
Decltype (revision 6): proposed wording
Programming Language C++

Document no: N2115=06-0185

Jaakko Järvi
Texas A&M University

College Station, TX
jarvi@cs.tamu.edu

Bjarne Stroustrup
AT&T Research

and Texas A&M University
bs@research.att.com

Gabriel Dos Reis
Texas A&M University

College Station, TX
gdr@cs.tamu.edu

2006-11-05

1 Introduction
We suggest extending C++ with the decltype operator for querying the type of an expression. This document is a
revision of the documents N1978=06-0048 [JSR06], N1705=04-0145 [JSR04], 1607=04-0047 [JS04], N1527=03-
0110 [JS03], and N1478=03-0061 [JSGS03], and builds also on [Str02]. The document reflects the specification as
discussed in the EWG in the Portland meeting, October 2006. Changes from the previous revision [JSR06] include
the following:

• The specification now takes rvalue references into account

• Parenthesized id-expression inside decltype is not considered to be an id-expression.

• Editorial changes to the wording.

• The new function declaration syntax

auto f(params) -> return-type

that moves the return type after the function’s parameter list is not part of the wording. There will be a separate
document for that functionality.

• Most of the motivation, background, and history discussion has been dropped—we only include wording, and
examples of the implications of the proposed rules.

2 The decltype operator

2.1 Syntax of decltype
The syntax of decltype is:

simple-type-specifier
...
decltype (expression)
...

1

Doc. no: N2115=06-0185 2

We require parentheses (as opposed to sizeof’s more liberal rule). Syntactically, decltype(e) is treated as if it
were a typedef-name (cf. 7.1.3). The operand of decltype is not evaluated.

2.2 Semantics of decltype
Determining the type decltype(e) build on a single guiding principle: look for the declared type of the expression e.
If e is a variable or formal parameter, or a function/operator invocation, the programmer can trace down the variable’s,
parameter’s, or function’s declaration, and find the type declared for the particular entity directly from the program
text. This type is the result of decltype. For expressions that do not have a declaration in the program text, such as
literals and calls to built-in operators, lvalueness implies a reference type.

The semantics of the decltype are captured with the following rules (these rules are directly from the proposed
wording given in Section 3). Note that rvalue references (see N1952=06-0022 [Hin06]) are taken into consideration
in these rules. Any case producing an rvalue reference type falls under the rule 2 below.

The type denoted by decltype(e) is defined as follows:

1. If e is an id-expression or a class member access (5.2.5 [expr.ref]), decltype(e) is defined as the
type of the entity named by e. If there is no such entity, or e names a set of overloaded functions,
the program is ill-formed.

2. If e is a function call (5.2.2 [expr.call]) or an invocation of an overloaded operator (parentheses
around e are ignored), decltype(e) is defined as the return type of that function.

3. Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is defined as T&, otherwise
decltype(e) is defined as T.

The operand of the decltype operator is not evaluated.

2.3 Decltype examples and discussion
In the following we give examples of decltype with different kinds of expressions. First, however, note that unlike
the sizeof operator, decltype does not allow a type as its argument:

sizeof(int); // ok
decltype(int); // error (and redundant: decltype(int) would be int)

2.3.1 Variable and function names

• Variables in namespace or local scope (rule 1 applies):

int a;
int& b = a;
const int& c = a;
const int d = 5;
const A e;

decltype(a) // int
decltype(b) // int&
decltype(c) // const int&
decltype(d) // const int
decltype(e) // const A

Note that parentheses matter:

Doc. no: N2115=06-0185 3

int a;
decltype(a) // int
decltype((a)) // int&

• Formal parameters of functions (rule 1 applies):

void foo(int a, int& b, float&& c, int* d) {
decltype(a) // int
decltype(b) // int&
decltype(c) // float&&
decltype(d) // int*
...

