

A new precision measurement of the neutron electric dipole moment (EDM)

E. Aleksandrov⁹, M. Balabas⁹, G. Ban⁴, G. Bison⁸, K. Bodek³, Yu. Borisov⁵, T. Brys⁶,
M. Daum⁶, S. Dmitriev², N. Dovator², P. Fierlinger⁶, X. Fléchard⁴, A. Fomin⁵, P. Geltenbort¹, St. Gröger⁸, R. Henneck⁶, A. Ivanov⁹, V. Kartoshkin², M. Karuzin⁹, A. Kharitonov⁵,
K. Kirch⁶, S. Kistryn³, I. Krasnoshekova⁵, G. Kühne⁶, V. Kulyasov⁹, M. Labalme⁴, M. Lasakov⁵, T. Lefort⁴, E. Liénard⁴, A. Magiera³, V. Marchenkov⁵, A. Murashkin⁵, O. Naviliat⁴, A. Pazgalev⁹, A. Pichlmaier⁶, M. Sazhin⁵, U. Schmidt⁷, <u>A. Serebrov^{5,6}</u>, G. Shmelev⁵,
I. Shoka⁵, E. Siber⁵, R. Taldaev⁵, V. Varlamov⁵, A. Vasiliev⁵, A. Weis⁸, R. Wynands⁸, J. Zejma³

¹ILL, Institut Laue-Langevin, Grenoble, France
²Ioffe Physical Technical Institute, Russ. Acad. Sc., St. Petersburg, Russia
³Jagellonian University, Cracow, Poland
⁴LPC, Laboratoire de Physique Corpusculaire, Caen, France
⁵PNPI, St. Petersburg Nuclear Physics Institute, Gatchina, Russia
⁶PSI, Paul-Scherrer-Institut, Villigen, Switzerland
⁷Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
⁸Université de Fribourg, Fribourg, Switzerland
⁹Vavilov State Optical Institute, St. Petersburg, Russia

PSI, February 2003

A. Serebrov, PSI Report 2002

1

The goal of new nEDM experiment is

- 1. to reach the accuracy of $2 \cdot 10^{-28} \text{ e} \cdot \text{cm}$ (factor of 100 times better than the present best result)
- to check the prediction of SUSY models with CP-violation (nEDM, Baryon asymmetry of Universe, SUSY and Standard Model)

The main results of 2002

- 1. The detailed proposal of nEDM experiment.
- 2. The project of mini EDM spectrometer.
- **3.** The test experiment of magnetic field stability with model of magnetic shielding and with Cs-magnetometers.
- 4. The test experiment for UCN polarizer with superconducting solenoid.
- 5. The formation of nEDM collaboration.

The detailed proposal of nEDM experiment

- 1. The estimation of the statistical accuracy of nEDM experiment.
- 2. The mathematical model of nEDM experiment.
- **3.** Simulation of nEDM measurement by multichamber spectrometer in the conditions of magnetic field fluctuations.
- 4. Requirements for stability and homogeneity of magnetic field.
- 5. Test experiments.
- 6. Systematic effects.
- 7. High-voltage problems.
- 8. Design.
- 9. The plan of the realization of the new nEDM experiment
- 10. Cost estimate.

The scheme of the multichamber nEDM spectrometer

- 1. 1' UCN detectors
- 2. polarization analyzer foil
- 3. UCN switch
- 4. four-layer magnetic shield
- 5. electrode with zero potential
- 6. channel for Cs magnetometers
- 7. oscillating field coils
- 8. BeO-coated insulator
- 9. HV electrodes
- 10. vacuum chamber with magnetic field coil
- 11. superconducting polarizer with a membrane to separate the vacuum of the UCN source from the vacuum of the EDM spectrometer
- 12. UCN storage chamber
 - (1 out of 13)
- 13. UCN shutter
- 14. UCN guide

The estimation of the statistical accuracy of new nEDM experiment at PSI and comparison with nEDM experiments at PNPI and at ILL

