
Decltype and auto (revision 4)
Programming Language C++

Document no: N1705=04-0145

Jaakko Järvi
Texas A&M University

College Station, TX
jarvi@cs.tamu.edu

Bjarne Stroustrup
AT&T Research

and Texas A&M University
bs@research.att.com

Gabriel Dos Reis
Texas A&M University

College Station, TX
gdr@cs.tamu.edu

September 12, 2004

1 Background

This document is a revision of the documents N1607=04-0047 [JS04], N1527=03-0110 [JS03], and N1478=03-
0061 [JSGS03], and builds also on [Str02]. We assume the reader is familiar with the motivation for and history
behinddecltypeandauto, and do not include background discussion in this document; see N1607=04-0047 [JS04]
for that. We merely summarize, with two examples, the key capabilities that the proposed features would bring to the
language:

1. Declaring return types of functions that depend on the parameter types in a non-trivial way:

template <class A, class B>
auto operator+(const Matrix<A>& a, const Matrix& b)−> Matrix<decltype(a(0, 0) + b(0, 0))>;

2. Deducing the type of a variable from the type of its initializer:

template <class A, class B>
void foo(const A& a, const B& b) {

auto tmp = a∗ b;
...

1.1 Changes from N1607

Changes to the previous revisions primarily reflect the EWG discussions and results of the straw votes that took place in
the Kona and Sydney meetings. In addition, we suggest a change to the rules ofdecltypefor certain built-in operators,
and for expressions that refer to member variables. Following is the list of changes from proposal N1607.

• The decltype rules now explicitly state thatdecltype((e)) == decltype(e)(as suggested by EWG).

• Rules fordecltypeof member variables have changed.

• Rules fordecltypeof built-in comma, pre- and postincrement, and all assignment operators have changed.

1

Doc. no: N1705=04-0145 2

• Rules for the use ofauto to declare variables have changed to allow only one variable declaration in a declarator
list when the type of the variable is deduced from its initializer expression (as suggested by EWG).

• Currently allowed uses ofautowill not be invalidated with the new rules (as suggested by EWG).

• Added discussion ondecltypeand SFINAE.

• Removed wording forimplicit templatesusingauto (as suggested by EWG).

• Removed wording for usingauto to mean that the return type of a function should be deduced from the expres-
sion in thereturn statement of the function (as suggested by EWG).

• Removed the section describing changes between N1607 and N1478, and section on background and history.

2 Introduction

We suggest extending C++ with thedecltypeoperator for querying the type of an expression, and allowing the use of
keywordauto to indicate that the compiler should deduce the type of a variable from its initializer expression. Further,
we suggest a new function declaration syntax, which allows one to place the return type expression syntactically after
the list of function parameters. Previous revisions of this proposal explored the possibility of using theauto keyword
to denote implicit template parameters, and to instruct the compiler to deduce the return type of a function from its
body. Neither of these features gained significant support in EWG, and thus are not brought forward at this point.

3 Thedecltypeoperator

Guiding principle: The rules of determining the typedecltype(e)build on a single guiding principle: look for the
declared type of the outermost expression ine. If e is a variable or formal parameter, or a function/operator invocation,
the programmer can trace down the variable’s, parameter’s, or function’s declaration, and read the result ofdecltype
directly from the program text. In addition to this principle, there are rules for expressions where the outermost node
does not have a declaration in the program text, such as built-in operators, and literals.

Syntax: The syntax ofdecltypeis:

simple−type−specifier
...
decltype (expression)
...

We require parentheses (as opposed tosizeof’s more liberal rule) to keep the syntax simple and to keep the door open
for inquiry operations on the results ofdecltype, e.g.decltype(e).is_reference(). We do not, however, propose any such
extensions at this point. Syntactically,decltype(e)is treated as if it were atypedef-name(cf. 7.1.3). The semantics of
thedecltypeoperator is described with the following rules (note that the content of the next subsection 3.1 is part of
the suggested standard wording):

3.1 Decltype rules

The type denoted by a decltype type expressiondecltype(e)is the declared type of the outermost expres-
sion node of its argumente, defined as:

1. If e is of the form(e1), decltype(e)is defined asdecltype(e1).

Doc. no: N1705=04-0145 3

2. If e is a name of a variable in namespace or local scope, a static member variable, a formal param-
eter of a function, or a non-overloaded name of a function,decltype(e)is the declared type of that
variable, formal parameter, or function. In particular,decltype(e)results in a reference type if, and
only if, the variable or formal parameter is declared to have a reference type. Ife is a name of an
overloaded function, the program is ill-formed.