}

• Function types (rule 1 applies):

int foo(char);
int bar(char);
int bar(int);
decltype(foo) // int(char)
decltype(bar) // error, bar is overloaded

Note that rule 3 applies when a pointer to a function is formed:

decltype(&foo) // int(*)(char)
decltype(*&foo) // int(&)(char)

• Array types (rule 1 applies):

int a[10];
decltype(a); // int[10]

• Member variables (member access operators):

The type given by decltype is the type declared as the member variables type, so again, rule 1 applies. In
particular, the cv-qualifiers originating from the object expression within a . operator or from the pointer ex-
pression within a -> expression do not contribute to the declared type of the expression that refers to a member
variable. Similarly, the l- or rvalueness of the object expression does not affect whether the decltype of a
member access operator is a reference type or non-reference types.

class A {
int a;
int& b;
static int c;

void foo() {
decltype(a); // int
decltype(this->a) // int
decltype((*this).a) // int
decltype(b); // int&
decltype(c); // int (static members are treated as variables in namespace scope)

}

void bar() const {

Doc. no: N2115=06-0185 4

decltype(a); // int
decltype(b); // int&
decltype(c); // int

}
...

};

A aa;
const A& caa = aa;

decltype(aa.a) // int
decltype(aa.b) // int&
decltype(caa.a) // int

Note that member variable names are not in scope in the class declaration scope.

class B {
int a;
enum B_enum { b };

decltype(a) c; // error, a not in scope
decltype(a) foo() { ... }; // error, a not in scope

decltype(b) enums_are_in_scope() { return b; } // ok
...

};

Built-in operators .* and ->* follow the decltype rule 3: l- or rvalueness of the expression determines whether
the result of decltype is a reference or a non-reference type.

Using the classes and variables from the example above:

decltype(aa.*&A::a) // int&
decltype(aa.*&A::b) // illegal, cannot take the address of a reference member
decltype(caa.*&A::a) // const int&

• this (rule 3 applies):

class X {
void foo() {
decltype(this) // X*, ‘‘this’’ is ‘‘non−lvalue’’ (see 9.3.2 (1))
decltype(*this) // X&

...
}
void bar() const {
decltype(this) // const X*
decltype(*this) // const X&

...
}

};

• Pointers to member variables and functions (rule 1 applies):

class A {
...

Doc. no: N2115=06-0185 5

int x;
int& y;
int foo(char);
int& bar() const;

};

decltype(&A::x) // int A::*
decltype(&A::y) // error: pointers to reference members are disallowed (8.3.3 (3))
decltype(&A::foo) // int (A::*) (char)
decltype(&A::bar) // int& (A::*) () const

• Literals (rule 3 applies):

String literals are lvalues, all other literals rvalues.

decltype("decltype") // const char(&)[9]
decltype(1) // int

• Redundant references (&) and cv-qualifiers.

Since a decltype expression is considered syntactically to be a typedef-name, redundant cv-qualifiers and &

specifiers are ignored:

int& i = ...;
const int j = ...;
decltype(i)& // int&. The redundant & is ok
const decltype(j) // const int. The redundant const is ok

• Function invocations (rule 2 applies):

int foo();
decltype(foo()) // int

float& bar(int);
decltype (bar(1)) // float&

class A { ... };
const A bar();
decltype (bar()) // const A

const A& bar2();
decltype (bar2()) // const A&

• built-in operators (rule 3 applies):

decltype(1+2) // int (+ returns an rvalue)
int* p;
decltype(*p) // int& (* returns an lvalue)
int a[10];
decltype(a[3]); // int& ([] returns an lvalue)

int i; int& j = i;
decltype (i = 5) // int&, because assignment to int returns an lvalue
decltype (j = 5) // int&, because assignment to int returns an lvalue

Doc. no: N2115=06-0185 6

decltype (++i); // int&
decltype (i++); // int (rvalue)

2.4 Decltype and SFINAE
If decltype is used in the return type or a parameter type of a function, and the type of the expression is dependent on
template parameters, the validity of the expression cannot in general be determined before instantiating the template
function. For example, before instantiating the add function below, it is not possible to determine whether operator+
is defined for types A and B:

template <class A, class B>
void add(const A& a, const B& b, decltype(a + b)& result);

Obviously, calling this function with types that do not support operator+ is an error. However, during overload
resolution the function signature may have to be instantiated, but not end up being the best match, or not even be a
match at all. In such a case it is less clear whether an error should result. For example:

template <class T, class U>
void combine(const T& t, const U& u, decltype(t + u)& result);

class A { ... };
void combine(const A& a, const A& b, std::ostream& o);

