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HP-71B Math ROM Baker’s Dozen (Vol. 1) 
Valentín Albillo (#1075, PPC #4747) 

 

Among the many worthwhile plug-in ROMs ever made for the HP-71B1, the 
Math ROM is one of the very best. Many of its principal functions and 
capabilities were intended to be part of the System ROMs from the very start, but 
were sadly left out when it became clear that the total code was going to exceed 
the allotted 64 Kb of System ROM space. So, it was excised from internal ROMs 
#0 and #1 and placed instead in external ROM #2, all 32 Kb of highly optimized 
machine-language code. Yet some leftovers still remain inside the System ROMs, 
now mostly issuing polls to the Math ROM code, if present, for it to handle a 
number of operations such as those involving complex numbers (which the 
mainframe does accept but can’t deal with), and IMAGE statements involving 
complex numbers.  
All in all, the Math ROM is the one essential addition to any HP-71B system, 
extending the already very powerful BASIC programming environment to its 
fullest for all things mathematical. As one of its original creators (Steve Abell, 
father of CALC mode) once posted when talking about the HP-71B system: “It 
had math and stat software to *die* for.”. Indeed. And all later powerful HP 
models (such as the 42S and the 48/49 series) have inherited and expanded the 
advanced functionality of this incredible achievement in portable math 
computing, itself made possible by the previous experience acquired during the 
development of the HP-85 Matrix ROM, the HP-75 Math ROM, and the HP-15C 
highly-optimized SOLVE and INTEGRATE functionality (originally developed for 
the HP-34C !). The best algorithms were extracted and rewritten in Saturn 
assembly code, including a large number of refinements (just compare complex 
number handling) and additions (such as maintaining IEEE compliance, the one 
and only handheld product at the time to offer such). 
This article (subdivided into two reasonably-sized “volumes” to make life a little 
easier for our kind Editor and readers) isn’t yet another review of the Math ROM 
capabilities, that has been done a number of times before and to do it justice 
would probably require a whole issue of Datafile or two. Instead, this article 
features 13 assorted mini-topics, each of them discussing some interesting or 
otherwise novel aspect of choice Math ROM capabilities, from complex numbers 
to matrices, root finding, numerical integration, and special functions. I hope 
you’ll find at least some of them enjoyable, even intriging, and further, useful to 
increase your awareness of the incredible portable computing power  the Math 
ROM has to offer even today. 
                                                 
1 If you have no HP-71B or no Math ROM, just get Emu71, a free emulator for Windows by 
Jean-François Garnier, or HP-71X, a 48/49 based-one by Hrastprogrammer. Both are fantastic ! 
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1. It’s the norm ! 
RNORM and CNORM are two matrix functions which return the Row Norm 
(respectively, Column Norm) of a given rectangular matrix or vector, this is, the 
largest sum of the absolute values of the elements of each row (respectively, 
column). An example will make it clear: assume we’re given this 2x3 matrix,: 
    | -2  3 -5 | 
   |  4 -4  6 | 

then the sums of the absolute values of the elements of each row are, respectively, 
10 and 14, so the Row Norm will be 14. Likewise, the Column Norm is 11. 
However, beyond its intended purpose, these two functions can be used to help 
compute some other useful matrix functions not directly provided. For instance, 
consider this program code2: 

DESTROY ALL @ OPTION BASE 1  
R=2 @ C=3 @ DIM A(R,C) @ READ A(,) 
DATA -2,3,-5,4,-4,6 
DIM A(R*C) @ DISP CNORM(A), RNORM(A) @ DIM A(R,C) 

 
Upon running it, two values will be computed and displayed: 24 and 6. Assuming 
OPTION BASE 1, when matrix A, with R rows and C columns, is temporarily 
redimensioned to a column vector with R*C elements, A(R*C), then: 

• CNORM gives the sum of the absolute values of all elements of A:  24 

• RNORM returns the absolute value of the maximum element of A:   6 

and you can then redimension matrix A back to its original dimensions. But what 
about getting the sum of all elements, taken with their proper signs, not just 
absolute values ?  

