1979 ACM Turing Award Lecture

Delivered at ACM 79, Detroit, Oct. 29, 1979

The 1979 ACM Turing Award was presented to Kenneth E. Iverson by
Walter Carlson, Chairman of the Awards Committee, at the ACM Annual
Conference in Detroit, Michigan, October 29, 1979.

In making its selection, the General Technical Achievement Award Com-
mittee cited Iverson for his pioneering effort in programming languages and
mathematical notation resulting in what the computing field now knows as
APL. Iverson’s contributions to the implementation of interactive systems,
to the educational uses of APL, and to programming language theory and
practice were also noted.

Born and raised in Canada, Iverson received his doctorate in 1954 from
Harvard University. There he served as Assistant Professor of Applied
Mathematics from 1955-1960. He then joined International Business Ma-
chines, Corp. and in 1970 was named an IBM Fellow in honor of his
contribution to the development of APL. ,

Dr. Iverson is presently with I.P. Sharp Associates in Toronto. He has
published numerous articles on programming languages and has written
four books about programming and mathematics: 4 Programming Language
(1962), Elementary Functions (1966), Algebra: An Algorithmic Treatment

(1972), and Elementary Analysis (1976).

Notation as a Tool of Thought

Kenneth E. Iverson
IBM Thomas J. Watson Research Center

Key Words and Phrases: APL, mathematical
notation
CR Category: 4.2

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author’s present address: K.E. Iverson, I.P Sharp Associates, 145
King Street West, Toronto, Ontario, Canada MSH1J8.
© 1980 ACM 0001-0782/80/0800-0444 $00.75.

444

The importance of nomenclature, notation, and
language as tools of thought has long been recog-
nized. In chemistry and in botany, for example,
the establishment of systems of nomenclature by
Lavoisier and Linnaeus did much to stimulate and
to channel later investigation. Concerning lan-
guage, George Boole in his Laws of Thought
[1, p.24] asserted-"That language is an instru-
ment of human reason, and not merely a medium
for the expression of thought, is a truth generally
admitted."

Mathematical notation provides perhaps the
best-known and best-developed example of lan-
guage used consciously as a tool of thought. Recog-
nition of the important role of notation in mathe-
matics is clear from the quotations from mathema-
ticians given in Cajori's A History of Mathemat-
ical Notations [2, pp.332,331]. They are well
worth reading in full, but the following excerpts
suggest the tone:

By relieving the brain of all unnecessary work,
a good notation sets it free to concentrate on
more advanced problems, and in effect increases
the mental power of the race.

: A.N. Whitehead
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The quantity of meaning compressed into small
space by algebraic signs, is another circum-
stance that facilitates the reasonings we are
accustomed to carry on by their aid.

Charles Babbage

Nevertheless, mathematical notation has seri-
ous deficiencies. In particular, it lacks universali-
ty, and must be interpreted differently according
to the topic, according to the author, and even
according to the immediate context. Programming
languages, because they were designed for the pur-
pose of directing computers, offer important ad-
vantages as tools of thought. Not only are they
universal {general-purpose), but they are also exec-
utable and unambiguous. Executability makes it
possible to use computers to perform extensive
experiments on ideas expressed in a programming
language, and the lack of ambiguity makes possible
precise thought experiments. In other respects,
however, most programming languages are decided-
ly inferior to mathematical notation and are little
used as tools of thought in ways that would be
considered significant by, say, an applied mathe-
matician.

The thesis of the present paper is that the ad-
vantages of executability and universality found in
programming languages can be effectively com-
bined, in a single coherent language, with the ad-
vantages offered by mathematical notation. It is
developed in four stages:

(a)Section 1 identifies salient characteristics of
mathematical notation and uses simple prob-
lems to illustrate how these characteristics may
be provided in an executable notation.

(b)Sections 2 and 3 continue this illustration by
deeper treatment of a set of topics chosen for
their general interest and utility. Section 2
concerns polynomials, and Section 3 concerns
transformations between representations of
functions relevant to a number of topics, includ-
ing permutations and directed graphs. Al-
though these topics might be characterized as
mathematical, they are directly relevant to
computer programming, and their relevance
will increase as programming continues to de-
velop into a legitimate mathematical discipline.

(c)Section 4 provides examples of identities and
formal proofs. Many of these formal proofs
concern identities established informally and
used in preceeding sections.

(d)The concluding section provides some general
comparisons with mathematical notation, refer-
ences to treatments of other topics, and discus-
sion of the problem of introducing notation in
context.
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The executable language to be used is APL, a
general purpose language which originated in an
attempt to provide clear and precise expression in
writing and teaching, and which was implemented
as a programming language only after several years
of use and development [3].

Although many readers will be unfamiliar with
APL, I have chosen not to provide a separate intro-
duction to it, but rather to introduce it in context
as needed. Mathematical notation is always intro-
duced in this way rather than being taught, as pro-
gramming languages commonly are, in a separate
course. Notation suited as a tool of thought in any
topic should permit easy introduction in the con-
text of that topic; one advantage of introducing
APL in context here is that the reader may assess
the relative difficulty of such introduction.

However, introduction in context is incompati-
ble with complete discussion of all nuances of each
bit of notation, and the reader must be prepared to
either extend the definitions in obvious and sys-
tematic ways as required in later uses, or to con-
sult a reference work. All of the notation used
here is summarized in Appendix A, and is covered
fully in pages 24-60 of APL Language [4].

Readers having access to some machine embodi-
ment of APL may wish to translate the function
definitions given here in direct definition form
(5, p.10] (using « and « to represent the left and
right arguments) to the canonical form required
for execution. A function for performing this
translation automatically is given in Appendix B.

1. Important Characteristics of Notation

In addition to the executability and universali-
ty emphasized in the introduction, a good notation
should embody characteristics familiar to any user
of mathematical notation:

-Ease of expressing constructs arising in problems.
-Suggestivity.

-Ability tosubordinate detail.

+Economy.

-Amenability to formal proofs.

The foregoing is not intended as an exhaustive list,
but will be used to shape the subsequent discus-
sion.

Unambiguous executability of the notation in-
troduced remains important, and will be emphasiz-
ed by displaying below an expression the explicit
result produced by it. To maintain the distinction
between expressions and results, the expressions
will be indented as they automatically are on APL
computers. For example, the integer function de-
noted by . produces a vector of the first » integers
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when applied to the argument », and the sum
reduction denoted by -/ produces the sum of the
elements of its vector argument, and will be shown
as follows:

15
12 3 45
+/15
15
We will use one non-executable bit of notation:
the symbol «» appearing between two expressions

asserts their equivalance.

1.1 Ease of Expressing Constructs Arising in
Problems

If it is to be effective as a tool of thought, a
notation must allow convenient expression not only
of notions arising directly from a problem, but also
of those arising in subsequent analysis, generaliza-
tion, and specialization.

Consider, for example, the crystal structure
illustrated by Figure 1, in which successive layers
of atoms lie not directly on top of one another, but
lie "close-packed' between those below them. The
numbers of atoms in successive rows from the top
in Figure 1 are therefore given by .5, and the total
number is given by +/.s.

The three-dimensional structure of such a crys-
tal is also close-packed; the atoms in the plane
lying above Figure 1 would lie between the atoms
in the plane below it, and would have a base row of
four atoms. The complete three-dimensional
structure corresponding to Figure 1 is therefore a
tetrahedron whose planes have bases of lengths 1, 2,
3, v, and s. The numbers in successive planes are
therefore the partial sums of the vector .s, that
is, the sum of the first element, the sum of the
first two elements, etc. Such partial sums of a
vector v are denoted by «\v, the function +\ being
called sum scan. Thus:

+\15
1 386 10 15
+/+\15
35
The final expression gives the total number of at-
oms in the tetrahedron.

The sum +/.5 can be represented graphically in
other ways, such as shown on the left of Figure 2.
Combined with the inverted pattern on the right,
this representation suggests that the sum may be
simply related to the number of units in a rectan-
gle, that is, to a product.

The lengths of the rows of the figure formed by
pushing together the two parts of Figure 2 are giv-
en by adding the vector s to the same vector rev-
ersed. Thus:

" s
12345
$15

543 21

(15)+(415)
666 6 6

Fig. 1 Fxg. 2.
o a] [n]ajuisia]
oo [uja] [a]u]u]n]
oo o ono ooo
o000 [ njuis] [sia]
60000 onooo a

This pattern of s repetitions of s may be expressed
as sps, and we have:

5p6
6 6 6 6 6

+/5p6
30

6x5
30
The fact that +/s06 «+ sxs follows from the defini-
tion of multiplication as repeated addition.

The foregoing suggests that +/15 «» (ex5)+2, and,

more generally, that:

+/1N <+ ((N+1)xN)+2 Al

1.2 Suggestivity

A notation will be said to be suggestive if the
forms of the expressions arising in one set of prob-
lems suggest related expressions which find appli-
cation in other problems. We will now consider
related uses of the functions introduced thus far,
namely:

1 ¢ o +/ +\

The example:

. 5p2

222 22

x/5p2
32
suggests that x/wpn «» n+m, where » represents the
power function. The similiarity between the defi-
nitions of power in terms of times, and of times in
terms of plus may therefore be exhibited as fol-
lows:

x/MoN <+~ N*xM

+/MpN «+ NxM
Similar expressions for partial sums and partial
products may be developed as follows:

x\5p2
2 4 8 16 32

2%15
2 4 8 16 32

X\MpN <+ N* M
+\MpN ++ Nx1iM
Because they can be represented by a triangle as
in Figure 1, the sums +\.s are called triangular
numbers. They are a special case of the figurate
numbers obtained by repeated applications of sum
scan, beginning either with +\.#, or with +«\wo1.
Thus: ’

5p1 +\+\5p1
11111 13 6 10 15

+\5p1
123 45

+\+\+\5p1
1 4 10 20 35



Replacing sums over the successive integers by
products yields the factorials as follows:

15

12345
x/15 x\15
120 12 6 24 120
's 15
120 12 6 24 120

Part of the suggestive power of a language re-
sides in the ability to represent identities in brief,
general, and easily remembered forms. We will
illustrate this by expressing dualities between
functions in a form which embraces DeMorgan's
laws, multiplication by the use of logarithms, and
other less familiar identities.

If v is a vector of positive numbers, then the
product x/v may be obtained by taking the natural
logarithms of each element of v (denoted by ev),
summing them (+/ev), and applying the exponential
function (s+/ev). Thus:

X[V > x+/@V

Since the exponential function - is the inverse of
the natural logarithm e, the general form suggested
by the right side of the identity is:

IG F/IGV
where 16 is the function inverse to ¢.

Using ~ and v to denote the functions and and
or, and ~ to denote the self-inverse function of
logical negation, we may express DeMorgan 's laws
for an arbitrary number of elements by:

A/B +> ~v/~B
V/B ++ ~a/~B

The elements of 5 are, of course, restricted to the

boolean values o and 1. Using the relation symbols

to denote functions (for example, x<y yields 1 if x

is less than v and o otherwise) we can express fur-

ther dualities, such as:

%2/B ++ ~z=/~B
=/B ++ ~z2/~B
Finally, using r and . to denote the maximum
and minimum functions, we can express dualities
which involve arithmetic negation:

[/V > -{/-V

L/V > -[/-V
It may also be noted that scan (#\) may replace
reduction (/) in any of the foregoing dualities.

1.3 Subordination of Detail

As Babbage remarked in the passage cited by
Cajori, brevity facilitates reasoning. Brevity is
achieved by subordinating detail, and we will here
consider three important ways of doing this: the
use of arrays, the assignment of names to functions
and variables, and the use of operators.

We have already seen examples of the brevity
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provided by one-dimensional arrays (vectors) in
the treatment of duality, and further subordina-
tion is provided by matrices and other arrays of
higher rank, since functions defined on vectors are
extended systematically to arrays of higher rank.

