
 

1

 

Granularity

 

This is the fifth of my 

 

Engineering Notebook

 

 columns for 

 

The C++ Report

 

. The articles
that appear in this column focus on the use of C++ and OOD, and address issues of soft-
ware engineering. I strive for articles that are pragmatic and directly useful to the software
engineer in the trenches. In these articles I make use of the new 

 

Unified Modeling Lan-
guage 

 

(UML Version 0.9) for documenting object oriented designs. The sidebar provides a
very brief lexicon of this notation.

 

Introduction

 

This article marks an important transition in this column. The first four articles which
appeared in the January, March, May, and August issues of this magazine, described prin-
ciples that govern the micro-structure of object-oriented software applications. This article
is the first of several that will describe principles that govern the 

 

macro

 

 structure of 

 

large

 

object-oriented applications. I emphasize the word 

 

large

 

, because these principles are

Sidebar
UML 0.9 Lexicon

Base ClassBase ClassBase Class

Bi-directional
Association

Inheritance

Derived

P1

P2

A1

X
dependency

Aggregation
By Reference

Aggregation
By Value

A2

Directional
Association



 

2

 

Introduction

 

most appropriate for applications that exceed 50,000 lines of C++ and require a team of
engineers to write. This is a timely topic. John Lakos has recently published a book:

 

<title>

 

 and several articles in the C++ Report 

 

<refs>

 

 that deal with the development of
large C++ systems. 

This article discusses 

 

granularity

 

. This is a topic that is addressed by all of the major
methodologists in slightly different ways, using very different vocabularies. We will exam-
ine these differences in an attempt to understand the common thread that binds them all
together. Such a thread 

 

does

 

 exist, and it will lead us through some of the most important
principles of software engineering.

 

Reprise

 

But before we begin to unravel the thread of granularity, a brief reprise of what has
gone before in this column is in order.

1.

 

The Open Closed Principle.

 

 (OPC) January, 1996. This article discussed the 
notion that a software module that is designed to be reusable, maintainable and 
robust must be extensible without requiring change. Such modules can be created 
in C++ by using abstract classes. The algorithms embedded in those classes make 
use of pure virtual functions and can therefore be extended by deriving concrete 
classes that implement those pure virtual function in different ways. The net 
result is a set of functions written in abstract classes that can be reused in differ-
ent detailed contexts and are not affected by changes to those contexts.

2.

 

The Liskov Substitution Principle

 

. (LSP) March, 1996. Sometimes known as 
“Design by Contract”. This principle describes a system of constraints for the use 
of public inheritance in C++. The principle says that any function which uses a 
base class must not be confused when a derived class is substituted for the base 
class. This article showed how 

 

difficult

 

 this principle is to conform to, and 
described some of the subtle traps that the software designer can get into that 
affect reusability and maintainability.

3.

 

The Dependency Inversion Principle

 

. (DIP) May, 1996. This principle describes 
the overall structure of a well designed object-oriented application. The principle 
states that the modules that implement high level policy should not depend upon 
the modules that implement low level details. Rather both high level policy and 
low level details should depend upon abstractions. When this principle is adhered 
to, both the high level policy modules, and the low level detail modules will be 
reusable and maintainable.

4.

 

The Interface Segregation Principle

 

. (ISP) Aug, 1996. This principle deals with 
the disadvantages of “fat” interfaces. Classes that have “fat” interfaces are classes 
whose interfaces are not cohesive. In other words, the interfaces of the class can 
be broken up into groups of member functions. Each group serves a different set 



 

3

 

: Granularity

 

of clients. Thus some clients use one group of member functions, and other cli-
ents use the other groups.

The ISP acknowledges that there are objects that require non-cohesive interfaces; 
however it suggests that clients should not know about them as a single class. 
Instead, clients should know about abstract base classes that have cohesive inter-
faces; and which are multiply inherited into the concrete class that describes the 
non-cohesive object. 

 

Granularity

 

As software applications grow in size and complexity they require some kind of high level
organization. The class, while a very convenient unit for organizing small applications, is
too finely grained to be used as an organizational unit for large applications. Something
“larger” than a class is needed to help organize large applications. 

Several major methodologists have identified the need for a larger granule of organi-
zation. Booch

 

1

 

, uses the term “class category” to describe such a granule, Bertrand Meyer

 

2

 

refers to “clusters”, Peter Coad

 

3

 

 talks about “subject areas”, and Sally Shlaer and Steve
Mellor

 

4

 

 talk about “Domains”. In this article we will use the UML 0.9 terminology, and
refer to these higher order granules as “packages”. 