3. If e is an invocation of a user-defined function or operator,decltype(e)is the declared return type of
that function or operator.

4. If e refers to a member variable,e is transformed to a member access operator (see 5.1. (7)), after
which rule 5 is applied.

5. If e is an invocation of a built-in operator and has one of the following forms:

e1, e2
++e1
−−e1
e1@e2

where@stands for any assignment operator, thendecltype(e)is computed as follows:
decltype(e1,e2) is defined as decltype(e2)
decltype(++e1) is defined as decltype(e1)
decltype(−−e1) is defined as decltype(e1)
decltype(e1@e2) is defined as decltype(e1)

Let T be the expression type ofe. If e is an invocation of any other built-in operator, and ife is an
rvalue,decltype(e)is T. If e is an invocation of any other built-in operator, and ife is an lvalue,
decltype(e)is T& .

6. If e is an rvalue literal ([expr.prim]) of typeT, thendecltype(e)is the non-reference typeT. If e is an
lvalue literal ([expr.prim]) of typeT, thendecltype(e)is the reference typeT& .

The operand of adecltypeexpression is not evaluated. Adecltypeexpression that would result in an
unnamed type is ill-formed. Syntactically, adecltypetype expression is treated as if it were atypedef-
name(cf. 7.1.3).

3.2 Decltype examples and discussion

Note that unlike thesizeofoperator,decltypedoes not allow a type as its argument:

sizeof(int); // ok
decltype(int); // error (and redundant: decltype(int) would be int)

In the following we give examples ofdecltypewith different kinds of expressions:

• Function invocations:

int foo();
decltype(foo()) // int

float& bar(int);
decltype (bar(1)) // float&

class A { ... };
const A bar();
decltype (bar()) // const A

Doc. no: N1705=04-0145 4

const A& bar2();
decltype (bar2()) // const A&

• Variables in namespace or local scope:

int a;
int& b = a;
const int& c = a;
const int d = 5;
const A e;

decltype(a) // int
decltype(b) // int&
decltype(c) // const int&
decltype(d) // const int
decltype(e) // const A

• Formal parameters of functions:

void foo(int a, int& b, const int& c, int∗ d) {
decltype(a) // int
decltype(b) // int&
decltype(c) // const int&
decltype(d) // int∗
...

}

• built-in operators

decltype(1+2) // int (+ returns an rvalue)
int∗ p;
decltype(∗p) // int& (∗ returns an lvalue)
int a[10];
decltype(a[3]); // int& ([] returns an lvalue)

int i; int& j = i;
decltype (i = 5) // int, because decltype(i) is int
decltype (j = 5) // int&, because decltype(j) is int&

decltype (++i); // int, because decltype(i) is int
decltype (++j); // int&, because decltype(j) is int&
decltype (i++); // int (rvalue)
decltype (j++); // int (rvalue)

• Function types:

int foo(char);
int bar(char);
int bar(int);
decltype(foo) // int(char)
decltype(&foo) // int(∗)(char)
decltype(∗&foo) // int(&)(char)
decltype(bar) // error, bar is overloaded

Doc. no: N1705=04-0145 5

• Array types:

int a[10];
decltype(a); // int[10]

• Pointers to member variables and member functions:

class A {
...
int x;
int& y;
int foo(char);
int& bar() const;

};

decltype(&A::x) // int A::∗
decltype(&A::y) // error: pointers to reference members are disallowed (8.3.3 (3))
decltype(&A::foo) // int (A::∗) (char)
decltype(&A::bar) // int& (A::∗) () const

• Member variables:

The type given bydecltypeis the type of the member access operation that the expression denotes. In particular,
the cv-qualifiers originating from theobject expressionwithin a . operator or from thepointer expressionwithin
a−> expression contribute to the declared type of the expression that refers to a member variable. Similarly,
the l- or rvalueness of the object expression affects the l- or rvalueness of the member access operator, and is
reflected in the type given bydecltype.

