implementation 291
C++ server integration 301
CICS Access Builder 229, 246
controller 195
Data Access Builder 99
data definition language 29
database 103
database design 21
design 20
design for distribution 172
distributed controller 216
entity-relationship diagram 21
flow 19, 129
introduction 17
layers 172

main panel 130, 210
object model 100, 174
PIN validation 101
referential integrity 27
requirements 18
RMI distribution 171, 213
sample data 30
sample run 212
schema mapping 104
service bean 192
tables 24, 27
test 211, 219
transaction history 105
user interface 115
view layer 202
VisualAge Generator 315
wrapping C++ beans 299

attribute 94
authors xxvi
autocommit 76

B

BeanInfo 73, 154
beans list 131, 158, 203
bibliography 387
BorderLayout manager 125
business logic 110, 253
business objects 182

data access classes 184
layer 174

C

C++
server 255
templates 287
wrapper 265, 272, 279

C++ Access Builder
advanced 272
ATM application 290
code generation 266
command line utility 266
compiler support 280
design considerations 276
environments 289
generated files 265, 273
header file modification 281
introduction 255
limitations 280
native example 267

408 VisualAge for Java Enterprise

overview 12, 265
Version 1.0.1 379

CardLayout manager 81, 129
CB Toolkit 16, 330
CBConnector 16, 330

account example 338
creating objects 347
generating proxies 338
Java beans 342
Java client 337
VisualAge for Java 338

CICS 222
APPC 364
application coding techniques 241
client topologies 252
COBOL transaction 244
communications area 226
configuration 363
enterprise server 224
Gateway for Java 10, 221, 222, 250

installation 367
host access 221

topologies 252
installation 250, 362
Java application design 225
middleware 224
OS/2 362
program design 230
server simulation 249
unit of work 10, 225, 246, 248

CICS Access Builder
ATM application 229, 246
COBOL input 232
command line 239
concepts 223
data types 234
generated classes 241
introduction 221
invocation 237
overview 10, 226
restrictions 234
run-time class library 227
SmartGuide 238
Version 1.0.1 374

class
AccountDB 187
ATMApplet 130
AtmApplicationController 201
AtmDB 192
AtmDistributedController 215
BankAccount 112, 175
BuildCBC 342
CallableStatement 55
Card 110, 177, 292
CardDB 186

CardManager 291
CardPanel 115, 204
CheckingAccount 114, 176
Connection 49
CPPCard 299
Customer 177
CustomerDB 185
DriverManager 44
IMessageBox 297
IString 281
IVJCicsUOWInterface 227, 374
Naming 145
PinPanel 119, 205
PreparedStatement 54
ResultSet 49
ResultSetMetaData 49
SavingAccount 114
SavingsAccount 176
SelectAccountPanel 121, 206
Statement 49, 54
Transaction 178
TransactionDB 190
TransactionPanel 125, 208
UnicastRemoteObject 145

CLASSPATH 45, 89, 151, 166, 268, 284, 339,
354, 360, 367, 379

client/server
architecture 37
topology 252

COBOL
CICS Access Builder 232
CICS transaction 244
communications area 232
data types 234

code page 234, 248, 251, 378
COM.ibm.CORBA.iiop.ORB 343
COM.ibm.db2.jdbc.app.DB2Driver 45, 46
COM.ibm.db2.jdbc.net.DB2Driver 45, 48,

70, 108, 181, 193
COM.ibm.ivj.eab.data 74
COM.ibm.ivj.eab.j2cpp 279
COM.ibm.ivj.eab.rmi.client 152
COM.ibm.ivj.eab.rmi.server 152
COM.ibm.ivj.javabeans 358
COMMAREA

see communications area
communications area 226, 232, 363, 374
Component Broker 330

