J16/05-0071
WG21/N1811
2005-04-29

J. Stephen Adamczyk
Edison Design Group, Inc.
| sa@dg. com

Adding thel ong | ong typeto C++
(Revision 3)

| propose that we add thel ong | ong integral type to C++. Thisis desirable to make C++ more
compatible with C99 and with the draft Ecma TG5 C++/CLI standard.

Adding | ong | ong was proposed previously by Roland Hartinger in June of 1995, in J16/95-
0115=WG21/N0715. At thetime, | ong | ong had not been considered by the C committee, and
the C++ committee was reluctant to add a fundamental type that was not also in C. Almost a
decade | ater, the world looks different: | ong | ong is part of C99, and many major C++ compil-
erssupport it. It'stime to standardize it in C++.

Thisisissue ES016 on the Evolution Working Group issues list.
This paper isarevised version of N1735. It changes a detail in the working draft changes.

What To Call It

Okay, let’s deal with the “ick” factor first. Yes, “| ong | ong” isan ugly way of spelling a 64-bit
integer type. Yes, it doesn’t provide a growth path when we find we need a 128-bit integer type
(“ ong | ong | ong”, anyone?).

My advice: get over it. It's ugly, but it's standard (de facto for C++, and de jure for C). We can
consider other possibilitiesin the future, but the only thing that makes sense now is| ong | ong.

The Uncontroversial Parts

If we can get past the spelling “1 ong | ong”, anumber of aspects are relatively uncontroversial:

» Therearetwo new integral types, | ong | ong and unsi gned | ong | ong, which are at
least 64 bitslong.

» There are new suffixesfor literal constants, LL and ULL, whichindicatel ong | ong and
unsi gned | ong | ong constants, asin 9223372036854775807LL.

» Theusual arithmetic conversions and theintegral promotion rules are updated to handle| ong
| ong andunsi gned | ong | ong operands.

* enunsand bit fieldscan havel ong | ong or unsi gned | ong | ong type.

 Theprintf andscanf formatting strings have anew length specifier | | , which isused for
| ong | ong andunsi gned | ong | ong arguments, asin % | d.

Adding thel ong | ong type to C++ (J16/04-0005 = WG21/N1565) 2

 <climts>hasnew macrosLLONG M N, LLONG_MAX, and ULLONG_MAX.
* The C++ library has new overloadsfor | ong | ong and unsi gned | ong | ong operands,
e.g., for extractors and inserters.

PartsWe Don’t Need From C99
In C99, thel ong | ong extension is somewhat intertwined with two other changes:

1. Extended integer types, which alow implementations to have other sizes of integral types
beyond those required by the standard (notably, bigger ones).

2. The<st di nt . h> header, which provides names for types that map to specific sizes, e.q.,
i nt 64_t for an exactly-64-bit signed integer. It also provides some useful typeslike
i nt max_t, which gives the largest available signed integer type.

| think these arefine, but also | think they can be considered separately from| ong | ong without
problems down the road. They’re not included in this proposal.

A Logistical Problem

The current C++ standard refers to the C library by reference, and it specifies the C89 version of
the standard plus the 1995 amendment. | presume that the Library Working Group will be updat-
ing that. Ideally, changeslikethosefor thepri nt f and scanf formatting strings would be han-
dled ssmply by pointing to the C99 standard. However, if that’s not possible we could add text for
specific additions to the C89 specifications.

The Controversial Part

C99 made one decision that’s controversial. In the rules for determining the type of aliteral con-
stant, there are lists of types for various forms of constants. A constant’s type is the first of the
types on the list into which the valuefits. That approach is the samein C99 and C++. However, in
two cases the C99 lists are not simply what one would expect for a straightforward extension of
the C89 and C++ lists:

1. For adecimal constant with no suffix, the C99 listisi nt,l ongint,l ongl ongint.
2. For adecimal constant with an| or L suffix, the C99listisl ongint,l onglongint.