A a, b;
...
combine(a, b, cout);

Here, the latter combine() function is the best, and only, matching function. However, the former prototype must also
be examined during overload resolution, in this case to find out that it is not a matching function. Argument deduction
gives formal parameters a and b the type A, and thus the decltype expression is erroneous (we assume here that
operator+ is not defined for type A). We can identify three approaches for reacting to an operand of decltype
which is dependent and invalid during overload resolution (by invalid we mean a call to a non-existing function or an
ambiguous call, we do not mean a syntactically incorrect expression).

1. Deem the code ill-defined.

As the example above illustrates, generic functions that match broadly, and contain decltype expressions with
dependent operands in their arguments or return type, may cause calls to unrelated, less generic, or even non-
generic, exactly matching functions to fail.

2. Apply the “SFINAE” (Substitution-Failure-Is-Not-An-Error) principle (see 14.8.2.). Overload resolution would
proceed by first deducing the template arguments in deduced context, substituting all template arguments in
non-deduced contexts, and use the types of formal function parameters that were in deduced context to resolve
the types of parameters, and return type, in non-deduced context. If the substitution process leads to an invalid
expression inside a decltype, the function in question is removed from the overload resolution set. In the example
above, the templated add would be removed from the overload set, and not cause an error.

Note that the operand of decltype can be an arbitrary expression. To be able to figure out its validity, the com-
piler may have to perform overload resolution, instantiate templates (speculatively), and, in case of erroneous
instantiations back out without producing an error. To require such an ability from a compiler is problematic;
there are compilers where it would be very laborious to implement.

Doc. no: N2115=06-0185 7

3. Unify the rules with sizeof (something in between of approaches 1. and 2.)

The problems described above are not new, but rather occur with the sizeof operator as well. Core issue 339:
“Overload resolution in operand of sizeof in constant expression” deals with this issue. 339 suggests restricting
what kind of expressions are allowed inside sizeof in template signature contexts.

The first rule is not desirable because distant unrelated parts of programs may have surprising interaction (cf.
ADL). The second rule is likely not possible in short term, due to implementation costs. Hence, we suggest that the
topic is bundled with the core issue 339, and rules for sizeof and decltype are unified. However, it is crucial
that no restrictions are placed on what kinds of expressions are allowed inside decltype, and therefore also inside
sizeof. We suggest that issue 339 is resolved to require the compiler to fail deduction (apply the SFINAE principle),
and not produce an error, for as large set of invalid expressions in operands of sizeof or decltype as is possible to
comfortably implement. We wish that implementors aid in classifying the kinds of expressions that should produce
errors, and the kinds that should lead to failure of deduction.

3 Proposed wording

3.1 Wording for decltype
Section 2.11 Keywords [lex.key]

Add decltype to Table 3.

Section 3.2 One definition rule [basic.def.odr]

The first sentence of the Paragraph 2 should be:

An expression is potentially evaluated unless it appears where an integral constant expression is required
(see 5.19), is the operand of the sizeof operator (5.3.3) or the decltype operator ([dcl.type.decltype]),
or is the operand of the typeid operator and the expression does not designate an lvalue of polymorphic
class type (5.2.8).

Core issue 454 may change the wording slightly.

Section 4.1 Lvalue-to-rvalue conversion [conv.lval]

Paragraph 2 should read:

The value contained in the object indicated by the lvalue is the rvalue result. When an lvalue-to-rvalue
conversion occurs within the operand of sizeof (5.3.3) or decltype ([dcl.type.decltype]) the value
contained in the referenced object is not accessed, since that operator does those operators do not evaluate
itstheir operands.

Section 7.1.5 Type specifiers [dcl.type]

The list of exceptions in paragraph 1 needs a new item.

As a general rule, at most one type-specifier is allowed in the complete decl-specifier-seq of a declaration.
The only exceptions to this rule are the following:

Doc. no: N2115=06-0185 8

— const or volatile can be combined with any other type-specifier. However, redundant cv-
qualifiers are prohibited except when introduced through the use of typedefs (7.1.3), decltype
([dcl.type.decltype]), or template type arguments (14.3), in which case the redundant cv-qualifiers
are ignored.

