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Abstract

Missing data in clinical trials can ruin the significance of test results
and violates the Intention To Treat principle. Therefore imputation meth-
ods are an important tool that is used to deal with this problem. In this
essay two different Bayesian imputation methods will be compared to
four different general imputation methods. The general methods are the
LOCF, worst case, best case and a mean value method. The Bayesian
methods are Empirical Bayes method and a method using the Expectation
Maximization algorithm. From the results of analysis made on the data
sets used here it can be concluded that the Bayesian methods give better
estimates than general imputation methods. This conclusion is valid for
different parameter values such as variance, percentage missing values
and number of observations per patient.
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1 INTRODUCTION

1 Introduction

In clinical trials there often exists missing data. There can be different reasons
to why these occur. A few examples can be that some patients get to ill to
attend to a meeting, patients might refuse to continue the study (dropouts)
or there might be treatment failures. For a small number of unrecorded data
there is no problem but if you have a substantial amount of them problems
will occur. Another complication is non-compliant patients (i.e. patients who
in some way does not follow the test as they should, which can be that they
don’t take the drug twice per day as is the instructions for the test or they sim-
ply don’t take the drug at all).

If the clinic trial contains missing data, dropouts or non-compliant patients
and the patients that have these incorrect protocol values are excluded the
trial is not following the intention to treat (ITT) principle. There are demands
that all clinical trials should be tested with an ITT analysis1. The intention to
treat analysis requires that patients must be analyzed in the groups they were
randomized into, regardless of whether they complied with the treatment they
were given or not. It is also required that the outcome data is complete. Im-
putation methods is therefore needed to make most clinical trials approved by
the intention to treat principle.

There are two different purposes with a method for imputation of missing
data. One is that the company analyzing a drug wants the missing data to be
replaced by such a correct value as possible, so that the result of the analysis
become accurate. This is of course very important for the company because it
is likely that there is some missing values which can not be allowed to ruin the
test significance.

Another purpose for imputation methods is for them to be conservative. These
methods are made to make it harder for the company or the trial to show sig-
nificant differences between the test groups. If the company wants to show
that group A has a better development than group B a conservative imputa-
tion method makes it harder to show significant differences, but if it does it
is more reliable than if we would have used a non-conservative imputation
method.

One thing to have in mind is that test individuals with missing values might
be more likely to have bad protocol values compared to the others. A method
which then replace the missing value with a value estimated as a mean value
from the individuals test group can gain the company. A method that is very

1emea (2001), p. 1
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2 METHOD FOR THE CLINICAL TRIAL

conservative is the worst case method which is discussed in subsection 3.1.2.
So either we can use imputation to get a good estimated value or to get a con-
servative.

The main purpose with this essay is to evaluate if Bayesian imputation meth-
ods can be used to get better estimated values than general methods. I am
going to analyze a method using Empirical Bayes (EB) analysis and a method
using the Expectation Maximization (EM) algorithm. These will be analyzed in
a certain case involving Parkinson patients and when data sets are generated
randomly. Presumably we will find that the EB and EM methods give good es-
timated values for the missing values while it might not be very conservative.
These will be analyzed in comparison with other imputation methods. Two
different models of Bayesian analysis will be analyzed and compared to each
other. These are the Gaussian/Gaussian model and the beta/binomial model
and these come from making different assumptions regarding the prior and
likelihood distribution.

2 Method for the clinical trial

The clinical trial we are going to look at is one involving Parkinson patients.
Video recordings of each patient were made 17 occasions per day at two dif-
ferent occasions. This procedure was done twice, once with an ’old’ drug and
once with the ’drug’ that hopefully turns out to be better. These video clips
were then studied by two doctors that observe the clips independently of each
other. For every observation (video clip) the patients were given a number
between -3 and +3 on a degree of how ill they were. A -3 states that they can
hardly move at all and a +3 states the shaking is very bad, i.e. the closer to zero
the better the state of the patient. When the patient has a number between -1
and 1 they are considered to be quite functional. So the idea with the test is
to find out for how many percent of the treatment time each patient is in this
interval. This proportion of time is denoted π̂i for the i:th patient, i = 1, . . . , N
where N is the number of patients. xi is the number of observations that the
individual i is in the ’good interval’ and ni is the number of observations for
i = 1, . . . , N . Clearly

π̂i =
xi

ni

. (1)

A weighted estimate for the overall mean of all patients is

µ̂ =

∑N
i=1 niπ̂i∑N
i=1 ni

=

∑N
i=1 xi∑N
i=1 ni

. (2)

6



3 GENERAL IMPUTATION METHODS

When the number of observations ni for a patient is high this estimate is quite
good, but if we have a low number of observations it can be a poor estimate of
the ’true’ πi. Then we wish to use an estimator π̃i that uses the overall mean
estimate µ̂. This is what Empirical Bayes methods does. A formula for the so
called shrinkage estimator π̃i will then be

π̃i = B̂iµ̂ + (1− B̂i)π̂i. (3)

B̂i is the factor deciding how big the shrinkage will be and will therefore be
referred to as the shrinkage factor.

3 General imputation methods

There are many different imputation methods and not always easy to know
which one of them to use or even if you can use imputation at all. One thing
to be aware of when using imputation methods is that it can lead to bias or
decrease of standard deviation as we shall see later.

In this section five different methods of imputation are going to be discussed.
The first four of these are also going to be analyzed together with the Empiri-
cal Bayes and the EM method that is described in section 4.

There are two different ways of handling missing data. One way is to sim-
ply exclude the patients with missing outcomes from the analysis and another
way is to impute data where they are missing.

3.1 Excluding non-complete data

When excluding patients from a clinical trial the sample size get smaller and
that affect both the power and the variability of the test. A smaller sample size
gives a greater possibility of a non-significant result i.e. the larger the sam-
ple size the greater the statistical power of the test. There is also possible that
the patients with non-complete treatments have more extreme values than the
others and therefore excluding them lessens the variability and the confidence
interval.