developing applications 335
introduction 16
programming model 331

concurrency service 328
controller 173, 195

distributed 216
CORBA 16, 317, 329

Index 409

services 325
customized SQL statements 94

D

data access 34
beans 89, 179
layer 38

data access beans
business objects 184

Data Access Builder
access application 75
advanced 92
ATM application 99
ATM application with RMI 180
BeanInfo 73
beans 89
concept 59
development process 63
export 92
generate 70
generated beans 72
identifier 68
import 92
key 68
overview 6
run stand-alone 92
sample application 79
schema mapping 65
share mappings 92
SmartGuide 66
starting 65
tree view 68
user-defined method 106
Version 1.0.1 373
window 65

data definition language 29
data identifier 68
data logic 253
data type

C++ mapping 277
JNI mapping 262

database
ATM application 27
connection 84, 136
design 21

datastore 72
DB2 3

Client Application Enabler 42
JDBC daemon 46, 85, 360
JDBC drivers 45
prerequisites 360
sample database 47, 66

Universal Database 55, 360
db2java.zip 358, 360
DB2JSTRT 46, 85, 360
DBMS 36, 138
debugger 2
DFHCNV 374
distributed processing 139
DLL 257, 266, 268, 270
driver

manager 40
see JDBC driver

E

EAB
see enterprise access builders 3

e-Business solution 314
ECI 3, 306
editor 2
enterprise access builders 3

overview 4
run-time libraries 358

entity 22
entity-relationship diagram

ATM application 21
event 110, 241

distributed 214
listener 110, 154
propagation 199
service 326

exception 241, 279, 380
export 166, 354, 356
external call interface

see ECI
externalization service 327

F

fat client 36
form 73
framework 173
free-form surface 192, 343

G

garbage collector 263
generic network protocol driver 43, 138
GridBagLayout manager 115

410 VisualAge for Java Enterprise

H

header file 269
hosts file 165
HTML

applet tag 50, 167

I

IDE 2
identity service 327
IDL 321, 323, 348
IIOP 321, 325
installation

CICS 362
CICS Gateway for Java 367
redbook samples 368
VisualAge for Java 359

integrated development environment
see IDE

interchange file 92
interface definition language

see IDL
ITSO publications 388
ivj2cpp 266, 269, 276, 379
ivjdata 92
ivjdcics 240
ivjeab.zip 358

J

jar 39, 358
Java Database Connectivity

see JDBC
Java Native Method

see JNI
Java Virtual Machine

See JVM
JavaBeans 2
javah 258
JDBC 3

applet 47, 50
applet with VisualAge for Java 61
application 48
application structure 44
concepts 33
Data Access Builder 6, 60
DB2 drivers 45, 70
DB2 server daemon 46
driver 39
generic network protocol driver 43, 138

ODBC bridge 41
prerequisites 360
sample program 46
update program 51
URL 46, 70
vendor-specific driver 42

JDK 60, 256, 354
JNI 12, 255

development process 261
example 258
exception handling 263
overview 256
programming 257
type mapping 262

JVM 256, 257, 272, 354, 355

K

key
foreign 25
primary 25, 68

L

life cycle service 325
localhost 162, 181, 217
loopback 151

M

makefile 260
managed object framework 331
marshaling

see serialization
method

append 94
asynchInvokeTxn 227
bind 145
createStatement 49
execute 56
executeQuery 49
fill 94
forName 45
getMetaData 49
getResultSet 56
invokeTxn 227, 374
loadLibary 257
native 257
newInstance 45

Index 411

prepareStatement 55
rebind 148
setAsynchronous 96
setSecurityManager 145
simulateCICS 249
toString 179

Microsoft Visual C++ 280, 289
middleware 38, 43, 304
multicolumn list box 80
MVS 221, 251, 306

N

naming
server 145
service 325

native method 257
network protocol driver 138
nonvisual beans 130
normalization 23