Section 7.1.5.2 Simple type specifiers [dcl.type.simple]

In paragraph 1, add the following to the list of simple type specifiers:

decltype (expression)

To Table 7, add the line:

decltype (expression) the type as defined below

Add a new paragraph after paragraph 3:

The type denoted by decltype(e) is defined as follows:

1. If e is an id-expression or a class member access (5.2.5 [expr.ref]), decltype(e) is defined as the
type of the entity named by e. If there is no such entity, or e names a set of overloaded functions,
the program is ill-formed.

2. If e is a function call (5.2.2 [expr.call]) or an invocation of an overloaded operator (parentheses
around e are ignored), decltype(e) is defined as the return type of that function.

3. Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is defined as T&, otherwise
decltype(e) is defined as T.

The operand of the decltype operator is not evaluated.

[Example:

const int&& foo();
int i;
struct A { double x; }
const A* a = new A();
decltype(foo()); // type is const int&&
decltype(i); // type is int
decltype(a->x); // type is double
decltype((a->x)); // type is const double&

— end example]

Section 14.6.2.1 [temp.dep.type] Dependent types

Add a case for decltype in the paragraph 6:

A type is dependent if it is:

— denoted by decltype(expression), where expression is type-dependent ([temp.dep.expr]).

Doc. no: N2115=06-0185 9

Section 9.3.2 The this pointer ([class.this])

This change is not strictly necessary for decltype, it is a “clean-up” change, and not intended to change semantics.
Paragraph 1 should start:

In the body of a nonstatic (9.3) member function, the keyword this is a non-lvalue an rvalue expression
...

References
[Hin06] Howard Hinnant. A proposal to add an rvalue reference to the c++ language: Proposed wording, revision

2. Technical Report N1952=06-0022, ISO/IEC JTC 1, Information technology, Subcommittee SC 22,
Programming Language C++, January 2006.

[JS03] J. Järvi and B. Stroustrup. Mechanisms for querying types of expressions: Decltype and auto revis-
ited. Technical Report N1527=03-0110, ISO/IEC JTC 1, Information technology, Subcommittee SC 22,
Programming Language C++, September 2003. http://anubis.dkuug.dk/jtc1/sc22/wg21/
docs/papers/2003/n1527.pdf.

[JS04] Jaakko. Järvi and Bjarne Stroustrup. Decltype and auto (revision 3). Technical Report N1607=04-0047,
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming Language C++, March 2004.

[JSGS03] Jaakko Järvi, Bjarne Stroustrup, Douglas Gregor, and Jeremy Siek. Decltype and auto. C++ standards com-
mittee document N1478=03-0061, April 2003. http://anubis.dkuug.dk/jtc1/sc22/wg21/
docs/papers/2003/n1478.pdf.

[JSR04] Jaakko. Järvi, Bjarne Stroustrup, and Gabriel Dos Reis. Decltype and auto (revision 4). Technical Report
N1705=04-0145, ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming Language
C++, September 2004.

[JSR06] Jaakko. Järvi, Bjarne Stroustrup, and Gabriel Dos Reis. Decltype (revision 5). Technical Report N1978=06-
0048, ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming Language C++, April
2006.

[Str02] Bjarne Stroustrup. Draft proposal for "typeof". C++ reflector message c++std-ext-5364, October 2002.

4 Acknowledgments
We are grateful to Jeremy Siek, Douglas Gregor, Jeremiah Willcock, Gary Powell, Mat Marcus, Daveed Vandevoorde,
David Abrahams, Andreas Hommel, Peter Dimov, and Paul Mensonides, Howard Hinnant, Jens Maurer, and Jason
Merrill for their valuable input in preparing this proposal.

http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1527.pdf
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1527.pdf
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf

	Introduction
	The [basicstyle=]decltype operator
	Syntax of [basicstyle=]decltype
	Semantics of [basicstyle=]decltype
	Decltype examples and discussion
	Variable and function names

	Decltype and SFINAE

	Proposed wording
	Wording for decltype

	Acknowledgments

