
has the form

±(n − d)αi1αi2 . . . αid ,

where 1 ≤ i1 < i2 < · · · < id ≤ n. Indeed, each positive monomial αi1αi2 . . . αid in
sd+1 P̃1 occurs exactly as a product (αi1 · · ·αik−1α jαik · · ·αid )(1/α j ), where the index j
belongs to {1, 2, . . . , n} \ {i1, . . . , id} and ik−1 < j < ik . (Of course if j < i1, then α j

is the first factor, while if id < j , then α j is the last factor in the bracket.) Therefore
each such summand αi1αi2 · · · αid occurs n − d times. Precisely because (n − d)sd

consists of the monomials ∓(n − d)αi1 · · ·αid where 1 ≤ i1 < i2 < · · · < id ≤ n, we
see that B contains no positive monomial.

The upshot: we see that in the sum A + B there are only negative monomials,
whereas in C there are only positive monomials. Therefore no monomial in A + B
can be cancelled out by a monomial in C . Thus A + B = 0 = C , and our proof is
complete.

In conclusion, we emphasize that the foregoing proof is both transparent and nat-
ural. It extends the straightforward proof in case 1, and it demonstrates that the same
idea works nicely, provided one is not afraid of negative exponents.
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An Illuminating Counterexample

Michael Hardy

Suppose that X1, . . . , Xn are independent random variables with a normal (or “Gaus-
sian”) distribution with expectation µ and variance σ 2. A statistician who has observed
the values of X1, . . . , Xn must guess the values of µ and σ 2. Among the statistically
naive, it is sometimes asserted that

S2 = 1

n − 1

n∑
i=1

(
Xi − X

)2
,
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where X = (X1 + · · · + Xn)/n, is a better estimator of σ 2 than is

T 2 = 1

n

n∑
i=1

(
Xi − X

)2
,

because S2 is “unbiased” and T 2 is “biased.” That S2 is unbiased means E(S2) = σ 2,
i.e., an “unbiased estimator” is a statistic whose expected value is the quantity to be
estimated.

The goodness of an estimator is sometimes measured by the smallness of its “mean
squared error,” defined as E(([estimator] − [quantity to be estimated])2). By that cri-
terion the biased estimator T 2 would be better than the unbiased estimator S2, since

E((T 2 − σ 2)2) < E((S2 − σ 2)2),

but the difference is so slight that no one’s statistical conscience is horrified by any-
one’s preferring S2 over T 2. Besides, the smallness of the mean squared error as a
criterion for evaluating estimators is not necessarily sacred anyway.

A more damning example, well-known among statisticians, is described in [1,
p. 168]. We have X ∼ Poisson(λ), so that P(X = x) = λx e−λ/x ! for x = 0, 1, 2, . . . ,

and P(X = 0)2 = e−2λ is to be estimated. Any unbiased estimator δ(X) satisfies

E(δ(X)) =
∞∑

x=0

δ(x)
λx e−λ

x ! = e−2λ

uniformly in λ ≥ 0. Clearly the only such function is δ(x) = (−1)x . Thus, if it is
observed that X = 200, so that it is astronomically implausible that e−2λ is anywhere
near 1, the desideratum of unbiasedness nonetheless requires us to use (−1)200 = 1 as
our estimate of e−2λ. And if X = 3 is observed, the situation is even more absurd: we
must use (−1)3 = −1 as an estimate of a quantity that we know to be in the interval
(0, 1]. A far better estimator of e−2λ is the biased estimator e−2X (which is the answer
given by the well-known method of maximum likelihood).

Here is a different counterexample, which the visually inclined may find even
more horrifying. A light source is at an unknown location µ somewhere in the disk
D = {(x, y) : x2 + y2 ≤ 1} in the Euclidean plane (see Figure 1). A dart thrown at

Figure 1. D = {(x, y) : x2 + y2 = 1}.
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the disk strikes some random location U in the disk, casting a shadow at a point X
on the boundary. The random variable U is uniformly distributed in the disk, i.e., the
probability that it is within any particular region is proportional to the area of the
region. The boundary is a translucent screen, so that an observer located outside of
the disk can see the location X of the shadow, but cannot see where either the light
source or the opaque object is. Given only that information—the location X of the
shadow—the location µ of the light source must be guessed.