Well, a pair of nested FOR-NEXT loops would do (or even just one if the matrix is 
previously redimensioned to a 1-dimensional column vector), but fortunately 
there’s a direct, non-looping way to do it with the help of RNORM and CNORM, 
which is much faster than looping through all elements, specially for large 
matrices. The following subprogram MSUM accepts any two-dimensional 
matrix, and returns the sum of all its elements, taken with their signs. Notice there 
are no loops or branching, it’s a direct computation: 
 

SUB MSUM(T(,),S) @ F=UBND(T,1) @ C=UBND(T,2) @ P=LBND(T,1)  
N=(F-P+1)*(C-P+1) @ OPTION BASE P @ DIM A(F,C),B(N-NOT P) 
MAT A=T @ DIM A(N-NOT P) @ M=RNORM(A) @ MAT B=(M)  
MAT A=A+B @ S=CNORM(A)-N*M @ END SUB 
 

                                                 
2 In all program listings here, line numbers are present only if referenced; you may use 
whatever line numbering suits you as long as it’s sequential from lower  to higher line numbers. 
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This subprogram works only for real (not complex) matrices (not vectors, see 
below for a real vector version), and will accept any matrix in any OPTION BASE 
thanks to Math ROM functions UBND (Upper Bound) and LBND (Lower Bound) 
which find out the dimensions and OPTION BASE, thus eliminating the need to  
pass them as parameters. MSUM doesn’t alter matrix A but temporarily uses two 
auxiliary matrices the size of A. As for speed, check these times (in seconds): 

NxN MSUM LOOP VERSION 

10x10 1.56 3.01 

15x15 2.97 4.91 

20x20 4.95 8.96 

so MSUM is nearly two times faster then the fastest looping version. As a bonus, 
if you pass an additional parameter H, and also include the statement  

H=RNORM(A)-M 
after MAT A=A+B above, then H will return with the value of the maximum 
positive element of A. Further previous manipulations with A, such as changing 
the sign of all its elements by issuing a MAT A=-A statement, would get you the 
maximum negative element of A, etc. Here’s the 1-dimensional vector version: 

 
SUB VSUM(A(),S) @ P=LBND(A,1) @ N=UBND(A,1)-P+1  
OPTION BASE P @ DIM B(N-NOT P) @ M=RNORM(A) @ MAT B=(M)  
MAT A=A+B @ S=CNORM(A)-N*M @ MAT A=A-B @ END SUB 

 
this works only for real vectors but needs just one auxiliary matrix instead of two, 
so it can deal with larger vectors for any RAM size. The caveat is, it needs an 
additional MAT A=A-B statement to restore A, which slows it down a bit and 
might introduce some (extremely small) rounding errors. It can also be used with  
matrices by simply redimensioning them to vectors and back, like this (A is 
originally a 20x20 matrix): 

DIM A(20*20) @ CALL VSUM(A,S) @ DIM A(20,20) 
which runs in 6.05 seconds, still faster than looping. By the way, there’s yet 
another norm, the Frobenius Norm, FNORM, which also has its special uses. For 
instance, this code asks for any number of data and directly computes (no 
looping, very fast)  the sum of their squared values: 
 

DESTROY ALL @ OPTION BASE 1 @ FIX 4 @ INPUT "# data ? ";N 
DIM P(N) @ MAT INPUT P @ DISP "Sum. squares = ";FNORM(P)^2 

 
>RUN 

# data ? 20 [ENTER] 
P(1)? 5,4,-3,2,8,6,6,7,2,-4,8,-7,4,2,-6,2,3,-10,1,23 [ENT] 

Sum. squares =  1071.0000
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2. ‘GIMME’ GAMMA ! 
New times beget new applications, and new applications demand expanding the 
standard arsenal of transcendental functions to include new ones (or old as the 
case may be) which suddenly enjoy the limelights. But no calculator does include 
those functions right from the keyboard, and even programmable ones usually 
require a somewhat lengthy and complicated  program to compute them. 