Note, that this is a change from the rules proposed in N1607, where the cv-qualifiers, or l- or rvalueness did
not contribute to the result of decltype. Neither choice is perfect, but we find the currently proposed rule less
confusing. In particular, with the previous rules the decltype operator could give different results for expressions
that access the same member using the.∗ operator or using the member access operator. The same was true with
−>∗ and−> operators. Now it is guaranteed that both mechanisms yield the same result. Philosophically,
accessing a member is an operation where the object expression affects the outcome, rather than just a lookup of
an independent name. Therefore,decltypeshould follow the rules for operations. As a downside of the changed
rules, one cannot (at least not easily) distinguish between whether a member was declared to be of a reference
type, or of a non-reference type. This information may be useful to the programmer, but the mechanism for that
should rather be provided separately. For example, we could allow one to writedecltype(A::x)to express the
intent of querying the declared type of the memberx of classA without a reference to a particular object.

class A {
int a;
int& b;
static int c;

void foo() {
decltype(a); // int& (member access operator returns an lvalue)
decltype(this−>a) // int&
decltype((∗this).a) // int&
decltype(b); // int&
decltype(c); // int (static members are treated as variables in namespace scope)

}

void bar() const {

Doc. no: N1705=04-0145 6

decltype(a); // const int&
decltype(b); // int&
decltype(c); // int

}
...
};

A aa;
const A& caa = aa;

decltype(aa.a) // int&
decltype(aa.b) // int&
decltype(caa.a) // const int&

Note that member variable names are not in scope in the class declaration scope:

class B {
int a;
enum B_enum { b };

decltype(a) c; // error, a not in scope
static const int x = sizeof(a); // error, a not in scope

decltype(this−>a) c2; // error, this not in scope
decltype(((B∗)0)−>a) hack; // error, B∗ is incomplete

decltype(a) foo() { ... }; // error, a not in scope
fun bar() −> decltype(a) { ... }; // still an error

decltype(b) enums_are_in_scope() { return b; } // ok
...

};

Should this be seen as a serious restriction, we can consider relaxing it, but we see no current need for that.

Built-in operators.∗ and−>∗ follow the decltyperule 4: l- or rvalueness of the expression determines whether
decltype give a reference or a non-reference type.

Using the classes and variables from the example above:

decltype(aa.∗&A::a) // int&
decltype(aa.∗&A::b) // illegal, cannot take the address of a reference member
decltype(caa.∗&A::a) // const int&

• this:

class X {
void foo() {
decltype(this) // X∗
decltype(∗this) // X&

...
}
void bar() const {
decltype(this) // const X∗
decltype(∗this) // const X&

Doc. no: N1705=04-0145 7

...
}

};

• Literals:

String literals are lvalues, all other literals rvalues.

decltype("decltype") // const char(&)[9]
decltype(1) // int

• Redundant references (&) and cv-qualifiers.

Since adecltypeexpression is considered syntactically to be atypedef-name, redundant cv-qualifiers and&
specifiers are ignored:

int& i = ...;
const int j = ...;
decltype(i)& // int&. The redundant & is ok
const decltype(j) // const int. The redundant const is ok

3.3 decltypeand forwarding functions

Forwarding functionsare simply functions that wrap calls to other functions. One particular class of such functions
forwards its arguments, or results of expressions containing some of these arguments, to some other function, and
returns the result of this invocation. For such a forwarding function to be transparent, its return type should match
exactly with the return type of the wrapped function, no matter with what types the forwarding function template is
instantiated. It is not in general possible to write type expressions that would accomplish this in today’s C++; providing
this ability is one of the main motivations fordecltype.