Another effect to be aware of when dealing with missing values in a data ma-
terial is bias and this is presumably also the most important concern 2. Missing
values will lead to bias if the unmeasured values are related to the real value
(i.e. if a higher or lower value is more likely to be missing), but not if they are
only related to the treatment (i.e. if one treatment arm is more likely to have

2emea (2001), p. 2
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3.1 Excluding non-complete data 3 GENERAL IMPUTATION METHODS

missing values than another).

The method used when you simply ignore missing data and go through with
the statistical analysis with only complete data is called ”complete case analy-
sis”. Often this is not a good way to deal with the data material because of the
aspects pointed out above. It violates the intention to treat principle. Instead
you probably should use some method of imputation.

3.1.1 The LOCF method

One method is last observation carried forward (LOCF) which is widely used
3. Here the last measured observation before the missing one is imputed. This
method works best if the observations is expected to remain at some level or
if there is only a few missing values. If the observations in a test is expected
to increase or decrease over time this method does not work very well. One
example (figure 1) is a test where we look at how a medicine affects the con-
dition of MS (Muscular Sclerosis) patients. Let us say that the observations of
the patients muscle strength Xij are graded at a scale from 1 to 10 where i is
patient nr i and j is the test occasion. The natural development is that the mus-
cle strength is slowly decreasing over time and the intention of the treatment
would be to slow this development. If one patient drops out after say j = 10
and we use the LOCF method Xij for j > 10 will be put equal to Xi,10 and we
do overestimate the missing observations. If there were only a few missing
observations the LOCF method could be used, but some kind of regression
model would presumably fit better (see chapter 3.1.4).

Figure 1: We get an overestimation with the use of LOCF in the case with MS patients.

3emea (2001), p. 3
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3.1 Excluding non-complete data 3 GENERAL IMPUTATION METHODS

In this case where we have a downward sloping trend the LOCF method is
not conservative nor does it give a good estimate. If we have a upward slop-
ing trend the LOCF method can be considered conservative. If there wouldn’t
have been a trend in the observations the method gives a fairly good estimated
value depending on the last observed value. If the last observed value is an
outlier the LOCF method does not give a good estimated value (though maybe
conservative) but if it is somewhat ’normal’ for the individual it is probably a
better estimate.

3.1.2 Best or worst case imputation

Two other methods when dealing with missing data are best case and worst
case imputation. Here, as the name tells, you impute the best or worst data.
This leads to either an under or over evaluation of the data and can be used
”to assess a lower bound of efficacy as a demonstration of robustness” 4. There
are different ways of using worst case imputation. I will give some examples
of worst case imputation, where best case imputation works similar but but
of course the other way around: If a patient, let’s call him Adam, in a trial
where there is no trend only has a few values recorded you can take the worst
of these and impute it instead of the missing ones. But let’s say that all of
the observations actually are quite good compared to the other patients. Then
the worst case would be if Adam gets the worst value of all of the patients
observations. This method is of course conservative.

3.1.3 Mean value methods

A natural method of imputation is to use the mean value of the recorded ob-
servations. This method leads to lower variance and a concern here is that the
dropouts might be more likely to be patients with more extreme values (i.e. a
very ill patient might not show up). Another aspect of using the mean value is
that it is not always clear on which data you should calculate the mean value.
In the MS case you can not use the mean value for the whole period but if for
example X5,12 is missing you can take the mean value of all Xi,12 as an approx-
imation, where i is patient number. Another idea would be to use the mean
value of X5,11 and X5,13. This method can also be used for several missing val-
ues in a row, i.e. if j = 11, 12, 13 is missing you simply estimate the mean of
X5,10 and X5,14. If we don’t have a trend in the data we can randomly impute
values from the knowledge of the patients mean value. We first calculate a
mean value from the non-missing values and then use this mean value to pro-
duce new observations that we replace the missing ones with.

4Ibid
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4 EMPIRICAL BAYES METHODS

One problem with these methods is that they may lower the standard error
because they estimate a central value and ignore its uncertainty. One way
to deal with this is to use multiple imputation methods where you generate
multiple copies of the data set and replace missing values by randomly gen-
erated values. Another way to avoid lowering of the standard error is to use
maximum-likelihood methods where you fit a model by an iterative process 5.

Mean-value methods is made to give good estimates and is not conservative.

3.1.4 Regression methods

When trials are somehow linear as in the MS example linear regression meth-
ods can be used for imputation. One way is to use a simple regression model:
yi = b0 + b1xi + e where xi can be the time since the trial started.

If we take the example with MS patients again yi would be the patients muscle
strength and xi would be the treatment time after i test occasions. If only the
first 3 test occasions has been recorded we can predict the other by first decide
b0, b1 and then calculate y4, y5 or y6 by: y4 = b0 + b1x4 + e.

Another way is to use a multiple regression model and thus the data from
all patients. The model is yi = a + b1xi + c ∗ age + d ∗ gender + e where age and
gender is the age respectively the gender of the test person. Of course other
variables as for example time since the outbreak of the disease is possible to
add. With this model the gain is that we include other variables and we are
then able to adjust the imputations better to the specific patient than if we use
a simple regression model.

4 Empirical Bayes methods

4.1 Empirical Bayes theory

This subsection is partly based on theory from Encyclopedia of Biostatistics [1998,
p 1314] and from the book by Bradley P. Carlin and Thomas A. Louis, Bayes and
Empirical Bayes Methods for Data Analysis [2000]. Generally Bayesian analysis
uses past experience, guesses or convenient assumptions in the form of a prior
distribution. Let us assume that we have a variable X with likelihood function
p(x|θ) where θ is an unknown parameter that we wish to estimate. In classical
procedures no care will be taken to the past data of θ. Here we will instead use
the past data to get a better estimate of θ. We suppose that θ has a prior dis-
tribution g(θ|η) where η is a vector of so called hyperparameters. X is observed

5emea (2001), p. 3
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4.1 Empirical Bayes theory 4 EMPIRICAL BAYES METHODS

why the estimate θ̂ are found in the posterior distribution. We wish to estimate
θ with a small mean square error, thus

