Boldly Going ... Going Back to the Roots

Valentín Albillo (HPCC \#1075, PPC \#4747)

Welcome to a new a Boldly Going ... article, this time paying homage to the brand new offspring in the ever-growing HP calculator family, the HP35s, a very significant, very interesting model which essentially is HP's attempt to go back to the roots by releasing a model which largely draws from classic look and feel. For my money, they've essentially succeeded and while the HP35s does have its share of valid criticism, the raw facts are that it is indeed a worthwhile addition to the lore, all the more interesting both for its strong points and its shortcomings.
A future Long Live ... !article will deal with both pretty soon (circumstances permitting), but for now, if HP can go back to the roots in the hardware side, it's only natural that we would do likewise in the software side, right ? Let's try !

Finding complex roots of complex equations is a complex business
Most specially when the built-in Solver won't do it per se. Though the HP35s includes pretty decent complex number handling to the point that each and every register (direct, indirect, stack) can hold a complex value and many arithmetic and transcendental functions are defined to work with them, there are also many others that aren't, and in particular you can't generally use the built-in Solver to find complex roots of arbitrary equations. This means that if you need to solve

$$
2 x^{4}+3 x^{3}+4 x^{2}+5 x+6=0 \quad\{4 \text { complex roots \}}
$$

or

$$
(2+3 i) x^{3}-(\mathbf{1}+2 i) x^{2}-(3+4 i) x-(6+8 i)=0\{1 \text { real, } 2 \text { complex roots }\}
$$

or even

$$
\operatorname{Sin}(2 x-4 i)+3 x^{2}-(\mathbf{1}+\mathbf{5 i})=0 \quad \text { \{ infinite complex roots \}}
$$

you're definitely out of luck. But that sad state of affairs ends right now.
This small program I've written anew specifically for the HP35s will allow you to Boldly Go where no HP35s has gone before and find a real or complex root of an arbitrary equation with real and/or complex coefficients starting from just one real or complex initial guess. The root will be displayed as labeled output and left both in the \mathbf{x} stack register and direct register \mathbf{x}. Roots will be returned as genuine real/complex values as appropriate, i.e., a computed real root will be a proper real value, not a complex value with a zero or very small imaginary component.
Further, a real initial guess may find a complex root and vice versa. The program implements an optimized version of an advanced, cubically-convergent numerical method that typically converges very quickly to a root with speed comparable to that of the built-in Solver, and which, unlike Newton's method, will foray into the complex domain if need be, even starting from a real initial guess.

Program listing for the HP 35s

This small, 48-step RPN routine for the HP 35s will allow you to find real and/or complex roots of any equation or program you care to define under LbL \boldsymbol{F} below:

```
A001 LBL A
A002 REGX*(1i0\trianglerightZ) DX
A003 SQ(1E-4\trianglerightS)\trianglerightT
A004 0.5DY
A005 XEQ F001
A006 RCL/ Y
A007 STO U
A008 RCL S
A009 STO+ X
A010 XEQ F001
A011 STO V
A012 RCL S
A013 STO- X
A014 STO- X
A015 XEQ F001
A016 STO W
A017 RCL+ V
A018 RCL- U
A019 RCL/ T
A020 RCL V
A021 RCL- W
A022 RCL S
A023 STO+ X
A024 /
A025 RCL* Y
```

```
A026 STO W
```

A026 STO W
A027 /
A027 /
A028 STO V
A028 STO V
A029 RCL* U
A029 RCL* U
A030 RCL/ W
A030 RCL/ W
A031 RCL- Z
A031 RCL- Z
A032 +/-
A032 +/-
A033 RCL Y
A033 RCL Y
A034 y }\mp@subsup{\mathbf{x}}{}{\mathbf{x}
A034 y }\mp@subsup{\mathbf{x}}{}{\mathbf{x}
A035 RCL- Z
A035 RCL- Z
A036 RCL/ v
A036 RCL/ v
A037 STO+ X
A037 STO+ X
A038 RCL/ X
A038 RCL/ X
A039 ABS
A039 ABS
A040 RCL T
A040 RCL T
A041 X<Y?
A041 X<Y?
A042 GTO A005
A042 GTO A005
AO43 ABS (SIN (ARG (X) DW))
AO43 ABS (SIN (ARG (X) DW))
A044 X<Y?
A044 X<Y?
A045 SGN(COS (W)) *ABS (X) }\triangleright\mathbf{X
A045 SGN(COS (W)) *ABS (X) }\triangleright\mathbf{X
A046 RCL X
A046 RCL X
A047 VIEW X
A047 VIEW X
A048 RTN
A048 RTN
F001 LBL F
F001 LBL F
F002 RTN

```
F002 RTN
```


