N2074=06-0144
2006-09-07

Daveed Vandevoorde
daveed@vandevoorde.com

Plugins in C++

1 Introduction

1.1 What is a plugin?

In this paper, a plugin is code that can become part of a program under that program's
control. For C and C++ programs plugins are typically implemented as shared libraries
that are dynamically loaded (and sometimes unloaded) by the main program. Example
applications include media players (e.g., an MPEG4 player) for web browsers,
specialized filters for image processing applications (e.g., Adobe Photoshop),
dynamically loadable drivers for operating systems (e.g., Linux modules), and so forth.

1.2 Modules and dynamic libraries

At the Berlin meeting in April 2006, at the conclusion of a presentation of the "C++
Modules" proposal (N1964), the Evolution working group gave clear direction that its
Modules & Dynamic Libraries subgroup should further pursue the idea of mapping a
notion of dynamic libraries on the C++ modules concept presented in N1964.

This paper is an attempt at responding to that request by selecting a specific but important
application of dynamic libraries (plugins) and casting it into a natural and portable C++
form that is implementable with (but not inherently tied to) shared library technology.

In this initial revision, the proposal is only a sketch leaving out both formalism and some
specific design choices. Details will be worked out if the general direction is found
desirable. This paper assumes at least superficial familiarity with N2073 (which is a
significant revision of N1964).

1.3 What this proposal is not

This proposal expressly does not attempt to capture all the facilities offered by various
operating systems to load dynamic libraries under program control. It also does not
attempt to provide a simple transition path from code that currently uses operating-
system-specific facilities to standard C++ constructs. Finally, it is not attempting to
address any dynamic library applications other than plugins.

1.4 Phases of translation, translation units, etc.

The standard defining the C++ programming language is carefully crafted to avoid being
tied to particular implementation technology, while also ensuring that it is efficiently
implementable using the most popular technology. Specifically, C++ can be (and usually
is) efficiently implemented via native code compilers and symbolic linkers, but it can also
practically be realized as an interpreted environment.



Because of this technological neutrality the standard does not talk normatively about
object files, compilers, linkers, shared libraries, name mangling, ABIs (application binary
interfaces), etc. Instead, it uses the more abstract notions of translation units, phases of
translation, instantiation units, the ODR (one-definition rule), "names for linkage
purposes", an abstract machine, and so forth. The plugin language support will similarly
need to be expressed in terms of these abstract notions, and the proposed approach is
compatible with such a constraint.

2 Plugin capabilities

This section looks at a few common capabilities of shared-library-based plugins. The
purpose is to identify some underlying mechanisms and to explicitly exclude some
capabilities from this proposal. (I.e., the descriptions in this section are not the proposal;
just the identification of possible general capabilities.)

2.1 Loading

The minimum capability needed to deal with plugins is an interface that allows the
"loading" of a plugin. This amounts to identifying the program units that need to be
made part of the program. This identification can happen in various ways but on all
known platforms that support some form of plugin mechanism for C and C++ programs
the basic underlying identification mechanism is the name of a file (almost always: a
dynamic library file).

Loaded plugins can form a dependency graph: One plugin might load another one, and
two plugins may both independently load a third.

Plugins may also have dependencies on non-plugin libraries that may or may not already
be part of the running application. For example, both the initial program and the plugin
may access std: :cout.

2.2 Dynamic entity access

Although loading a plugin could potentially trigger side-effects through the dynamic
initialization of its namespace scope variables, it's fair to say that any set of plugin
capabilities would be disappointing if there weren't a way to at least call a function or
member function in the plugin.

For plugins defined in terms of shared libraries, the identification of the entities in the
plugin is through their names as seen by the linker/loader: For C++ that is often a
mangled name. A satisfactory standard solution should not rely on the programmer
having to find out what the mangled names are. (Curent platform-specific approaches
require the use of mangled names with, which practically forces programmers to limit
themselves to C-style interfaces.)

2.3 Unloading

Many useful plugin applications do not require that the plugin be detached from the
program prior to termination. However, there are also interesting applications where the
ability to unload plugins is essential (e.g., to limit the maximum memory footprint of the
application).



Unloading a plugin is unfortunately not trivial. Two problems are the responsibility of the
implementation:

* if a plugin has been loaded multiple times (e.g., by two other plugins), it should
not be unloaded until all its loaders have requested it to be unloaded (reference
counting is often a good solution for this).