For upward compatibility with C89 and C++, unsi gned | ong i nt should appear on each of

those lists after | ong i nt LIt doesn't, and that means a constant with one of the forms above
whose valueistoo largefor | ong but fitsinunsi gned | ong, e.g., 4000000000 on an imple-
mentation with 32-hit | ongs, hasadifferent typein C99 than it doesin C89 or C++ (I ong | ong
rather than unsi gned | ong).

1. The C++ story isactually alittle more complicated: probably for exactly this reason, the C++ standard
saysthat if the value of an unsuffixed decimal constant doesnot fitini Nt orl ong i Nt the behavior
is undefined, which allows implementations to give an error or treat the constant asunsi gned
| ong.

Adding thel ong | ong type to C++ (J16/04-0005 = WG21/N1565) 3

The C committee made an explicit decision to introduce this incompatibility with C89. Why? It
has to do with extended integer types and planning for the future. Consider a constant like
18446744073709551615, which istoo big to fit in a64-bit | ong | ong. If aC99 implementation
has a nonstandard integer type larger than 64 bits, it would make sense to treat that constant as a
signed value of that larger type. What if the implementation does not have such atype? Well, the
constant would fit inunsi gned | ong | ong, but allowing an implementation to use that type
would be unfortunate, because the same constant would be signed on some implementations and
unsigned on others. So to avoid that the C99 standard mandates an error for that constant if there
isno signed type that can represent it. This gives consistent behavior across different implementa-
tions, and also allows the graceful addition of a future standard 128-bit integer type.

Thisisall fine and noble, and not a source of incompatibility, when applied at the upper end of the
| ong | ong range, but the same principleis also applied at the upper end of thel ong range and
there it makes a difference in aprogram like

#i ncl ude <stdio. h>
int main() {
if (4000000000 > -1) {
printf(">\n");
} else {
printf("Not >\n");
}

return O;

}

which produces different output in C99 than it did in C89. (C99 outputs “>".

Isthis difference necessary? No. C99 could have |eft the types of those existing constants the
same. (EDG’s front end does that when it supports| ong | ong in C++ mode currently.) But the
consistent application of the rule does make sense: It guarantees that a constant that ooks signed
really issigned. That's agood thing, because any use of an implicitly-unsigned constant is a
potential bug. (In the above fragment, for example, it would be hard to argue that the C89/C++
behavior is more desirable than the C99 behavior.) If the programmer really does want an
unsigned constant, he/she can request that explicitly by adding a U suffix to the constant, and that
will improve the readability of his’her program and work the same way in C89 and C99.

So: C++ can either preserve upward-compatibility with C++98 or be compatible with C99. | rec-
ommend that we go with the C99 approach. In practice, there's not much code that would be
affected, and 1’d bet that, in half the cases that change, the C99 behavior was what the program-
mer intended in the first place.

Detailed Working Draft Changes

In 2.13.1 [lex.icon], the syntax for integer constants needsto allow | | and LL suffixesasin C99
6.4.4.1. Mixed case (“| L") isnot allowed. If the suffix also includes a U, it can appear before or
after thel | or LL. Change the syntax as follows:

Adding thel ong | ong type to C++ (J16/04-0005 = WG21/N1565) 4

integer-suffix:
unsigned-suffix |ong-suffixgp
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixgp
long-long-suffix unsigned-suffiX g
unsigned-suffix: one of
u u
long-suffix: one of
I L
long-long-suffix: one of
1 LL

In 2.13.1 [lex.icon] p2, the rules for determining the type of a constant need to be extended to
match the table in C99 6.4.4.1p5. Change 2.13.1 [lex.icon] p2 as follows [The editor is asked to
render the revised paragraph in tabular form, which should be exactly the same as the C99 table
cited abovel:

The type of an integer literal depends on itsform, value, and suffix. If it is decimal and has no suf-
fix, it has the first of thesetyp&sln whlchltsvaluecan be represented [nt I ongint,long

| ongi nt al cha ndefined. If itis
octal or hexadeci maI and has no sufflx |t has the fi rst of theﬁe typesm WhICh its value can be rep-
resented: i nt ,unsi gnedint,longint,unsignedlongint,longlongint,
unsignedlonglongint. If it issuffixed by u or U, itstypeisthefirst of theﬁetypesin
which its value can be represented: unsi gned i nt,unsi gned | ong i nt,unsi gned