In particular, one may specify the axis to which
a function applies. For example, ¢r11# acts along
the first axis of a matrix » to reverse each of the
columns, and ¢c21» reverses each row; »,r11~ caten-
ates columns (placing » above »), and u,r21~ caten-
ates rows; and +/c11¥ sums columns and +/r2im
sums rows. If no axis is specified, the function
applies along the last axis. Thus :/» sums rows.
Finally, reduction and scan along the first axis
may be denoted by the symbols # and .

Two uses of names may be distinguished:
constant names which have fixed referents are
used for entities of very general utility, and ad hoc
names are assigned (by means of the symbol «) to
quantities of interest in a narrower context. For
example, the constant (name) 1su has a fixed refer-
ent, but the names crars, raver, and row assigned by
the expressions '

CRATE <+ 144

LAYER « CRATE+S8

ROW <« LAYER+3
are ad hoc, or variable names. Constant names for
vectors are also provided, as in 2 3 s 7 11 for a nu-
meric vector of five elements, and in '4scpz« for a
character vector of five elements.

Analogous distinctions are made in the names
of functions. Constant names such as +, x, and »
are assigned to so-called primitive functions of
general utility. The detailed definitions, such as
+/mon for wxu and x/men for w«m, are subordinated by
the constant names x and .

Less familiar examples of constant function
names are provided by the comma which catenates
its arguments as illustrated by:

(15),($5) «> 1 2 3 4 5 5 4 3 2 1

and by the base-representation function -, which
produces a representation of its right argument in
the radix specified by its left argument. For exam-
ple:

222713 +011
222 T4 ++100

BN«2 2 2 T 01234567
BN
00001111
00110011
01010101
BN,$BN
0000111111 110000
0011001111001100
0101010110101010

The matrix s» is an important one, since it can be
viewed in several ways. In addition to representing
the binary numbers, the columns represent all sub-
sets of a set of three elements, as well as the en-
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tries in a truth table for three boolean arguments.
The general expression for » elements is easily seen
to be (wp2)7(12-4)-1, and we may wish to assign an

ad hoc name to this function. Using the direct
definition form (Appendix B), the name 7 is as-
signed to this function as follows:

T:(wp2)T(12*w)-1 A2

The symbol « represents the argument of the func-
tion; in the case of two arguments the left is repre-
sented by .. Following such a definition of the
function z, the expression r 3 yields the boolean
matrix s» shown above.

Three expressions, separated by colons, are also
used to define a function as follows: the middle
expression is executed first; if its value is zero the
first expression is executed, if not, the last expres-
sion is executed. This form is convenient for re-
cursive definitions, in which the function is used
in its own definition. For example, a function
which produces binomial coefficients of an order
specified by its argument may be defined recur-
sively as follows:

BC:{(X,0)+(0,X+BC w-1):w=0:1 A3

Thussco«>tand sc1«>11and Bc v «» 1 5 8 » 1.

The term operator, used in the strict sense
defined in mathematics rather than loosely as a
synonym for function, refers to an entity which
applies to functions to produce functions; an exam-
ple is the derivative operator.

We have already met two operators, reduction,
and scan, denoted by / and ¥, and seen how they
contribute to brevity by applying to different func-
tions to produce families of related functions such
as +/ and x/ and /. We will now illustrate the
notion further by introducing the inner product
operator denoted by a period. A function (such as
+s) produced by an operator will be called a
derived function.

If » and ¢ are two vectors, then the inner prod-
uct +.x is defined by:

P+ .x@ «> +/PxQ

and analogous definitions hold for function pairs
other than + and x. For example:
P«2 3 5
Q«2 1 2
P+.x@
17
Px.*xg
300
PlL.+¢g

Each of the foregoing expressions has at least
one useful interpretation: r+.x¢ is the total cost of
order quantities ¢ for items whose prices are given
by r; because r is a vector of primes, px.+q is the
number whose prime decomposition is given by the
exponents ¢; and if r gives distances from a source
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to transhipment points and ¢ gives distances from
the transhipment points to the destination, then
pL.+q gives the minimum distance possible.

The function +.x is equivalent to the inner product
or dot product of mathematics, and is extended to
matrices as in mathematics. Other cases such as
«.« are extended analogously. For example, if r is
the function defined by A.2, then:

T3 Px T 3
75

05 3 10 153 15 2 10 & 30

These examples bring out an important point: if
8 is boolean, then r+.xs produces sums over subsets
of » specified by 1's in 5, and px.+5 produces prod-
ucts over subsets.

The phrase .. is a special use of the inner
product operator to produce a derived function
which yields products of each element of its left
argument with each element of its right. For ex-
ample:

2 3 5e0.,x15
2 4 6 8 10
3 6 9 12 15
5 10 15 20 25

The function -.x is called outer product, as it
is in tensor analysis, and functions such as -.+ and
..« and -.< are defined analogously, producing
"function tables'" for the particular functions. For
example:

D«0 1 2 3

De.lD De.2D De.iD
0123 1000 1111
1123 1100 0123
2 2 23 1110 0013
3338 1111 0001

The symbol : denotes the binomial coefficient
function, and the table p-.:p is seen to contain
Pascal 's triangle with its apex at the left; if ex-
tended to negative arguments (as with p«73 72 "1 01
2 3) it will be seen to contain the triangular and higher-
order figurate numbers as well. This extension to
negative arguments is interesting for other func-
tions as well. For example, the table p..xp consists
of four quadrants separated by a row and a column
of zeros, the quadrants showing clearly the rule of
signs for multiplication.

Patterns in these function tables exhibit other
properties of the functions, allowing brief state-
ments of proofs by exhaustion. For example, com-
mutativity appears as a symmetry about the diago-
nal. More precisely, if the result of the transpose
function » (which reverses the order of the axes of
its argument) applied to a table r<p-.r0 agrees with
r, then the function r is commutative on the do-
main. For example, r-sr«p-.rp produces a table of
1's because r is commutative.
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Corresponding tests of associativity require
rank s tables of the form o-.r(p-.t0) and (pe.1p)o.10.
For example:

D+0 1 '
Do A(Do,AD) (Do .AD)o.AD Do .s(De.sD) (De.sD)e.sD
o0 00 11 01
00 00 11 01
00 00 11 11
01 01 01 01

1.4 Economy

The utility of a language as a tool of thought
increases with the range of topics it can treat, but
decreases with the amount of vocabulary and the
complexity of grammatical rules which the user
must keep in mind. Economy of notation is there-
fore important.

Economy requires that a large number of ideas
be expressible in terms of a relatively small vocab-
ulary. A fundamental scheme for achieving this is
the introduction of grammatical rules by which
meaningful phrases and sentences can be construct-
ed by combining elements of the vocabulary.

This scheme may be illustrated by the first
example treated -- the relatively simple and widely
useful notion of the sum of the first » integers was
not introduced as a primitive, but as a phrase con-
structed from two more generally useful notions,
the function . for the production of a vector of
integers, and the function +/ for the summation of
the elements of a vector. Moreover, the derived
function +, is itself a phrase, summation being a
derived function constructed from the more gener-
al notion of the reduction operator applied to a
particular function.

Economy is also achieved by generality in the
functions introduced. For example, the definition
of the factorial function denoted by : is not re-
stricted to integers, and the gamma function of x
may therefore be written as :x-1. Similiarly, the
relations defined on all real arguments provide
several important logical functions when applied to
boolean arguments: exclusive-or (=), material im-
plication (), and equivalence (-).

The economy achieved for the matters treated
thus far can be assessed by recalling the vocabulary
introduced:

v p ¢ T

/A

+-x+x0!TLR

VA~<SE=2>®
The five functions and three operators listed in the
first two rows are of primary interest, the remain-
ing familiar functions having been introduced to
illustrate the versatility of the operators.

A significant economy of symbols, as opposed to
economy of functions, is attained by allowing any
Symbol to represent both a monadic function (i.e.
449

a function of one argument) and a dyadic func-
tion, in the same manner that the minus sign is
commonly used for both subtraction and negation.
Because the two functions represented may, as in
the case of the minus sign, be related, the burden
of remembering symbols is eased.

For example, x~y and ~v represent power and
exponential, xer and er represent base r logarithm
and natural logarithm, x:v and :r represent divi-
sion and reciprocal, and x:v and :r represent the
binomial coefficient function and the factorial
(that is, x:r++~(:¥)+C:x)xtr-x)). The symbol » used
for the dyadic function of replication also repre-
sents a monadic function which gives the shape of
the argument (that is, x<+ox0r), the symbol ¢ used
for the monadic reversal function also represents
the dyadic rotate function exemplified by
2¢15++3 v 5 1 2, and by ~2¢15«+4 5 1 2 3, and finally,
the comma represents not only catenation, but also
the monadic ravel, which produces a vector of the
elements of its argument in "row-major" order.
For example:

T 2 VT 2
6 0 11 00110101
0101

Simplicity of the grammatical rules of a nota-
tion is also important. Because the rules used thus
far have been those familiar in mathematical nota-
tion, they have not been made explicit, but two
simplifications in the order of execution should be
remarked:

(1)All functions are treated alike, and there are no
rules of precedence such as x being executed
before +.

(2)The rule that the right argument of a monadic
function is the value of the entire expression to
its right, implicit in the order of execution of
an expression such as siw roc¢ :», is extended to
dyadic functions.

The second rule has certain useful consequences
in reduction and scan. Since r/v is equivalent to
placing the function r between the elements of v,
the expression -/v gives the alternating sum of the
elements of v, and :/v gives the alternating prod-
uct. Moreover, 'if 5 is a boolean vector, then <\s
"isolates' the first 1 in s, since all elements follow-
ing it become o. For example:

<\00 01 1011+«>0010000

Syntactic rules are further simplified by adopt-
ing a single form for all dyadic functions, which
appear between their arguments, and for all mo-
nadic functions, which appear before their argu-
ments. This contrasts with the variety of rules in
mathematics. For example, the symbols for the
monadic functions of negation, factorial, and mag-

Communications August 1980
of Volume 23
the ACM Number 8




nitude precede, follow, and surround their argu-

ments, respectively. Dyadic functions show even

more variety.

1.5 Amenability to Formal Proofs

The importance of formal proofs and deriva-
tions is clear from their role in mathematics. Sec-
tion 4 is largely devoted to formal proofs, and we
will limit the discussion here to the introduction
of the forms used.

Proof by exhaustion consists of exhaustively
examining all of a finite number of special cases.
Such exhaustion can often be simply expressed by
applying some outer product to arguments which
include all elements of the relevant domain. For
example, if p«o 1, then p-.p gives all cases of appli-
cation of the and function. Moreover,
DeMorgan's law can be proved exhaustively by
comparing each element of the matrix p-..p with
each element of ~(~p)..v(~p) as follows:

Do .aD ~{(~D)eo.v(~D)
60 00
01 01
(De.aD)=(~(~D}e.v(~D))
11
11

Al (Do AD)=(~(~D)e.v(~D))

Questions of associativity can be addressed sim-
ilarly, the following expressions showing the asso-
ciativity of and and the non-associativity of
not-and:

A/ y((De.AD)o ,AD)=(Do.A(Deo.,AD))

Al (Do .wD)o ,xD)=(Do.n(Deo.n~D))

A proof by a sequence of identities is presented
by listing a sequence of expressions, annotating
each expression with the supporting evidence for
its equivalence with its predecessor. For example,
a formal proof of the identity A.1 suggested by the
first example treated would be presented as fol-
lows:

+/1N

+/91 N + is associative and commutative
((+/ 1 N)+(+/1N) )22 (X+X)324>X
(+/CCUR)+ (b)) )22 + is iative and ative
(+/((N+1)pN))s2 Lemma

((N+1)xN)+2 Definition of x

The fourth annotation above concerns an identity
which, after observation of the pattern in the spe-
cial case (15)+(¢:5), might be considered obvious or
might be considered worthy of formal proof in a
separate lemma.