The key property ofdecltypefor enabling generic forwarding functions is that no essential information on whether
a function returns a reference type or not, is lost. The following example demonstrates why this is crucial:

int& foo(int& i);
float foo(float& f);

template <class T> void only_lvalues(T& t) { ... }; // doesn’t accept temporaries

template <class T> auto transparent_forwarder(T& t)−> decltype(foo(t)) {
...; return foo(t);

}

int i; float f;
only_lvalues(foo(i)); // ok
only_lvalues(transparent_forwarder(i)); // should be ok too

only_lvalues(foo(f)); // not ok
only_lvalues(transparent_forwarder(f)); // should not be ok either

Further, similar forwarding should work with built-in operators:

template <class T, class U>
auto forward_foo_to_comma(T& t, U& u)−> decltype(foo(t), foo(u)) {

return foo(t), foo(u);
}

Doc. no: N1705=04-0145 8

int i; float f;
forward_foo_to_comma(i, f); // should return float
forward_foo_to_comma(f, i); // should return int&

This behavior is easily attained with a full “reference-preserving” typeof operator with just one rule: if the expression
whose type is being examined is an lvalue, the resulting type should be a reference type; otherwise, the resulting
type should not be a reference type. The proposeddecltypeoperator obeys this rule except for a handful of built-in
operators. The deviation from the rule has minimal effect on forwarding functions. In particular, if all arguments that
are used in a decltype expression that defines the return type of the forwarding function are of reference types, the
deviation has no impact.

The reasoning behind introducing the special rules for the few built-in operators is to better reflect the behavior of
the operators. For example:

template <class T, class U>
auto forward_comma(T t, U u)−> decltype(t, u) {

return t, u;
}

int i; float f;
forward_comma(i, f); // float

The expression(t, u) is an lvalue. Wasdecltype(t, u)defined to result an lvalue, theforward_commafunction
would be in error (trying to return a reference to a local variable). This is avoided with the rule that unifies the decltype
of a built-in comma operator with the decltype of its right-hand argument. Similar reasoning is behind the rules for
built-in assignment operators, and prefix increment and decrement operators.

The rule for the built-in comma operator, prefix increment and decrement operators, and all built-in assignment
operators, may in some cases require examining more than just the topmost expression node to decide what thedecltype
of an expression is. It is not enough to know the topmost node and the types of its arguments; the compiler needs to
know thedeclared typesof the arguments:

int a, b, c, d; int& e = d;
decltype(a, (b, (c, d))); // int
decltype(a, (b, (c, e))); // int&

Here, the declared type of the leaf node determines the declared type of the whole expression.

3.4 Decltype and SFINAE

If decltype is used in the return type or a parameter type of a function, and the type of the expression is dependent on
template parameters, the validity of the expression cannot in general be determined before instantiating the template
function. For example, before instantiating theadd function below, it is not possible to determine whetheroperator+
is defined for typesA andB:

template <class A, class B>
void add(const A& a, const B& b, decltype(a + b)& result);

Obviously, calling this function with types that do not supportoperator+ is an error. However, during overload
resolution the function signature may have to be instantiated, but not end up being the best match. In such a case it is
less clear whether an error should result. For example:

template <class A, class B>
void add(const A& a, const B& b, decltype(a + b)& result);

Doc. no: N1705=04-0145 9

void add(int∗& res, int∗ p, int n);

int∗ p = new int[100];
int∗ result;
int steps = 10;
add(result, p, steps);

Here, the latter overload is the best matching function. However, the former prototype must also be examined
during overload resolution. Argument deduction gives formal parametersa andb pointer types, for whichoperator+
is not defined. We can identify three approaches for reacting to a operand ofdecltypewhich is dependent and invalid
(e.g. a call to a non-existing function or an ambiguous call, not syntactically incorrect) during overload resolution:

1. Deem the code ill-defined.

As the example above illustrates, generic functions that match broadly, and contain decltype expressions with
dependent operands in their arguments or return type, may cause calls to unrelated, less generic, or even non-
generic, exactly matching functions to fail.

2. Apply the “SFINAE” (Substitution-Failure-Is-Not-An-Error) principle (see 14.8.2.). Overload resolution would
proceed by first deducing the template arguments in deduced context, substituting all template arguments in
non-deduced contexts, and use the types of formal function parameters that were in deduced context to resolve
the types of parameters, and return type, in non-deduced context. If the substitution process leads to an invalid
expression inside a decltype, the function in question is removed from the overload resolution set. In the example
above, the templatedaddwould be removed from the overload set, and not cause an error.