E[(θ̂ − θ)2|x] = [θ̂(x)− E(θ|x)]2 + var(θ|x)

and because var(θ|x) is not a function of θ̂, E(θ|x) is the estimator to be min-
imized. E(θ|x) is called the Bayes estimator. To evaluate it we first use Bayes
formula to determine the posterior distribution6

p(θ|x, η) =
p(x|θ)g(θ|η)

m(x|η)
(4)

where m(x|η) is the marginal distribution of x,

m(x|η) =

∫
p(x|θ)g(θ|η)dθ (5)

whereby the posterior expectation is given by

E(θ|x) =

∫
θp(x|θ)g(θ|η)dθ∫
p(x|θ)g(θ|η)dθ

. (6)

In the Bayesian approach equation (4) is used if η is known. If η is unknown
(as it is in our Parkinson trial) we would in the Bayesian approach have to use
a hyperprior distribution h(η) and now we obtain the posterior distribution of
θ by also marginalizing over η:

p(θ|x) =

∫
p(x|θ)g(θ|η)h(η)dη∫ ∫
p(x|θ)g(θ|η)h(η)dθdη

This is often not trivial why we instead use the marginal distribution of X (5)
to estimate the hyperparameter η. This can be done with marginal maximum
likelihood estimation (MMLE) of η̂. Inferences are then made on p(θ|x, η̂) by
inserting η̂ into equation (4). This kind of procedure is called empirical Bayes
(EB) analysis.

When we obtain the posterior distribution it is convenient to use the short-
hand

p(θ|x, η) ∝ p(x|θ)g(θ|η) (7)

which states that the posterior is proportional to the likelihood times the prior.
This can be done because any constant or function of y can be multiplied with
the likelihood without altering the posterior. When we choose a prior to our
likelihood it can be convenient to choose a prior that is conjugate to the likeli-
hood p(x|θ). A conjugate is a prior that leads to a posterior distribution that
belongs to the same distribution family as the prior.

6Gut (1995), p. 6
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4.2 Assumptions 4 EMPIRICAL BAYES METHODS

4.2 Assumptions

The data set we study in our trial is graded in an ordinal scale. We have i =
1 . . . N patients that are assumed to be independent of each other. Each patient
have t = 1 . . . ni observations that are also assumed to be independent. We as-
sign Zit ∈ {−3, . . . , 3} as variable for one observation. Zit is either good Yit = 1
if Zit ∈ {−1, 0, 1} or bad Yit = 0 if Zit ∈ {−3,−2, 2, 3}. The stochastic variable
for one observation to be ’good’ thus is Bernoulli-distributed, Yit

iid∼ Be(πi).
For ni observations we assign the stochastic variable Xi =

∑ni

t=1 Yit which
is binomial distributed, Xi|πi

ind∼ Bin(ni, πi). The patients are independent
from each other but because of different ni and πi, Xi|πi is not identically dis-
tributed.

4.3 The beta/binomial model

A natural way to choose prior and likelihood function is to choose the beta(r, s)
distribution as prior (see Appendix A for more information on the beta distri-
bution) and the binomial as likelihood. The reasons to why we choose the beta
as prior are:

• because it stays in the interval [0,1].

• because it is a conjugate to the binomial distribution.

• because it can take different kinds of shape depending on our specific
data set.

The reason to why we choose the binomial as likelihood is simply because the
way the observations are drawn follows the definition of the binomial distri-
bution. We start by giving the formula for the likelihood function:

P (Xi = xi|πi) =
(

ni
xi

)
πxi

i (1− πi)
ni−xi . (8)

In the following formulas the subscript i will be left out for convenience. The
expectation and variance for X

n
|π is:

E

(
X

n
|π

)
=

E(X|π)

n
=

nπ

n
= π

,

V ar

(
X

n
|π

)
=

V ar(X|π)

n2
=

nπ(1− π)

n2
= π(1− π)

1

n
.

To make the beta distribution more easy to work with we reparametrize beta(r, s)
to betarep(µ, M). We put µ = r/(r + s) which is the overall mean of all patients

12



4.3 The beta/binomial model 4 EMPIRICAL BAYES METHODS

and M = r+s is a factor affecting the variance. Increasing M decreases the vari-
ance. We assume that π|µ iid∼ betarep(µ, M)-distributed and the density function
is:

g(Π = π|µ, M) =
Γ(M)

Γ(Mµ)Γ(M(1− µ))
πMµ−1(1− π)M(1−µ)−1 (9)

where µ and M are the hyperparameters. The expectation and variance for
betarep(µ, M) is:

E(π|µ, M) = µ, V ar(π|µ, M) =
µ(1− µ)

M + 1
.

We get a beta/binomial distribution for marginal density function of X 7:

m(X = x|µ, M) =

∫ 1

0

p(X|π)g(Π|µ, M)dπ =(
n
x
) Γ(M)

Γ(Mµ)Γ(M(1− µ))

∫ 1

0

πx+Mµ−1(1− π)n−x+M(1−µ)−1dπ =(
n
x
) Γ(M)

Γ(Mµ)Γ(M(1− µ))

Γ(x + Mµ)Γ(n− x + M(1− µ))

Γ(n + M)
. (10)

The expectation and variance for X
n

is:

E

(
X

n

)
= E

[
E

(
X

n
|π

)]
= E(π) = µ,

V ar

(
X

n

)
= E

[
V ar

(
X

n
|π

)]
+ V ar

[
E

(
X

n
|π

)]
= E[π(1− π)

1

n
] + V ar(π) =

1

n
(µ(1− µ)− V ar(π)) + V ar(π) =

µ(1− µ)

n

(
1 +

n− 1

M + 1

)
. (11)

The posterior distribution is

P (Π|X) ∝ P (X|Π)P (Π) =(
n
x
) Γ(M)

Γ(Mµ)Γ(M(1− µ))
πx+Mµ−1(1− π)n−x+M(1−µ)−1 (12)

which is beta(rEB, sEB)-distributed, with rEB = x + Mµ and sEB = n − x +
M(1 − µ). Notice that this is not the reparametrized beta distribution. We see
that both the prior and the posterior is beta-distributed and we can conclude
that the beta distribution is the conjugate for the binomial likelihood.