Inductive proofs proceed in two steps: 1) some
identity (called the induction hypothesis) is as-
sumed true for a fixed integer value of some par-
ameter » and this assumption is used to prove that
the identity also holds for the wvalue #+1, and 2)
the identity is shown to hold for some integer val-
ue x. The conclusion is that the identity holds for
all integer values of » which equal or exceed «x.
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Recursive definitions often provide convenient
bases for inductive proofs. As an example we will
use the recursive definition of the binomial coeffi-
cient function sc given by A.3 in an inductive proof
showing that the sum of the binomial coefficients
of order » is 2«#. As the induction hypothesis we
assume the identity:

+/BC N ++ 2xN.

and proceed as follows:

+/BC N+1

+/(X,0)+(0,X+BC N) A3
(+/X,0)+(+/0,X) + is iative and ive
(+/X)+(+/X) 0+Y+s>Y
2x+/X Y+Yer2xY
2x+/BC N Definition of X
2x2%N Induction hypothesis
2*xN+1 Property of Power (*)

It remains to show that the induction hypothesis
is true for some integer value of ». From the re-
cursive definition A.3, the value of z¢ o is the value
of the rightmost expression, namely 1. Consequent-
ly, +/8¢ o is 1, and therefore equals 2+o.

We will conclude with a proof that
DeMorgan 's law for scalar arguments, represented
by:

AAB +> ~(~A)v(~B) A4

and proved by exhaustion, can indeed be extended
to vectors of arbitrary length as indicated earlier
by the putative identity:

ALV > ~v/~F AB

As the induction hypothesis we will assume that
A.5 is true for vectors of length (,v)-1.

We will first give formal recursive definitions
of the derived functions and-reduction and
or-reduction (/ and v/), using two new primitives,
indexing, and drop. Indexing is denoted by an
expression of the form xrr3, where 1 is a single in-
dex or array of indices of the vector ». For exam-
ple, if x«2 s s 7, then xc27 is 3, and xc2 11 18 3 2.
Drop is denoted by x+x and is defined to drop i«
(1.e., the magnitude of x) elements from x, from the
head if x>0 and from the tail if x<0. For example,
2¢+x 18 5 7 and ~2+x is 2 3. The take function (to be
used later) is denoted by + and is defined analo-
gously. For example, s+x is 2 3 s and “s+xis 3 5 7,

The following functions provide formal defini-
tions of and-reduction and or-reduction:

ANDRED:w([1)AANDRED 1+4w:0=pw:1 A6
ORRED :w(1]v ORRED 1+w:0=pw:0 A7

The inductive proof of A.5 proceeds as follows:

AV
(VE11)A(A/14Y) A6
~(~VL13)IV(~A/14T) A4
~~VEL]) v~y /~18Y) A5
~(~VI1)v(v/~14V) ~~ XX
~v/(~VELT ), (~1vY) A7
~v/~(V[11,1+V) v distributes over ,
~v /[~y Definition of , (catenation)
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2. Polynomials

If ¢ is a vector of coefficients and x is a scalar,
then the polynomial in x with coefficients ¢ may be
written simply as «/cxx+"1+10C, OF +/(x+"1+1pC)xC,
or (x+"1+1p¢)+.xc. However, to apply to a non-
scalar array of arguments r, the power function »
should be replaced by the power table .« as shown
in the following definition of the polynomial func-
tion:

P:(we.*x 1+ipa)+.xa B1

For example, 1 331201234« 182764125 Ifpa
is replaced by 1404, then the function applies also
to matrices and higher dimensional arrays of sets
of coefficients representing (along the leading axis
of o) collections of coefficients of different polyno-
mials.

This definition shows clearly that the polyno-
mial is a linear function of the coefficient vector.
Moreover, if « and » are vectors of the same shape,
then the pre-multiplier w-.+"1+1p4 is the Vander-
monde matrix of » and is therefore invertible if the
elements of . are distinct. Hence if ¢ and x are
vectors of the same shape, and if v«c p x, then the
inverse (curve-fitting) problem is clearly solved by
applying the matrix inverse function s to the:Van-
dermonde matrix and using the identity:

C ++ (BXo.* 1+1pX)+.xY

2.1 Products of Polynomials

The "product of two polynomials s and ¢" is
commonly taken to mean the coefficient vector »
such that:

DPX ++(BPEX)(CPIX)

It is well-known that » can be computed by taking
products over all pairs of elements from s and ¢
and summing over subsets of these products. associ-
ated with the same exponent in the result. These
products occur in the function table z-.xc, and it is
easy to show informally that the powers of x asso-
ciated with the elements of 5..xc are given by the
addition table z«(~1+1p8)s.+("1+10¢). For example:

X+2

B+«3 1 2 3

C«2 0 3

E+«(T1+1pB)e.+("1+1pC)

Bo . x(C E X*E
6 0 9 01 2 1 2 u
203 12 3 2 4 8
4.0 6 2 3 4 4 8 16
6 0 9 3 45 8 16 32

+/,(Bo . xC)xX*E

518
(B P X)x(C B X)
518

The foregoing suggests the following identity,
which will be established formally in Section 4:
(BB X)X(C B X)+++/,(Bo.xCIxX+*("1+1pB)e.+("1+1p() B2
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Moreover, the pattern of the exponent table =
shows that elements of z..xc lying on diagonals are
associated with the same power, and that the coef-
ficient vector of the product polynomial is there-
fore given by sums over these diagonals. The table
B-.xc therefore provides an excellent organization
for the manual computation of products of polyno-
mials. In the present example these sums give the
vector p«s 2 13 ¢ 6 9, and » ¢ x may be seen to equal
(BRI)*X(CEX).

Sums over the required diagonals of z.xc can
also be obtained by bordering it by zeros, skewing
the result by rotating successive rows by successive
integers, and then summing the columns. We thus
obtain a definition for the polynomial product
function as follows:

PP:+#(1-1pa)daoc.xw,1+0xa

We will now develop an alternative method
based upon the simple observation that if 5 »r ¢
produces the product of polynomials 3 and ¢, then
pr is linear in both of its arguments. Consequent-

ly,

PP:o+.xA+.%xw

where 4 is an array to be determined. 2 must be of
rank s, and must depend on the exponents of the
left argument (-1+100), of the result (“1+1p14a,0),
and of the right argument. The "deficiencies" of
the right exponent are given by the difference ta-
ble (1p14a,0)e.-10u, and comparison of these values
with the left exponents yields 2. Thus

A+(T1+1pa)e.=((1plta,w)e.~1puw)
and
PP:a+.x(( 1+1pade.=(1pléa,w)o.~1pw)+.xw

Since «+.x4 is a matrix, this formulation sug-
gests that if 0«5 pr ¢, then ¢ might be obtained
from » by pre-multiplying it by the inverse matrix
(88+.x4), thus providing division of polynomials.
Since s+.x4 is not square (having more rows than
columns), this will not work, but by replacing
n«B+.x4 by either its leading square part (2oL/04) 14,
or by its trailing square part (-2,L/0m)+u4, one ob-
tains two results, one corresponding to division

- with low-order remainder terms, and the other to

division with high-order remainder terms.

2.2 Derivative of a Polynomial

Since the derivative of x«» is wxx<¥-1, we may
use the rules for the derivative of a sum of func-
tions and of a product of a function with a con-
stant, to show that the derivative of the polynomi-
al ¢ p x is the polynomial (1+cx~1+10c) p x. Using
this result it is clear that the integral is the polyn-
omial (4,c+0c) £ x, where 4 is an arbitrary scalar
constant. The expression 16cx"1+10¢ also yields the
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coefficients of the derivative, but as a vector of the
same shape as ¢ and having a final zero element.

2.3 Derivative of a Polynomial with Respect
to Its Roots

If » is a vector of three elements, then the de-
rivatives of the polynomial ~/x-r with respect to
each of its three roots are -(x-rr21)x(x-r031), and
-(x-R011)x(x-R031), and -(x-ri11)x(x-r(21). More
generally, the derivative of ~/x-z with respect to
r(s1 i8 simply -(x-r)x.xJ=10r, and the vector of de-
rivatives with respect to each of the roots is
~{X-R)x.,*xJo ,2T«1pR,

The expression x/x-r for a polynomial with
roots # applies only to a scalar x, the more general
expression being x/x-.-r Consequently, the gener-
al expression for the matrix of derivatives (of the
polynomial evaluated at xrr3 with respect to root
R(J1) 18 given by:

~{Xo,-R)x.*xJe,2]+1pR B3

2.4 Expansion of a Polynomial

Binomial expansion concerns the development
of an identity in the form of a polynomial in x for
the expression (x+y)«v. For the special case of y-1
we have the well-known expression in terms of the
binomial coefficients of order »:

(X+1)*N <> ({0, N)!N)E X

By extension we speak of the expansion of a
polynomial as a matter of determining coefficients
p such that:

C P X+Y =~ D P X

The coefficients » are, in general, functions of r. If
v=1 they again depend only on binomial coeffi-
cients, but in this case on the several binomial
coefficients of various orders, specifically on the
matrix Je.i1d« 14100,

For example, if ¢c«3 1 2 4, and ¢ p x+1+»0 P x, then
» depends on the matrix:

0123 59,1 0123

(=N ==
[~ =J
R N
Wk

and » must clearly be a weighted sum of the col-
umns, the weights being the elements of ¢. Thus:

De(do,td+ " 1+1pC)+.xC

Jotting down the matrix of coefficients and per-
forming the indicated matrix product provides a
quick and reliable way to organize the otherwise
messy manual calculation of expansions.

If 5 is the appropriate matrix of binomial coef-
ficients, then p«z+.xc, and the expansion function is
clearly linear in the coefficients ¢. Moreover, ex-
pansion for r--1 must be given by the inverse ma-
trix ms, which will be seen to contain the alternat-
ing binomial coefficients. Finally, since:
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e e —————— |

C P X+(K+1) <+ C P (X+K)+1 ++ (B+.xC) P (X+K)

it follows that the expansion for positive integer
values of v must be given by products of the form:

B+ .xB+.xBt,xB+.xC

where the 5 occurs r times.

Because «.x is associative, the foregoing can be
written as »+.xc, where » is the product of r occur-
rences of 5. It is interesting to examine the succes-
sive powers of 5, computed either manually or by
machine execution of the following inner product
power function:

IPP:a+.xa IPP w-1:w=0:Jo.=J+ 1+114pa

Comparison of s rer ¥ with s for a few values of
¥ shows an obvious pattern which may be ex-
pressed as:

B IPP K «+ BxK+0[-Jo.-J+« 1+114pB

The interesting thing is that the right side of this
identity is meaningful for non-integer values of «,
and, in fact, provides the desired expression for the
general expansion ¢ p x+7:

C P(X+Y) <+ (((Jo, }Jd)xY*0[-Jo.-J« 1+1pC)+.xC)P X B4

The right side of B.4 is of the form (u+.xc)E ¥,
where » itself is of the form sxr+r and can be dis-
played informally (for the case u=oc) as follows:

1111 0123
0123 0012
0013 xXY* 0001
0001 6000

Since r-x multiplies the single-diagonal matrix
sx(x=£), the expression for » can also be written as
the inner product (r«s)+.xr, where r is a rank s
array whose xth plane is the matrix sx(x=r). Such
a rank three array can be formed from an upper
triangular matrix » by making a rank s array
whose first plane is » (that is, (1=114e#)0.x¥) and
rotating it along the first axis by the matrix vs.-v,
whose xth superdiagonal has the value -x. Thus:

DS:(Ie.-I)¢[11(1=T+114pw)o.xuw B5

DS Ko,lK« 1413

o
[=]
-

000
000

Substituting these results in B.4 and using the

-associativity of +.x, we have the following identity

for the expansion of a polynomial, valid for non-
integer as well as integer values of r:

C P X+Y «+ ((Y*J)+.x(DS Jo.!d« " 1+1pC)+.xCIP X Bsé
For example:
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Y«3

C«3 1 u4 2
Me(Y*Jd)+.xDS Jo, td+"1+1pC
M

9 27

6 27

1 9

o 1
M+ . xC
96 79 22 2

(M+.xC) B X*2

[=X=N=2=}
[=R=-NaN*]

358
C P X+Y
358

3. Representations

The subjects of mathematical analysis and com-
putation can be represented in a variety of ways,
and each representation may possess particular
advantages. For example, a positive integer » may
be represented simply by # check-marks; less sim-
ply, but more compactly, in Roman numerals; even
less simply, but more conveniently for the per-
formance of addition and multiplication, in the
decimal system; and less familiarly, but more con-
veniently for the computation of the least common
multiple and the greatest common divisor, in the
prime decomposition scheme to be discussed here.