The term “package” is common in Ada and Java circles. In those languages a package
is used to represent a logical grouping of declarations that can be imported into other pro-
grams. In Java, for example, one can write several classes and incoporate them into the
same package. Then other Java programs can ‘import’ that package to gain access to those
classes.

 

Designing with Packages.

 

In the UML, packages can be used as containers for a group of classes. By grouping
classes into packages we can reason about the design at a higher level of abstraction. The
goal is to partition the classes in your application according to some criteria, and then allo-
cate those partitions to packages. The relationships between those packages expresses the
high level organization of the application. But this begs a large number of questions. 

1. What are the best partitioning criteria? 

2. What are the relationships that exist between packages, and what design princi-

 

1.

 

Object Oriented Analysis and Design with Applications

 

, Grady Booch, Benjamin Cummings, 
1994

2.

 

Object Success

 

, Bertrand Meyer, Prentice Hall, 1995
3.

 

OOA

 

, Coad, et. al., Yourdon Press, 1990
4.

 

Object Lifecycles Modeling the World in States

 

, Sally Shlaer & Stephen Mellor, Yourdon Press, 
1992



 

4

 

Introduction

 

ples govern their use?

3. Should packages be designed before classes (Top down)? Or should classes be 
designed before packages (Bottom up)? 

4. How are packages physically represented? In C++? In the development environ-
ment?

5. Once created, to what purpose will we put these packages?

To answer these questions, I have put together several design principles which govern
the creation, interrelationship, and use of packages.

 

The Reuse/Release Equivalence Principle (REP).

 

T

 

HE

 

 

 

GRANULE

 

 

 

OF

 

 

 

REUSE

 

 

 

IS

 

 

 

THE

 

 

 

GRANULE

 

 

 

OF

 

 

 

RELEASE

 

. O

 

NLY

 

 

 

COMPONENTS

 

 

 

THAT

 

 

 

ARE

 

 

 

RELEASED

 

 

 

THROUGH

 

 

 

A

 

 

 

TRACKING

 

 

 

SYSTEM

 

 

 

CAN

 

 

 

BE

 

 

 

EFFECTIVELY

 

 

 

REUSED

 

. T

 

HIS

 

 

 

GRANULE

 

 

 

IS

 

 

 

THE

 

 

 

PACKAGE

 

.

 

Reusability is one of the most oft claimed goals of OOD. But what is reuse? Is it reuse
if I snatch a bunch of code from one program and textually insert it into another? It is reuse
if I steal a module from someone else and link it into my own libraries? I don’t think so.

The above are examples of code copying; and it comes with a serious disadvantage:
you own the code you copy! If it doesn’t work in your environment, 

 

you

 

 have to change it.
If there are bugs in the code, 

 

you

 

 have to fix them. If the original author finds some bugs in
the code and fixes them, 

 

you

 

 have to find this out, and 

 

you

 

 have to figure out how to make
the changes in your own copy. Eventually the code you copied diverges so much from the
original that it can hardly be recognized. The code is 

 

yours

 

. While code copying can make
it easier to do some initial development; it does not help very much with the most expen-
sive phase of the software lifecycle, maintenance. 

I prefer to define reuse as follows. I reuse code if, and only if, I never need to look at
the source code (other than the public portions of header files). I need only link with static
libraries or include dynamic libraries. Whenever these libraries are fixed or enhanced, I
receive a new version which I can then integrate into my system when opportunity allows.

That is, I expect the code I am reusing to be treated like a product. It is not maintained
by me. It is not distributed by me. I am the customer, and the author, or some other entity,
is responsible for maintaining it. 

When the libraries that I am reusing are changed by the author, I need to be notified.
Moreover, I may decide to use the old version of the library for a time. Such a decision
will be based upon whether the changes made are important to me, and when I can fit the
integration into my schedule. Therefore, I will need the author to make regular releases of
the library. I will also need the author to be able to identify these releases with release
numbers or names of some sort.



 

5

 

: Granularity

 

Thus, I can reuse nothing that is not also released. Moreover, when I reuse something
in a released library, I am in effect a client of the entire library. Whether the changes affect
me or not, I will have to integrate with each new version of the library when it comes out,
so that I can take advantage of later enhancements and fixes.

And so, the REP states that the granule of reuse can be no smaller than the granule of
release. Anything that we reuse must also be released. Clearly, packages are a candidate
for a releasable entity. It might be possible to release and track classes, but there are so
many classes in a typical application that this would almost certainly overwhelm the
release tracking system. We need some larger scale entity to act as the granule of release;
and the package seems to fit this need rather well.