7Gut (1995), p. 19
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4.3.1 Moment Estimates

For each patient i, πi is estimated by

π̂i =
xi

ni

. (13)

A weighted moment estimate for µ is

µ̂ =

∑N
i=1 niπ̂i∑N
i=1 ni

=

∑N
i=1 xi∑N
i=1 ni

. (14)

To find a moment estimate for M we use equation (11):

s2 =
1

N

N∑
i=1

V ar(
xi

ni

) =
1

N

N∑
i=1

µ̂(1− µ̂)

ni

[
1 +

ni − 1

M̂ + 1

]
(15)

where a weighted estimate for s2 is

s2 =
N

∑
ni(π̂i − µ̂)2

(N − 1)
∑

ni

. (16)

We solve the equation for M and get:

M̂ =
µ̂(1− µ̂)− s2

s2 − µ̂(1−µ̂)
N

∑N
i=1

1
ni

. (17)

The estimated posterior expectation

π̃i = E(Π|µ̂, M̂) =
rEB

rEB + sEB

=
xi

ni
+ M̂µ̂

ni + M̂
=

M̂

ni + M̂
µ̂ +

ni

ni + M̂

xi

ni

(18)

and the estimated posterior variance

σ̃2
i = V ar(Π|µ̂, M̂) =

rEBsEB

(rEB + sEB)2(rEB + sEB + 1)
=

(xi + M̂µ̂)(ni − xi + M̂(1− µ̂))

(ni + M̂)2(ni + M̂ + 1)
=

π̃i

ni + M̂

ni − xi + M̂(1− µ̂)

ni + M̂ + 1
=

π̃i(1− π̃i)

ni + M̂ + 1
. (19)

We see here that π̃i is a weighted average between the prior mean µ̂ and π̂i,
depending on the weight of M̂ (information in the prior) relative to ni (infor-
mation in the data). To visualize the weighting more and to make it easier to
compare with other methods we can write the posterior expectation as

π̃i = B̂iµ̂ + (1− B̂i)π̂i. (20)

14



4.3 The beta/binomial model 4 EMPIRICAL BAYES METHODS

where B̂i = M̂

M̂+ni
is the so called shrinkage factor. If we recall formula (3) from

chapter 2 it is observed that this formula is similar. Though B̂i is a function
of µ̂ (see equation (17) and (18)) why equation (20) is not a linear function as
equation (3) appears to be. Clearly B̂i depends on the relationship between M
and ni. The higher M is and the smaller ni is the bigger is the shrinkage or vice
versa. If ni = 0, Bi = 1 and if ni is large Bi is small.

As M → ∞ the prior variance V ar(πi|µ, M) → 0 and we have exact knowl-
edge of πi (all πi are the same). Also Bi → 1 and π̃i → µ̂ for all i. If equation
(17) is observed it can be concluded that for M to turn to infinity, s2 has to turn
to the value µ̂(1−µ̂)

N

∑N
i=1

1
ni

.

As M → 0 the prior variance V ar(πi|µ, M) turns to its maximum value µ(1−µ),
Bi → 0 and π̃i → π̂i. From equation (17) we conclude that s2 has to turn to its
maximum value µ̂(1− µ̂) for M to turn to zero.

M is a parameter that is the same for the whole dataset, while ni can be dif-
ferent for each patient, so differences between B̂i within the same dataset de-
pends solely on ni. If a patient has zero observations, ni = 0, Bi = 1 and π̂i is
equal to the population mean µ̂.

4.3.2 Maximum likelihood estimation

A better way to find µ̂ and M̂ is with maximum likelihood estimates. The
derivation of the ML-estimates are as follows:

The likelihood function is

L(µ, M) =
N∏

i=1

(
Γ(M)

Γ(Mµ)Γ(M(1− µ))

(
ni
xi

) Γ(xi + Mµ)Γ(ni − xi + M(1− µ))

Γ(ni + M)

)
.

The loglikelihood is

l(µ, M) = log(ni) + logΓ(M)− log[Γ(Mµ)Γ(M(1− µ))] +

+
∑

[log
(

ni
xi

)
+ logΓ(xi + Mµ) + logΓ(ni − xi + M(1− µ))− logΓ(ni + M)].

The derivative of the likelihood function with respect to µ and M are

dl(µ, M)

dµ
= −Ψ(Mµ)M

Γ(Mµ)
+

MΨ(M(1− µ))

Γ(M(1− µ))
+

+
N∑

i=1

[
MΨ(xi + Mµ)

Γ(xi + Mµ)
− MΨ(ni − xi + M(1− µ))

Γ(ni − xi + M(1− µ))

]
= 0, (21)
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dl(µ, M)

dM
=

Ψ(M)

Γ(M)
− µΨ(Mµ)

Γ(Mµ)
− (1− µ)Ψ(M(1− µ))

Γ(M(1− µ))
+

−
N∑

i=1

[
Ψ(ni + M)

Γ(ni + M)
+

µΨ(xi + Mµ)

Γ(xi + Mµ)
+

(1− µ)Ψ(ni − xi + M(1− µ))

Γ(ni − xi + M(1− µ))

]
= 0. (22)

The greek letter Ψ is used as the derivative of the Γ-function. A problem in
equation (21) and (22) is that it is not possible to express one of the variables
as a function of the other. I have used a so called hybrid method to solve these
nonlinear equations. The moment estimate for µ has been inserted into equa-
tion (21) and (22) to find the MLE of M and vice versa. Because of the usage of
both the moment estimate and the MLE the method is called a hybrid method.
The result is shown in figure 2, 3, 4 and 5 below. In figure 2 we see that l(µ, M)

Figure 2: The derivative of l(µ,M) using
formula 21 with µ̂ from equation 14.

Figure 3: The derivative of l(µ,M) using
formula 22 with µ̂ from equation 14.

Figure 4: The derivative of l(µ,M) using
formula 21 with M̂ from equation 17.