Notes:

- Lines A002, A003, A004, A043, and A045 hold equations, so you should press EQN prior to keying them in. All include store operations (the " \triangleright " symbol) which are entered by the sто key sequence. A003 includes a +/-
- All "*" and " γ " symbols are the multiply/divide operation, respectively.
- It uses no indirect registers, no flags, leaves direct registers $\boldsymbol{A}-\boldsymbol{R}$ free for other purposes, and last-but-not-least, it works in any angular mode.
- Though they'll probably differ from yours due to the infamous checksum bug, f.t.r. these are my checksums for the above program and equations:

Program or Equation	Length	Checksum
$L B L A$	213	8501
$A 002$	14	3025
$A 003$	12	AE07
A004	5	7 F8C
A043	18	412 A
A045	20	4A9D

Usage instructions

1. This program is to be run in RPN mode so make sure the correct mode is active. Also, keep flag 10 cleared so that equations are evaluated, not displayed.
2. You can solve both equations and programs. The variable being solved is always X and your equation or program must take the X value from direct register \mathbf{X} (not the display) and return the function value to the \mathbf{X} stack register.
3. To define your equation, insert it right after line $\boldsymbol{F 0 0 1} \operatorname{LbL} \mathbf{F}$, using X as the variable to solve, and terminate the definition with a RTN instruction at line $F 003$, like this example ($2^{\text {nd }}$ sample equation in the intro):
```
F002 2i3*x^3-1i2*x^2-3i4*x-6i8
F003 RTN
```

4. If you're solving a program, enter its lines after line $\boldsymbol{F 0 0 1}$ Lbl \mathbf{F}, using direct register \mathbf{X} (not the display, \mathbf{x} stack register) to compute the functional value which should be left in the \mathbf{x} stack register, finishing with a RTN instruction. For instance, to solve $x^{x}=\pi$ your RPN program would be:
```
F001 LBL F
F002 RCL X
F003 ENTER {duplicate it in the Y stack register}
F004 y }\mp@subsup{\mathbf{Y}}{}{\mathbf{X}}\quad{compute X^X
F005 \pi {place Pi in the X stack register}
F006 - {compute X^X-Pi and leave the result in stk X }
F007 RTN {return the result to the calling program}
```

Your program can use any direct registers from \mathbf{A} to R for its own purposes, as well as all indirect registers, all flags, and whatever display and angular modes it needs, plus any labels save A and F. Display mode has no effect on accuracy.
5. Enter a suitable initial guess in the display (\mathbf{x} stack register) and execute the program ($\mathbf{X E Q} \mathbf{A}$). Unlike the built-in Solver, you only need to supply a single guess (not two), which can be real or complex and allows you to find other roots if they exist by varying it, as normally the closest root will be returned.

A real initial guess will usually result in the closest real root being found, but if there are none nearby, or if the given equation has no real roots, it can and will find the closest complex root instead. Likewise, a complex initial guess will usually produce a complex root, but it can find and return a real root if no complex roots are nearby or the equation doesn't have any. In short, any kind of guess can return any kind of root, irrespective of their real/complex type.

```
initial guess, XEQ A [ENTER] }->\mathrm{ X = computed root
```

6. After a while the root (real or complex) is labeled and output, remaining both in direct register \mathbf{x} and in the display (\mathbf{x} stack register), for you to store it somewhere else or use it right away in further computations. If desired, you can check that it is indeed a root by evaluating your equation or program right after finding it. With the root still in direct register \mathbf{X} (the content of stack register \mathbf{X} doesn't matter), simply press:
```
XEQ F [ENTER] }->\mathrm{ value at root { should be zero or near zero }
```

7. To try and find a different root, go to step 5 and enter a different initial guess. To solve another equation, go to step 3. To solve another program, go to step 4.

