
Doc. no. N1521=03-0104
Date: September 21, 2003
Reply-To: Gabriel Dos Reis

gdr@acm.org

Generalized Constant Expressions
Abstract

We suggest to generalize the notion of constant expressions to in-
clude calls to constant-valued functions. The purpose is to push their
expressive power even further, to remove embarassments in the stan-
dard library, to provide some support for meta programming and
convenient notation for expressions that are morally constant.

Introduction

This paper proposes to generalize the definition of constant expressions
to include calls to suitable simple functions with constant expressions —
which abstractly are constant expressions with named sub-patterns. It
aims at providing better type-safety support for components of the stan-
dard library (or general libraries), to remove embarrassments, and to en-
hance the expressive power of constant expressions. The suggestions con-
tained in this paper are not intended to be final wordings. Rather, they are
initial basis for discussions and improvements.

1 The problems

This section describes examplars of problems the idea of generalizaing
constant expressions, as proposed in

�
2.2, is trying to solve. At the end

of this section, we recall the definition of constant expressions as currently
in use.

1.1 Non-portable, non-compile time bitmasks

The Standard Library introduces the notion of bitmask types in its introduc-
tory clause (see [1,

�
17.3.2.1.2]):

1

2

Several types defined in clause 27 are bitmask types. Each bit-
mask type can be implemented as an enumerated type that
overloads certain operators, as an integer type, or as a bitset
(23.3.5).

For type-safety reasons, it is highly desirable that such a bitmask type be
implemented by a type different from any standard integer type. Enu-
meration types are popular choice. However, once the aforementioned
“certain operators” have been overloaded, bitmask operations involving
only constants no longer yields constant expressions.

enum fmtflags {
boolapha, dec, fixed, hex, internal, left, oct, right,
// ...

};

inline fmtflags
operator|(fmtflags a, fmtflags b)
{ return fmtflags(int_type(a) | int_type(b)); }
// ...

const fmtflags
adjustfield = left | right | internal // NOT a constant

Because the operator | is overloaded, adjustfield is not longer a con-
stant. The depenency in implementation defined semantics is another
level of non-portability but the core of the problem as just explained is
general. Furthermore, there results a gratuitous discrepency between the
bitmask adjustfield and other enumerations (e.g. boolapha). On the
other hand it is clear that the function operator| is sufficiently simple
so that adjustfield can be considered a constant, even though only a
restrictive definition of constant expression makes it not a constant.

1.2 Embarassments with numeric constants

The Standard Library defines a traits (numeric_limits) that provides
C++ programs with information about various properties of the imple-
mentation’s representation of fundamental arithmetic types. For example,
numeric_limits<T>::is_signed is an integral constant expression
that evaluates to true when the type T is signed. If T is an integer type,
then associated macros XXX_MIN and XXX_MAX (defined in <climit>)
are integral constant expressions that denotes the minimum and max-
imum values of T. The same values are available as calls to functions

Generalized Constant Expressions N1521=03-0104

3

numeric_limits<T>::min()and numeric_limits<T>::max(), ex-
cept that they are no longer integral constant expressions, mostly because
of a restrictive definition of constant expression.

1.3 A zoo of constant expressions

Standard C++ defines a broad notion of constant expressions (see [1,
���������

]).
A constant-expression is a conditional-expression subject to specific restric-
tions. The Standard defines eight categories of constant-expressions

1. an integral constant expression,

2. a null pointer value,

3. a null member pointer value,

4. an arithmetic constant expression,

5. an address constant expression,

6. a reference constant expression,

7. an address constant expression for a complete object type, plus or
minus an integral constant expression, or

8. a pointer to member constant expression.

Integral constant expressions are probably the most used constant ex-
pressions in various compile-time computations including array defini-
tions, or explicit values for non-type template parameters. For future ref-
erences, the remaining of this sub-section recalls definitions for the cate-
gories of constant expressions listed above. References contained in those
definitions are with respect to the Standard [1].

Integral constant expression

An integral constant-expression can involve only literals (2.13),
enumerators, const variables or static data members of inte-
gral or enumeration types initialized with constant expressions
(8.5), non-type template parameters of integral or enumeration
types, and sizeof expressions. Floating literals (2.13.3) can ap-
pear only if they are cast to integral or enumeration types. Only
type conversions to integral or enumeration types can be used.

