Concept proposal comparison
N1899 = 05-0159

Matt Austern
2005-10-06

i Papers

= N1510 etc: outline of design space.
Bjarne and Gaby, 2003

= N1849: Indiana proposal.
Doug et al, August 2005.

= N1782 and N1886: Texas proposal.
Bjarne and Gaby, 2005.

!L Common approach

i Goals

= Better error detection
= Separate error checking
= Simpler and earlier instantiation errors

= Express documentation in code
= Concept-based overloading

i Basic scheme

= Declare concept. requirement on type
or types

= Model assertion: declare that a type, or
family of types, satisfies a concept

= Constrained template: arguments must
satisfy a concept

i Declaring a concept

= Parameters: types it's constraining

= List of operations the parameters must
provide

= Associated types, and constraints on them.
= Refinement

= Rejected approaches:
= base class
= exact signature

i Model assertions

= Assert that a type (or family) models a
concept

s Assertion failure is an error
= Can be used for syntax rewriting

= Concept author gets to say whether it's
mandatory or optional

i Constrained templates

= where clause

= Assert that argument(s) used for
instantiation model(s) a concept

= Multiple assertions allowed

= Syntactic sugar: omit where for one-
argument concepts

= Type check at definition time
= Concept matching at instantiation time

i Separate type checking

= We check types in at least three places

x Soundness:

“If a constrained template definition concept
checks and if its uses both concept check
and type check then its instantiations for
those uses also type check.”

i Overloading on concepts

= Attempt concept matching on all
overloads

= No matches = error
= One match = choose it

= Multiple matches
= One best match = choose it
= Otherwise error

!L Sample code

Defining a concept: TAMU

concept Input_iterator<Trivial_iterator Iter>
where Equality_comparable<Iter>
&8¢ Assignable<Iter>
&8 Arrow<Iter> {
Integer difference_type;
Var<Iter> p;
const Iter::value_typeée v = *p;
const Iter::value_typeée v = *p++,

1

Defining a concept: |U

template <typename X>
concept Inputlterator : IteratorAssociatedTypes<X>.
CopyConstructible<X>,
Assignable<X>,
EqualityComparable<X> {
where SignedIntegral<difference_type>;
where Convertible<reference, value_type>;
where Arrowable<pointer, value_type>;

typename postincrement_result = X
where Dereferenceable<postincrement_result, value_type>;

pointer operator->(X);

X & operator++(Xée);
postincrement_result operator++(Xé&e, int);
reference operator* (const Xé&);

1

i Defining a template: TAMU

template <Forward_iterator Iter, typename T>
where Assignable<Iter::value_type, T>
void fill(Iter first, Iter last, const T& t) {

}...

i Defining a template: U

template <Forward_iterator Iter, typename T>
where { Assignable<value_type, T> }
void fill(Iter first, Iter last, const T& t) {

}...

i Model assertion: TAMU

concept MyConcept<typename T> {
};
// optional

static_assert template <typename T> |MyConcept<T>;

static_assert MyConcept<MyType>;

i Model assertion: U

template <typename T>
/* struct */ concept MyConcept {

N

template<> concept MyConcept<MyType>;

!# Differences

Summary

Use patterns (valid expressions) vs
pseudosignatures (abstract signatures)

Implicit checking vs nominal conformance
Concept composition: disjunction and negation?
Builtin same-type requirement

Model assertions for as-yet-undeclared types
Default definitions in concepts

Syntactic differences

= Refinement: special support, or just where clause and
conjunction?

= Associated types in concepts vs concept parameters

Usage patterns vs

i pseudosignatures

= Believed to have equivalent expressive
power

= Can map a valid expression to
pseudosignatures by introducing auxiliary
associated types

= Is there an algorithm for mapping the other
way?

= Is this purely a syntactic difference?

Usage patterns vs

i pseudosignhatures

Can’t express ->

Exactly how pseudo is
it?

Special-case syntax for
variables

Less traditional for
generic programming

No clean syntactic hook
for extra stuff

Hard to express a*b+c

Less precise

Invites overspecification

Syntax remapping (both

i proposals)

template <typename T>
concept X {

typename type;

T foo(const Té&e);
};

template<> concept X<MyType> {
typedef MyType::type type;
T foo(const Té& t) { return t.Foo(); }
};

Default definitions in concept

i (IU only)

template <typename T>
concept Comparable {
bool operator<(const Té&, const Té&e);
bool operator>(const Té& x, const T& y) {
return y < x;

}
K

// A type that models Comparable only needs to
// provide <.

Implicit checking vs nominal

i conformance

= Both proposals provide both forms

= Author of concept chooses which form
IS used

= Defaults differ

= TAMU: use negative assertion to request
nominal conformance

= |U: use struct concept to request implicit
checking

Why nominal conformance
might just be workable

template<typename OldIter>

where {Convertible<typename std::iterator_traits<OldIter>:.category*,
std::random_access_iterator_tag*> }

model RandomAccesslterator<OldIter> {};

= Very broad model declaration
= Applies even to types we haven't seen yet

Why implicit checking might

i just be workable

Use negative assertions to distinguish between
concepts that differ only in semantics

concept Inputlterator<typename Iter> { ... };
concept ForwardIterator<Inputlter Iter> { };

static_assert
template <ValueType T>
| ForwardIterator<std::istream_iterator<T> >;

i Combining where clauses

= |U: conjunction only
= TAMU: conjunction, disjunction,
negation

= Negation: probably not necessary except
to choose nominal conformance

= Disjunction: harder call

i Disjunction

= Argument for:

template<C1l T> void helper(T x);
template<C2 T> void helper(T x);

template<CO T> void foo(T x) where C1<T> | | CR<T> {

Helper(x);
}

= Argument against:
= Aesthetic: should factor out into a base concept
» Essentially splits template into duplicates
= Unclear what to do in case of multiple matches

Philosophy: reification of

i concepts and models

= lU: model is “the realization of a
concept.”