Note that the operand ofdecltypecan be an arbitrary expression. To be able to figure out its validity, the com-
piler may have to perform overload resolution, instantiate templates (speculatively), and, in case of erroneous
instantiations back out without producing an error. To require such an ability from a compiler caused worries
among implementors during the discussion of theconceptproposals in the Kona meeting.

Note that this option gives programmers the power to query (at compile time) whether a type, or sequence of
types, support a particular operation. One can also group a set of operations into one decltype expression, and
test its validity (cf.concepts). It would also be possible to overload functions based on the set of operations that
are valid: For example:

template <class T>
auto−> advance(T& t, int n)−> decltype(t + n, void) {

t + n;
}

This function would exist only for such typesT, for which+ operation with int is defined.

3. Unify the rules withsizeof(something in between of approaches 1. and 2.)

The problems described above are not new, but rather occur with thesizeofoperator as well. Core issue 339:
“Overload resolution in operand of sizeof in constant expression” deals with this issue. 339 suggests restricting
what kind of expressions are allowed inside sizeof in template signature contexts.

The first rule is not desirable because distant unrelated parts of programs may have surprising interaction (cf.
ADL). The second rule is likely not possible in short term, due to implementation costs. Hence, we suggest that the
topic is bundled with the core issue 339, and rules forsizeofanddecltypeare unified. However, it is crucial that no
restrictions are placed on what kinds of expressions are allowed insidedecltype, and therefore also insidesizeof. We
suggest that issue 339 is resolved to require the compiler to fail deduction (apply the SFINAE principle), and not
produce an error, for as large set of invalid expressions in operands ofsizeofor decltypeas is possible to comfortably
implement. We wish that implementors aid in classifying the kinds of expressions that should produce errors, and the
kinds that should lead to failure of deduction.

Doc. no: N1705=04-0145 10

4 Auto

We suggest that theauto keyword would indicate that the type of a variable is to be deduced from its initializer
expression [Str02]. For example:

auto x = 3.14; // x has type double

The semantics ofauto should follow exactly the rules of template argument deduction. Theauto keyword can occur
in any deduced context in a type expression. Examples (the notationx : T is read as “x has typeT”):

int foo();
auto x1 = foo(); // x1 : int
const auto& x2 = foo(); // x2 : const int&
auto& x3 = foo(); // x3 : int&: error, cannot bind a reference to a temporary

float& bar();
auto y1 = bar(); // y1 : float
const auto& y2 = bar(); // y2 : const float&
auto& y3 = bar(); // y3 : float&

A∗ fii()
auto∗ z1 = fii(); // z1 : A∗
auto z2 = fii(); // z2 : A∗
auto∗ z3 = bar(); // error, bar does not return a pointer type

A major concern in discussions ofauto-like features has been the potential difficulty in figuring out whether the
declared variable will be of a reference type or not. Particularly, is unintentional aliasing or slicing of objects likely?
For example

class B { ... virtual void f(); }
class D : public B { ... void f(); }
B∗ d = new D();
...
auto b =∗d; // is this casting a reference to a base or slicing an object?
b.f(); // is polymorphic behavior preserved?

Basingauto on template argument deduction rules provides a natural way for a programmer to express his intention.
Controlling copying and referencing is essentially the same as with variables whose types are declared explicitly. For
example:

A foo();
A& bar();
...
A x1 = foo(); // x1 : A
auto x1 = foo(); // x1 : A

A& x2 = foo(); // error, we cannot bind a non−lvalue to a non−const reference
auto& x2 = foo(); // error

A y1 = bar(); // y1 : A
auto y1 = bar(); // y1 : A

A& y2 = bar(); // y2 : A&
auto& y2 = bar(); // y2 : A&

Doc. no: N1705=04-0145 11

Thus, as in the rest of the language, value semantics is the default, and reference semantics is provided through
consistent use of& . The type deduction rules extend naturally to more complex definitions:

std::vector<auto> x = foo();
std::pair<auto, auto>& y = bar();

The declaration ofx would fail at compile time if the return type offoo was not an instance ofstd::vector, or a type
that derives from an instance ofstd::vector. Analogously, the return type ofbar must be an instance ofstd::pair, or a
type deriving from such an instance. Declaring such partial types for variables can be seen as documenting the intent
of the programmer. Here, the compiler can enforce that the intent is satisfied.