Notes:

- As your equation or program will be called with complex values for X, you must use in your definition only those functions and operations which admit complex values as arguments, else the program will stop with an INVALID DATA message in the display as soon as a nonsupported operation is encountered. Regrettably, non-supported HP35s complex operations include such common functions as $\sqrt{\boldsymbol{x}}$ and $\boldsymbol{x}^{\mathbf{2}}$. You can replace $\boldsymbol{x}^{\mathbf{2}}$ by $\mathbf{x}^{\wedge} \mathbf{2}$ or ENTER, $*$ and $\sqrt{\boldsymbol{x}}$ by $\mathbf{x}^{\wedge} \mathbf{Y}$ or RCL $\mathbf{y}, \boldsymbol{y}^{\boldsymbol{x}}$, because, as an added convenience, direct register \mathbf{Y} contains the constant 0.5 at all times while the program is running.

See page $\mathbf{9 - 3}$ in the User's Guide for a comprehensive list of those functions and operations which work with complex values.

- Though unlikely, the algorithm might fail to converge in rare occasions. In that case simply stop the program and try a different initial guess.
- It's also possible to stumble upon a DIvide by 0 error which would halt the program. In that case try a different initial guess. This might happen for trivial $1^{\text {st }}$ degree or constant polynomial equations (which are in no need for a full solver treatment anyway) or if either the initial guess or some intermediate X value happens to make some derivatives of the solved function equal zero. This is infrequent, however, and just slightly changing the initial guess will do in most cases.
- You must never delete line f001 Lbl f lest you risk the built-in automatic renumbering wrongly updating the XEQ instructions at lines $A 005, A 010$, and $A 015$ to point somewhere else. It shouldn't happen but I've seen it happen at least twice so I think a caveat emptor is in order.

Should you delete it accidentally or if the program misbehaves, check those lines to ensure the XEQ $\mathbf{F 0 0 1}$ instructions are unchanged. Likewise, never try to "optimize" the XEQ F001 instructions to XEQ F002, for the same reason.

Programming techniques

- Powerful as it is, the HP35s is nevertheless rather a slow machine, most specially when evaluating equations (this includes numeric constants as well, be they real values, complex values, or vectors !) because they aren't syntactically checked until evaluation time so that they can be used to display messages as well. Upon evaluation, every character has to be parsed, recognized as a valid identifier, then eventually executed. If the equation is within a loop this time-consuming process gets redone anew every time.

Thus, it's good programming practice to avoid using equations within loops altogether. They are best left for non-iterative sections of the program, such as initialization and output, which usually get done just once. That's the case in the listing above, where the main loop from A005 to A042 contains just pure RPN code for maximum speed, while the initialization section (A001A004) and the output section (A043-A048) contain 5 equations in all. They allow for much more concise code, and the time penalty is irrelevant there.

- Program lines A043-A045 constitute a very small but clever routine which makes sure a real root is returned as a genuine real value, not a complex value with zero or very small imaginary component. A threshold is tested and, if met, the complex value is converted to a properly signed real one.

This is specially useful since there is no built-in command to extract the real component of a complex root and, if left as a complex value (with a zero or small complex component), many common functions won't accept it as a valid argument ($\sqrt{\boldsymbol{x}}$ or $\boldsymbol{x}^{\mathbf{2}}$, for instance), complicating its further use. Not to mention its ungainly aspect in the display and diminished readability.