Generalized Constant Expressions N1521=03-0104

4

In particular, except in sizeof expressions, functions, class ob-
jects, pointers, or references shall not be used, and assignment,
increment, decrement, function-call, or comma operators shall
not be used.

The last restriction rules out expressions like square(9) with

inline int square(int x) { return x * x; }

whereas are it accepts constructs like SQUARE(9) with

#define SQUARE(X) ((X) * (X))

That is an unsual situation, and we believe it is untenable given the safety
provided by square.

Null pointer value

A null pointer constant is an integral constant expression (5.19)
rvalue of integer type that evaluates to zero. A null pointer
constant can be converted to a pointer type; the result is the
null pointer value of that type and is distinguishable from every
other value of pointer to object or pointer to function type.

Null member pointer value

A null pointer constant (4.10) can be converted to a pointer to
member type; the result is the null member pointer value of that
type and is distinguishable from any pointer to member not
created from a null pointer constant.

It may be noted that neither a null pointer value, nor a null member pointer
value are acceptable template arguments.

Arithmetic constant expression

An arithmetic constant expression shall satisfy the requirements
for an integral constant expression, except that

	 floating literals need not be cast to integral or enumeration
type, and

	 conversions to floating point types are permitted.

Generalized Constant Expressions N1521=03-0104

5

Address constant expression

An address constant expression is a pointer to an lvalue designat-
ing an object of static storage duration, a string literal (2.13.4),
or a function. The pointer shall be created explicitly, using the
unary & operator, or implicitly using a non-type template pa-
rameter of pointer type, or using an expression of array (4.2) or
function (4.3) type. The subscripting operator [] and the class
member access . and -> operators, the & and * unary opera-
tors, and pointer casts (except dynamic_casts, 5.2.7) can be
used in the creation of an address constant expression, but the
value of an object shall not be accessed by the use of these oper-
ators. If the subscripting operator is used, one of its operands
shall be an integral constant expression. An expression that
designates the address of a subobject of a non-POD class object
(clause 9) is not an address constant expression (12.7). Function
calls shall not be used in an address constant expression, even
if the function is inline and has a reference return type.

Reference constant expression

A reference constant expression is an lvalue designating an ob-
ject of static storage duration, a non-type template parame-
ter of reference type, or a function. The subscripting opera-
tor [], the class member access . and -> operators, the &
and * unary operators, and reference casts (except those in-
voking user-defined conversion functions (12.3.2) and except
dynamic_casts (5.2.7)) can be used in the creation of a refer-
ence constant expression, but the value of an object shall not be
accessed by the use of these operators. If the subscripting op-
erator is used, one of its operands shall be an integral constant
expression. An lvalue expression that designates a member or
base class of a non-POD class object (clause 9) is not a reference
constant expression (12.7). Function calls shall not be used in
a reference constant expression, even if the function is inline
and has a reference return type.

Pointer to member constant expression

A pointer to member constant expression shall be created using
the unary & operator applied to a qualified-id operand (5.3.1),
optionally preceded by a pointer to member cast (5.2.9).

Generalized Constant Expressions N1521=03-0104

6

2 Suggestions

The generalizations we propose in this paper are articulated in three steps:
First, the key notion of constant-valued function is introduced; then, we
move on refining the current definition of constant expressions; finally, we
suggest an even more general notion of constant expressions, building on
the proposal [2] for user-defined literals. Texts that introduce modification
to existing standard wordings are typeset in bold face.

2.1 Constant-valued functions

A function is constant-valued if

	 it is a non-void returning inline function; and

	 its body consists in a single statement of the form

return expr ;

where after substitution of constant expressions for the function pa-
rameters in expr, the resulting expression is a constant expression.
Such an expression may involve calls to previously defined constant-
valued functions with argument list consisting only in constant ex-
pressions.

The above definition is an elaborated way of saying that a constant-
valued function is just a convenient notation for a constant expression
where some constant sub-expressions are named.