O

object
model 100, 174
services 333

Object Builder 335
Object Management Group 321
Object Request Broker 139, 322
ODBC 6, 34, 39, 41, 67

driver 361
prerequisites 361

open class library 269
Open Database Connectivity

see ODBC

P

package 65, 237
panel switching 131
persistence

object service 328
persistent

object 72
Personal Communications 365
personal identification number

see PIN 18
PIN 18, 101, 197, 231
port 46, 162, 360

portability 354
PowerServer API 15, 304, 305, 308
prerequisites 360
presentation logic 253
promote features 119, 120, 124, 129
proxy

bean 154
object 144
server 154

proxy bean 154

Q

query service 328

R

rapid application development 307
redbook samples 368
referential integrity 24
registry 143
relational database access 60
relationship 23
remote

exception 147
remote method invocation

see RMI
Remote Object Instance Manager 152, 156,

164, 168
remote procedure call 140
remote reference layer 142
reorder connections window 135
reverse string 147, 269

applet 271
RMI 3

account applet 161
architecture 141
client logic 149
compiler 143, 149
concepts 140
CORBA 329
design considerations 167
development process 143
distributed ATM application 219
distributed processing 139
execution environment 146, 155
limitations 169
native example 147
overview 8
problems and hints 165
proxy bean 154

412 VisualAge for Java Enterprise

proxy object 144
registry 143, 163
Remote Object Instance Manager 152
run application 151
run outside VisualAge for Java 166
security manager 145
serialization 141
server implementation 147
special code 145
stub and skeleton 142, 155
technology 97
tools 143
trace 162, 164
URL 149, 150
VisualAge Generator 313

RMI Access Builder
ATM application 171
development process 152
generated classes 154
overview 8
sample application 157
SmartGuide 152, 158, 215
VisualAge for Java 152

rmic
see RMI compiler

rmiregistry 151, 166
rmiregst 151, 166
rules

delete, insert, update 26

S

schema mapping 65
Scrapbook 201
security

manager 145, 166
service 326

serialization 141, 168, 213
server proxy 154
single-tier architecture 35
skeleton 8, 142, 149
SmartGuide

CB Toolkit 335
CICS Access Builder 226, 238
Data Access Builder 66, 102
Remote Program Call 372
RMI Access Builder 152, 158, 215

SQL
command level interface 41
customized 94
data definition language 29
search predicate 95
statement 54

statement validation 104
stored procedure 96

statement 54
callable 55
prepared 54

stored procedure 55, 96
stub 8, 142, 149
synchronized 213
system service layer 179

T

TCP/IP 139
CICS 252
CICS configuration 363
hosts file 165
loopback 151
port 46, 162, 248, 360
RMI 140

team programming 3
tear-off property 192
thin client 37
three-tier architecture 37, 138, 223, 320,

360
trace 162, 164, 165
transaction service 327
transport layer 142
two-tier architecture 36, 138, 360

U

URL
JDBC 46, 47, 70, 108, 193
RMI 149, 150

V

variable 135, 192
Version 1.0.1 371

migration 381
version control 2
Visual Composition Editor 84

concept 2
palette 396

VisualAge for C++ 280, 289, 336
VisualAge for Java

AS/400 feature 372
CBConnector 338
Enterprise

Index 413

connectivity 13
introduction 1

Entry 2
import 94
installation 359
prerequisites 360
products 2
Professional 2
repository 92
Version 1.0.1 371

VisualAge Generator
ATM application 315
client/server configuration 305
Common Services 310
CSO Java classes 307
e-Business solution 314
generated Java beans 308
introduction 15, 303
Java applet 310
Java application 309
Java client 307, 308
Java gateway 312, 313
Java support 304, 306
RMI 313
servers 304, 307

VisualAge Smalltalk 306

W

Web
browser 38, 39, 306, 356
server 38, 356
year 320

Workbench 237, 354
workload management 334

414 VisualAge for Java Enterprise

© Copyright IBM Corp. 1998 415

ITSO Redbook Evaluation

Application Development with VisualAge for Java Enterprise
SG24-5081-00

Your feedback is very important to help us maintain the quality of ITSO redbooks.
Please complete this questionnaire and return it using one of the follow-
ing methods:

❑ Use the online evaluation form found at http://www.redbooks.com
❑ Fax this form to: USA International Access Code + 1 914 432 8264
❑ Send your comments in an Internet note to redbook@us.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

P
rin

te
d

in
 t

he
 U

.S
.A

.