Figure 5: The derivative of l(µ,M) using
formula 22 with M̂ from equation 17.

has a maximum for M ≈ 8 and a minimum when M → ∞. M ≈ 8 is not a
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good estimate of M because if we construct samples with M equal to 1 or 50
the ML estimate is still somewhere between 6 and 15. In figure 3 we can not
come to any single estimate for M because l(µ, M) has many maximums and
minimums throughout the x-axis. The conclusion is that we cannot come to
any single estimate for M from any of these figures or forth worth with the ML
method. In figure 4 l(µ, M) has a maximum value at µ ≈ 0.2 and a minimum
at µ ≈ 0.8. In figure 5 l(µ, M) has a maximum at µ ≈ 0.8 which is consistent
with the moment estimate of µ that is 0.83. Unfortunately this is the only esti-
mate that is somewhat consistent with the moment estimates why the moment
method will be used instead of the hybrid method.

4.4 The Gaussian/Gaussian model

Another way to analyze the data set is to use normal approximation and then
get a Gaussian/Gaussian (normal/normal) model instead of the beta/binomial
model we used above. The likelihood function is binomial distributed why the
expectation and variance for Xi

ni
|πi is

E

(
Xi

n
|πi

)
=

E(Xi|πi)

ni

=
niπi

ni

= πi,

V ar

(
Xi

n
|πi

)
=

V ar(Xi|πi)

n2
i

=
niπi(1− πi)

n2
i

=
πi(1− πi)

ni

.

We approximate the binomial distribution with a normal (or Gaussian) distri-
bution, thus Xi

ni
|πi

ind∼ N(πi,
πi(1−πi)

ni
).

We use a normal distribution as a prior instead of the beta distribution why
πi|µ now is assumed to be i.i.d. N(µ, τ 2)-distributed, with hyperparameters µ
and τ 2. It can be questioned if a normal distribution is reasonable to use here
because πi is restricted to the interval [0,1]. We will get the answer on that
question when we do the tests.

We get a Gaussian/Gaussian distribution for marginal density function of X 8:

m(x|µ, τ 2) =

∫
p(x|θ, σ2)g(θ|µ, τ 2)dθ∼N(µ, σ2 + τ 2) (23)

According to Bayes formula (4) the posterior distribution is9:

P (πi|xi) ∝
1√
2πσ2

i

exp

{
−1

2
(xi − πi)

2/σ2
i

}
1√

2πτ 2
exp

{
−1

2
(πi − µ)2/τ 2

}
=

8Carlin, Louis, (2000) p. 11, 62
9Ibid p. 63
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1

2πσiτ
exp

{
−1

2

τ 2(xi − πi)
2 + σ2

i (πi − µ)2

σ2
i τ

2

}
=

1

2πσiτ
exp

{
−1

2

π2
i (σ

2
i + τ 2)− 2πi(τ

2x + σ2
i µ) + τ 2x2

i + σ2
i µ

2

σ2
i τ

2

}
which is N(Biµ + (1−Bi)xi, (1−Bi)σ

2
i )-distributed, where Bi =

σ2
i

σ2
i +τ2 .

4.4.1 Estimates

Before we continue with the EB estimate we have to find estimates for the
expectation and variance of Xi

ni
|πi and πi|µ. A moment estimate for µ is as

before equation (14) and a weighted variance estimate for the whole populace
variance τ 2 is

τ̂ 2 =
N

∑
ni(π̂i − µ̂)2

(N − 1)
∑

ni

. (24)

For Xi

ni
|πi a moment estimate for π̂i is equation (1) and a moment estimate for

the variance, σ̂i, is

σ̂2
i =

π̂i(1− π̂i)

ni

because Xi

ni
|πi is binomial distributed. The estimated posterior expectation of

πi then is,

π̃i = B̂iµ̂ + (1− B̂i)
xi

ni

(25)

and the estimated posterior variance

V ar(πi|µ̂) = (1− B̂i)σ̂
2
i . (26)

The estimate B̂i is simply found by

B̂i =
σ̂2

i

σ̂2
i + τ̂ 2

. (27)

Equation (25) follows similar to equation (20) the same principle as the for-
mula mentioned in chapter 2 equation (3). Though B̂i is a function of π̂i

(σ̂2
i = π̂i(1−π̂i)

ni
) why equation (27) is not a linear function as equation (3) ap-

pears to be. Here π̃i is a weighted average between the prior mean µ̂ and π̂i,
depending on the weight of τ̂ 2 (information in the prior) relative to σ̂2

i (infor-
mation in the data). If any of σ2 or τ 2 would have been known we would
have found a better estimate by using the marginal likelihood function to get
a marginal MLE as we did in subsection (4.3.2). Now that both are unknown it
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4.5 The EM-algorithm 4 EMPIRICAL BAYES METHODS

is unfortunately no idea to do this which is understood after some calculations
which I consider not necessary to bring up here. We will simply have to be
satisfied with the estimate of B̂i as it is above in equation (27).

As τ̂ 2 → 0 we have exact knowledge of πi, Bi → 1 and π̃i → µ̂ for all i(same as
for the beta/binomial case when M →∞).

As τ̂ 2 → ∞ the prior gives no information, so Bi → 0 and π̃i → π̂i for all i.
This can be compared with the beta/binomial case when M → 0 with the dif-
ference that then the prior variance turns to µ̂(1− µ̂) instead of infinity.

A large σ̂2
i comes from a low number of observations ni (little information

from the data set) and results in bigger shrinkage. τ̂ 2 is the same for the whole
data set while σ̂2

i is different for each patient. σ̂2
i depends on both π̂i and ni

why these parameters affect the difference between single patients B̂i. We can
compare this with the beta/binomial model where it was only ni that affected
the difference in shrinkage factor between patients. If a patient has zero obser-
vations, ni = 0, it is easy to see that Bi = 1 and that π̂i is equal to the population
mean µ̂.

In both the EB models we do not really impute values instead of the missing
ones. What we did was to estimate a new π̃i for each patient even if the patient
in question did not have any missing values. We did come to the conclusion
that patients with a smaller number of observations get a higher shrinkage,
which is good indeed, but if we want a patient with no missing values to have
approximately no shrinkage at all the number of observations would have to
be very large (possibly over 1000), i.e. the individual variance would have to
tend to zero. If we don’t have that many observations it is not possible to get
zero variance or no shrinkage. The estimate π̃i is an estimate of the true πi,
with missing values or not, but of course if the variance tends to zero we do
get a very close estimate of πi and the shrinkage is very small. It is mostly
not possible to accomplish very large number of observations per patient (ni)
when the trial is made. Hopefully Empirical Bayes method, as described in the
two subsections above, will give us good estimates of the true vector π.