Graphs, which concern connections among a
collection of elements, are an example of a, more
complex entity which possesses several useful rep-
resentations. For example, a simple directed graph
of » elements (usually called nodes) may be repre-
sented by an » by » boolean matrix & (usually called
an adjacency matrix) such that str;71-1 if there is
a connection from node r to node s. Each connec-
tion represented by a 1 in s is called an edge, and
the graph can also be represented by a +/,5 by &
matrix in which each row shows the nodes con-
nected by a particular edge.

Functions also admit different useful represent-
ations. For example, a permutation function,
which yields a reordering of the elements of its
vector argument x, may be represented by a per-
mutation vector r such that the permutation func-
tion is simply xrr1, by a cycle representation which
presents the structure of the function more direct-
ly, by the boolean matrix s«r.=1,7 such that the
permutation function is z+.xx, or by a radix repre-
sentation » which employs one of the columns of
the matrix 1+(¢w)r 1+:14+0x, and has the property
that 21+/#-1 is the parity of the permutation repre-
sented.

In order to use different representations con-
veniently, it is important to be able to express the
transformations between representations clearly
and precisely. Conventional mathematical nota-
tion is often deficient in this respect, and the pres-
ent section is devoted to developing expressions for
the transformations between representations useful
in a variety of topics: number systems, polynomi-
als, permutations, graphs, and boolean algebra.
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3.1 Number Systems

We will begin the discussion of representations
with a familiar example, the use of different repre-
sentations of positive integers and the transforma-
tions between them. Instead of the positional or
base-value representations commonly treated, we
will use prime decomposition, a representation
whose interesting properties make it useful in in-
troducing the idea of logarithms as well as that of
number representation [ 6, Ch.16].

If 7 is a vector of the first o» primes and z is a
vector of non-negative integers, then = can be used
to represent the number »x.+z, and all of the integ-
ers ir/p can be so represented. For example,
235 7x.x000018 1 and 2357 x.« 110018 6
and:

P
2357

ME
01020103201
0010010020
0000100001
0000O0O0OI1IO0O0O

Px . *ME
123 45 78 9 10

The similarity to logarithms can be seen in the
identity:

x/Px . *ME ++ Px,*+/ME

which may be used to effect multiplication by ad-
dition.

Moreover, if we define ccp and rcw to give the
greatest common divisor and least common multi-
ple of elements of vector arguments, then:

GCD Px.*ME <+ Px, x| /ME
LCM Px.*ME ++ Px.x[/ME

ME VePx xME
210 14
312 18900 7350 3087
220 GCD Vv LCM V
123 21 926100 .
Px x| /ME Px . x[ /ME
21 926100

In defining the function cco, we will use the
operator / with a boolean argument s (as in z/). It
produces the compression function which selects
elements from its right argument according to the
ones in 5. For example, 1 ¢ 1 0 1/:15is 1 3 5. More-
over, the function &/ applied to a matrix argument
compresses rows (thus selecting certain columns),
and the function s+ compresses columns to select
rows. Thus:

GCD:GCD M,(M+L/R)|R:12pR+(w=0)/w:+/R
LCM:(x/X)+GCD X+(14w),LCM 1+w:0=pw:l

The transformation to the value of a number
from its prime decomposition representation (vrz)
and the inverse transformation to the representa-
tion from the value (zrv) are given by:

VFR:ax.*w
RFV:D+a RFV witax . *D:A/~D+0=a|w:D

For example:
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PVFR 2131
10500

P RFV 10500
2131

3.2 Polynomials

Section 2 introduced two representations of a
polynomial on a scalar argument x, the first in
terms of a vector of coefficients ¢ (that is,
+/cxx+"1+1pc), and the second in terms of its roots =
(that is, x/x-r). The coefficient representation is
convenient for adding polynomials (c+») and for
obtaining derivatives (1+cx"1+10c). The root repre-
sentation is convenient for other purposes, includ-
ing multiplication which is given by r1,r2.

We will now develop a function crr
(Coefficients from Roots) which transforms a roots
representation to an equivalent coefficient repre-
sentation, and an inverse function rrc. The devel-
opment will be informal; a formal derivation of crz
appears in Section 4.

The expression for crr will be based on
Newton 's symmetric functions, which yield the
coefficients as sums over certain of the products
over all subsets of the arithmetic negation (that is,
-r) of the roots ». For example, the coefficient of
the constant term is given by x/-z, the product
over the entire set, and the coefficient of the next
term is a sum of the products over the elements of
-r taken (or)>-1 at a time.

The function defined by A.2 can be used to
give the products over all subsets as follows:

P«{(-R}x ,xM+«T pR

The elements of » summed to produce a given coef-
ficient depend upon the number of elements of =
excluded from the particular product, that is, upon
+#~4, the sum of the columns of the complement of
the boolean '"'subset' matrix ros.

The summation over p may therefore be ex-
pressed as ((o0,.pR)e.=+/~¥)+.xp, and the complete
expression for the coefficients ¢ becomes:

C+((0,1pR)o.=tf~M)+.x(~R)x.*M«L oR

For example, if #<2 s 5, then

M +/~M
00001111 32212110
00110011 (0,1pR)e . =24f~M
010110101 00 00O0CO0O0 1

(~R)x.*M 0 0010110

175 73 15 "2 10 6 ~30 01101000
100 000GO0CO
((0,1pR)o . =+F~M)+.x(-R)x.*M«] pR

T30 31 "10 1

The function crz which produces the coefficients
from the roots may therefore be defined and used
as follows:

CFR:((0,1pw)o.=+/~M)+ . x(~w)x,*M«T pw C1

CFR 2 3 5
T30 31 10 1

(CFR 2 3 5) P X+1 2 3 4 5 6 7 8
8 00 "2 0 12 40 90

x/Xe.-2 3 5
8 00 "2 06 12 40 90

454

The inverse transformation rrc is more diffi-
cult, but can be expressed as a successive approxi-
mation scheme as follows:

RFC:(T1+1p14w)G o

G:(a-Z)G w:TOL2(/|Z+a STEP w:ia-Z
STEP: (B(ae.-a)x ,*Jo.,2T«1pa)t. x(ao.* 1+ipw)+t.xw

- U*C*CFR_Z 357

210 247 101_ 17 1

TOL+1E 8

RFC C
7523
The order of the roots in the result is, of course,
immaterial. The final element of any argument of
rrc must be 1, since any polynomial equivalent to
«/x-r must necessarily have a coefficient of : for
the high order term.

The foregoing definition of zrc applies only to
coefficients of polynomials whose roots are all real.
The left argument of ¢ in zrc provides (usually
satisfactory) initial approximations to the roots,
but in the general case some at least must be com-
plex. The following example, using the roots of
unity as the initial approximation, was executed on
an APL system which handles complex numbers:

(*00J2x( 1+ 1N)+N<pltw)Cu C2

O<«C+«CFR 1J1 1J71 1J2 1J°2

10 14 11 T4 1
RFC C
1J71 142 1J1 1J72

The monadic function o used above multiplies its
argument by pi. .

In Newton's method for the root of a scalar
function 7, the next approximation is given by
a+A-(F a)y+pF 4, where por is the derivative of r. The
function srer is the generalization of Newton's
method to the case where r is a vector function of
a vector. It is of the form (sm)+.xs, where & is the
value 6f the polynomial with coefficients «, the
original argument of zrc, evaluated at «, the cur-
rent approximation to the roots; analysis similar to
that used to derive B.3 shows that » is the matrix
of derivatives of a polynomial with roots «, the
derivatives being evaluated at ..

Examination of the expression for » shows that
its off-diagonal elements are all zero, and the ex-
pression (ax)+.xs may therefore be replaced by &+,
where » is the vector of diagonal elements of .
Since (r,s)+n drops r rows and s columns from a
matrix », the vector p may be expressed as
x/0 1¢("1+1pa)bas.-o; the definition of the function
srer may therefore be replaced by the more effi-
cient definition:

STEP:((ac.* 1+1pw)+.xw)#x/0 1+( 1+1pa)dac.-a C3

This last is the elegant method of Kerner [71].
Using starting values given by the left argument
of ¢ in C.2, it converges in seven steps (with a tol-
erance roz<1£-8) for the sixth-order example given
by Kerner.
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3.3 Permutations

A vector » whose elements are some permuta-
tion of its indices (that is, s/1=+/ps.=1pp) Wwill be
called a permutation vector. If » is a permutation
vector such that (ox)=p0, then xip1 is a permutation
of ¥, and o will be said to be the direct representa-
tion of this permutation.

The permutation xto3 may also be expressed as
5+.xx, where s is the boolean matrix p-.=100. The
matrix s will be called the boolean representation
of the permutation. The transformations between
direct and boolean representations are:

BFD:we.=1pw DFB:uw+.X114pw

Because permutation is associative, the compos-
ition of permutations satisfies the following rela-
tions:

(X[D11){D2] «» X[(D1 [D21)]
B2+.%x(B1+.xX) ++ (B2+.xBl)+.xX

The inverse of a boolean representation s is a5, and
the inverse of a direct representation is either 4o or
(The grade function s grades its argument,
giving a vector of indices to its elements in ascend-
ing order, maintaining existing order among equal
elements. Thus 43 7 1 4 is 31 4 2 and 43 7 3 » is
1 3 v 2 The index-of function . determlnes the
smallest index in its left argument of each element
of its right argument. For example, '48coE' ' 8ase"
is21 2 5,and '84BE 1 4BCDE' 182 1 5 5 u.)

The cycle representation also employs a permu-
tation vector. Consider a permutation vector ¢ and
the segments of ¢ marked off by the vector c=1\c.
For example, if c«7 365214, then c=t\c is
110011 0,and the blocks are:

DiivpD.

6 5

w2

y

Each block determines a ''cycle" in the associated
permutation in the sense that if z is the result of
permuting x, then:

R[7] is X[71

R[3] is X[6] R{6]) is XL5] R[S51 is X(31]
RL[2] is X(2)
R{11 is X[u1] RCu4] is X[11]

If the leading element of ¢ is the smallest (that is,
1), then ¢ consists of a single cycle, and the permuta-
tion of a vector x which it represents is given by
xte1+xr1ec1. For example:

X+'YABCDEFG!

C+«1 76 5 2 4 3
X{CleXx(1¢C]

X

GDACBEF

Since xtq1«4 is equivalent to x«atsq3, it follows
that xrciexc1ec is equivalent to x«xt(1ec)caciy, and
the direct representation vector » equivalent to ¢ is
therefore given (for the special case of a single
cycle) by p«(16c)04c1.
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In the more general case, the rotation of the
complete vector (that is, 14c) must be replaced by
rotations of the individual subcycles marked off by
c=t\¢, as shown in the following definition of the
transformation to direct from cycle representation:

DFC: (wldX++\X+w=1\w]l){dw]

If one wishes to catenate a collection of disjoint
cycles to form a single vector ¢ such that c=1\¢c
marks off the individual cycles, then each cycle cr
must first be brought to standard form by the
rotation (“1+crii/cr)écr, and the resulting vectors
must be catenated in descending order on their
leading elements.