S
G

24
-5

08
1-

0
0

Application Development with VisualAge for Java Enterprise SG24-5081-00

	Contents
	Figures
	Tables
	Preface
	How This Document Is Organized
	The Team That Wrote This Redbook
	Acknowledgments
	Comments Welcome

	Introducing VisualAge for Java Enterprise
	VisualAge for Java Products
	VisualAge for Java Professional
	VisualAge for Java Entry

	VisualAge for Java Enterprise
	Team Programming Feature
	Enterprise Access Builders
	Data Access Builder Overview
	Why a Data Access Builder?

	RMI Access Builder Overview
	Why an RMI Access Builder?

	CICS Access Builder Overview
	C++ Access Builder Overview

	VisualAge for Java Enterprise Connectivity
	Applet Connectivity
	Application Connectivity

	Connecting to Other Servers
	Connecting to VisualAge Generator
	Connecting to Component Broker

	Sample ATM Application and Database
	ATM Application Requirements
	Application Design
	User Interface
	Data Store
	Business Logic

	Database Design
	Logical Design
	Reducing Redundancy and Eliminating Anomalies
	Referential Integrity
	Applying Referential Integrity to the ATM Application

	Physical Design
	ATM Database
	Sample Data of ATM Tables

	Java Database Connectivity
	Database Application Architectures
	The Ideal Solution for Programmers
	Single-Tier Architecture
	Two-Tier Architecture
	Three-Tier Architecture

	JDBC
	JDBC Drivers
	The Structure of an Ideal JDBC Driver
	Building on Existing Products
	JDBC and ODBC Bridge Driver
	JDBC and Vendor-Specific Bridge Driver
	JDBC Generic Network Protocol Driver

	Structure of a JDBC Application
	JDBC Connection Sample
	JDBC Applications and JDBC Applets
	JDBC Application
	JDBC Applet

	JDBC Sample for Insert, Update, and Delete
	Statement and Prepared Statement
	Callable Statement
	JDBC in VisualAge for Java Enterprise

	Data Access Builder
	Relational Database Access
	Building a JDBC Application
	Application Requirements
	Development Process with Data Access Builder
	Using Data Access Builder for the Organization Applet
	Starting Data Access Builder
	Mapping a Table into Data Access Beans
	Generating the Data Access Beans
	Data Access Builder Beans and Classes

	Creating the JDBC Sample Application and Applet
	Applet Overview
	Applet Construction
	Connecting to the Database
	Completing the Organization List Panel
	Completing the Organization Detail Panel

	Data Access Beans in Handwritten Programs
	Data Access Builder Advanced
	Sharing Mappings among Developers
	Running Data Access Builder Stand-Alone
	Interesting Methods of the Manager Bean
	Eliminating Attributes from the Mapping
	Customized SQL Statements
	Encapsulating an SQL Search Predicate
	Asynchronous Processing
	Working with Stored Procedures

	Application Design Considerations

	ATM Application with Data Access Builder and JDBC
	Designing the ATM Application
	Building the ATM Application
	Database Classes
	PIN Validation
	List of Accounts
	Account Information
	Transaction History
	Adding User-Defined Methods
	Generating the Data Access Beans

	Business Logic Classes
	Card Class
	BankAccount Class
	CheckingAccount Class
	SavingAccount Class

	User Interface Classes
	CardPanel Class
	PinPanel Class
	SelectAccountPanel Class
	TransactionPanel Class

	Application Flow
	Applet Layout
	Panel Switching
	Sharing the Card Object
	Database Connection

	Running the ATM Application

	Remote Method Invocation and RMI Access Builder
	Overview
	Using RMI for Distributed Processing
	How Does RMI Work?
	Squeezing Objects through a Network
	RMI Architecture

	Tools
	RMI Compiler
	RMI Registry

	RMI Development Process
	Special Coding
	Execution Environment

	Native RMI Example
	Public Interface of the Server
	Server Implementation
	Stub and Skeleton
	Client Logic
	Run the RMI Application
	Stop the RMI Application
	More on Native RMI