Not so with the HP-71B+Math ROM ! The incredibly extensive and powerful 
instruction set provided by this ROM, with hyperbolics, GAMMA, complex-valued 
operations, matrices, and above all, recursive FNROOT and INTEGRAL, makes it 
extremely easy to implement in a few lines of code most any special function 
required in modern applications. Add to that the fact that user-defined functions 
can be multi-line, recursive, and callable right from the keyboard , and you’ll find 
yourself with an “über-calculator” that seamlessly incorporates every required 
special function as if they were standard, built-in fare. 

Let’s give some hot examples. Recently, the old-but-little-known transcendental 
Mittag-Leffler function, a natural generalization of the exponential defined as: 

 
has proven to be essential for a number of problems in applications, due to its 
strong connections with fractional calculus. A simple implementation might be: 
   1 DEF FNE(A,X) @ S=1 @ N=1 
   2 T=X^N/GAMMA(A*N+1) @ IF S+T<>S THEN S=S+T @ N=N+1 @ GOTO 2 
   3 FNE=S @ END DEF 
and now we’re ready to merrily use it as desired. For instance, let’s check that: 
   E(1,X)  à EXP(X)  E(2,X^2) à COSH(X) 

   E(2,-X^2)  à COS(X)  E(1/2,X) à EXP(X^2)*(1+ERF(X)) 

by trying some numeric cases from the keyboard. ERF stands for Erf, the Error 
Function, which we need previously define with this one-liner (!): 

4 DEF FNF(X)=2/SQR(PI)*INTEGRAL(0,X,1E-12,EXP(-IVAR*IVAR)) 
 

Now :  >FNE(1,PI), EXP(PI) 
   23.1406926328        23.1406926328 

>FNE(2,2^2), COSH(2) 
   3.76219569109        3.76219569108 

>FNE(2,-2^2), COS(2) 
-.416146836548       -.416146836547 

>FNE(1/2,SQR(2)), EXP(2)*(1+FNF(SQR(2))) 
   14.4419081951        14.4419081954 
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and you may see the extremely close agreement with the theoretical values. 

Another interesting “recently discovered” function is the Lambert W-Function, 
which is the functional inverse of:  

y = x.ex
 

This function keeps reappearing in a vast number of theoretical and practical 
applications, to the point where it has been semi-informally proposed as the next 
elementary function, joining the ranks of trigonometric, hyperbolic, exponential 
and logarithmic functions. If that were so, solutions given in terms of W would be 
considered as closed-form solutions, just as they would if given in terms of sines 
or exponentials. The derivative and the indefinite integral of W can both be 
expressed in terms of W, as can the solution to otherwise unsolvable ODE’s and 
also the roots of whole classes of basic transcendental equations. For instance: 

x
x
 = a     à  x = e

W(ln(a))
 

e
x + a*x + b = 0  à  x = - (a.W(e 

–b/a
 /a) +b) /a 

Let’s check these out with some numerical examples. First we need a user-defined 
function to compute Lambert’s W function. This one-liner (again!) will do: 

5 DEF FNW(X) = FNROOT(0,10,FVAR*EXP(FVAR)-X) 

Notice how the powerful FNROOT feature of the Math ROM (as INTEGRAL before) 
makes things extremely easy for us. Now for some numerical cases: 

x
x
 = 5     à  x = e

W(ln(5))
 

Just enter, right from the keyboard: 
>EXP(FNW(LN(5))), RES^RES [ENTER] 

 2.12937248276        5 
which indeed is a root of the transcendental equation. Now let’s solve: 

e
x + 3*x - 5 = 0   à x = - (3.W(e 

5/3
 /3) - 5) /3 

Again, from the keyboard: 
>-(3*FNW(EXP(5/3)/3)-5)/3, EXP(RES)+3*RES-5 

 .870573381313       -.00000000001 
 

which confirms the value found as a root for that transcendental equation. Finally, 
though HP didn’t know at the time, one of their classical, often-used examples 
(see for instance the HP-67 Math Pak 1 Owner’s Handbook, page 08-02, 
Example 2) can be solved in closed form using W(x), like this: 

ln(x) + 3*x –10.8074=0   à  x = W(3e
10.8074

) /3 =  3.21336087018 
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3. COMPLEX rants 