 

The Common Reuse Principle (CRP)

 

T

 

HE

 

 

 

CLASSES

 

 

 

IN

 

 

 

A

 

 

 

PACKAGE

 

 

 

ARE

 

 

 

REUSED

 

 

 

TOGETHER

 

. I

 

F

 

 

 

YOU

 

 

 

REUSE

 

 

 

ONE

 

 

 

OF

 

 

 

THE

 

 

 

CLASSES

 

 

 

IN

 

 

 

A

 

 

 

PACKAGE

 

, 

 

YOU

 

 

 

REUSE

 

 

 

THEM

 

 

 

ALL

 

.

 

This principle helps us to decide which classes should be placed into a package. It
states that classes that tend to be reused together belong in the same package.

Classes are seldom reused in isolation. Generally reusable classes collaborate with
other classes that are part of the reusable abstraction. The CRP states that these classes
belong together in the same package.

A simple example might be a container class and its associated iterators. These
classes are reused together because they are tightly coupled to each other. Thus they ought
to be in the same package.

The reason that they belong together is that when an engineer decides to use a pack-
age a dependency is created upon the whole package. From then on, whether the engineer
is using all the classes in the package or not, every time that package is released, the appli-
cations that use it must be revalidated and rereleased. If a package is being released
because of changes to a class that I don’t care about, then I will not be very happy about
having to revalidate my application.

Moreover, it is common for packages to have physical representations as shared
libraries or DLLs. If a DLL is released because of a change to a class that I don’t care
about, I still have to redistribute that new DLL and revalidate that the application works
with it. 

Thus, I want to make sure that when I depend upon a package, I depend upon every
class in that package. Otherwise I will be revalidating and redistributing more than is nec-
essary, and wasting lots of effort.



 

6

 

Introduction

 

The Common Closure Principle (CCP)

 

T

 

HE

 

 

 

CLASSES

 

 

 

IN

 

 

 

A

 

 

 

PACKAGE

 

 

 

SHOULD

 

 

 

BE

 

 

 

CLOSED

 

 

 

TOGETHER

 

 

 

AGAINST

 

 

 

THE

 

 

 

SAME

 

 

 

KINDS

 

 

 

OF

 

 

 

CHANGES

 

. A 

 

CHANGE

 

 

 

THAT

 

 

 

AFFECTS

 

 

 

A

 

 

 

PACKAGE

 

 

 

AFFECTS

 

 

 

ALL

 

 

 

THE

 

 CLASSES IN THAT 
PACKAGE.

More important than reusability, is maintainability. 

If the code in an application must change, where would you like those changes to
occur: all in one package, or distributed through many packages? It seems clear that we
would rather see the changes focused into a single package rather than have to dig through
a whole bunch of packages and change them all. That way we need only release the one
changed package. Other packages that don’t depend upon the changed package do not
need to be revalidated or rereleased. 

The CCP is an attempt to gather together in one place all the classes that are likely to
change for the same reasons. If two classes are so tightly bound, either physically or con-
ceptually, such that they almost always change together; then they belong in the same
package. This minimizes the workload related to releasing, revalidating, and redistributing
the software.

This principles is closely associated with the Open Closed Principle (OCP). For it is
“closure” in the OCP sense of the word that this principle is dealing with. The OCP states
that classes should be closed for modification but open for extension. As we learned in the
article that described the OCP, 100% closure is not attainable. Closure must be strategic.
We design our systems such that the are closed to the most likely kinds of changes that we
foresee.

The CCP amplifies this by grouping together classes which cannot be closed against
certain types of changes into the same packages. Thus, when a change in requirements
comes along; that change has a good chance of being restricted to a minimal number of
packages.

The Acyclic Dependencies Principle (ADP)

THE DEPENDENCY STRUCTURE BETWEEN PACKAGES MUST BE A 
DIRECTED ACYCLIC GRAPH (DAG). THAT IS, THERE MUST BE NO 
CYCLES IN THE DEPENDENCY STRUCTURE.

Have you ever worked all day, gotten some stuff working and then gone home; only to
arrive the next morning at to find that your stuff no longer works? Why doesn’t it work?
Because somebody stayed later than you! I call this: “the morning after syndrome”. 

The “morning after syndrome” occurs in development environments where many
developers are modifying the same source files. In relatively small projects with just a few



7 : Granularity

developers, it isn’t too big a problem. But as the size of the project and the development
team grows, the mornings after can get pretty nightmarish. It is not uncommon for weeks
to go by without being able to build a stable version of the project. Instead, everyone keeps
on changing and changing their code trying to make it work with the last changes that
someone else made. 