	RMI with VisualAge for Java
	RMI Access Builder
	Development Process
	Created Classes and Interfaces
	RMI Execution Environment with VisualAge for Java

	Using the RMI Access Builder
	Create the Server
	Create an Applet
	Generate Proxy Bean
	Connect the Client with the Server
	Run the RMI Applet
	Stop the Server
	RMI Problems and Hints

	Running an RMI Application outside VisualAge for Java
	Export of Application Code
	Start the Registry and the Server
	Run the Applet

	Before You Use RMI to Build a Distributed Application
	Design Considerations
	Limitations

	ATM Application with RMI
	Design for Distribution
	Application Layers
	Application Layer Architecture
	Business Object Layer
	BankAccount
	CheckingAccount
	SavingsAccount
	Card
	Customer
	Transaction
	Testing the Business Objects

	System Service Layer
	Creating the Data Access Beans
	Tailoring the Data Access Beans
	Generating the Beans

	Initialize Business Objects from Data Access Beans
	Creating Transaction Data Access Beans from Business Objects

	Connecting the Layers
	Data Access Classes for Business Objects
	Customer Access Class
	Card Access Class
	Account Access Class
	Transaction Access Class
	ATM Service Bean

	Controller
	Controller Features
	Controller Methods and Events
	Event Propagation
	External Interface
	Testing the Beans

	View Layer
	CardPanel Class
	PinPanel Class
	SelectAccountPanel Class
	TransactionPanel Class
	Main Panel

	Testing the Stand-Alone Applet

	Distributed ATM Application
	Application Changes
	Make the Beans Serializable
	Mark the Methods That Update the Bank Account As Synchronized
	Review the Events

	Create the Proxy Beans
	Modify the GUI
	Using the Distributed Controller
	Changes in Subpanels

	Test the Distributed ATM Application
	Running the Applet on a Client
	Running As an Application

	Host CICS Access with the CICS Access Builder
	Host CICS Access Overview
	CICS
	CICS Gateway for Java and CICS Access Builder
	How Does the CICS Access Builder Work?
	Working with a CICS Enterprise Server
	CICS Java Application Design

	CICS Access Builder
	CICS Access Builder: Overview
	Create COMMAREA Bean SmartGuide
	Run-Time Class Library

	ATM Application with the CICS Access Builder
	CICS Program Design
	Accessing the Database
	Building the CICS Programs
	COBOL Input to the CICS Access Builder
	Restrictions
	Data Types and Non-COBOL Programs

	Running the CICS Access Builder
	Running the CICS Access Builder from the Workbench
	Running the CICS Access Builder from the Command Line
	Generated Classes

	Application Coding Techniques
	Throwing Exceptions from the CICS Host
	Exchanging Array Data with CICS

	Sample COBOL CICS Transaction
	ATM Applet Using Host CICS Access
	Visual Composition
	Properties of the CICS Unit of Work Bean
	Simulating a CICS Server

	Installing CICS and Java Components
	Current Restrictions
	CICS Host Access Topologies
	CICS Gateway for Java and CICS Client Topologies
	Client/Server Tier Topology
	Presentation Logic Tier
	Data Logic Tier
	Business Logic Tier

	C++ Servers and C++ Access Builder
	Java Native Interface Overview
	When to Use?
	Java Native Interface Programming
	Declaring and Loading Native Methods
	Simple JNI Example
	JNI Development Process
	Type Mapping between Java and C/C++
	Accessing Java Methods and Fields from Native Code
	Exception Handling
	Object References and Java Garbage Collector

	How to Make Your Life Easier?