* the destruction of namespace scope variables (and static data members) must
occur prior to unloading, which may not correspond to a strict "reverse of the
order of construction" ordering.

Additionally, the programmer must be careful not to access entities in the plugin after it
has been unloaded. Graceful recovery from such attempts would be a plus.

2.4 Plugin discovery

Many applications allow a user to place plugin files in certain conventional locations (file
system directories) and the application automatically finds them and loads them if
needed. This proposal does not attempt to provide a standard mechanism to provide a
matching facility. (However, it is expected that the File System Library proposal for TR2
will provide the building blocks to achieve this.)

2.5 Plugin interface discovery

It is possible to develop a protocol to dynamically discover the interfaces offered by a
plugin. A complete C++ solution would also involve the dynamic description of the types
involved (aka. run-time reflection). This is desirable territory, but in the interest of
simplicity, this proposal does not attempt to address that problem. However, the proposal
is not expected to "stand in the way" of future extensions in that direction.

3 A module-based plugin approach

This section proposes a sketch of a module-based approach to supporting plugins in the
language.

The proposal assumes a model where plugins are identified by file names. To avoid
introducing the notion of files in the core language, the loading/attaching of plugins is
cast in terms of standard library facilities. For reasons of symmetry, unloading/detaching
a plugin is also expressed through a library function. Entity access is expressed in terms
of a core language primitive that maps a loaded plugin onto a module interface. Making
this a core language mechanism allows it to deal transparently with various issues that are
typically closely tied to the compiler (name mangling, metadata structures like virtual
function tables and type_info variables, etc.). The "glue" between the compiler and
the library is a new standard type (this is not unlike std: :type_info).

3.1 Run-time entities

A run-time entity is any of the following kinds of program entities:
* anamespace scope variable or function
* amember function or a static data member, including such entities resulting from
the instantiation or specialization of a template
(In usual C++ language implementations, these are the entities that are identified using
mangled names in object files.)



3.2 std::plugin
A new standard type, tentatively spelled std: : plugin, is proposed. It is exposed to
client code as an incomplete class type. L.e., as if declared with:

namespace std { class plugin; }

3.3 Defining plugins
A plugin is defined as a module whose name is followed by parentheses:

export P() { // Parentheses indicate plugin nature of

public: // the module.
struct S {
void £() {}
}i
S* g();
//
}

Such a module is called a plugin module. The fact that a module is a plugin module can
cause a compiler to:
* change how namespace-scope variables are destroyed
* provide under-the-cover machinery to support dynamic importing (see below)
* potentially warn that inline functions will not get inlined outside the plugin
boundaries

Function templates and member functions/static data members of class templates cannot
be instantiated outside a plugin in which they are defined (i.e., there is no requirement to
perform run-time template instantiation).

The use of parentheses as an indication of the plugin nature of the module is only tenuous
in this context (it is reminiscent of a function, which like a plugin is an entity with run-
time effects), but it will become clearer when looking at additional supporting language
constructs below. An attribute-based syntax was also considered, but early feedback was
negative:

[[plugin]] export P {
//
}

3.4 Loading plugins

A new library function (or set of overloaded functions?), tentatively spelled
std: :attach, is proposed. It takes a file name and returns a pointer to a
std: :plugin.

std::plugin *p = std::attach("/App/Plugins/p.dyn");
If the call is successful, the namespace scope variables and the static data members of the

associated module are initialized and a unique pointer identifying the loaded plugin is
returned.



The call may fail with a thrown exception for a variety of reasons:
* plugins are not supported (e.g., because of platform limitations or because the
program was compiled/linked with options that don't allow for dynamic loading).
* the indicated argument does not correspond to a file.
* the indicated argument does not correspond to an actual plugin.
* the initialization of the module tries to (directly or indirectly) attach itself.
* the initialization of the module failed with an exception.
* some other reason (likely a system limitation of some sort).

3.5 Import expressions

An import expression associates a module with a dynamically attached plugin. The
syntax is as follows':

import N(p)
or
::import N(p)
where N is a previously imported plugin module name and p is a pointer returned by
std: :attach. Import expressions are void expressions. The first variant is a local
import expression and has an effect only within the current block scope, or within the
current full expression if it appears outside of any block scope. The second variant is a
global import expression and affects all subsequent accesses to plugin entities not
affected by a local import expression. Accessing a run-time entity from a plugin module
when no import expression for that module is in effect should either be undefined
behavior (easier to specify/implement) or require an exception to be thrown. For example
(assuming the plugin definition above):
import std;
import P();
S *s; // Okay: No access to run-time entity of P.
int main() {
std::plugin *p = std::attach("/App/Plugins/p.dyn");
{ import P(p); // Local import expression.

g()->£(); // Okay.