Assorted Examples

1. Find a root of :
 (a) $x^{x}=\pi$,
 (b) $x^{x}=i$

We'll solve both cases with a single, generalized equation depending on a free parameter (R) defined at line F002 (don't forget to press EQN first):

Now, let's solve (and check) both particular cases (assume all display):

```
    \pi, STO R, 2, XEQ A }->\mathbf{X}=1.85410596792 {4 seconds
        XEQ F T -0.00000000001
    i, STO R, XEQ A }->\mathrm{ X = 1.36062487029 i 1.11943916624
{it took 9 secs} XEQ F T 4.45661923132E-12 i 0
```

2. Find all roots of : $(2+3 i) x^{3}-(1+2 i) x^{2}-(3+4 i) x-(6+8 i)=0$

Replace the equation at line $F 002$ (if any) by this equation:

```
F002 2i3*X^3-1i2*X^2-3i4*X-6i8
```

$\{L N=25, C K=A A 4 C\}$

As this equation is a $3^{\text {rd }}$ degree polynomial, it will have exactly 3 roots, which we'll now proceed to find (assume fix 5 display):

Notice that although the equation, being a $3^{\text {rd }}$ degree polynomial, must have exactly 3 roots, they do not necessarily come in complex conjugate pairs, as can be seen here; that's only the case for real-coefficient polynomial equations while the present one has complex coefficients. Further, despite its complex coefficients, the very first root found happens to be real !.

Also note that:

- in the case of the $1^{\text {st }}$ root, a real guess has produced a real root
- in the case of the $2^{\text {nd }}$ root a real guess has produced a complex root
- lastly, for the $3^{\text {rd }}$ root a complex guess has produced a complex root.

Producing a real root from a complex guess is also possible as we'll see in the very next example.
3. Attempt to find a complex root of: $x^{3}-6 x-2=0$

Replace the equation at line $F 002$ (if any) by this equation:

As we're trying to find a complex root it would seem fairly natural to start with a complex guess (assume ald display):

```
2 i 3, XEQ A }->\mathrm{ X = 2.60167913189
    XEQ F T -0.0000000001
```

but as you may see we've got instead a real root, thus demonstrating the $4^{\text {th }}$ case mentioned before, i.e.: a complex guess can produce a real root. This particular equation has no complex roots, all its three roots are indeed real.

4. Solve Leonardo di Pisa's equation: $x^{3}+2 x^{2}+10 x-20=0$

Replace the equation at line $F 002$ (if any) by this equation:

F002 $\mathbf{x}^{\wedge} 3+2 * \mathbf{x}^{\wedge} 2+10 * \mathbf{X} \mathbf{- 2 0} \quad\{L N=17, C K=73 \mathrm{AO}\}$
Being a $3^{\text {rd }}$ degree polynomial equation with real coefficients, we know that it must have at least one real root and either a conjugate pair of complex roots or two additional (not necessarily distinct) real roots. Assuming all display:

```
1, XEQ A M X = 1.36880810782 {5 seconds }
-6, XEQ A -> X = -1.68440405391 i -3.4313313502 {15 seconds}
```

and we know the remaining root must be the complex conjugate of the $2^{\text {nd }}$ one, thus it automatically is $\mathbf{x}=\mathbf{- 1 . 6 8 4 4 0 4 0 5 3 9 1}$ i 3.4313313502 and no further computation is required (any number of first guesses would produce it if desired, -2 i 3 for instance).

By the way, as the equations are defined for this program in a way compatible with the built-in Solver, we can check how solve does with this example:

```
FN= F, 1, STO X, SOLVE X }->\mathbf{X}=1.36880810782 {5 seconds
```

which completely agrees with this program's result and takes essentially the same time to find the root. Of course solve cannot cope with the complex roots so testing that case is simply not possible.
5. Find several complex roots of : $\operatorname{Sin}(2 x-4 i)+3 x^{2}-(1+5 i)=0$

Replace the equation at line $F 002$ (if any) by this equation:

Let's try several different initial guesses (assume fix 5 display):

```
0, XEQ A M X = 0.76368 i 1.11805 {18 seconds}
-1, XEQ A -> X = -1.37126 i 0.50438 {13 seconds}
\pi, XEQ A }->\mathbf{X}=2.32883 i 0.29914 {16 seconds
```

It seems likely that this transcendental equation has an infinite number of complex roots and we've found some of the smallest in absolute value.

Remember that although we're displaying them to 5 decimal places, they are found to full accuracy, and you can check them with XEQ \mathbf{F} if desired.