The straw votes from Sydney indicated some opposition against the more complex uses ofauto, that is, against
allowing the use of auto as a placeholder for any part of type. Partially this was because of fears of complicating
implementations. Based on our discussions with some implementors the step from allowing the use ofautoas a basic
type specifier (allow to be used with cv-qualifiers,∗ and&) to the ’useauto as any part of type’, would not be huge.
Thus, we still keep this as part of the proposed features.

The suggested syntax does not allow expressing constraints between two different uses ofauto, e.g., requiring that
both arguments topair in the above example are the same. No feature to allow expressing such constraints is proposed
at this point.

4.1 Direct initialization syntax

Direct initialization syntax is allowed and is equivalent to copy initialization. For example:

auto x = 1; // x : int
auto x(1); // x : int

The semantics of a direct-initialization expression of the formT v(x) with T a type expression containing one or
more uses ofauto, v as a variable name, andx an expression, is defined as a translation to the corresponding copy
initialization expressionT v = x. Examples:

const auto& y(x)−> const auto& y = x;
std::pair<auto, auto> p(bar())−> std::pair<auto, auto> p = bar();

It follows that the direct initialization syntax is allowed withnewexpressions as well:

new auto(1);

The expressionauto(1)has typeint, and thusnew auto(1)has typeint∗. Combining anewexpression usingautowith
anautovariable declaration gives:

auto∗ x = new auto(1);

Here,new auto(1)has typeint∗, which will be the type ofx too.

5 New function declaration syntax

We anticipate that a common use for thedecltypeoperator will be to specify return types that depend on the types
of function arguments. Unless the function’s argument names are in scope in the return type expression, this task
becomes unnecessarily complicated. For example:

template <class T, class U> decltype((∗(T∗)0)+(∗(U∗)0)) add(T t, U u);

The expression(∗(T∗)0) is a hackish way to write an expression that has the typeT and does not requireT to be default
constructible. If the argument names were in scope, the above declaration could be written as:

template <class T, class U> decltype(t+u) add(T t, U u);

Doc. no: N1705=04-0145 12

Several syntaxes that move the return type expression after the argument list are discussed in [Str02]. If the return
type expression comes before the argument list, parsing becomes difficult and name lookup may be less intuitive; the
argument names may have other uses in an outer scope at the site of the function declaration.

We suggest reusing theauto keyword to express to express that the return type is to follow after the argument list.
The return type expression is preceded by−> symbol, and comes after the argument list (and potential cv-qualifiers
in member functions) but before the exception specification:

template <class T, class U> auto add(T t, U u)−> decltype(t + u);
class A {

auto f() const−> int throw ();
};

We refer to [Str02] for further analysis on the effects of the new function declaration syntax.
More examples:

auto f(int i) −> int;
template <class T>
auto id(T& a)−> decltype(a);

The syntax with which a function is declared is insignificant. For example, the following two function declarations
declare the same function:

auto foo(int)−> int;
int foo(int);

6 Conclusions

In C++2003, it is not possible to express the return type of a function template in all cases. Furthermore, expressions
involving calls to function templates commonly have very complicated types, which are practically impossible to write
by hand. Hence, it is often not feasible to declare variables for storing the results of such expressions. This proposal
describesdecltypeandauto, two closely related language extensions that solve these problems. Intuitively, thedecltype
operator returns the declared type of an expression. For variables and parameters, this is the type the programmer finds
in the program text. For functions, the declared type is the return type of the definition of the outermost function called
within the expression, which can also be traced down and read from the program text (or in the standard in the case of
built-in functions). The semantics ofauto is unified with template argument deduction.

7 Proposed wording

7.1 decltype : proposed text

Section 2.11 Keywords.

Add decltype to Table 3.

Section 3.2 One definition rule

To paragraph 2, add:

is the operand of thedecltype operator ([dcl.type.decltype])

as one of the exceptions forpotentially evaluated.

Doc. no: N1705=04-0145 13

Section 4.1 Lvalue-to-rvalue conversion

To paragraph 2, add a case fordecltype :

... When an lvalue-to-rvalue conversion occurs within the operand ofsizeof (5.3.3) ordecltype
([dcl.type.decltype]) the value contained in the referenced object is not accessed, since those operators do
not evaluate their operands.