The solution to this problem is to partition the development environment into releas-
able packages. The packages become units of work which are the responsibility of an
engineer, or a team of engineers. When the responsible engineers get a package working,
they release it for use by the other teams. They give it a release number and move it into a
directory for other teams to use. They then continue to modify their package in their own
private areas. Everyone else uses the released version.

As new releases of a package are made, other teams can decide whether or not to
immediately adopt the new release. If they decide not to, they simply continue using the
old release. Once they decide that they are ready, they begin to use the new release.

Thus, none of the teams are at the mercy of the others. Changes made to one package
do not need to have an immediate affect on other teams. Each team can decide for itself
when to adapt its packages to new releases of the packages they use.

This is a very simple and rational process. And it is widely used. However, to make it
work you must manage the dependency structure of the packages. There can be no cycles.
If there are cycles in the dependency structure then the “morning after syndrome” cannot
be avoided. I’ll explain this further, but first I need to present the graphical tools that the
UML 0.9 uses to depict the dependency structures of packages.

Packages depend upon one another. Specifically, a class in one package may
#include the header file of a class in a different package. This can be depicted on a
class diagram as a dependency relationship between packages (See Figure 1).

Packages, in UML 9.0 are depicted as “tabbed folders”. Dependency relationships are
dashed arrows. The arrows point in the direction of the dependency. That is, the arrow
head is placed next to the package that is being depended upon. In C++ terms, there is a
#include statement in a class within the dependent package that references the header
file of a class in the package being depended upon.

Consider the package diagram in Figure 2. Here we see a rather typical structure of
packages assembled into an application. The function of this application is unimportant
for the purpose of this example. What is important is the dependency structure of the pack-
ages. Notice how this structure is a graph. The packages are the nodes, and the depen-

Figure 1
Dependencies between Packages.

Dependent
Package Package



8Introduction

dency relationships are the edges. Notice also that the dependency relationships have
direction. So this structure is a directed graph. 

Now notice one more thing. Regardless of which package you begin at, it is impossi-
ble to follow the dependency relationships and wind up back at that package. This struc-
tures has no cycles. It is a directed acyclic graph. (DAG).

Now, notice what happens when the team responsible for MyDialogs makes a new
release. It is easy to find out who is affected by this release; you just follow the depen-
dency arrows backwards. Thus, MyTasks and MyApplication are both going to be
affected. The teams responsible for those packages will have to decide when they should
integrate with the new release of MyDialogs.

Notice also that when MyDialogs is released it has utterly no affect upon many of the
other packages in the system. They don’t know about MyDialogs; and they don’t care
when it changes. This is nice. It means that the impact of releasing MyDialogs is relatively
small. 

When the engineers responsible for the MyDialogs package would like to run a unit
test of their package, all they need do is compile and link their version of MyDialogs with
the version of the Windows package that they are currently using. None of the other pack-
ages in the system need be involved. This is nice, it means that the engineers responsible
for MyDialogs have relatively little work to do to set up a unit test; and that there are rela-
tively few variables for them to consider.

Figure 2
Package Diagram without Cycles

Windows

MyApplication

MessageWindow

Task

MyTasks

MyDialogs

TaskWindow

Database



9 : Granularity

When it is time to release the whole system; it is done from the bottom up. First the
Windows package is compiled, tested, and released. Then MessageWindow and Mydia-
logs. These are followed by Task, and then TaskWindow and Database. MyTasks is next;
and finally MyApplication. This process is very clear and easy to deal with. We know how
to build the system because we understand the dependencies between its parts.

The Effect of a Cycle in the Package Dependency Graph.

Let us say that the a new requirement forces us to change one of the classes in MyDialogs
such that it #includes one of the class headers in MyApplication. This creates a depen-
dency cycle as shown in Figure 3.

This cycle creates some immediate problems. For example, the engineers responsible
for the MyTasks package know that in order to release, they must be compatible with Task,
MyDialogs, Database, and Windows. However, with the cycle in place, they must now
also be compatible with MyApplication, TaskWindow and MessageWindow. That is,
MyTasks now depends upon every other package in the system. This makes MyTasks very
difficult to release. MyDialogs suffers the same fate. In fact, the cycle has had the effect
that MyApplication, MyTasks, and MyDialogs must always be released at the same time.
They have, in effect, become one large package. And all the engineers who are working in
any of those packages will experience “the morning after syndrome” once again. They will

Figure 3
Package Diagram with Cycles

Windows

MyApplication

MessageWindow

Task

MyTasks

MyDialogs

TaskWindow

Database



10Introduction

be stepping all over one another since they must all be using exactly the same release of
each other.