	C++ Access Builder Overview
	High-level View
	Command Line Utility
	Revisiting the Native Example with the C++ Access Builder
	Reverse String Example

	C++ Access Builder Advanced
	Considerations for C++ Class Wrappering
	Details of the Generated Code
	Design Considerations
	Type Mapping between C++ and Java
	Exception Handling
	Compiler Support
	Limitations of the C++ to Java Mapping

	Another Way of Exposing the C++ Interfaces
	Accessing a Complex Class by Header File Modification
	Using a Class That Accesses a Wrapped C++ Library
	Accessing a Class with Templates

	C++ Access Builder Supported Environments

	Using a C++ Server in the ATM Application
	Environment
	Approach
	C++ Header Files

	Mapping the ATM C++ Classes to Java
	Mapping the CardManager Class
	Mapping the Card Class
	Testing the Card Beans

	Wrapping the Beans for the ATM Application
	C++ Card Server Bean
	Testing the C++ Card Server Bean

	Integrating the C++ Card Server into the ATM Application

	Access to VisualAge Generator Servers
	VisualAge Generator Support for Java
	VisualAge Generator
	VisualAge Generator Java Support
	Implementation of Java Support
	VisualAge Generator CSO Java Classes
	VisualAge Generator Generated Java Beans

	Accessing VisualAge Generator Servers from Java Clients
	From a Java Application
	From a Java Applet

	The e-Business Solution: Java and VisualAge Generator
	Run-time Configuration for Java Applets and VisualAge Generator Servers
	Value of VisualAge Generator in an e-Business Solution

	ATM Application with a VisualAge Generator Server

	Access to Distributed CORBA Objects
	The Case for CORBA
	Why CORBA?
	What Is CORBA?
	Object Management Group
	Object Request Broker
	Interface Definition Language
	IIOP Communication Protocol
	CORBA Services

	CORBA and RMI
	How Java Complements CORBA

	Component Broker
	CBConnector
	CB Toolkit
	Run-time Architecture Components
	Programming Model
	Managed Object Framework
	Application Adapter Framework
	Object Services
	Workload Management
	Client Enablement

	Developing Distributed Object Applications with Component Broker
	Modeling, Analysis, and Design
	Object Builder
	Edit, Compile, and Debug
	Systems Management

	Java Client Accessing a CBConnector Server
	Account Interface Definition
	Account Development with CBConnector
	Java Client
	Preparing VisualAge for Java
	Generating Java Proxies

	Creating the Java Client
	Creating the Java Bean for the Applet
	Creating the Applet
	Creating Account Objects
	Updating Account Objects
	Finding Account Objects

	Releasing and Deleting Objects

	Deployment of Java Applications and Applets
	Deployment of Applications
	Prerequisites for Applications
	Design for Portability
	Exporting an Application from VisualAge for Java
	Deployment Process for Applications

	Deployment of Applets
	Exporting an Applet from VisualAge for Java
	Deployment Process for Applets
	Run-time Libraries
	Jar Files

	Installation, Setup, and Prerequisites
	Prerequisites for JDBC Applications
	DB2 Prerequisites
	VisualAge for Java Prerequisites
	ODBC Prerequisites

	Installation and Setup of CICS Components
	Installing the CICS Client for Windows NT
	Configuring the CICS Client for TCP/IP Connections
	Configuring the CICS Client for APPC Connections

	Installing the CICS Gateway for Java

	Installation of the Redbook Samples

	Enterprise Access Builder Changes in Version 1.0.1
	AS/400 Feature
	Data Access Builder
	CICS Access Builder
	Changes to the IVJCicsUOWInterface Class
	Additional Version of Transaction Invocation
	DFHCNV Support
	Closing the CICS Gateway for Java
	Setting the CICS Transaction ID
	Specifying a Program to Execute

	Changes to IVJCicsEciCommArea Bean
	Setting the CICS Transaction ID

	Double-Byte Character Set Support
	Changes to Limitation on Code Page

	C++ Access Builder
	Compatibility between Versions
	Deleting C++ Objects Allocated in Java
	Character Arrays
	Signed Characters
	Pointers
	Exceptions

	Migration to Version 1.0.1?

	Special Notices
	Related Publications
	International Technical Support Organization Publications
	Redbooks on CD-ROMs
	Other Publications
	How To Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	List of Abbreviations
	Index
	ITSO Redbook Evaluation