Section 7.1.5 Type specifiers

In paragraph 1:

— const or volatile can be combined with any other type-specifier. However, redundant cv-qualifiers are
prohibited except when introduced through the use of typedefs (7.1.3),decltype ([dcl.type.decltype]), or
template type arguments (14.3), in which case the redundant cv-qualifiers are ignored.

Section 7.1.5.2 Type specifiers

In paragraph 1, add the following to the list of simple type specifiers:

decltype (expression)

To Table 7, add the line:

decltype (expression) the declared type of the outermost
expression node of expression

New subsection: Decltype [dcl.type.decltype]

Should be placed after 7.1.5.2. The text of the section is the decltype rules in Section 3.1 of this document.

Section 14.6.2.1 [temp.dep.type] Dependent types

Add a case fordecltype :

— obtained withdecltype(expression) , whereexpressionis a type-dependent expression ([temp.dep.expr]).

7.2 auto in variable declarations: proposed text

Section 7.1.5.2 Simple type specifiers [dcl.type.simple]

In paragraph 1, add the following to the list of simple type specifiers:

auto

To Table 7, add the line:

auto placeholder for a type

Add to the paragraph following Table 7:

Theauto type specifier ([dcl.type.auto]) is only allowed in adecl-specifier-sequencethat is followed by
an init-declarator-list with exactly oneinit-declarator, which consists of adeclaratorand a non-empty
initializer. The initializer must be of either of the following two forms:

Doc. no: N1705=04-0145 14

= initializer−clause
(initializer−clause)

[Example:The following are valid declarations:

auto x = 5;
auto *v = expr;
pair<int, auto> a = pair<int, int>();
pair<int, auto> *b = new pair<int, float>();

— end example]

Section 8.3 Meaning of declarators [dcl.meaning]

New paragraph after paragraph 1:

Thedecl-specifier-sequenceof a declaration may contain one or more occurrences of theauto keyword
if the declarator in the declaration declares an object and specifies an initial value. In this case, the type
of each declared identifier is deduced from the type of its initializer ([dcl.auto]).

Replace paragraph 4 with:

First, thedecl-specifier-seq determines a type; or, when it contains occurrences ofauto , a type
scheme. A type scheme yields a type if each occurrence ofauto in the type scheme is replaced by a type.
In a declaration

T D

thedecl-specifier-seqT determines the type, or type scheme, “T”. [Example:in the declarations

int unsigned i;
pair<auto, auto> p = f();

the type specifiersint unsigned determine the type “unsigned int ”, and the type specifier
pair<auto, auto> determines the type scheme “pair<auto, auto> ” ([dcl.type.simple]).]

Sections 8.3.1–6 discuss how* , reference, array etc. in the declarator propagate to the type of thedeclarator-id. These
must be adapted to apply to type schemes in addition to types. Details not shown.

New subsection: Auto [dcl.auto]

The section should be a subsection of Section 8.3 ([dcl.meaning]). The text of the new subsection:

Once the type scheme of adeclarator-idhas been determined, the type of each variable using thedeclarator-
id is determined from the type of its initializer using the rules for template argument deduction ([temp.deduct]).
Let T be the type scheme that has been determined for a variable identifierd, ande be the initializer ex-
pression ford. ObtainT’ from T by replacing each occurrence ofauto with a new unique identifier.
Denote these identifiers ast1, . . . , tn. Define a function template as follows:

template <class t1, ..., class tn>
void __f(T’ __d) {}

Doc. no: N1705=04-0145 15

The type deduced for the variabled is then the type that would be deduced for the parameter__d in a
call to __f with e as its actual argument. If the function argument deduction would fail, the declaration
is ill-formed.

[Example:

vector<auto, auto> &i = expr;

The type scheme isvector<auto, auto>& , and the type ofi is the deduced type of the argument
__i in the call__f(expr) of the following function template:

template <__T1, __T2> void __f(vector<__T1, __T2>& i);

— end example]

Section 8.5 Initializers [dcl.init]

To paragraph 14 add a case:

If the destination type contains theauto specifier, see section [dcl.init.auto].