	PNPI	ILL	EDM@SUNS
ρ ₀	8 UCN/cm ⁻³	40 UCN/cm ⁻³	3.10 ³ UCN/cm ⁻³
V	4.8·10 ⁴ cm ³	2.0·10 ⁴ cm ³	2.0·10 ⁵ cm ³
N ₀	10 ⁴ UCN	1.2·10 ⁴ UCN	2.9·10 ⁷ UCN
K	0.026	0.016	0.05
E	13 kV/cm	7 kV/cm	15 kV/cm
α	0.7	0.7	0.75
Т	100 s	130 s	100 s
δv_{stat} /measurement	4.5·10 ⁻⁵ Hz	3.1·10 ⁻⁵ Hz	8·10 ⁻⁷ Hz
required stability δB/measurement achieved stability δB/measurement	1.5 рТ 0.25 рТ	1.0 рТ 0.2 рТ	0.026 pT 0.010 pT
δd _n /measurement	3.7·10 ⁻²⁴ e⋅cm	5.5·10 ⁻²⁴ e·cm	5.5·10 ⁻²⁶ e·cm
δd _n /100 days	1.9·10 ⁻²⁶ e⋅cm	2.8·10 ⁻²⁶ e⋅cm	2.7·10 ⁻²⁸ e·cm
f	61	90	1

 ρ_0 : average UCN density at the sources: V: total volume of the storage traps; No: number of neutrons registered per measuring cycle with the same polarity of high voltage; K: total UCN loss factor between the source and the detector; α : visibility parameter of the resonance curve; E: electric field; T: time between oscillating field pulses in Ramsey's method; δv_{stat} /measurement: required resonance stability determined from the counting statistics; $\delta d_{\rm n}$ /measurement: statistical accuracy per measurement; $\delta d_{\rm p}/100$ days: statistical accuracy for 100 days of data acquisition; f: accuracy of the experiments compared to the design accuracy of the new experiment at the new **PSI UCN source**

The comparison of sensitivity of different nEDM spectrometers (multichamber PNPI-PSI spectrometer, PNPI spectrometer, ILL spectrometer)

	PNPI@SUNS	ILL@SUNS	EDM@SUNS
ρ ₀	3·10 ³ UCN/cm ⁻³	3·10 ³ UCN/cm ⁻³	3·10 ³ UCN/cm ⁻³
V	4.8·10 ⁴ cm ³	2.0·10 ⁴ cm ³	2.0·10 ⁵ cm ³
N ₀	3.8·10 ⁶ UCN	1.0·10 ⁶ UCN	2.9·10 ⁷ UCN
K	0.026	0.016	0.05
E	13 kV/cm	7 kV/cm	15 kV/cm
α	0.7	0.7	0.75
Т	100 s	130 s	100 s
δv_{stat} /measurement	2.3·10 ⁻⁶ Hz	3.6·10 ⁻⁶ Hz	8·10 ⁻⁷ Hz
required stability δB/measurement achieved stability	0.08 pT	0.12 pT	0.026 pT
δ B/measurement	0.25 pT	0.2 pT	0.010 pT
δv_{tot} /measurement	7.8·10 ⁻⁶ Hz	7.0·10 ⁻⁶ Hz	8·10 ⁻⁷ Hz
δd_n /measurement	6.2·10 ⁻²⁵ e·cm	1.0·10 ⁻²⁵ e·cm	5.5·10 ⁻²⁶ e⋅cm
δd _n /100 days	3.1·10 ⁻²⁷ e·cm	5.0·10 ⁻²⁷ e·cm	2.7·10 ⁻²⁸ e·cm
f	11	18	1

ρ₀: average UCN density at SUNS; V: total volume of the storage traps; No: number of neutrons registered per measuring cycle with the same polarity of high voltage; K: total UCN loss factor between the source and the detector; α : visibility parameter of the resonance curve; E: electric field; T: time between oscillating field pulses in Ramsey's method; δv_{stat} /measurement: required resonance stability determined from the counting statistics; δv_{tot} /measurement: required total resonance stability: $\delta d_{\rm n}$ /measurement: statistical accuracy per measurement: $\delta d_{\rm p}/100$ days: statistical accuracy for 100 days of data acquisition; f: accuracy of the experiments compared to the design accuracy of the new experiment at the new **PSI UCN source**