= TAMU: assert “explicit checking of
conformance of a type with respect to a
concept.” Model not mentioned as a
noun.

m IS a model a thing? A concept?

Technical challenges and

!L open issues

i Soundness and name lookup

= Soundness: type-check a constrained
template at definition time, not
instantiation time

= = All name lookup at definition time

= [ension with areas where we might
want later lookup

i Name lookup in templates

= Today’'s templates: two-phase name
lookup

= Constrained templates

= Dependent name found in concept: use it

= Dependent name not mentioned in
concept: what do we do?

i The helper function problem

template <Forwardlterator FI>
bool binary_search(FI first, FI last) {

advance(first, n);

)

= \We want the random access version of
advance when appropriate

= What type lookup rules will ensure that, and
also ensure soundness?

i The ambiguity problem

template <class T> where Triviallterator<T> void foo(T& x) { ... }
template <class T> where Inputlterator<T> void foo(T& x) { ... }
template <class T> where Outputlterator<T> void foo(T& x) { ... }

template <class T> where Triviallterator<T> void bar(Té& x) { foo(x); }

= bar seems to pass concept check, but
fails if we call it with a forward iterator.

= How can we modify type checking rules so
that bar won’t concept check?

i The specialization problem

template<typename T> where { CopyConstructible<T> }
void foo(T x)
{

std::vector<T> vec(l, X);
T& f=vec.front();

}

= Foo appears to pass concept check, but
might fail type check at instantiation time

= Possible solution (TAMU): forbid
specialization that changes template’s
conformance to requirements

Can we prove a soundness

i theorem?

= |U: yes for System F9, no for C++ as it
stands now

= TAMU: yes, but

=« Proof isn’t yet complete
= May require restrictions on specialization

i Other open questions

= Implications for expression templates

= |s concept-safe template
metaprogramming possible?

References

" Bjarne Stroustrup, "Concept checking - Amore abstract complement to type checking”, N1510, October
2003.

n Bjarne Stroustrup and Gabriel Dos Reis, "Concepts - Design choices for template argument checking”,
N1522, October 2003.

n B. Stroustrup, G. Dos Reis, "Concepts - syntaxand composition", N1536, October 2003.

n Robert Klarer, John Maddock, Beman Dawes, and Howard Hinnant, "Proposal to Add Static Assertions
to the Core Language (Revision 1)", N1604, February 2004.

n Jeremy Siek, Douglas Gregor, Ronald Garcia, Jeremiah Willcock, Jaakko Jarvi, Andrew Lumsdaine,
"Concepts for C++0x", N1758, January 2005.

n Doug Gregor, Jeremy Siek, "Explicit model definitions are necessary", N1798, April 2005.

n Jeremy Siek, Douglas Gregor, Ronald Garcia, Jeremiah Willcock, Jaakko Jarvi, and Andrew Lumsdaine,
"C++ Language Support for Generic Programming", N1799, April 2005.

. Douglas Gregor, Jeremy Siek, "Implementing Concepts", N1848, August 2005.

n Douglas Gregor, Jeremy Siek, Jeremiah Willcock, Jaakko Jarvi, Ronald Garcia, Andrew Lumsdaine,
"Concepts for C++0x, Revision 1", N1849, August 2005. (Supersedes N1758.)

n Lawrence Crowl and Thorsten Ottosen, "Synergies between Contract Programming, Concepts and
Static Assertions", N1867, August 2005.

n Bjarne Stroustrup and Gabriel Dos Reis, "Aconcept design (Rev. 1)", N1782, 2005. (Supersedes
unnumbered paper sent out on the reflector.)

n Gabriel dos Reis, Bjarne Stroustrup, "AFormalism for C++", N1885, September 2005.

References (cont)

n Gabriel dos Reis, Bjarne Stroustrup, "Specifying C++ concepts”, N1886, September 2005.

= AlexStepanovand Meng Lee, "The Standard Template", Technical Report HPL-94-34(R.1), Hewlett-
Packard Laboratories http://www.hpl.hp.com/techreports, 1994.

n SGI (Matt Austern, Hans Boehm, Jeremy Siek, Alexander Stepanov, John Wilkinson), SGI Standard
Template Library Programmers Guide, http://www.sgi.com/tech/stl, 1998.

n Jeremy Siek, Andrew Lumsdaine, "Concept Checking: Binding Parametric Polymorphism in C++",
Proceedings of the First Workshop on C++ Template Programming, Erfurt, Germany, 2000.

] Jaakko Jarvi, "Concept based overloading", from the Lillehammer concepts wiki, 2005.

n Ronald Garcia, Jaakko Jarvi, Andrew Lumsdaine, Jeremy Siek, Jeremiah Willcock, "A Comparative Study

of Language Support for Generic Programming", Proceedings of the 2003 ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications (OOPSLA03), October 2003.

. Gabriel Dos Reis, "Generic Programming in C++: The next level", ACCU Spring Conference 2002.

] Jaakko Jarvi, Jeremiah Willcock, and Andrew Lumsdaine, "Algorithm specialization and concept-
constrained genericity", Adobe talk, April 2004.
= JeremySiek and Andrew Lumsdaine. Essential Language Support for Generic Programming. In PLDI

'05: Proceedings of the ACM SIGPLAN 2005 conference on Programming language design and
implementation, New York, NY, USA, pages 73--84, June 2005. ACM Press