4.5 The EM-algorithm

If we want to impute values directly and not change the π̂i for the patients that
do not have any missing values a method that follows the Expectation Maxi-
mization algorithm (EM-algorithm) can be used. A short version on how the
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EM-algorithm works is given.

Consider a model where a vector Y = T (X) is observed, with prior g(Y |θ),
of the complete model X = (X1, . . . , Xn), with distribution function f(X|θ)
where the MLE of θ is to be found. Now a score function can be assigned:

S(Y |θ) =
δ

δθ
ln(g(Y |θ)). (28)

Then we go on with the ’E’- or expectation-step which is to calculate

S(θ|θ(k)) = E(S(Y |θ)|y, θ(k)). (29)

θ(k) is of course the value of θ at iteration j where j = 0, 1, 2, . . .. To manage
this the Bayesian techniques described in the previous sections are used. With
the ’M’- or maximization-step a new estimate of the parameter θ is then found:

θ(k+1) = argmaxS(θ|θ(k)). (30)

We then start from the beginning again with the ’E’-step and repeat the recur-
sion until θ(k) converges to some value θ̂EM . This version of the EM-algorithm
has its background in the works of Carlin, B.P. and Louis, T.A. (2000) and
Zwanzig, S. (2003).

The way the ’E’- and ’M’-step are used in this essay is as follows. For the
’E’-step the analysis of Empirical Bayes described in section 4.3 and 4.4 will
be used to find S which is our π̃i for i = 1, . . . , N . Then for the ’M’-step new
values will be generated from the Be(π̃i)-distribution which will be imputed
where the missing values was. Then a new estimate for π̂i is calculated which
is called π̂EM

i , i.e. the recursion is made once.

5 Data analysis

5.1 Analysis of trial data set

How the trial data is built was described in section 2 and 4.2. The trial con-
sisted of 22 patients with 136 video observations each if no missing values
are recorded. Half of of the observations were done when the patients had
received drug A and half when they received drug B. Comparing differences
between drugs is not the topic of this essay why the analysis will be made on
all of the observations (i.e. there will be 136 observations per patient if the
patient have no missing values). The analysis was made in Matlab.

If the histogram of the data set in figure (6) is compared with the plots of
the normal distribution in figure (7) it is seen that the normal/normal model
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method simple est EB (p/p) EM (p/p) LOCF best c worst c mean
µ̂ b/b 0.831 0.832 0.803 0.786 0.847 0.755 0.801
µ̂ n/n 0.834 0.797
M̂ b/b 2.83 2.94/117 2.94/2.47 2.46 4.88 1.33 2.38
τ̂ 2 b/b 0.037 0.036/0.0012 0.036/0.047 0.049 0.022 0.080 0.047
τ̂ 2 n/n 0.037/0.034 0.037/0.050

Table 1: Results from analysis. p/p stands for prior/posterior values, b/b for beta/binomial
method and G/G for Gaussian/Gaussian method. The blanks are of course used instead of
writing the value above again.

Figure 6: Histogram of the trial data set. Figure 7: Graph of the N(µ̂, τ̂2)-
distribution for the simple-, EB- and
EM-estimate in the normal/normal model.

gives a very poor fit to the data. This is somewhat as expected because it is not
really appropriate to use the normal distribution in this case where it is quite
obvious that the beta is the superior distribution to use.

The trial data had few missing values, it is less than five percent for most pa-
tients why it is necessary to generate data sets so that the amount of missing
values and other variables can be chosen. This is done in the next section.

5.2 Analysis of simulations

To evaluate the EB-model and EM-model new data sets with different param-
eter values for the underlying ’true’ values of π and M will be generated. The
way it is done are as follows:

• Generate N observations π1, . . . , πN from the beta(µ, M)-distribution. µ
and M are the chosen ’true’ parameters and πi are the ’true’ values that
later is to be estimated with our different imputation methods.
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Figure 8: Graph of the beta(µ̂, M̂)-
distribution for the simple-, EB- and EM-
estimate in the beta/binomial model.

Figure 9: Graph of the beta(µ̂, M̂)-
distribution for the estimates of LOCF-,
bestcase-, worst case- and mean method-
models.

• Generate n observations N times from the Bernoulli distribution. That is
for every πi n observations are drawn from Be(πi). Thus an N ×n matrix
has been created.

• Now randomly remove observations for each row of the matrix in the
fashion that each row get a different expected number of missing values.
This is done by generating values pi from the beta(r,s)-distribution where

r
r+s

is the expected percentage of missing values for the whole data set.
For each row, i = 1, . . . , N , pi is the probability that each observation is a
missing value.

5.2.1 A small simulation

To get a visualization of how the Empirical Bayes- and the EM-method works
a simulation with a small N is made and showed in table 2. The ’true’ pa-
rameters of the beta distribution is µ = 0.65 and M = 10, and the expected
amount of missing values is 25%. For the Empirical Bayes method it can be
seen from this table that the higher the difference is between π̂i and the mean
value the larger is the shrinkage, while the number of missing values does not
affect the shrinkage as much. For the EM-method the number of missing val-
ues affect the shrinkage most, while the difference between π̂i and mean does
not have that big influence. But of course for the shrinkage to be big, as in row
13, both missing values and difference (π̂i − µ̂) has to be quite large. Generally
the shrinkage is bigger for the EB-estimate than the EM-estimate, unless the
amount of missing values are large. As an example of this row number 4 and
11 can be studied, where the amount of missing values are about 60% and the
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i ni Bi true πi π̂i π̂EB (shr EB) π̂EM (shr EM)
betarep(0.65, 10)

µ̂ 0.670 0.639 0.637 0.645
M̂ prior 7.014 5.854 9.33 9.33
M̂ post. 7.014 5.854 31.11 12.33