Multichamber nEDM spectrometer and its advantages

1.	$\overline{\underline{I}} = \frac{1}{8} \left\{ \left[(F_2 - F_3) - (F_5 - F_6) \right] - \left[(F_8 - F_9) - (F_{11} - F_{12}) \right] \right\}$	$\left(\Delta\delta F\right)_{\rm L} - \left(\Delta\delta F\right)_{\rm R} = D$	neutron EDM indication (from HV-traps only!)
2.	$\overline{\underline{I}}^{+} = \frac{1}{8} \left\{ \left[(F_2 - F_3) - (F_5 - F_6) \right] + \left[(F_8 - F_9) - (F_{11} - F_{12}) \right] \right\}$	$\left(\Delta\delta F\right)_{L}$ + $\left(\Delta\delta F\right)_{R}$	fluctuations with terms of 2 nd , 4 th , etc. orders
3.	$\underline{\overline{II}}^{+} = \frac{1}{8} \left\{ \left[(F_2 - F_3) + (F_5 - F_6) \right] + \left[(F_8 - F_9) + (F_{11} - F_{12}) \right] \right\}$	δF	fluctuations with terms of 1 st , 3 rd , etc. orders
4.	$\underline{\overline{III}}^{+} = \frac{1}{8} \left\{ \left[\left(\mathbf{F}_{2} + \mathbf{F}_{3} \right) + \left(\mathbf{F}_{5} + \mathbf{F}_{6} \right) \right] + \left[\left(\mathbf{F}_{8} + \mathbf{F}_{9} \right) + \left(\mathbf{F}_{11} + \mathbf{F}_{12} \right) \right] \right\}$	F	fluctuations of uniform magnetic field, 2 nd , etc. orders
5.	$\overline{\mathbf{VIII}}^{-} = \frac{1}{8} \left\{ \left[(\mathbf{B}_2 - \mathbf{B}_3) - (\mathbf{B}_5 - \mathbf{B}_6) \right] - \left[(\mathbf{B}_8 - \mathbf{B}_9) - (\mathbf{B}_{11} - \mathbf{B}_{12}) \right] \right\}$	$\left(\Delta\delta B\right)_{L}$ - $\left(\Delta\delta B\right)_{R}$	magnetic field terms of 3 rd , 5 th , etc. orders
6.	$\overline{\mathbf{VIII}}^{+} = \frac{1}{8} \left\{ \left[\left(\mathbf{B}_{2} - \mathbf{B}_{3} \right) - \left(\mathbf{B}_{5} - \mathbf{B}_{6} \right) \right] + \left[\left(\mathbf{B}_{8} - \mathbf{B}_{9} \right) - \left(\mathbf{B}_{11} - \mathbf{B}_{12} \right) \right] \right\}$	$(\Delta \delta B)_{L} + (\Delta \delta B)_{R}$	magnetic field terms of 2 nd , 4 th , etc. orders
7.	$\overline{\mathbf{VII}}^{+} = \frac{1}{8} \left\{ \left[\left(\mathbf{B}_{2} - \mathbf{B}_{3} \right) + \left(\mathbf{B}_{5} - \mathbf{B}_{6} \right) \right] + \left[\left(\mathbf{B}_{8} - \mathbf{B}_{9} \right) + \left(\mathbf{B}_{11} - \mathbf{B}_{12} \right) \right] \right\}$	δB	magnetic field terms of 1 st , 3 rd , etc. orders
8.	$\overline{\underline{\mathbf{V}}}^{+} = \frac{1}{8} \left\{ \left[\left(\mathbf{B}_{2} + \mathbf{B}_{3} \right) + \left(\mathbf{B}_{5} + \mathbf{B}_{6} \right) \right] + \left[\left(\mathbf{B}_{8} + \mathbf{B}_{9} \right) + \left(\mathbf{B}_{11} + \mathbf{B}_{12} \right) \right] \right\}$	В	average value of the deviation from the resonance