I ongl ongint.Ifitisdecimal and issuffixed by | or L, itstypeisthefirst of these typesin
which its value can be represented: | ong i nt -unsighedlongint,l onglongint.If
it isoctal or hexadecimal and issuffixed by | or L, itstypeisthefirst of thesetypesin which
itsvalue can berepresented: | ong i nt,unsi gnedl ongint,longlongint,
unsignedlonglongint.Ifitissuffixedbyul ,l u,ul,Lu,U 1 U UL, orLU,itstypeis
thefirst of thesetypesin which itsvalue can berepresented: unsi gned | ong i nt,

unsi gned |l onglongi nt.Ifitisdecimal and issuffixed by | | or LL, itstypeisl ong

| ongi nt.Ifitisoctal or hexadecimal and issuffixed by | | or LL, itstypeisthefirst of
thesetypesin which itsvaluecan berepresented: | ong | ongi nt ,unsi gned | ongl ong

i nt.Ifitissuffixed by bothuor Uand I | or LL,itstypeisunsi gned|l onglongi nt.

In 3.9.1 [basic.fundamental] p2 and p3, add | ong | ong and unsi gned | ong | ong. See C99
6.2.5p4. Change 3.9.1 [basic.fundamental] p2 and p3 as follows:

There are four five signed integer types: “si gned char”,“short i nt”,"“i nt”, and
“longint”,and“l ongl ongint”. Inthislist, each typeprovidesatleastasmuch stor-
age asthose preceding it in thelist. Plaini nt shavethe natural size suggested by the architec-
ture of the execution environment; the other signed integer types are provided to meet special
needs.

Adding thel ong | ong type to C++ (J16/04-0005 = WG21/N1565) 5

For each of the signed integer types, there exists a corresponding (but different) unsigned inte-
ger type: “unsi gned char ”, “unsi gned short i nt”,“unsi gnedi nt”, and

“unsi gnedl ongint” and “unsi gned | ong |l ongi nt”, each of WhICh occupiesthe
same amount of storage and has the same alignment requi rements (3.9) asthe corresponding
signed integer type; that is, each signed integer type has the same object representation asits
corresponding unsigned integer type. The range of nonnegative values of asigned integer type
isasubrange of the corresponding unsigned integer type, and the val ue representation of each
corresponding signed/unsigned type shall be the same.

Change footnote 44 on 3.9.1 [basic.fundamental] p7 that mentions enumintegral promotion as
follows:

44) Therefore, enumerations (7.2) are not integral ; however, enumerations can be promoted to

it unsighed int 1 ongrorunsigned long; integral types as specified in 4.5.

In 4.5 [conv.prom] p2, the integral promotionsfor wchar _t and enunsneed to include | ong
| ong and unsi gned | ong | ong. Note that this paragraph deals with the promotion of those
typesto an integral type, not widening, so it does need to be changed. 4.5 [conv.prom] p3 on bit
field promotions requires no changes. Change 4.5 [conv.prom] p2 as follows:

Anrvalue of typewchar _t (3.9.1) can be converted to an rvalue of the first of the following
types that can represent all the values of its underlying type: i nt , unsi gned i nt,| ong
int,erunsignedlongint,longlongint,orunsignedlonglongint.An
rvalue of an enumeration type (7.2) can be converted to an rvalue of the first of the following
types that can represent all the values of the enumeration (i.e., the values in the range by, to
Prax @ described in 7.2): i nt ,unsi gnedint,l ongint,erunsi gnedlongint,
longlongint,orunsignedlonglongint.

In 5 [expr] p9, the usual arithmetic conversions rules, add after the fourth step:

* Then, if either operand isunsi gned | ong | ong i nt, the other shall be converted to
unsignedlonglongint.