1 28 0.25 0.5667 0.6429 0.6418 -0.0011 0.6333 -0.0095
2 16 0.37 0.6767 0.5625 0.5905 0.0280 0.6333 0.0708
3 26 0.26 0.4607 0.4231 0.4800 0.0569 0.4000 -0.0231
4 9 0.51 0.4747 0.6667 0.6523 -0.0143 0.6000 -0.0667
5 16 0.37 0.6496 0.7500 0.7089 -0.0411 0.7667 0.0167
6 26 0.26 0.8916 0.8846 0.8196 -0.0650 0.8333 -0.0513
7 29 0.24 0.5318 0.3103 0.3902 0.0799 0.3333 0.0230
8 21 0.31 0.7974 0.7143 0.6910 -0.0233 0.7333 0.0190
9 28 0.25 0.5451 0.6429 0.6418 -0.0011 0.6667 0.0238

10 29 0.24 0.6470 0.5517 0.5728 0.0211 0.5667 0.0149
11 13 0.42 0.8021 0.7692 0.7146 -0.0546 0.6333 -0.1359
12 27 0.26 0.6247 0.6296 0.6319 0.0023 0.6667 0.0370
13 9 0.51 0.5030 0.2222 0.4341 0.2119 0.4333 0.2111
14 30 0.24 0.6747 0.7000 0.6854 -0.0146 0.7000 0
15 15 0.38 0.7963 0.8667 0.7792 -0.0875 0.7667 -0.1000
16 27 0.26 0.8929 0.8519 0.7971 -0.0548 0.8667 0.0148
17 20 0.32 0.7963 0.8500 0.7827 -0.0673 0.8000 -0.0500
18 14 0.40 0.4999 0.5000 0.5554 0.0554 0.5667 0.0667
19 15 0.38 0.9075 0.8667 0.7792 -0.0875 0.8667 0
20 28 0.25 0.5702 0.4286 0.4810 0.0525 0.4333 0.0048

Table 2: Shrinkage (shr), estimate (EB or EM) - π̂i, is within parenthesis, with the usage of
the EB- and the EM-method.

EM-shrinkage higher than the EB-shinkage.

To see how the Gaussian/Gaussian model works in comparison with the beta/binomial
another simulation was made and the table to that is shown in appendix A.2
table 3. From this table where the true M = 20 we can see that the estimated
prior variance is much higher in the Gaussian/Gaussian model and that re-
sults in much lesser shrinkage than in the beta/binomial model. The reason
for the high variance is probably the poor fit of the model as stated in sec-
tion 5.1. For other M within the interval [1,100] the shrinkage still is much
lesser. The only case when the estimates are quite similar is when the number
of observations per patient is high (at least above 100). In figure 19 and 20 the
difference between the ’true’ estimate of pii and beta/binomial respectively
Gaussian/Gaussian estimates are shown in box-plots. There we see that the
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beta/binomial model gives better results than the Gaussian/Gaussian, espe-
cially when the variance is high (figure 19, M=40). The following tests will be
made only with the beta/binomial model.

5.2.2 Large data set simulation

The observations made in the subsection above are consistent with the expec-
tations in section 4.3 and 4.4. In that small sample it is not possible to conclude
if the EB- or EM-method is efficient or better than the general methods of im-
putation, why bigger samples with different parameter values and different
amounts of missing values has to be made. That is done in this subsection.

Box-plots of differences between the ’true’ model and the different general
methods and Bayesian methods can be used to show the efficiency of the im-
putation methods. µ = 0.3 and N = 1000 for all figures. What the box-plots
different boxes shows are the difference between the ’true’ πi and:

1. Non-Bayesian estimate.

2. Empirical Bayes estimate, that is with µ̂ and M̂ .

3. Bayes estimate, that is with the ’true’ µ and M .

4. The EM method with µ̂ and M̂ .

5. The EM method with ’true’ µ and M .

6. LOCF method.

7. Best case method.

8. Worst case method.

9. Mean method.

Figure 10 shows that the EB-method gives slightly better estimates of πi

than the other methods and when the variance is lowered as in figure 11 (M=40
instead of 5) it can be seen that it is clearly better. For this low amount of
missing values there is almost no difference between the EM-method and the
non-Bayesian estimate.

For lower number of observations the EB-method gives significantly better
estimates than the other methods as we see in figure 12 where n=10. When
the number of missing values are increased to 30% as in figure 13 it can be
noted that the EM-method begin to show better estimates than the general
imputation methods.

The amount of missing values are raised to 50% in figure 14 and 15. We
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Figure 10: Missing values 10%, M=5 and
n=30.

Figure 11: Missing values 10%, M=40 and
n=30.

Figure 12: Missing values 10%, M=10 and
n=10.

Figure 13: Missing values 30%, M=15 and
n=30.

can spot a slight difference between the EB-estimate and the Bayes estimate
when the variance is high (figure 15, M=5), but for lower variance (figure 14,
M=40) the difference is small. It can also be stated that the EM-method now
has significantly better estimates than the regular methods and the difference
between the EB- and EM-method is smaller.

For very large numbers of observations as in figure 16 where n=500 it is
hard to spot any differences between methods other than that EB and EM gives
a lower amount of outliers. For very large number of missing values (80%) and
high variance (M=3) as in figure 17 the EB and EM method has very similar
estimates. From the figures above we can also draw the conclusions that the
estimates get better as M increases (the prior variance decreases).

25



6 DISCUSSION

Figure 14: Missing values 50%, M=40 and
n=30.

Figure 15: Missing values 50%, M=5 and
n=30.

Figure 16: Missing values 50%, M=5 and
n=500.

Figure 17: Missing values 80%, M=3 and
n=20.

6 Discussion

With the Empirical Bayes method we get new estimates of πi for each patient
i = 1, . . . , N , where πi is the probability that the patient i is in a healthy state.
The Empirical Bayes method may not really be seen as an imputation method
where new observations is created instead of the missing ones, but the dif-
ference in shrinkage between patients are dependent on the number of missing
values (number of observations ni). If it is completely necessary to impute new
observations the Expectation Maximization method can be used instead of the
EB method but the shrinkage factor will be smaller depending on the amount
of missing values. When the amount is about 5-10% the shrinkage factor is
small relative to the EB method, but when it increases to about 50% the differ-
ence is less and the new estimates of pii is approximately as good compared to
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the general methods as the EB method is.