Examples.

int square(int x)
{ return x * x; } // constant-valued

long long_max()
{ return 2147483647; } // constant-valued

int abs(int x)
{ return x < 0 ? -x : x; } // constant-valued

int next(int x)

Generalized Constant Expressions N1521=03-0104

7

{ return ++x; } // NOT constant-valued

float array[square(9)]; // OK
enum { Max = long_max() }; // OK
bitset<abs(-87)> s; // OK
char buf[next(255)]; // ERROR
enum { default_fmt = adjustfiled }; // OK

It may be noted that constant-valued functions implement what one
gains with functional macros combined with constant expressions. A constant-
valued function cannot be recursive and cannot display mutual recursion.
There is no inherent unsolvable difficulty in constant-valued functions im-
plementations. Experimental implementations of this notion of constant-
valued functions calls where integral constants are expected were con-
ducted in earlier versions of CFront [3]. Constant-valued functions do not
suffer from the problems and shortcomings of macros.

2.2 Generalizing constant expressions

The generalization of constant expressions we propose in this paper builds
on generalizing integral constant expressions, address constant expres-
sions and reference constant expressions.

2.2.1 Basic cases

A first straightforward step is to allow calls to constant-valued functions
with constant expressions arguments in integral constant expressions.

Generalized integral constant expression

An integral constant-expression can involve only literals (2.13),
enumerators, const variables or static data members of inte-
gral or enumeration types initialized with constant expressions
(8.5), non-type template parameters of integral or enumeration
types, constant-valued function-calls and sizeof expressions.
Floating literals (2.13.3) can appear only if they are cast to in-
tegral or enumeration types. Only type conversions to inte-
gral or enumeration types can be used. In particular, except
in sizeof expressions, functions, class objects, pointers, or refer-
ences shall not be used, and assignment, increment, decrement,
non-constant-valued function-call, or comma operators shall
not be used.

Generalized Constant Expressions N1521=03-0104

8

Generalized address constant

An address constant expression is a pointer to an lvalue designat-
ing an object of static storage duration, a string literal (2.13.4),
or a function. The pointer shall be created explicitly, using
the unary & operator, or implicitly using a non-type template
parameter of pointer type, or calling constant-valued func-
tions with constant expressions, or using an expression of ar-
ray (4.2) or function (4.3) type. The subscripting operator []
and the class member access . and -> operators, the & and
* unary operators, and pointer casts (except dynamic_casts,
5.2.7) can be used in the creation of an address constant ex-
pression, but the value of an object shall not be accessed by
the use of these operators. If the subscripting operator is used,
one of its operands shall be an integral constant expression.
An expression that designates the address of a subobject of a
non-POD class object (clause 9) is not an address constant ex-
pression (12.7). Non-constant-valued function calls shall not
be used in an address constant expression.

Generalized reference constant expression

A reference constant expression is an lvalue designating an ob-
ject of static storage duration, a non-type template parame-
ter of reference type, or a function. The subscripting opera-
tor [], the class member access . and -> operators, the &
and * unary operators, and reference casts (except those in-
voking non-constant-valued conversion functions and except
dynamic_casts (5.2.7)) can be used in the creation of a refer-
ence constant expression, but the value of an object shall not be
accessed by the use of these operators. If the subscripting op-
erator is used, one of its operands shall be an integral constant
expression. An lvalue expression that designates a member
or base class of a non-POD class object (clause 9) is not a ref-
erence constant expression (12.7). Non-constant-valued func-
tion calls shall not be used in a reference constant expression.

2.2.2 Advanced cases

The next step of generalization builds on the user-defined literals pro-
posal [2]. This slight generalization formalizes the observation that a mem-

Generalized Constant Expressions N1521=03-0104

9

ber of a user-defined literal may also be considered a constant expres-
sion; in particular, a data member of a user-defined literal may be a con-
stant expression, and invokation of constant-valued member function for
a user-defined literal is a constant expression. Data member accesses and
constant-valued member function calls for user-defined literals in constant
expressions appear to us as a logical necessity to exploit the expressive
power of user-defined literals.

Examples

struct nil {
nil() { } // literal constructor
template<class T>
operator T* () const
{ return 0; } // constant-valued function

};

const int* p = nil(); // int* null pointer value

More general integral constant expression

An integral constant-expression can involve only literals (2.13),
enumerators, const variables or static data members of inte-
gral or enumeration types initialized with constant expressions
(8.5), non-type template parameters of integral or enumeration
types, constant-valued function-calls, nonstatic data members
of integral or enumeration types of user-defined literals and
sizeof expressions. Floating literals (2.13.3) can appear only if
they are cast to integral or enumeration types. Only type con-
versions to integral or enumeration types can be used. In par-
ticular, except in sizeof expressions, functions, non-literal ob-
jects, pointers, or references shall not be used, and assignment,
increment, decrement, non-constant-valued function-call, or
comma operators shall not be used.