EDM(n)=D-D₀

Simulation of magnetic field fluctuations

Compensation of magnetic field fluctuations by means of multichamber nEDM spectrometer and requirement for stability of magnetic field

The effect of compensation

The requirement

A. Serebrov, PSI Report 2002

Test experiments for magnetic field stability (PSI, PNPI, Vavilov Institute, Ioffe Institute, Fribourg)

- External magnetic field stabilization (factor ~ 20).
- 2. Magnetic shielding with shaking (factor $\sim 5.10^3$).
- Stabilization of resonance conditions with Csmagnetometers (factor ~ 50).

Ambient field at the PSI site of the EDM experiment

The stability of magnetic field and resonance conditions inside the magnetic shielding

The demonstration of stability of resonance conditions at the big magnetic noise (the operation of the bridge crane in experimental area)

The external magnetic field variation (due to bridge crane motion).

The internal magnetic field variation.

The stability of resonance conditions for EDM experiment.

There is no restriction from the side of stability of resonance condition to reach EDM accuracy 5.10^{-28} e.cm.

The problem of magnetic field homogeneity in nEDM spectrometer

Calculated magnetic field distributions in the area of storage chamber

Values of the average field in storage chamber

The system of current coils for the fine adjusting of magnetic field homogeneity

System of additional coils B

UCN polarization test experiment with superconducting solenoid (PNPI, ILL)

Advantages:

- 100% UCN polarization,
- increasing of useable UCN intensity in the factor of 3.8.

UCN detector for polarization analysis

Test experiment in 2003, preliminary preparations in 2002. (Caen, Heidelberg, PNPI, PSI)

The electric field in the EDM spectrometer

Test experiment in 2003, preliminary preparations in 2002. (PNPI, PSI ...)

The neutron EDM signal and systematic effects due to leakage currents

Suppression of leakage current effect in multichamber spectrometer

The allowed leakage current is 10 nA/chamber.

The estimation of systematic effects

- Quadratic v × E effect < 2.10⁻²⁸ e.cm for one chamber if electric field values for the two polarities differ less than 10%. This effect is cancelled due to double chamber.
- 2. Non-parallelism of the magnetic and the electric field. $<< 2.10^{-28} \text{ e} \cdot \text{cm}$
- 3. Ordered motion effect. $< 2.10^{-28} \text{ e} \cdot \text{cm}$
- 4. UCN depolarization during spin precession.

Realization of the new EDM experiment

First step: mini EDM spectrometer at ILL

- Construction of the mini EDM spectrometer (2003-2004)
- Test of the spectrometer at ILL with the aim to obtain a new experimental result δd_n ~ 1.10⁻²⁶ e.cm (2004-2005)

Realization of the new EDM experiment

Second step: mini EDM spectrometer at PSI SUNS

 Installation of the mini EDM spectrometer in the small hall of SUNS with the aim to measure d_n with δd_n ~ 1.10⁻²⁷ e.cm (2006-2007)

Third step: final EDM spectrometer at PSI SUNS

- Manufacturing of the main EDM spectrometer (2007-2008)
- Installation of the main spectrometer in the large hall of SUNS, measuring of d_n with $\delta d_n \sim 2.10^{-28} \text{ e} \cdot \text{cm} (2008-2010)$

Cost estimate

The estimated cost of the mini EDM project is 1'810 ksFr.

item	[ksFr]
DAQ system	50
superconducting solenoid	200
vacuum parts	100
vacuum chambers, support	200
UCN traps in EDM (R&D) UCN traps in EDM	125 125
UCN guides	100
HV system	200
Magnetometers	100
Electronics	60
UCN detectors + housing	250
magnetic shielding	100
infrastructure	200
Sum	1'810

Contribution of PSI ~ 30%. Contribution of PNPI ~ 20%. Contributions of other institutes ~ 10% or less / institute.