

HAARP Generated ELF/VLF Waves for Magnetospheric Probing

Mark Gołkowski

University of Colorado Denver

M.B. Cohen, U. S. Inan, D. Piddyachiy Stanford University

RF Ionospheric Workshop

20 April 2010

- > HAARP magnetospheric wave injection experiment
- Survey of geomagnetic indices (Kp, DST, AE)
- Relation to concurrent natural magnetospheric emissions
- Most recent HAARP campaign
- > Modeling of wave injection

Wave Injection with HAARP

- HAARP generated ELF/VLF waves injected into the magnetosphere
- ELF/VLF waves undergo non-linear interaction with hot plasma electrons in magnetosphere
- Amplified waves observed on both ends of the magnetic field line

UC Denver Electrical

Engineering

Geomagnetic Conditions: Kp

Average Kp Values (via Ap)

JC Denver

Geomagnetic Conditions: Kp

IC Denver

Geomagnetic Conditions: DST

JC Denver

Geomagnetic Conditions: AE

JC Denver

Relationship to Geomagnetic Indices

- Kp, DST, AE: quiet conditions 12-36 hours before observations are statistically significant, AE index most significant
- Kp and DST additionally show disturbed conditions 2-4 days prior to be significant

Not prolonged quiet but <u>quieting/recovering</u> conditions following a disturbance are most favorable for ground observations of HAARP induced magnetospheric amplification

Two Hour Evolution

JC Denver

Electrical Engineering

Unique ground observation

Two Hour Evolution: Hiss

JC Denver

Electrical Engineering

Chistochina 11-Dec-2008 UT dB-pT 3 -10 2.5 -15 Frequency (kHz) 2 -20 -25 1.5 -30 1 -35 0.5 40 10 20 30 40 50 60 70 80 90 100 110 Minutes after 02:00:00 UT Chistochina 11-Dec-2008 UT dB-pT 3 -10 Broadband hiss, 2.5 Frequency (kHz) -15 2 no 2-hop echoes -20 -25 .5 observed -30 HAARP Trans. -35 0.5 11 -40 5 10 15 20 25 Seconds after 02:20:00 UT

Frequency (kHz)

Two Hour Evolution: Chorus

JC Denver

Electrical Engineering

Chistochina 11-Dec-2008 UT dB-pT 3 -10 2.5 -15 2 -20 -25 1.5 -30 -35 0.5 40 50 10 20 30 60 70 80 90 100 110 40 Minutes after 02:00:00 UT Chistochina 11-Dec-2008 UT dB-pT Hiss 3 -10 transitions to 2.5 2.5 2 1.5 1.5 -15 -20 chorus still no -25 echoes -30 -35 12 0.5 40 25 5 10 15

Seconds after 03:24:00 UT

20

Two Hour Evolution: Echoes

JC Denver

Electrical Engineering

Chistochina 11-Dec-2008 UT dB-pT 3 -10 2.5 -15 Frequency (kHz) 2 -20 -25 1.5 -30 -35 0.5 40 60 10 20 30 40 50 70 80 90 100 110 Minutes after 02:00:00 UT Chistochina 11-Dec-2008 UT dB-pT_ Chorus gives -10 way to 2-hop 2 Frequency (kHz) -15 echoes of -20 -25 1.5 same -30 -35 amplitude 2 Hop Echoes 13 0.5 40 20 25 5 15 10 Seconds after 03:33:00 UT

Two Hour Evolution: Echoes

JC Denver

Significance of Natural Emissions to Amplification

- UC Denver Electrical Engineering
- Association of hiss, chorus, triggered emissions (1-hop, 2-hop echoes) previously observed
- ➤ Is the relationship
 - Causal through wave-particle interactions: hiss -> chorus [Koons et al., JGR, 1981] ?
 - Effect of propagation and dispersion: chorus ->hiss [Bortnik et al., Nature, 2008] ?
 - Linear (hiss) versus non-linear (chorus, echoes) radiation of free energy from anisotropy of electron distribution [*Omura et al., JGR*, 2008] ?
- Do observed emissions originate from the same place?

Multiple Site Measurements

Secs after 02:05:00 UT

JC Denver

dB-pT

Electrical Engineering

Dot Lake

Source Location: Emissions

Denver

HAARP Campaign: 4-15 Apr, 2010

UC Denver

Very Strong ELF/VLF

Different Methods of Generation

- Amplitude modulated signal
- 50% Duty cycle

- CW signal
- +- 15° line pattern

ELF frequency dictated by line frequency

- CW signal
- Circular beam pattern
- ELF frequency dictated by spin frequency

- AM signal
- 3x3 grid, 10 μs dwell time at each point

IC Denver

Electrical Engineering

 "Beam painting" technique

Different Methods of Generation

JC Denver

Electrical Engineering

Different methods of excitation yield different magnetospheric results

Different Methods of Generation

Chistochina 30-Aug-2007 UT

Sometimes the line sweep is better

Magnetospheric Injection: Predictions

Survey of geomagnetic indices indicates that observations occur during quieting/recovery following a disturbance

Multi-station ground observation shows evolution of natural emissions from hiss to chorus to HAARP induced amplification

Modeling shows that AM and Geometric Modulation yield highest wave amplitudes

- J. Bortnik, R. M. Thorne, N. P. Meredith (2008), The unexpected origin of plasmaspheric hiss from discrete chorus emissions, *Nature*, 452, 62.
- Carpenter, D. L., and Z. T. Bao (1983), Occurrence properties of ducted whistlermode signals from the new VLF transmitter at Siple Station, Antarctica, *J. Geophys. Res.*, 88, (A9), 7051-7057.
- Koons, H. C. (1981), The role of hiss in magnetospheric chorus emissions, *J. Geophys. Res., 86*, 6745–6754.
- Omura Y., Y. Katoh, D. Summers (2008), Theory and simulation of the generation of whistler-mode chorus, *J. Geophys. Res.*, 113, A04223, doi:10.1029/2007JA012622.