The Expectation Maximization method as it is implemented in this essay is
used in such a way that the recursion is made once. It can possibly be made
until convergence is reached but I did not think it a necessity to do so because
the values assessed by doing the recursion once was satisfying.

The data over Parkinson patients is on the scale [-3,3] and were divided into
two health states. These were the ’good’ interval [-1,0,1] and the ’bad’ interval
[-3,-2,2,3]. As described in section 2 a value below zero states that the patient
suffer from stiffness and above zero that the patient suffer from shaking. It
could then be interesting to divide the scale into three health states and these
would be [-3,-2], [-1,0,1] and [2,3]. The reason for doing this would be that the
tested drug may be of more help against stiffness than shaking or vice versa
and therefore it is interesting to use three classifications. If we want to do this
we would use a multinomial distribution as likelihood together with a Dirich-
let distribution for prior. The Dirichlet is conjugate to the multinomial why the
calculations are fairly easy.

7 Conclusions

From the results in chapter 5.2.2 we can conclude that the Empirical Bayes
method gives better estimates of the true value of πi compared to the other
general imputation methods. This conclusion is valid for different amount of
missing values and different values of the data parameters, such as number of
observations per patient, number of patients, mean and variance.

For the Expectation Maximization method the same conclusion can be drawn
as for the Empirical Bayes method with the restriction that the amount of miss-
ing values at least should be more than 10% if we are to get significantly better
estimates.

When the beta/binomial model was compared to the Gaussian/Gaussian model
it was concluded that the latter gave a poor fit to the data as we expected. Be-
cause of the poor fit the estimated prior variance is much higher than in the
beta/binomial model and as a result of that the shrinkage is smaller. When
examining how efficient the models were to estimate the ’true’ estimates the
Gaussian/Gaussian could be considered the inferior. Observe that these con-
clusions were made when the data sets used in this essay was analyzed and
that the Gaussian/Gaussian model surely can be a well functioning model for
other data sets.
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The EB and EM method are not conservative imputation methods because they
do not make the estimates worse if missing values exist. They simply pull the
estimate toward the overall mean value with weight depending on the number
of missing values and that is not a procedure that makes the method conser-
vative.
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A APPENDIX

A Appendix

A.1 The beta distribution

The beta distribution is a continuous distribution with density function

P (x|r, s) =
Γ(r + s)

Γ(r)Γ(s)
xr−1(1− x)s−1

E(X) =
r

r + s

V ar(X) =
r(r + s)

(r + s)(r + s + 1)
,

where x ∈ [0, 1], r > and s > 0. The beta distribution is defined on the unit
interval and depending on r and s it can take several different types of shapes.
If both r = s = 1 it is the U(0,1)-distribution, see figure (18). If r < 1 the distri-
bution reaches infinity as x → 0 and if s < 1 it goes to infinity as x → 1. If r
and s < 1 the beta is concave up and if r and s > 1 it is concave down. Note
that the higher r+s is the lower is the variance. Some illustrations of the beta
distribution with different parameter values are shown in figure (18).

Figure 18: The beta distribution with six sets of different parameter values.
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A.2 Small simulation

i ni true πi π̂i shr EB shr EM shr EB shr EM
betarep(0.6, 20) b/b b/b G/G G/G

µ̂ 0.6625 0.671 0.675 0.637 0.684 0.696
M̂/τ̂ 2 prior 6.396 2.971 5.53/0.034 5.53/0.034 -/0.056 -/0.056
M̂/τ̂ 2 post. 6.396 2.971 12.38/0.016 8.38/0.025 -/0.033 -/0.061

1 1 0.609 0 0.568 0.414 0.579 0.426
2 5 0.719 0.800 -0.068 -0.047 -0.011 -0.116
3 13 0.457 0.385 0.085 0.070 0.036 0.036
4 10 0.713 0.700 -0.011 -0.008 -0.068 0.037
5 3 0.657 0 0.435 0.109 0.368 0.268
6 3 0.653 1.000 -0.214 -0.053 -0.158 0
7 0.5 0.807 0 0.615 0.571 0.420 0.689
8 8 0.502 0.750 -0.032 -0.023 -0.013 0.039
9 6 0.691 0.333 0.162 0.135 0.088 -0.070
10 2 0.704 1.000 -0.242 -0.098 -0.210 0
11 11 0.679 0.909 -0.080 -0.028 -0.014 -0.014
12 3 0.640 1.000 -0.213 -0.053 -0.210 0
13 15 0.774 0.933 -0.071 -0.018 -0.038 0.014
14 15 0.518 0.667 0.001 0.001 0.017 0.017
15 17 0.634 0.882 -0.052 -0.020 -0.040 0.012
16 19 0.608 0.526 0.033 0.027 0 0
17 2 0.619 1.000 -0.242 -0.098 -0.421 0
18 5 0.497 0.200 0.247 0.171 0.063 0.221
19 14 0.476 0.571 0.028 0.024 0.008 0.007
20 19 0.627 0.684 -0.003 -0.002 0 0

Table 3: Shrinkage (shr), estimate (EB or EM) - π̂i, with the usage of the EB- and the EM-
method with the beta/binomial and Gaussian/Gaussian models. Expected number of missing
values are 50%

The box-plots in figure 19 and 20 shows:

1. difference between Non-Bayesian estimate of πi and ’true’ πi.

2. difference between EB estimate of πi and ’true’ πi, beta/binomial model.

3. difference between EB estimate of πi and ’true’ πi, Gaussian/Gaussian
model.

4. difference between EB estimate of πi and EM estimate of πi, beta/binomial
model.
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5. Difference between EB estimate of πi and EM estimate of πi, Gaussian/Gaussian
model.

Figure 19: Missing values 50%, M=40,
µ=0.6 and n=20. Repeated 50 times for 20
patients.

Figure 20: Missing values 50%, M=5,
µ=0.6, N=20 and n=20. The simulation is
repeated 50 times.
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