The inverse transformation from direct to cycle
representation is more complex, but can be ap-
proached by first producing the matrix of all pow-
ers of » up to the ooth, that is, the matrix whose
successive columns are p» and pto1 and (orp1)ip3,
etc. This is obtained by applying the function row
to the one-column matrix p-.+,0 formed from b,
where row is defined and used as follows:

POW:POW D,(D+wl;1]1)lwl:s/pw:w

0«D+DFC C+7,3 6 5,2,1 4
4 261357

POW De°.+,0
41 4 1 4 1 4
2222222
6536536
14 141 4 1
3653653
53653675
7T7777177

If mepow p-.+,0, then the cycle representation of
p may be obtained by selecting from » only
"standard" rows which begin with their smallest
elements (ssr), by arranging these remaining rows
in descending order on their leading elements
(po1), and then catenating the cycles in these rows
(crr). Thus:

CFD:CIR DOL SSR POW we.+,0

SSR:(A/M=10M<\w)fw
DOL:wlVuwl3115]
CIR:(,1,A\0 1¥w=zl\w)/,w

DFC C+«7,3 6 5,2,1 4
4 2861357

CFD DFC C
7365214

In the definition of ooz, indexing is applied to
matrices. The indices for successive coordinates are
separated by semicolons, and a blank entry for any
axis indicates that all elements along it are select-
ed. Thus ;11 selects column 1 of ».

The cycle representation is comvenient for de-
termining the number of cycles in the permutation
represented (wc:+/w=1\w), the cycle lengths
(cr:x-0,"14x+(16u=1\0)/1pw), and the power of the
permutation (rr:zcu ¢z o). On the other hand, it is
awkward for composition and inversion.

The :#+ column vectors of the matrix
(¢1#)3171+1:8 are all distinct, and therefore provide
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a potential radix representation [8] for the :»
permutations of order ». We will use instead a
related form obtained by increasing each element
by 1:

RR:1+($1w)T 1410

RR 4
111111222222332323334%u4y4uyyuy
112233112233112233112233
1212121212121 21212121212
11:1111111111111111111111

Transformations between this representation and
the direct form are given by:

DFR:wl1],X+w(1]sX«DFR 1+w:0=pw:w

RFD:w{1],RFD X-wl1lsX+itw:0=pu:w

Some of the characteristics of this alternate

representation are perhaps best displayed by modi-
fying orr to apply to all columns of a matrix argu-
ment, and applying the modified function »r to the
result of the function zz:

MF:wl,1;3,[11X+w((1 pX)pl;]<X«MF 1 O+w:0=14pow:w
R 4

MF R
1111112222 2233333344444y
2 2334411334411 224%4%112233
3424 23341413241 4122312312
4 3 4 23 24341314241 21323121

The direct permutations in the columns of this
result occur in lexical order (that is, in ascending
order on the first element in which two vectors
differ); this is true in general, and the alternate
representation therefore provides a convenient way
for producing direct representations in lexical or-
der.

The alternate representation also has the useful
property that the parity of the direct permutation
p is given by 21+/-1+8Fp p, where »|# represents the
residue of » modulo ». The parity of a direct rep-

resentation can also be determined by the func-

tion:

PAR: 2| +/,(Ie.>IT+1pw)rwe . >w

3.4 Directed Graphs

A simple directed graph is defined by a set of x
nodes and a set of directed connections from one to
another of pairs of the nodes. The directed con-
nections may be conveniently represented by a x by
¥ boolean connection matrix ¢ in which crr;vs3=1
denotes a connection from the rth node to the sth.

For example, if the four nodes of a graph are
represented by n«rgrsr+, and if there are connec-
tions from node s to node ¢, from = to 7, and from r
to ¢, then the corresponding connection matrix is
given by:

L= =]
cococo
cooo
coro

A connection from a node to itself (called a self-
loop) is not permitted, and the diagonal of a con-
nection matrix must therefore be zero.

If » is any permutation vector of order o», then
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5 ——

n1-nrP] is a reordering of the nodes, and the corre-
sponding connection matrix is given by cre;ri. We
may (and will) without loss of generality use the
numeric labels ,# for the nodes, because if » is any
arbitrary vector of names for the nodes and : is
any list of numeric labels, then the expression
e+¥rz) gives the corresponding list of names and,
conversely, #.¢ gives the list : of numeric labels.

The connection matrix ¢ is convenient for ex-
pressing many useful functions on a graph. For
example, +/c gives the out-degrees of the nodes,
+#c gives the in-degrees, +/,c gives the number of
connections or edges, sc gives a related graph with
the directions of edges reversed, and cvac gives a
related "symmetric" or "undirected" graph.
Moreover, if we use the boolean vector s«v/(.1
p¢)e.=1 to represent the list of nodes z, then sv.ac
gives the boolean vector which represents the set
of nodes directly reachable from the set 5. Conse-
quently, cv.sc gives the connections for paths of
length two in the graph ¢, and cvev.ac gives connec-
tions for paths of length one or two. This leads to
the following function for the #ransitive closure of
a graph, which gives all connections through paths
of any length:

TC:TC Z:A/, 0=l wvVuY . Au:Z

Node s is said to be reachable from node r if
(rc ¢)tr:s1=1. A graph is strongly-connected if
every node is reachable from every node, that is
A/STCC. .

If p«rc ¢ and ptr;r1-1 for some 1, then node r is
reachable from itself through a path of some
length; the path is called a circuit, and node r is
said to be contained in a circuit,.

A graph r is called a tree if it has no circuits
and itis in-degrees do not exceed 1, that is, r/124/7.
Any node of a tree with an in-degree of o is called
a root, and if x«+/0=+s7, then r is called a x-rooted
tree. Since a tree 1s circuit-free, x must be at least
1. Unless otherwise stated, it is normally assumed
that a tree is singly-rooted (that is, x-1);
multiply-rooted trees are sometimes called forests.

A graph ¢ covers a graph o if r/,c2p. If cis a
strongly-connected graph and r is a (singly-rooted)
tree, then 7 is said to be a spanning tree of ¢ if ¢
covers r and if all nodes are reachable from the
root of z, that is,

(A/,G2T) A A/RVRV ATC T

where z is the (boolean representation of the) root
of z.

A depth-first spanning tree [9] of a graph ¢
is a spanning tree produced by proceeding from the
root through immediate descendants in ¢, always
choosing as the next node a descendant of the lat-
est in the list of nodes visited which still possesses
a descendant not in the list. This is a relatively
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complex process which can be used to illustrate the

utility of the connection matrix representation:
DFST:((,1)°.=K2 R wAKo,v~K+a=114pw C4
R:(C,[1)a)RuAPo ,v~Ce<\UAPV AW

t~v/Pe(<\av.Awv.AlUe~via) V. Aa
W

Using as an example the graph ¢ from [9]:

)

HFORPOOODOOOQOOOO
coOoO0CO0OOQCOO0OORr OO
COoOO0OROODOOOCO O
OO0 o0oLCOoOO0DOODORrO
CO0OO0O0O0O0OO0ORr PO
OCO0OO0O0OOCOOCOoOORr OO
OO0 COCOOPRPOOCO
COO0OO00O0COHr OO0
COoO0O0OQOORrELOOOO
ORPOoOOPRPLPOOQOOQOCO
OO0 O0OO0OrOOOOCOOCO
COPPFRPOOOCOOOCOO
CoCO0OO0CO0OOCOCOOCOOQ
COO0OQ0O0OO0OO0OOOr OO
0OQCOO0OCOO0OOOCOCOPr
OO0 O0OQCOO0OOQCO K
OCOoOO0O0O0OoCOOOCORr Ol
oo oCcOoOO0OO0OQCOoCOrOOWn
OOOQC?OO(DD—‘C)OC)’i
(:C)C)(DOOOC)D—‘O(DOQ
OCO0OO0O0O0OOrO0COO
CO0O0COPRPROOOOOQ
OCo0oo0oOoOPrPOOOOO0OO0C
OO OO0 O0CO0O0OOOO0O

The function orsr establishes the left argument
of the recursion r as the one-row matrix represent-
ing the root specified by the left argument of orsr,
and the right argument as the original graph with
the connections into the root x deleted. The first
line of the recursion z shows that it continues by
appending on the top of the list of nodes thus far
assembled in the left argument the next child ¢,
and by deleting from the right argument all con-
nections into the chosen child ¢ except the one
from its parent ». The child ¢ is chosen from
among those reachable from the chosen parent
(pv.rs), but is limited to those as yet untouched
(vapv.»s), and is taken, arbitrarily, as the first of
these (<\vapv.au).

The determinations of » and v are shown in the
second line, » being chosen from among those nodes
which have children among the untouched nodes
(ov.av). These are permuted to the order of the
nodes in the left argument (av.swv.srv), bringing
them into an order so that the last visited appears
first, and r is finally chosen as the first of these.

The last line of » shows the final result to be
the resulting right argument ., that is, the original
graph with all connections into each node broken
except for its parent in the spanning tree. Since
the final value of « is a square matrix giving the
nodes of the tree in reverse order as visited, substi-
tution of «,ér11a (or, equivalently, »,es) for o
would yield a result of shape 1 2xo¢ containing the
spanning tree followed by its "preordering' infor-
mation,

Another representation of directed graphs often
used, at least implicitly, is the list of all node pairs
v.# such that there is a connection from v to w.
The transformation to this list form from the con-
nection matrix may be defined and used as follows:

LPC:(,0)/1+D1 " 1+1x/D+pw

c LFC C
0011 112334
0010 343241
0101
1000
457

However, this representation is deficient since it
does not alone determine the number of nodes in
the graph, although in the present example this is
given by r/,rrc ¢ because the highest numbered
node happens to have a connection. A related boo-
lean representation is provided by the expression
(LFC C)e.=11+p¢, the first plane showing the out- and the
second showing the in-connections.

An incidence matrix representation often used
in the treatment of electric circuits [10] is given
by the difference of these planes as follows:

IFC:-f(LFC w)e.=114puw

For example:

(LFC C)e.=114pC IFC C
1000 1071 0
1000 1 0 071
0100 0 171 o0
0010 071 1 0
0010 6 0 171
0001 10 0 1
0010
00601
0010
0100
0001
1000

In dealing with non-directed graphs, one some-
times uses a representation derived as the or over
these planes (v/). This is equivalent to 1zrc c.

The incidence matrix r has a number of useful
properties. For example, +/1 is zero, ++1 gives the
dif ference between the in- and out-degrees of each
node, o1 gives the number of edges followed by the
number of nodes, and x/or gives their product.
However, all of these are also easily expressed in
terms of the connection matrix, and more signifi-
cant properties of the incidence matrix are seen in
its use in electric circuits. For example, if the
edges represent components connected between the
nodes, and if v is the vector of node voltages, then
the branch voltages are given by r+.xv; if sz is the
vector of branch currents, the vector of node cur-
rents is given by sr+.x1.

The inverse transformation from incidence ma-
trix to connection matrix is given by:

CFI:Dp( 1+1x/D)eD1(1 T1o.zw)+.x 1+11+D+L\bpuw

The set membership function ¢ yields a boolean
array, of the same shape as its left argument,
which shows which of its elements belong to the
right argument.

3.5 Symbolic Logic

A boolean function of » arguments may be rep-
resented by a boolean vector of 2+# elements in a
variety of ways, including what are sometimes
called the disjunctive, conjunctive, equivalence,
and exclusive-disjunctive forms. The transforma-
tion between any pair of these forms may be repre-
sented concisely as some 2+«# by 2+ matrix formed
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by a related inner product, such as rv..sr, where 7
« z v is the "truth table' formed by the function z de-
fined by A.2. These matters are treated fully in
(11, Ch.71].

4. Identities and Proofs

In this section we will introduce some widely
used identities and provide formal proofs for some
of them, including Newton 's symmetric functions
and the associativity of inner product, which are
seldom proved formally.