Section 5.3.4 New [expr.new]

Paragraph 1 specifies the valid forms of new expressions. Add the following form fornew-type-idto the grammar:

new−type−id:
...
cv auto direct−new−declaratoropt

And the text:

If new-type-idis of the form “cvauto direct-new-declaratoropt ”, new-initializerwith exactly one initial-
izer argument must follownew-type-id, or the program is ill-formed. The allocated type is deduced from
the type of this initializer argument as follows: Let(e) be thenew-initializer, then the allocated type is
the type deduced for the variablex in the declaration ([dcl.auto]):

cv auto x = e

Once the allocated type has been deduced, the semantics of thenew-expressionis as if the form
“cvauto direct-new-declaratoropt ” was written “T direct-new-declaratoropt ”, whereT is the type de-
duced for the allocated type. [Example:

new auto(1); // allocated type is int
double& foo();
new const auto[10](foo()); // allocated type is const double
auto x = new auto(’a’); // allocated type is char, x is of type char*

— end example]

7.3 New function declaration syntax that moves the return type expression after parameter
list: proposed text

Section 8.3.5 Functions ([dcl.fct])

Add a new paragraph after paragraph 1:

Doc. no: N1705=04-0145 16

In a declarationauto D , whereDhas the form

D1 (parameter−declaration−clause) cv−qualifier−seqopt -> type−id exception−specificationopt

and the type scheme of the containeddeclarator-id in the declarationauto D1 is “derived-declarator-
type-listauto ”, the type of thedeclarator-idin D is “derived-declarator-type-listfunction of (parameter-
declaration-clause) cv-qualifier-seqopt exception-specificationopt returningtype-id”; a type of this form
is afunction type.

Section 8.4 Function definitions ([dcl.fct.def])

To paragraph 1, add the new syntax as an alloweddeclaratorform in function definitions. The end of the paragraph
should read:

Thedeclaratorin a function-definitionshall have one of the forms:

D1 (parameter−declaration−clause) cv−qualifier−seqopt exception−specificationopt
D1 (parameter−declaration−clause) cv−qualifier−seqopt -> type−id exception−specificationopt

as described in 8.3.5. A function shall be defined only in namespace or class scope.

References

[JS03] J. Järvi and B. Stroustrup. Mechanisms for querying types of expressions: Decltype and auto revis-
ited. Technical Report N1527=03-0110, ISO/IEC JTC 1, Information technology, Subcommittee SC 22,
Programming Language C++, September 2003.http://anubis.dkuug.dk/jtc1/sc22/wg21/
docs/papers/2003/n1527.pdf .

[JS04] Jaakko. Järvi and Bjarne Stroustrup. Decltype and auto (revision 3). Technical Report N1607=04-0047,
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming Language C++, March 2004.

[JSGS03] Jaakko Järvi, Bjarne Stroustrup, Douglas Gregor, and Jeremy Siek. Decltype and auto. C++ standards com-
mittee document N1478=03-0061, April 2003.http://anubis.dkuug.dk/jtc1/sc22/wg21/
docs/papers/2003/n1478.pdf .

[Str02] Bjarne Stroustrup. Draft proposal for "typeof". C++ reflector message c++std-ext-5364, October 2002.

8 Acknowledgments

We are grateful to Jeremy Siek, Douglas Gregor, Jeremiah Willcock, Gary Powell, Mat Marcus, Daveed Vandevoorde,
David Abrahams, Andreas Hommel, Peter Dimov, and Paul Mensonides for their valuable input in preparing this
proposal. Clearly, this proposal builds on input from members of the EWG as expressed in face-to-face meetings and
reflector messages.

http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1527.pdf
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1527.pdf
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf

	Background
	Changes from N1607

	Introduction
	The [basicstyle=]decltype operator
	Decltype rules
	Decltype examples and discussion
	[basicstyle=]decltype and forwarding functions
	Decltype and SFINAE

	Auto
	Direct initialization syntax

	New function declaration syntax
	Conclusions
	Proposed wording
	[basicstyle=]decltype: proposed text
	[basicstyle=]auto in variable declarations: proposed text
	New function declaration syntax that moves the return type expression after parameter list: proposed text

	Acknowledgments