But this is just the tip of the trouble. Consider what happens when we want to unit test
the Mydialogs package. We find that we must link in every other package in the system;
including the Database package. This means that we have to do a complete build just to
unit test MyDialogs. This is intolerable.

If you have ever wondered why you have to link in so many different libraries, and so
much of everybody else’s stuff, just to run a simple unit test of one of your classes, it is
probably because there are cycles in the dependency graph. Such cycles make it very diffi-
cult to isolate modules. Unit testing and releasing become very difficult and error prone.
And compile times grow geometrically with the number of modules. 

Breaking the Cycle.

It is always possible to break a cycle of packages and reinstate the dependency graph as a
DAG. There are two primary mechanisms. 

1. Apply the Dependency Inversion Principle (DIP). In the case of Figure 3, we 
could create an abstract base class that has the interface that MyDialogs needs. 
We could then put that abstract base into MyDialogs and inherit it into MyAppli-
cation. This inverts the dependency between MyDialogs and MyApplication thus 
breaking the cycle. See Figure 4.

2. Create a new package that both MyDialogs and MyApplication depend upon. 
Move the class(es) that they both depend upon into that new package.

The “Jitters”

The second solution implies that the package structure is not stable in the presence of
changing requirements. Indeed, as the application grows, the package dependency struc-
ture jitters and grows. Thus the dependency structure must always be monitored for cycles.
When cycles occur they must be broken somehow. Sometimes this will mean creating new
packages, making the dependency structure grow.

Top Down Design

The issues we have discussed so far lead to an inescapable conclusion. The package struc-
ture cannot be designed from the top down. This means that is it not one of the first things
about the system that is designed. Indeed, it seems that it gets designed after many of the
classes in the system have been designed, and thereafter remains in a constant state of flux.

Many should find this to be counterintuitive. We have come to expect that large
grained decompositions are also high level functional decompositions. When we see a



11 : Granularity

large grained grouping like a package dependency structure, we feel that it ought to some-
how represent the function of the system. Yet this does not seem to be an attribute of pack-
age dependency diagrams.

In fact, package dependency diagrams have very little do to with describing the func-
tion of the application. Instead, they are a map of how to build the application. This is why
they aren’t designed at the start of the project. There is no software to build, and so there is
no need for a build map. But as more and more classes accumulate in the early stages of
implementation and design, there is a growing need to map out the dependencies so that
the project can be developed without the “morning after syndrome”. Moreover, we want to
keep changes as localized as possible, so we start paying attention to the common closure
principle and collocate classes that are likely to change together.

As the application continues to grow, we start becoming concerned about creating
reusable elements. Thus the Common Reuse Principle begins to dictate the composition of
the packages. Finally, as cycles appear the package dependency graph jitters and grows. 

If we were to try to design the package dependency structure before we had designed
any classes, we would likely fail rather badly. We would not know much about common
closure, we would be unaware of any reusable elements, and we would almost certainly
create packages that produced dependency cycles. Thus the package dependency structure
grows and evolves with the logical design of the system.

Figure 4
Breaking the Cycle with Dependency Inversion

MyDialogs MyApplication

X Y

MyDialogs MyApplication

X YX Server

Before

After



12Conclusion

Conclusion

Managing a complex project using packages and their interdependencies is one of the
most powerful tools of OOD. By creating packages that conform to the three principles
described in this paper, we set the stage for robust, maintainable, and reusable software.
Packages are the units that focus change, that enable reuse, and that provide the unit of
release that prevents developers from interfering with each other.

My next article will be the last in the “Principles” series. It will describe the last two
principles. These principles provide governance over the relationships between packages,
rather than the composition of the packages. They also introduce some design quality met-
rics that measure conformance to the Dependency Inversion Principle (DIP). 

This article is an extremely condensed version of a chapter from my new book: Pat-
terns and Advanced Principles of OOD, to be published soon by Prentice Hall. In subse-
quent articles we will explore many of the other principles of object oriented design. We
will also study various design patterns, and their strengths and weaknesses with regard to
implementation in C++. We will study the role of Booch’s class categories in C++, and
their applicability as C++ namespaces. We will define what “cohesion” and “coupling”
mean in an object oriented design, and we will develop metrics for measuring the quality
of an object oriented design. And after that, we will discuss many other interesting topics.