* Otherwise, if oneoperand isl ong | ongi nt and theother unsi gned | ongi nt or
unsi gnedi nt,thenif al ongl ongi nt can represent all the values of the unsigned
operand type, the unsigned operand shall be converted tol ong | ong i nt ; otherwise
both operands shall be converted tounsi gned | ong | ongi nt.

» Otherwise, if either operand isl ong | ong i nt , the other shall be converted tol ong
longint.

and change the “Then” at the start of the fifth step to “ Otherwise”. The C99 version of thisis at
6.3.1.1 and 6.3.1.8; it uses afancier approach involving assigning ranks to the integer types.

In 5.8 [expr.shift] p2 add theunsi gned | ong | ong shift case, with reduction modulo
ULLONG_MAX+1. The changes are asfollows:

Thevalueof E1 << E2 isE1 (interpreted asabit pattern) left-shifted E2 bit positions; vacated

Adding thel ong | ong type to C++ (J16/04-0005 = WG21/N1565) 6

bits are zero-filled. If E1 has an unsigned type, the value of the result is E1 multiplied by the
quantity 2 raised to the power E2, reduced modulo ULLONG_MAX+1 if E1 hastype

unsi gnedl onglongint, ULONG MAX+1 if E1 hastypeunsi gned | ong i nt,

Ul NT_MAX+1 otherwise. [Note: the constants ULLONG_MAX, ULONG_MAX, and

Ul NT_MAX are defined in the header <cl i m t s>. --end note]

Add anew final bulllet to 7.1.5 [dcl.type] paragraph 2 as follows:

Asagenera rule, at most one type-specifier is allowed in the complete decl-specifier-seq of a
declaration. The only exceptionsto this rule are the following:

e const orvol ati | e can be combined with any other type-specifier. However, redun-
dant cv-qualifiers are prohibited except when introduced through the use of typedefs
(7.12.3) or template type arguments (14.3), in which case the redundant cv-qualifiers are
ignored.

si gned or unsi gned can be combined with char, | ong, short,orint.

short orl ong can be combined withi nt .

| ong can be combined with doubl e.

| ong can be combined with | ong.

In7.1.5.2 [dcl.type.simpl€e] add the new type specifier combinations| ong | ong, si gned | ong
| ong,l ongl ongint,signedlonglongint,unsignedl ongl ong, andunsi gned
 onglongint inTable7.

In 7.2 [dcl.enum] p5, no change is needed for the underlying type of an enum

In 16.1 [cpp.cond] p4,i nt ,unsi gned i nt,| ong, andunsi gned | ong preprocessing
expressions should be remapped to | ong | ong andunsi gned | ong | ong. See C99
6.10.1p3, which usesi nt max_t and ui nt max_t . Change asentencein 16.1 [cpp.cond] p4 as
follows:

The resulting tokens comprise the controlling constant expression which is evaluated accord-
ing to the rules of 5.19 using arithmetic that has at |east the ranges specified in 18.2, except

that intandunsigned i nt all signed and unsigned integer types act asif they have the
same representation as, respectively, | ong | ong i nt andunsi gned |l ongl ongi nt.

The library sections need to be updated. Thisis handled by the library TR1 changes. An earlier
version of the required changes was in N1568 by PJ. Plauger. Note that apparently the only thing
that establishes minimum sizes for the integral typesin the C++ standard is the requirement that
they match the<cl i m t s> macro valueslike | NT_MAX; see the footnote in 3.9.1 [basic.funda-
mental] p2. Thisis being split off as a separate core issue.

	What To Call It
	The Uncontroversial Parts
	Parts We Don’t Need From C99
	1. Extended integer types, which allow implementations to have other sizes of integral types beyo...
	2. The <stdint.h> header, which provides names for types that map to specific sizes, e.g., int64_...

	A Logistical Problem
	The Controversial Part
	1. For a decimal constant with no suffix, the C99 list is int, long int, long long int.
	2. For a decimal constant with an l or L suffix, the C99 list is long int, long long int.

	Detailed Working Draft Changes