• The complex instruction set is far from complete. That special functions such 
as GAMMA aren’t defined for complex arguments is to be expected (if 
regrettable), but the fact that inverse trigonometric (let alone inverse 
hyperbolic) functions ASN (arc sine), ACOS (arc cosine), and ATAN (arc 
tangent) aren’t defined either for complex Z is really inexcusable: you can find 
the sine of a complex value, yet you can’t compute the inverse, lest you get:  

ERR: WORD/XFN Not found 

LGT (base-10 logarithm) gives the same message (though both LN and LOG 
work fine), but inverse hyperbolic functions (and GAMMA) all result in ERR: 
Data Type instead. Even the HP-15C knew better than this ! (also the DET 
determinant matrix function doesn’t work for complex matrices). This being 
so, these user-defined one-liners might do the job for suitable complex Z: 

 
DEF FNS1(Z)=(0,-1)*LN((0,1)*Z+SQR(1-Z*Z))         !asn 
DEF FNC1(Z)=PI/2-FNS1(Z)                          !acos 
DEF FNT1(Z)=(0,1/2)*(LN(1-(0,1)*Z)-LN(1+(0,1)*Z)) !atan 
DEF FNS2(Z)=LN(Z+SQR(1+Z*Z))                      !asnh 
DEF FNC2(Z)=LN(Z+SQR(Z+1)*SQR(Z-1))               !acosh 
DEF FNT2(Z)=(LN(1+Z)-LN(1-Z))/2                   !atanh 
 

• User-defined functions can take complex arguments and return complex 
results. You need do nothing special, this is default behaviour.  For instance:  

DEF FNF(Z)=SIN(Z)+COS(Z) 

will return a complex value if called with a complex Z [say, FNF((2,3))] and 
a real value if called with a real Z. Same goes for subprograms, you can pass 
and retrieve complex values from them. However, the functional result and the 
function parameters must be of the same type, real or complex. If you define: 

DEF FNF(Z)=(1,1)*Z 

you can then call it with a complex parameter Z, say FNF((1,1)) and get 
(0,2) as a result. But calling it with a real parameter, say FNF(1), will result 
in a ERR: Data Type message instead. Here, FNF((1,0)) would work. 

• The HP-71B system does know about complex values but doesn’t include any 
functions to define or deal with complex variables, that’s left for external 
ROMs (i.e.: the Math ROM) or binary files. You can check this easily, just 
enter this program line with no Math ROM plugged in: 

10 A=(2,3)+SIN((2,3)) 

and see the mainframe accept it happily, no Syntax error whatsoever. 
However, if you then try to run it, you’ll get the infamous ERR: XWORD/XFN 
Not found  message (unless you’ve got the Math ROM plugged in, that is). 
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4. Missing Matrix Operations 
Though the HP-71B’s Math ROM matrix operations were heavily based in the 
HP-85 Matrix ROM set, a number of functions and capabilities were nevertheless 
omitted, most probably due to space and budget restrictions. However, we can try 
and implement the missing functions with the help of the available ones. For 
instance, consider implementing the HP-85 Matrix ROM operation: 

MAT A = (K1)*B + (K2)*C 

 

The obvious method would make use of an auxiliary matrix, like this: 
MAT A=(K1)*B @ MAT D=(K2)*C @ MAT A=A+D 

 

But provided K1 (or K2) is not zero (which would be a trivial case anyway), a 
better method is: 

MAT A=(K2/K1)*C @ MAT A=A+B @ MAT A=(K1)*A 
 

which avoids using an auxiliary matrix altogether and runs as fast. The only 
minor inconvenience is that it may introduce some (small) rounding errors and it 
shouldn’t be applied to INTEGER matrices, unless K2 happens to be exactly 
divisible by K1 (or vice versa). 