¢

4.1 Dualities ili Inner Products

The dualities developed for reduction and scan
extend to inner products in an obvious way. If or
is the dual of r and s is the dual of ¢ with respect
to a monadic function » with inverse »z, and if 4
and 3 are matrices, then:

A F.G B «+ MI (M A) DF.DG (M B)
For example:

AV .AB <+ ~(~A)A,v(~B)
An,=B <> ~(~A)v,=(~B)
AL.+B <+ ~(-4)T.+(-B)

The dualities for inner product, reduction, and
scan can be used to eliminate many uses of boolean
negation from expressions, particularly when used
in conjunction with identities of the following
form:

AA(~B) «+ A>B
(~4)AB ++ A<B
(~A)A(~B) ++ A~B

4.2 Partitioning Identities

Partitioning of an array leads to a number of
obvious and useful identities. For example:

X/3 1 4 26 ++ (x/3 1) x (x/4 2 6)

More generally, for any associative function r:

F/V <+ (F/K4V) F (F/K+V)
F/V,W «+ (F/V) F (F/W)

If r is commutative as well as associative, the
partitioning need not be limited to prefixes and
suffixes, and the partitioning can be made by com-
pression by a boolean vector v:

F/V <> (F/U/V) F (F/(~U)/V)

If z is an empty vector (o=5£), the reduction r/z
yields the identity element of the function 7, and
the identities therefore hold in the limiting cases
o=x and o=v/v.

Partitioning identities extend to matrices in an
obvious way. For example, if v, », and 4 are arrays
of ranks 1, 2, and s, respectively, then:

Vi oxM ++ ((KAV)+.x(K, 14pM)4M)+(K¥V)+.x(K,0) M D.1
(I, J)4A+.xV > ((I,J,0)+4)+.xV D2
458

4.3 Summarization and Distribution
Consider the definition and and use of the fol-
lowing functions:

F:(vic\we.zw)/w D3
S:(fw)e.sw D4

A+3 3 14 1
C«+10 20 30 40 50

¥ A s A (S A)+.xC
314 11000 30 80 40
60101
00010

The function g selects from a vector argument
its nub, that is, the set of distinct elements it con-
tains. The expression s 4 gives a boolean
"summarization matrix" which relates the ele-
ments of 4 to the elements of its nub. If 4 is a vec-
tor of account numbers and ¢ is an associated vec-
tor of costs, then the expression (s 4)+.xc evaluated
above sums or ''summarizes" the charges to the
several account numbers occurring in 4.

Used as postmultiplier, in expressions of the
form w+.xs 4, the summarization matrix can be
used to distribute results. For example, if 7 is a
function which is costly to evaluate and its argu-
ment v has repeated elements, it may be more effi-
cient to apply r only to the nub of v and distribute
the results in the manner suggested by the follow-
ing identity: -

FV ++ (F YN V.xSV D5

The order of the elements of y v is the same as
their order in v, and it is sometimes more conven-
ient to use an ordered nub and corresponding
ordered summarization given by:

ON:Nwldo] D6

.

08:(QNw)e.=0 D.7
The identity corresponding to D.5 is:

FV-+r (FONV)+t.x08S ¥V D8

The summarization function produces an inter-
esting result when applied to the function r defined
by A.2:

+/8+F/T N ++ (0,1N)IN

In words, the sums of the rows of the summariza-
tion matrix of the column sums of the subset ma-
trix of order » is the vector of binomial coefficients
of order ».

4.4 Distributivity

The distributivity of one function over another
is an important notion in mathematics, and we will
now raise the question of representing this in a
general way. Since multiplication distributes to
the right over addition we have ax(+q«+abtaq , and
since it distributes to the left we have (a+p)xbesabtph.
These lead. go the more general cases:

(at+p)x(b+q) ++ abtaq+pb+pg
{a+p)x(b+q)*(ct+r) «=+ abct+abr+aqe+aqr+pbe+pbr+pge+pgr

(a+p)x(b+q}x ... %(ctr)«+ab...cts00.4pge..r
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Using the notion that v«s,sz and wer.q or ves,s,c
and w«pr,q.r, etc., the left side can be written sim-
ply in terms of reduction as x/v+»v. For this case of
three elements, the right side can be written as the
sum of the products over the columns of the fol-
lowing matrix:

v(0l V(0] ¥[0] VL0l WI0] WIO1 W{0} WIO]
v[11 vi1] WO1D WO1d vi1l V01) W11 Wi1]
v(2) w(2) VE2) WL21 wi21 WO2] V(2] WI(2]
The pattern of v's and »'s above is precisely
the pattern of zeros and ones in the matrix rezov,
and so the products down the columns are given by
(vx.+~myx(Wx.+7), Consequently:

X/VAW «+ +/(Vx ., *~T)xWx . *T«T pV D9

We will now present a formal inductive proof of
D.9, assuming as the induction hypothesis that D.9
is true for all v and » of shape » (that is,
~/N=(pv),ow). and proving that it holds for shape n+1,
that is, for x,v and r,», where r and v are arbitrary
scalars.

For use in the inductive proof we will first give
a recursive definition of the function 7, equivalent
to A.2 and based on the following notion: if u«r 2 is
the result of order 2, then:

o o
o o
(==

=3
o

0
1
0
Thus:

T:(0,{117),(1,[117+Tw-1):0=a:0 1p0 D.10

+/((C+X, V) *~@)xDx . %Q«Tp(D+Y,W)
+/(Cx  *~2 ,U)xDx .+ (2+0,[1]1 T),U«1,[1] T«TpoW D.10

+/({Cx o *~Z),Cx . x~U)x(Dx ,*Z) ,Dx U Note 1
+/((Cx  *x~2) ,Cx o x~UIX((Y*O)XWX . *T) ,( Y*1)xWx T Note 2
t/0(Cx o *~Z) ,Cx ,*x~U )X (WX *T) , YxWx , *T Y*x0 1++1,Y
+/CCXXYX  x~T ) VX  x~T Y (WX T )  YXWx , *T Note 2
H/(XX(VX *~TIXHx  *T) (Y (VX x~T ) xWx , xT) Note 3

/(XXX VW), (¥xx/ViN)
+/(X,Y)xx/V+W
X/(X+Y),(V+W)
X/(X, V)4 (Y, W)

Induction hypothesis
(Xx5),(Ix3)++(X,¥)xS
Definition of x/

+ distributes over ,

Note 1: M+.xN,P «+ (M+.xN),M+.xP (partitioning identity on matrices)

Note 2: V+.xM «+ ((14V)+.x(1,1+pM)4M)+(1+V)+.x1 O+
{partitioning identity on matrices and the definition of C, D, Z, and U}

Note3: (V,W)xP,Q +> (VxP),WxQ

To complete the inductive proof we must show
that the putative identity D.9 holds for some value
of ». If »=0, the vectors 2 and s are empty, and
therefore x,4 «» ,x and 1,5 «» ,7. Hence the left
side becomes x/x+y, or simply x+r. The right side
becomes +/(xx.+~g)xyx.+q, where ~¢ is the one-
rowed matrix 1 o and ¢ is o 1. The right side is
therefore equivalent to +/(x,1)x(1,7), or x+r. Simi-
lar examination of the case #-1 may be found in-
structive,
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4.5 Newton 's Symmetric Functions

If x is a scalar and = is any vector, then x/x-& is
a polynomial in x having the roots 2. It is there-
fore equivalent to some polynomial ¢ ¢ x, and as-
sumption of this equivalence implies that ¢ is a
function of . We will now use D.8 and D.9 to de-
rive this function, which is commonly based on
Newton 's symmetric functions:

x/X-R

x/X+(-R)

+/(Xx x~T)x(~R)x ,+T«T pR D9
(X%, *~T)+ . xPe(-R)x *T Def of +.x
(X*S++#~T)+ . xP Note 1

((X*QN S)+.%x08 S)+.xP D.8
(X*QN S)+.x((08 S)+.xP) +.x js associative

(X*0,1pR)+.x((Q8 S)+.xP) Note 2
((QS S)+.xP)E X B.1 (polynomial)
((Q8 +/~T)+.x((~R)x.xT«T pR))P X Defs of S

and P

Note 1: If X is a scalar and B is a boolean "vector, then Xx.*B
«+ X*+/B.

Note 2: Since T is boolean and has p R rows, the sums of its columns range from 0
to p R, and their ordered nub is therefore 0, 1pR.

4.6 Dyadic Transpose

The dyadic transpose, denoted by s, is a general-
ization of monadic transpose which permutes axes
of the right argument, and (or) forms "'sectors" of
the right argument by coalescing certain axes, all
as determined by the left argument. We introduce
it here as a convenient tool for treating properties
of the inner product. , :

The dyadic transpose will be defined formally
in terms of the selection function

SP:(,w)[1+(pw)ia-1]

which selects from its right argument the element
whose indices are given by its vector left argument,
the shape of which must clearly equal the rank of -
the right argument. The rank of the result of xea
is r/x, and if r is any suitable left argument of the
selection r sr x84 then:

ISFKRA+>(ILK])SFA D1

For example, if » is a matrix, then 2 1 s¥ « svand
1 1 gu is the diagonal of »; if 7 is a rank three array,
then 1 2 2 &7 is a matrix "'diagonal section" of r
produced by running together the last two axes,
and the vector 1 1 1 ar is the principal body diago-
nal of 7.

The following identity will be used in the se-
quel:

JRKRA «+ (JLK1)84 D.12
Proof:

I SF JRKRA

(ILJ]) SF KRaA Definition of & (D.11)

((ITJ1)[K]1) SF A Definition of &
(IL(JLX1)]) SF A Indexing is associative
I SF(JLK1)RA Definition of &
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4.7 Inner Products

The following proofs are stated only for matrix
arguments and for the particular inner product
+.x. They are easily extended to arrays of higher
rank and to other inner products r.s, where r and ¢
need possess only the properties assumed in the
proofs for + and x. ‘

The following identity (familiar in mathemat-
ics as a sum over the matrices formed by (outer)
products of columns of the first argument with
corresponding rows of the second argument) will be
used in establishing the associativity and distrib-
utivity of the inner product:

M+ .xN «+ +/1 3 3 2 § Mo, xN D.13

Proof: (1,71sF u+.xn is defined as the sum over v,
where vix) «»¥i1:x1xn0k:07, Similarly,

(I,J)SF +/1 3 3 2 § Mo ,xN
is the sum over the vector » such that

WLK] «+ (I,J,K)SF 1 3 3 2 § Mo,.xN

Thus:

WLK]

(I,J,K)SF 1 3 3 2 §Mo.xN

(I,J,K)[1 3 3 2)SF Mo .xN D.12
(I,K,K,J)SF Mo.xN Def of indexing
MEIZKIxNLK;J] Def of Outer product
VIK]

Matrix product distributes over addition as
follows:

M+.x(N+P) <+ (M+.xN)+{(M+.%xP) D.14
Proof:
M+ . x(N+P)
+/(J+ 1 3 3 2)8Mo . xN+P D13

+/JR(Mo . xN)+(Mo . xP)
+/(J8Yo . xN)+(JRMo . xP) ® distributes over +
(+/JRMo . xN)+(+/J8Mo ,xP) + is assoc and comm
(M+ . xN)+(M+.xP) D13

x distributes over +

Matrix product is associative as follows:

Mt . x(N+.xP) «+> (M+.xN)+.xP D.15

Proof: We first reduce each of the sides to sums
over sections of an outer product, and then com-
pare the sums. Annotation of the second reduction
is left to the reader:

M+ .x(N+.xP)

M+.x+/1 3 3 28Ne ,xP D.12
+/1 3 3 28Meo.x+/1 3 3 28Neo . xP D.12
+/1 3 3 28+¢/Mo.x1 3 3 28No,xP x distributes over +
+/1 3 3 28+4/1 2 3 5 5 u{Mo ,xNe ,xP Note 1
+/+4/1 3 3 2 4 81 2 3 5 5 4¥Mo ,xNo xP Note 2
+/+/1 3 3 4 4 28Mo . xNo ,xP D.a12
+/+4/1 3 3 4 4 28(Me . xN)e ,xP % is associative
+/+/1 4 4 3 3 28(Mo,xN)o ,xP + is associative and

commutative
(M+.xN)+,xP
(+/1 3 3 28%Mo  xN)+.xP
+/1 3 3 28(+/1 3 3 28Mo ,xN)o ,xP
+/1 3 3 28+/1 5 5 2 3 4®(Mo.xN)o xP
+/+/1 3 3 2 481 5 5 2 3 u4®(Mo.xN)o ,xP
+/4/1 4 4 3 3 28(Me . xN)e  xP

Note 1: +/Me .xJRA «> +/((1ppM),J+ppM)QM- . xA

Note 2: JQ+/A ++ +/(J, 1+ /J)RA
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4.8 Product of Polynomials
‘The identity B.2 used for the multiplication of
polynomials will now be developed formally:

(B B X)x(C B X)
(+/BxX*E+«"141pB)x(+/CxX*F+ 1+1pC) B1

+/+/(BxX*E)o . x(CxX*F) Note 1
+/4/(Be xC)x((X*E)eo ,x(X*F)) Note 2
+/4/(Bo . xC)x(X*(E°,+F)) Note 3

Note 1: (+/V)Ix(+/W)+++/+/Ve . xX because x distributes over +and + is
iative and tative, or see [ 12,P21] for a proof.