} // Local import effect ends.
#ifdef NEG

s = g(); // Would be undefined or exception.
#endif

{ ::import P(p); // Global import expression.

} // Effect continues globally.

g()->£(); // Okay.

}

The statements sequence

"1t is hoped that this justifies the plugin definition syntax.



import P(p);
gO)->£();

could be combined into a single comma-expression:

import P(p), g()->£();

The fact that module mapping is formulated in terms of expressions (rather than
statements) is also useful to allow the use of plugin facilities in initializers for namespace
scope variables and data members (both static and nonstatic).

It is expected that local import expressions can be implemented more efficiently in
multithreaded environments and that they are more likely to be transparent to optimizers.
However, for many applications the persistent effect of a global import expression is
what is required.

3.6 Unloading plugins

A new library function, tentatively spelled std: :detach, is proposed. It takes a
pointer to a std: : plugin and does not return a value (void return type).

std: :detach(p);

The argument must be a pointer value returned by std: :attach. (If necessary, null
pointers could be defined to have no effect.) The call causes the destructors of namespace
scope variables and static data members from the associated module to be run in their
reverse order of construction (entities in other modules are not yet destroyed, however).
After a plugin has been detached, the effect of an import expression for the associated
module is undone: Access to run-time entities of the module will again result in
undefined behavior or exceptions.

If a plugin module is not explicitly detached, it could be mandated that it be detached at
program termination time or some other requirement could be made. A call to

std: :detach could also be made responsible to apply recursively to any plugins still
attached to the plugin being detached.

3.7 Mapping to multiple plugins

Applications often load multiple plugins that conform to a single plugin interface. With
the proposed language support, this could be exercised using the following code
fragment:

std::plugin *pl std::attach("/App/Plugins/pl.dyn");
std::plugin *p2 = std::attach("/App/Plugins/p2.dyn");
for (int k = 0; k < 10; ++k) {

import P(pl), g()->£();

import P(p2), g()->f();
}

A practical problem, however, is that care must be taken that the various plugins
implementing a certain plugin module are compatible with the declarations in the
corresponding module file (Section 5, "Implementation notes", clarifies why this might



be an issue). Leaving this as a requirement for the programmer (to carefully declare
public entities in the same order in each plugin), seems inadequate. Instead, we propose
the possibility of defining a plugin interface that is separate from the various plugin
implementations. Possible syntax for the interface definition might be*:

register P() { // Plugin interface
public:
struct S {
virtual void f£();
}i
//
}

and for a corresponding implementation:

export for P() { // Plugin implementation
public:
struct S {
void £() {} // Error: Should be virtual
}i
}
When compiling a plugin module implementation, a compiler first loads the
corresponding compiled plugin module interface and subsequently enforces compatibility
between the two.
A plugin module interface might disallow run-time entity definitions. Alternatively, it
could allow definitions and use them as a default implementation if no plugin is loaded.
Incidentally, a similar interface enforcement mechanism for nonplugin modules could be
a highly welcome design and development tool.

4 A complete example

4.1 File 1: A plugin interface
register StringSource() {
public:
namespace StringSource {

import std;
std::string next();

> The use of the keyword register as a verb is admittedly contrived. Nonetheless, it is
meant to be reminiscent of the fact that the plugin's run-time interfaces must be registered
on the plugin client side.



4.2 File 2: A client program
import std;
// Import the plugin interface:
import StringSource();

int main() {
std: :plugin *p;
std::string p_name;
try {
// Repeatedly read the name of plugin to be loaded
// and output the string it produces:
while (std::cout << "\n? ", std::cin >> p name) {
p = std::attach(p_name);
import StringSource(p);
std::cout << StringSource::next();
std: :detach(p);
}
} catch (...) {
std::cout << "Plugin access failed\n";

}

4.3 File 3: A first plugin instance

export for StringSource() {
public:
namespace StringSource {
import std;
std::string next() {

return std::string("Hello, ");

}
}

4.4 File 4: A second plugin instance

export for StringSource() {
public:
namespace StringSource {
import std;
std::string next() {
return std::string("World!");



4.5 Sample session
Underlined text is console input:

? file3

Hello,

? filed

World!