The HP-85 Matrix ROM also allows all four arithmetic functions between a 
matrix and a scalar, as well as element-by-element matrix multiplication and 
division. These missing operations can be implemented like this: 

 
MAT A=A + (X) à   MAT B = (X) @ MAT A = A + B 
MAT A=A - (X) à   MAT B = (X) @ MAT A = A - B  
MAT A=A * (X) à MAT A = (X) * A 
MAT A=A / (X) à MAT A = (1/X) * A 
MAT A=A . B à DIM A(N*N),B(N*N) 
    FOR I=1 TO N*N @ A(I)=A(I)*B(I) @ NEXT I 
    DIM A(N,N),B(N,N) 
MAT A=A / B à same but instead A(I)=A(I)/B(I) 

 

In the last two cases, redimensioning the matrices to one-dimensional vectors and 
back allows us to use a single FOR-NEXT loop and simpler indexing, which helps  
make the computation run appreciably faster.  

Other missing matrix operations include assignment and copy of submatrices and 
ranges of rows/columns, as well as the possibility to manipulate empty arrays. In 
most practical cases, those operations can be implemented with relative ease, on a 
case-by-case basis. 
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5. FiNdROOT doesn’t ! 
The manual makes it clear. FNROOT (Find Root) is a powerful funny function that 
quickly and accurately finds a real root of any given function in a given interval 
or, if unsuccessful, reports after a usually short while that none could be found.  

By design, FNROOT should always terminate, no matter what. It must never get 
stuck on a loop, indefinitely searching for an elusive or nonexistent root. We want 
results and we want them as quick as possible, even if they turn out to be a report 
that no root could be found. Spending a reasonable time searching for a 
nonexistent root to make sure it can’t be found is Ok. Spending an inordinate 
amount of time, or even forever, is not acceptable and should never happen. 

But it does ! And, contrary to what you might expect, it doesn’t take a particularly 
complicated function or a wide search interval. Matter of fact, say you try to find 
a root of the extremely simple quadratic equation  X*X+1 = 0, supplying X=0 as 
the (only) initial value. You would then execute this statement from the command 
line: 

FNROOT(0, 0, FVAR*FVAR+1) 
 

and, if like me, you happen to own a Math ROM Version 1A (as reported by 
executing VER$), you’ll find out that it does not terminate ! At least not in any 
reasonable amount of time. This clearly qualifies as a serious bug in FNROOT ! 

You might want to investigate it further. If so, simply use this program, which 
defines the function X*X+1 not directly as the 3rd parameter of FNROOT, but rather 
as a multi-statement user-defined function FNF. This exhibits the bug as well, and 
allows us to include a counter of the number of times FNF is called by FNROOT, 
and also to inspect both the value of the counter and the current value of the 
guess, X, upon temporarily pausing the execution by pressing the [ATTN] key: 

 
10 DESTROY ALL @ N=0 @ X=FNROOT(0,0,FNF(FVAR)) @ DISP X 
20 DEF FNF(X) @ N=N+1 @ FNF=X*X+1 @ END DEF 

 

Run this for as long as you care, it won’t end. After a very long run, I stopped the 
execution by pressing the [ATTN] key and inspected the values: 

>N, X 
  1208278     1.00001208231E-6 
 

so you see, despite more than 1,200,000 evaluations of our function, FNROOT has 
neither found a root nor yet decided there’s none, and the current guess, 
0.000001000012+ is still very close to our initial guess, 0, so we’re hardly making 
any substantial progress. Seems that at least several billion (US variety) 
evaluations would still be needed to reach a decision, if at all.  
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6. COMPLEX means ... 
The Math ROM includes a number of utility-like functions some of which should 
have stayed in the System ROMs to begin with, such as LBND (Lower Bound), 
UBND (Upper Bound), and TYPE. These functions are very useful to help write 
generalized subprograms, which can deal with multiple data types, dimensions, 
and even OPTION BASE settings, without the calling program having to pass extra 
parameters or set flags in advance to specify the various possibilities. 