Note 2: The equivalence of (PxV)o . x(@xW) and (Peo,xQ)x(Vex¥H) can be
established by examining a typical element of each expression.

Note 3: (X*#I)x(X*J)++X*(I+J)

The foregoing is the proof presented, in abbre-
viated form, by Orth [13, p.52], who also defines
functions for the composition of polynomials.

4.9 Derivative of a Polynomial

Because of their ability to approximate a host
of useful functions, and because they are closed
under addition, multiplication, composition, differ-
entiation, and integration, polynomial functions
are very attractive for use in introducing the study
of calculus. Their treatment in elementary calcu-
lus is, however, normally delayed because the de-
rivative of a polynomial is approached indirectly,
as indicated in Section 2, through a sequence of
more general results,

The following presents a derivation of the de-
rivative of a polynomial directly from the expres-
sion for the slope of the secant line through the
points x, 7 x and (x+¥),F(x+7):

C B X+Y)-(C B X))+Y

(

((C P X+Y)~-(C P X+0))+Y

((C B X4Y)~((0*J)+.x(A+DS Je.tJ+«"1+1pC)+.XC) P X)+Y BE
((((Y*J)+.xM) P X)-((0*J)+.xM«A+.xC) P X)+Y B6
((((Y*T)+.xM)-(0O*T)+.xM) P X)+Y P dist over -
((((¥*J)-0%T)+.xM) P X)zY +.x dist over -
(((0,Y*T4J )4+ .xM) P X)tY Note 1
(((Y*14d+.x 1 0 ¢M) P X)+Y D1
(((Y*14d)+.x(1 0 0 +4)+.%xC) P X)+Y D.2
((Y*1+4d-1)+.%x(1 0 0 +A)+.xC) P X (Y*4)sYerY*xA-1
((¥*71+171+pC)+.%(1 0 0 +4)+.xC) P X Def of J
(((Y*71+1714pC)+.x 1 0 0 ¥4)+.xC) P X D.15

Note 1: - 0*0«>1<+Y*0 and A/0=0%x1¢dJ

The derivative is the limiting value of the se-
cant slope for v at zero, and the last expression
above can be evaluated for this case because if
e« 1+171+pc is the vector of exponents of v, then all
elements of z are non-negative. Moreover, o«k re-
duces to a 1 followed by zeros, and the inner prod-
uct with 1 o ov4 therefore reduces to the first plane
of 1 0 044 or, equivalently, the second plane of 4.

If 5<se.19+71410c is the matrix of binomial coef-
ficients, then 4 is ps 5 and, from the definition of »s
in B.5, the second plane of 4 is Bx1:=-s..-s, that is,
the matrix 5 with all but the first super-diagonal
replaced by zeros. The final expression for the
coefficients of the polynomial which is the deriva-
tive of the polynomial ¢ p « is therefore:

((do.td)x1=-Jo,-Jd+ 1+1pC)+.xC
For example:
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¢+« 57 11 13

(Jo dd)xlz-Jo,~J+ 1+1pC
0100
0020
0003
0000
((Jo.td)xlz-Jo-J+« " 1+1pC)+.,xC
7 22 39 0

Since the superdiagonal of the binomial coeffi-
cient matrix (.me.:ww i8 (“1+4-1)118-1, or simply
1#-1, the final result is 14cx"1+10c in agreement
with the earlier derivation,

In concluding the discussion of proofs, we will
re-emphasize the fact that all of the statements in
the foregoing proofs are executable, and that a
computer can therefore be used to identify errors.
For example, using the canonical function defini-
tion mode [4', p.81], one could define a function
r whose statements are the first four statements of
the preceding proof as follows:

X+Y)-(C P X))+Y

X+¥)-(C P X+0))sY

X+Y)-((0%J)+.x(A«DS Jo . td+ 14+1pC)+.%XC) P X)+Y
*J)+.xM) P X)-((0*J)+.xM<A+.%xC) P X)+Y

The statements of the proof may then be executed
by assigning values to the variables and executing »
as follows:

C«5 2 3 1

Y«5

X+3 X<110

F F
132 66 96 132 174 222 276 336 402 474 552
132 66 96 132 174 222 276 336 402 474 552
132 66 96 132 174 222 276 336 402 474 552
132 66 96 132 174 222 276 336 402 u74 552

The annotations may also be added as comments
between the lines without affecting the execution.

5. Conclusion

The preceding sections have attempted to devel-
op the thesis that the properties of executability
and universality associated with programming lan-
guages can be combined, in a single language, with
the well-known properties of mathematical nota-
tion which make it such an effective tool of
thought. This is an important question which
should receive further attention, regardless of the
Success or failure of this attempt to develop it in
terms of APL. ‘

In particular, I would hope that others would
treat the same question using other programming
languages and conventional mathematical notation.
If these treatments addressed a common set of top-
ics, such as those addressed here, some objective
comparisons of languages could be made. Treat-
Mments of some of the topics covered here are al-
ready available for comparison. For example, Ker-
her [7] expresses the algorithm C.3 in both AL-
GOL and conventional mathematical notation.

This concluding section is more general, con-
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cerning comparisons with mathematical notation,
the problems of introducing notation, extensions to
APL which would further enhance its utility, and
discussion of the mode of presentation of the earli-
er sections.

5.1 Comparison with Conventional Mathe-
matical Notation

Any deficiency remarked in mathematical nota-
tion can probably be countered by an example of
its rectification in some particular branch of math-
ematics or in some particular publication; compar-
isons made here are meant to refer to the more
general and commonplace use of mathematical
notation. '

‘APL is similar to conventional mathematical
notation in many important respects: in the use of
functions with explicit arguments and explicit re-
sults, in the concomitant use of composite expres-
sions which apply functions to the results of other
functions, in the provision of graphic symbols for
the more commonly used functions, in the use of
vectors, matrices, and higher-rank arrays, and in
the use of operators which, like the derivative and
the convolution operators of mathematics, apply to
functions to produce functions. /

(In the treatment of functions APL differs in
providing a precise formal mechanism for the defi-
nition of new functions] The direct definition
form used in this paper is perhaps most appropriate
for purposes of exposition and analysis, but the
canonical form referred to in the introduction, and
defined in [4, p.81], is often more convenient for
other purposes.

gn the interpretation of composite expressions
APL agrees in the use of parentheses, but differs in
eschewing hierarchy so as to treat all functions
(user-defined ‘as well as primitive) alike, and in
adopting a single rule for the application of both
monadic and dyadic functions: the right argument
of a function is the value of the entire expression
to its right. An important consequence of this rule
is that any portion of an expression which is free of
parentheses may be read analytically from left to
right (since the leading function at any stage is the
"outer" or overall function to be applied to the
result_on its right), and constructively from right
to left {since the rule is easily seen to be equiva-
lent to the rule that execution is carried out from
right to left).

Although Cajori does not even mention rules
for the order of execution in his two-volume histo-
ry of mathematical notations, it seems reasonable
to assume that the motivation for the familiar
hierarchy (power before x and x before + or -) arose
from a desire to make polynomials expressible
without parentheses. The convenient use of vec-
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n
2 j‘2—j

J=1

1°2°3 + 2°3°4 + ...

19234 4+ 2:3°4°5 + ...

[')'cTTI_‘1 ] ' Ty-g)

I'(-q)

tors in expressing polynomials, as in +/cxx«z, does
much to remove this motivation. Moreover, the
rule adopted in APL also makes Horner 's efficient
expression for a polynomial expressible without
parentheses:

+/3 4 2 5xX*0 1 2 3 4+ 3+XxU+Xx2+Xx5

TI—n providing graphic symbols for commonly
used functions APL goes much farther, and pro-
vides symbols for functions (such as the power
function) which are implicitly denied symbols in
mathematics. This becomes important when oper-
ators are 1ntroduce\TiZ in the preceding sections the
inner product x.- (Which must employ a symbol for
power) played an equal role with the ordinary in-
ner product +.x. Prohibition of elision of function
symbols (such as x) makes possible the unambi-
gious use of multi-character names for variables
and functions.

[IT) the use of arrays APL is similar to mathe-
matical notation, but more systemat—@. For exam-
ple, v+ has the same meaning in both, and in APL
the definitions for other functions are extended in
the same _element-by-element manner. In mathe-
matics, however, expressions such as vxy and v«w
are defined differently or not at all.

For example, vx» commonly denotes the vector
product [14, p.308]. It can be expressed in vari-
ous ways in APL. The definition

VP: ((1¢a)x"1dw)~-("1da)x1dw

provides a convenient basis for an obvious proof
that vr is "anticommutative" (that is,
vvew«+-¥vpv), and (using the fact that
“16x «» 20x for 3-element vectors) for a simple
proof that in 3-space v and » are both orthogonal to
their vector product, that is, ~/o=v«.xv v» v and
A/O=W+.xV VP W.

@PL 18 also more systematic in the use of oper-
ators to produce functions on arrz@ reduction
provides the equivalent of the sigma and pi nota-
tion (in +/ and x/) and a host of similar useful cas-
es; outer product extends the outer product of ten-

462

- 0 TG+

n terms < —» %n(n + D (n+2)(n+3)

n terms <+ -» —;—n(n+ Dnm+2)(n+3)(n+4)

(= 152)

sor anaysis to functions other than x, and inner
product extends ordinary matrix product (+.x) to
many cases, such as v.» and .+, for which ad hoc
definitions are often made.

(ﬁqe‘ similarities between APL and conventional
notation become more apparent when one learns a
few rather mechanical substitutions, and the trans-
lation of mathematical expressions is instructive:
For example, in an expression such as the first
shown in Figure 3, one simply substitutes .» for
each occurrence of j and replaces the sigma by +/.
Thus:

+/(1N)x2%-1F , OY +/Jx2x-J« 1N

Collections such as Jolley's Summation of
Series [15] provide interesting expressions for
such an exercise, particularly if a computer is
available for execution of the results. For example,
on pages 8 and 9 we have the identities shown in
the second and third examples of Figure 3. These
would be written as:

+/%/(T141N)o, +13 «+ (X/N+0,13)+4
/% /(T 1IN0 41l (x/N+0,14)%5
Together these suggest the following identity:

+/x/(T1+1N) o 41K <> (x/N+0,1K)+K+1

The reader might attempt to restate this general
identity (or even the special case where x-0) in
Jolley ' s notation.

The last expression of Figure 3 is taken from a
treatment of the fractional calculus [16, p.301],
and represents an approximation to the qth order
derivative of a function f. It would be written as:

(S*-@)x+/{J1I~1+@)xF X-(J« 1+1N)xS«(X-A)N

The translation to APL is a simple use of .» as
suggested above, combined with a straightforward
identity which collapses the several occurrences of
the gamma function into a single use of the bino-
mial coefficient function :, whose domain is, of
course, not restricted to integers.