? file5

Plugin access failed

5 Implementation notes

This section sketches how things might work "under the hood". It assumes that plugins
are implemented in terms of dynamic libraries (also called DLLs or shared libraries). The
approach outlined here is not the only practical one, and various system-specific
optimization opportunities are known to exist. The goal is primarily to establish the
reasonable feasibility of the proposed facility.

5.1 System-specific facilities
Windows and most variants of Unix support similar facilities when it comes to program-
directed loading/access/unloading of dynamic libraries.

5.1.1 Microsoft Windows

Windows provides a function LoadLibrary that takes a C-string (NTBS) describing a
DLL file (or an executable file) and returns a "handle" (an alternative function
LoadLibraryEx offers some additional options). DLLs can provide a special entry
point (often referred to as D11Main) to be notified of special events: (1) DLL is loaded,
(2) new thread is created, (3) thread exits cleanly, and (4) library is unloaded or process
exits cleanly. (The Microsoft C++ compiler runs constructors and destructors of variables
with static lifetime using this mechanism.)

Given a handle and a low-level (i.e., mangled) name of an exported variable or routine,
the function GetProcAddr returns a pointer to the associated entity.

A DLL can be unloaded by passing its associated handle to the function FreeLibrary.
LoadLibrary and FreeLibrary work using a reference count: If LoadLibrary is
called N times for a given DLL, N invocations of FreeLibrary are needed to actually
unload the DLL.

5.1.2 Unix variants (Linux, MacOS X, Solaris, others)

Many variants of Unix offer functions dlopen, dl1sym, and dlclose that are very
similar to Microsoft's LoadLibrary, GetProcAddr, and FreeLibrary,
respectively. In addition to taking a file name locating the dynamic library to load,
dlopen also takes a second integer argument to pass optional flags that control (among
other things) how symbols in the loaded dynamic library are available to code that does
not have access to the handle returned by dlopen. (The flags vary from one Unix-based



platform to another.) As with the corresponding Microsoft functions, dlopen and
dlclose maintain a reference count for a given dynamic library.

Not all Unix applications can successfully "dlopen" a dynamic library: An application
must have been linked in an appropriate way for this to be possible (although that is
usually the default linking option).

5.2 Compiling a plugin module

When a dynamic library has been loaded by the application using Microsoft's
LoadLibrary or Unix's dlopen, access to entities in that library must be indirect
through the pointers obtained from GetProcAddr/d1lsym. Although the plugin module
feature proposed here shields the programmer from the associated coding tedium, the
underlying mechanism remains indirect access.

When compiling a plugin module, the compiler can create (in the resulting object file) a
table of pointers to all the exposed (usually: public) run-time entities and to the metadata
associated with public module members (specifically, virtual function tables and
type_info objects). In the module file (the other file likely to be produced by the
compilation of a module and read by a C++ front end when importing a module — see
N2073) the association of an exposed module member or a metadata item with an index
into the table can be described.

On the client side, all accesses to run-time entities of a given plugin module can be code-
generated in terms of a pointer (simply called pix henceforth) to the table of public
entity pointers in the plugin (this is somewhat similar to the idea of a virtual function
table). The pix pointer can be a module-wide pointer in code that is not in the scope of a
local import directive, or it can be a local pointer otherwise.

5.3 Plugin client code generation

A call to std: :attach could result in a call to LoadLibrary or dlopen (with the
result stored inside the opaque std: : plugin object whose address is to be returned),
followed by a call to GetProcAddr or dlsym to find the pix pointer value for that
plugin (which is also stored in the associated std: : plugin object). An import
expression import N(p) then amounts to simply loading the pix pointer associated
with module N with the value saved in *p by the call to std: :attach. This approach
makes import expressions relatively cheap, so that frequent switching between different
instances of a plugin module can be practical. std: :detach need not be more than a
call to FreeLibrary/dlcose.

A viable option might be to initialize a pix pointer to a table that causes an exception to
be thrown. A call to std: :detach could potentially also check if the plugin being
unloaded is the one currently accessed through the pix pointer, and if so reset the pix
pointer to the table that triggers exceptions.

6 Acknowledgments

Benjamin Kosnik, Loic Joly, Lally Singh, and Thomas Witt contributed significant ideas
and insights.