For example, consider this subprogram, VMEAN, which will accept a vector 
passed to it and will return the arithmetic mean of all its elements in another 
parameter, which must be an scalar variable of the same type (real or complex) as 
the vector, passed by reference: 

 
SUB VMEAN(V(),M) @ IF TYPE(V)<6 THEN REAL S ELSE COMPLEX S 
FOR I=LBND(V,1) TO UBND(V,1) @ S=S+V(I) @ NEXT I 
M=S/(UBND(V,1)-LBND(V,1)+1) @ END SUB 

 

Notice that, thanks to making use of LBND, UBND, and TYPE: 

• it works for both REAL and COMPLEX vectors (we use TYPE to discern whether 
V is real/complex and dimension auxiliary variable S to be the same type). 

• if works for vectors of any size, created with any OPTION BASE (we use LBND 
and UBND to ascertain the lower and upper limits for the index and thus the 
total number of elements in the vector). 

• you can also use it for matrices, simply redimension them temporarily to 
vectors, call VMEAN, and redimension them back to their original 
dimensions, like this: 

 
OPTION BASE 1 @ DIM V(10,20),M @ COMPLEX W(15,17),N 
... 
DIM V(10*20) @ CALL VMEAN(V,M) @ DIM V(10,20) 
COMPLEX W(15*17) @ CALL VMEAN(W,N) @ COMPLEX W(15,17) 

 

• it can easily be extended to return both arithmetic (M) and geometric (G) 
means in the same call. This would be the extended version: 

 
  SUB VM(V(),M,G) @ IF TYPE(V)<6 THEN REAL S,P ELSE COMPLEX S,P 
  P=1 @ FOR I=LBND(V,1) TO UBND(V,1) @ S=S+V(I) @ P=P*V(I) 
  NEXT I @ T=UBND(V,1)-LBND(V,1)+1 @ M=S/T @ G=P^(1/T)  
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7. ... And COMPLEX ways 
The extra capabilities provided by the Math ROM’s extensive additions to the 
built-in function set brings us new choices as to the way to implement desired 
functionalities. Suppose you need to compute the very common expression: 

X2 + Y2   

the natural way to do it would be, of course: 
X*X+Y*Y 

which performs two multiplications and one addition. But that’s not the only way, 
you can also compute it using complex operations and variables, like this: 

REPT((X,Y)*(X,-Y)) 

This seems to require just one multiplication, plus ancillary extra operations. But 
performing the complex multiplication needs a larger number of operations with 
the real-valued components internally and  thus the timing is actually worse, so 
no gain in this case. However, consider instead the square root of the original 
expression: this would be computed quite straightforwardly like this: 

SQR(X*X+Y*Y) 
But you can also make use of complex operations, namely the simpler expression: 

ABS((X,Y)) 

And though, again, the former is some 14% faster, this time there’s a gain to be 
made in terms of memory required: the complex-domain expression takes just 10 
bytes, versus 14 bytes for the all-real one. This won’t be a decisive factor in most 
applications, but it’s good to know the Math ROM allows for alternate ways. 
Finally, consider the slightly more cumbersome expression: 

     X              

√ X2 + Y2   
You’ll be tempted to compute it straightforwardly, like this: 

X/SQR(X*X+Y*Y) 

However, making use of Math ROM functions provides this nice alternate way: 
REPT(SGN((X,Y))) 

which not only looks smart, but it’s slightly faster as well, and even better, 
completely avoids the show-stopping ERR: 0/0 error message which is 
displayed unmercifully if X and Y both happen to be 0. The complex-domain 
version returns the correct value instead, with no division by zero in sight. 
Anyway, if nothing else, I hope you’ll agree it’s exciting to look for alternate 
ways using Math ROM functions and capabilities, and sometimes it even pays !  

Next issue 
The 2nd part of this article will feature the remaining sections of this Baker’s 
Dozen of HP-71B Math ROM’s goodies. Hope you enjoyed the ride so far ! 