In the foregoing, the parameter ¢ specifies the
order of the derivative if positive, and the order of
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the integral (from a to x) if negative. Fractional

values give fractional derivatives and integrals, and -

the following function can, by first defining a func-
tion r and assigning suitable values to » and 4, be
used to experiment numerically with the deriva-
tives discussed in [16]:

0S:(S*x-a)x+/(Jid-1+a)xFu-(J+ 1+ 1N)xS«(w-A)+N

Although much use is made of "formal" manip-
ulation in mathematical notation, truly formal
manipulation by explicit algorithms is very diffi-
cult. APL is much more tractable in this respect.
In Section 2 we saw, for example, that the deriva-
tive of the polynomial expression (we.x 1+1pa)+.xa
is given by (we.+"1+10a)+.x18ax"1+10a, and a set of
functions for the formal differentiation of APL
expressions given by Orth in his treatment of the
calculus [13] occupies less than a page. Other
examples of functions for formal manipulation
occur in {17, p.347] in the modeling operators for
the vector calculus.

Further discussion of the relationship with
mathematical notation may be found in -[31] and
in the paper "Algebra as a Language" [6, p.325].

A final comment on printing, which has always
been a serious problem in conventional notation.
Although APL does employ certain symbols not
yet generally available to publishers, it employs
only 88 basic characters, plus some composite char-
acters formed by superposition of pairs of basic
characters. Moreover, it makes no demands such as
the inferior and superior lines and smaller type
fonts used in subscripts and superscripts.

5.2 The Introduction of Notation

< At the outset, the ease of introducing notation
in context was suggested as a measure of suitability
of the notation, and the reader was asked to ob-
serve the process of introducing APL. The utility
of this measure may well be accepted as a truism,
but it is one which requires some clarificatio@

For one thing,ﬁn ad hoc notation which provid-
ed exactly the functions needed for some particular
topic would be easy to introduce in context) It is
necessary to ask further questions concerning the
total bulk of notation required, the degree of struc-
ture in the notation, and the degree to which nota-
tion introduced for a specific purpose proves more
generally useful.

Secondly,(it is important to distinguish the dif-
ficulty of describing and of learning a piece of no-
tation from the difficulty of mastering its implica-
tiOqQ For example, learning the rules for comput-
ing a matrix product is easy, but a mastery of its
implications (such as its associativity, its distrib-
utivity over addition, and its ability to represent
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linear functions and geometric operations) is a
different and much more difficult matter.

Qndeed, the very suggestiveness of a notation
may make it seem harder to learn because of the
many properties it suggests for exploration.) For
example, the notation +.x for matrix product can-
not make the rules for its computation more diffi-
cult to learn, since it at least serves as a reminder
that the process is an addition of products, but any
discussion of the properties of matrix product in
terms of this notation cannot help but suggest a
host of questions such as: Is v.. associative? Over
what does it distribute? Is sv.sc «» &(sc)v.re5 a
valid identity?

5.3 Extensions to APL

In order to ensure that the notation used in this
paper is well-defined and widely available on exist-
ing computer systems, it has been restricted to
current APL as defined in [4] and in the more
formal standard published by STAPL, the ACM
SIGPLAN Technical Committee on APL
[17, p.4091. We will now_comment briefly on
potential extensions which would increase its con-
venience for the topics treated here, and enhance
its suitability for the treatment of other topics
such as ordinary and vector calculus.
" LQOne type of extension has already been suggest-
ed by showing the ehxecﬁtion_ of an example (roots
of a polynomial) on an APL system based on com-
plex numbers. This implies no change in function
symbols, although the domain of certain functions
will have to be extended. )For example, |x will give
the magnitude of coniplex as well as real argu-
ments, *_{_‘fﬂk&i’i the conjugate .of complex.argu-
ments as well as the trivial result it now gives for
real arguments, and the elementary functions will
be appropriately extended, as suggested by the use
of + in the cited example. It also implies the possi-.
bility of meaningful inclusion of primitive func-
tions for zeros of polynomials and for eigenvalues
and eigenvectors of matrices.

QX second type also suggested by the earlier sec-
tions includes functions defined for particular pur-
poses which show promise of general utilitb Ex-
amples include the nub function y, defined by D.3,
and the summarization function s, defined by D.4.
These and other extensions are discussed in [18].
McDonnell [19, p.240] has proposed generaliza-
tions of and and or to non-booleans so that avs is
the GCD of 4 and 5, and 4.5 is the LCM. The func-
tions cco and rcx defined in Section 3 could then be
defined simply by ¢cp:v/w and zew:nse.

@ more general line of development concerns
operators, illustrated in the preceding sections by
the reduction, inner-product, and outer-product
Discussions of operators now in APL may be found
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in [20] and in [17, p.129], proposed new opera-
tors for the vector calculus are discussed in
£17, p.471], and others are discussed in [18] and
in [17, p.129].

5.4 Mode of Presentation

The treatment in the preceding sections con-
cerned a set of brief topics, with an emphasis on
clarity rather than efficiency in the resulting al-
gorithms, Both of these points merit further com-
ment. ’

Q‘he treatment of some more complete topic, of
an extent sufficient for, say, a one- or two-term
course, provides a somewhat different, and perhaps
more realistic, test of a notation. In particular, it
provides a better measure of the amount of nota-
tion to be introduced in normal course work)

Such treatments of a number of topics in APL
are available, including: high school algebra [6],
elementary analysis [51], calculus, [13], design of
digital systems [21], resistive circuits [10], and
crystallography [22]. All of these provide indica-
tions of the ease of introducing the notation need-
ed, and one provides comments on experience in its
use. Professor Blaauw, in discussing the design of
digital systems [21], says that "APL makes it
possible to describe what really occurs in a complex
system', that "APL is particularly suited to this
purpose, since it allows expression at the high ar-
chitectural level, at the lowest implementation
level, and at all levels between'", and that
"...learning the language pays of (sic) in- and out-
side the field of computer design".

@sers of computers and programming languages
are often concerned primarily with the efficiency
of execution of algorithms, and might, therefore,
summarily dismiss many of the algorithms pres-
ented here. Such dismissal would be short-sighted,
since a clear statement of an algorithm can usually
be used as a basis from which one may easily de-
rive more efficient algorithms) For example, in
the function srzr of section 3.2, one may signifi-
cantly increase efficiency by making substitutions
of the form sev for (sw)+.xs, and in expressions
using +/cxx*"1+1pc One may substitute x.ec or,
adopting an opposite convention for the order of
the coefficients, the expression x.c.

More complex transformations may also be
made. For example, Kerner's method (C.3) re-
sults from a rather obvious, though not formally
stated, identity. Similarly, the use of the matrix «
to represent permutations in the recursive function
# used in obtaining the depth first spanning tree
(C.4) can be replaced by the possibly more compact
use of a list of nodes, substituting indexing for in-
ner products in a rather obvious, though not com-
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pletely formal, way. Moreover, such a recursive
definition can be transformed into more efficient
non-recursive forms.

Finally, <any algorithm expressed clearly in

terms of arrays can be transformed by simple,
though tedious, modifications into perhaps more
efficient algorithms employing iteration on scalar
elements)) For example, the evaluation of +/x de-
pends upon every element of x and does not admit
of much improvement, but evaluation of v/3 could
stop at the first element equal to 1, and might
therefore be improved by an iterative algorithm
expressed in terms of indexing.
Q‘he practice of first developing a clear and pre-
cise\definition of a process without regard to effi-
ciency, and then using it as a guide and a test in
exploring equivalent processes possessing other
characteristics, such as greater efficiency, is very
common in mathematics. It is a very fruitful prac-
tice which should not be blighted by premature
emphasis on efficiency in computer execution.

Measures of efficiency are often unrealistic be-
cause they concern counts of '"substantive" func-
tions such as multiplication and addition, and ig-
nore the housekeeping (indexing and other selec-
tion processes) which is often greatly increased by
less straightforward algorithms. Moreover, realis-
tic measures depend strongly on the current design
of computers and of language embodiments. For
example, because functions on booleans (such as /s
and v/8) are found to be heavily used in APL, im-
plementers have provided efficient execution of
them. Finally, overemphasis of efficiency leads to
an unfortunate circularity in design: for reasons of
efficiency early programming languages reflected
the characteristics of the early computers, and
each generation of computers reflects the needs of
the programming languages of the preceding gener-
ation?
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Appendix A. Summary of Notation

Fuw SCALAR FUNCTIONS oFw
w Conjugate + Plus

O~w Negative - Minus
(w>0)-w<0 Signum  x Times
ltw Reciprocal + Divide
wl ~w Magnitude | Residue w-aXwwia+ta=0
Integer part Floor P Minimum (wxw<a)taxw2a
- Ceiling [ Maximum -(-a)--w
2.71828...%w Exponential * Power x/wpo
Inverse of = Natural log ® Logarithm (ew)ieq
x/1+1w Factorial ! Binomial (tw)t(la)xtu-a
3.14159...%w Pi times ©
Boolean: v ~ ~ (and, or, not-and, not-or, not)
Relations: < s = 2 > = (aRw i8 1 if relation £ holds).
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Sec. V++2 3 5 Me+s1 2 3
Ref. 4 5 8
Integers 1 15«++1 2 3 4 5
Shape 1 pVer3 pM++2 3 2 3p1be+M 2p4e>l Y
Catenation 1 V,Ve+2 3 5 2 3 5 M,M++1 2 3 1 2 3
- 456 4 56

Ravel 1 JMe+1 2 3 4 5 6
Indexing 1 Vi3 1]«+5 2 M{2:2]+>5 M(2;1¢+4 5 6
Compress 3 10 1/V+>2 5 0 1/M++4 5 &
Take,Drop 1 24V++2 3 T24Ve+14 V>3 5
Reversal 1 ¢V+e+5 3 2
Rotate 1 2¢V++5 2 3 T2¢Ve+3 5 2
Transpose 1,4 dw reverses axes a®w permutes axes
Grade 3 43 2 6 2++2 4 1 3 ¥3 2 67 2+«»3 1 2 4
Base value 1 101 V«+235 ViVe>50

&inverse 1 10 10 10T7235++2 3 5 V150«+2 3 5
Membership 3 Ve3d«+0 1 0 Ve5 2+>1 0 1
Inverse 2,5 Bo is matrix inverse aBuer(Ba)+.xa
Reduction 1 +/V+>10 +/Me+6 15 +F/M+>5 7 9
Scan 1 +\V++2 5 10 +\M++2 3p1 3 6 4 9 15
Inner prod 1 +.x is matrix product
Quter prod 1 0 3e.+1 2 3+>M
Axis 1 FLI) applies F along axis T

Appendix B. Compiler from Direct to Can-
onical Form

This compiler has been adapted from [22, p.222].
It will not handle definitions which include « or :
or » in quotes. It consists of the functions rrx and
r9, and the character matrices ce and 4s:

FIX
0p0FX F9 O

D«F9 E;F;IK

Fe(,(E='w')o.2541)/,E,($u4,pE)p"' Y9

Fe( ,(F="a')o.25¢1)/,F,($4,pFlp' X9 '
FelvpD+(0,+/76,I)4(-(3xI)++\I«':'=F)¢F,($6,pFlp'¢"
D+3¢C9[1+(1+'a'€E),T,0;1,8D({31,(I+«2+1F),2] .
K+K+2xK<10K+IAKe(>F1 0¢'«D0' 0 . =E)/K++\~I«EcA9
F«(0,1+pE)pD+«D,(F,pE)+80 ~24XK¢' ' ,E,[1.5]';"
D+(F+D),[11F{2] 'a',E

c9 A9
Z9+ 012345678
Y929+ 8ABCDEFGH
Y9Z9+X9 IJKLMNOPQ
)/3+(0=14, RSTUVWXYZ
+0,0p29+ ABCDEFGHI
JKLMNQPRR
STUVHXYZD
Example:
FIx

FIB:Z,+/ 242+FIBu-1:w=1:1

FIB 15
112358 13 21 34 55 89 144 233 377 610

OCR'FIB!
29+FIB Y92
+(0=14,Y9=1)/3
+0,0029+1
Z9+Z,+/7242+FIB Y9-1
AFIB:Z,+/ 24Z+FIBu-1:w=1:1
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