Examples

struct cayley {
const int norm;
cayley(int a, int b)

: value(square(a) + square(b)) { }

Generalized Constant Expressions N1521=03-0104

10

operator int() const { return norm; }
};

bitset<cayley(98, -23)> s; // eq. to bistet<10133> s;

It may be observed that, modulo jumping through syntactic whoops,
the newly proposed definition for integral constant expression essential
provides the same expressive power of the defintion proposed

�
2.2.1.

More general address constant expression

An address constant expression is a pointer to an lvalue designat-
ing an object of static storage duration, a string literal (2.13.4),
or a function. The pointer shall be created explicitly, using
the unary & operator, or implicitly using a non-type template
parameter of pointer type, or calling constant-valued func-
tions with constant expressions, or using an expression of ar-
ray (4.2) or function (4.3) type. The subscripting operator []
and the class member access . and -> operators, the & and
* unary operators, and pointer casts (except dynamic_casts,
5.2.7) can be used in the creation of an address constant expres-
sion, but the value of a non-literal object shall not be accessed
by the use of these operators. If the subscripting operator is
used, one of its operands shall be an integral constant expres-
sion. An expression that designates the address of a subobject
of a non-POD class object (clause 9) is not an address constant
expression (12.7). Non-constant-valued function calls shall
not be used in an address constant expression.

Even more general reference constant expression

A reference constant expression is an lvalue designating an ob-
ject of static storage duration, a non-type template parame-
ter of reference type, or a function. The subscripting opera-
tor [], the class member access . and -> operators, the &
and * unary operators, and reference casts (except those in-
voking non-constant-valued conversion functions and except
dynamic_casts (5.2.7)) can be used in the creation of a ref-
erence constant expression, but the value of a non-literal ob-
ject shall not be accessed by the use of these operators. If the

Generalized Constant Expressions N1521=03-0104

11

subscripting operator is used, one of its operands shall be an
integral constant expression. An lvalue expression that desig-
nates a member or base class of a non-POD class object (clause
9) is not a reference constant expression (12.7). Non-constant-
valued function calls shall not be used in a reference constant
expression.

3 Interactions with other functionalities

3.1 User-defined literals

This proposal is written as a complement to B. Stroustrup’s proposal on lit-
erals for user-defined types. If user-defined literals are combined with mem-
ber accesses then one recoves some of the functionality proposed in

�
2.2.1.

3.2 Nullptr

If combined with user-defined literals, then the semantics (not the syntax)
of the nullptr proposal may be conveniently approximated. Whether the
nullptr proposal should be provided as a purely library functionality is
out of the scope of this proposal. However, it is interesting example of the
kind of expression power one gains.

3.3 Inlining

This proposal does not require arbitrary inlining per se. It does not make
inlining mandatory. What it does is to change the handling of simple in-
line functions that are used in contexts where constant expressions are ex-
pected. However, implementations are still free to ignore inlining requests
in non-constant expression context. The suggestions have been worded so
as not to require compilers “to solve the halting problem.”

4 Implementation

We do not expect any particular problem from implementation point of
view. Some implementations like EDG front-ends already have some of
the functionalities proposed in this paper. Earlier versions of CFront had

Generalized Constant Expressions N1521=03-0104

REFERENCES 12

some experimental implementations of those ideas. In a nutshell, this pro-
posal is essentially about liberal use of “constant folding”, which is already
common practice in most implementations.

Acknowledgements

This proposal has its roots in dicsussions with B. Stroutrup concerning the
Generalized Initialized List proposal and his proposal on Literal Constructor.
The generalization of constant expressions proposed in this paper are in-
tended to complement Stroustrup’s user-defined literals.

References

[1] International Standard ISO/IEC 14882, Programming Languages – C++.

[2] B. Stroustrup, Literals for user-defined types.

[3] B. Stroustrup, private communication.

Generalized Constant Expressions N1521=03-0104