A common-sense approach to guessing µ might proceed as follows: Before we ob-
serve the shadow, our information is invariant under rotations, and so should be our
estimate. Therefore, we use 0 in R2 as our prior (i.e., pre-data) estimate. Then, when
we observe X , since X is more likely to be far from the light source than close to it,
we adjust our estimate by moving it away from the shadow. Because the amount of
information in the shadow is small, we don’t move it very far. We get an estimator of
the form cX with c < 0, but c is not very much less than 0.

If we insist on unbiasedness, we must choose c so that E(cX) = µ uniformly
in µ. To think about that, we first express the problem in polar coordinates. Write
µ = ρ(cos ϕ, sin ϕ) and X = (cos �, sin �).

Proposition. The probability distribution of the random angle � is given by

P(dθ) = 1 − ρ cos(θ − ϕ)

2π
dθ. (1)

From this proposition it follows that E(X) = −µ/2. Therefore, our unbiased esti-
mator is cX = −2X , which is always absurdly remote from the disk, by a full radius!

Proof of the proposition. A simplification will follow from the observation that the
way in which the probability distribution P(dθ) depends on µ is both rotation-
equivariant and affine. That it is affine means that if the probability distribution of � is
Pµ(dθ) when the light source is at µ then Paµ+(1−a)ν(dθ) = a Pµ(dθ) + (1 − a)Pν(dθ)

for any value of a for which aµ + (1 − a)ν remains within the disk. (An affine map-
ping is one that preserves linear combinations in which the sum of the coefficients is
1; a linear combination satisfying that constraint is an “affine combination.”) To see
that this mapping is affine, consider Figure 2. The area between µ and the arc from

Figure 2.
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A to B is the sum of the area of the triangle µAB and the area of the region bounded
by the arc AB and the secant line AB. As µ moves, the area bounded by the arc and
the secant line remains constant and the area of the triangle depends on µ in an affine
fashion. The desired “affinity” follows.

Rotation-equivariance reduces the problem to finding the probability distribution
when µ is between (0, 0) and (1, 0). “Affinity” reduces it from there to the problem of
finding the probability distribution when µ is at either of those two points.

If µ = (0, 0), the probability distribution of � is clearly uniform on the interval
from 0 to 2π , i.e., it is dθ/(2π). If µ = (1, 0), then for 0 ≤ θ ≤ 2π we have

P(0 ≤ � ≤ θ) = area between arc and straight line from (1, 0) to (cos θ, sin θ)

area of disk

= θ − sin θ

2π
.

Differentiation yields

P(dθ) = 1 − cos θ

2π
dθ.

If µ = (ρ, 0), then by “affinity” we have

P(dθ) = (1 − ρ)
dθ

2π
+ ρ

(1 − cos θ)dθ

2π
= 1 − ρ cos θ

2π
dθ.

Rotation-equivariance then gives (1).

The Bayesian approach to statistical inference assigns probabilities not to events
that are random (according to their relative frequencies of occurrence), but to propo-
sitions that are uncertain (according to the degree to which known evidence supports
them). Accordingly, we can regard the location µ of the light source as uniformly dis-
tributed in the disk, and then use the conditional expected location E(µ|X) as an esti-
mator of µ. Equation (1) gives the conditional distribution of � given µ; the marginal
(i.e., “unconditional”) distribution of µ = ρ(cos ϕ, sin ϕ) is given by

ρ dρ dϕ

π
. (2)

The joint distribution of (µ, �) is the product of (1) and (2):

(1 − ρ cos(θ − ϕ))ρ dρ dϕ dθ

2π2
. (3)

The conditional distribution of µ = ρ(cos ϕ, sin ϕ) given that � = θ comes from re-
garding (3) as a function ρ and ϕ with θ fixed and normalizing:

P(dρ, dϕ|� = θ) = (1 − ρ cos(θ − ϕ))ρ dρ dϕ

constant
.

Integration shows that the “constant” is π . Finally, we get

March 2003] NOTES 237



E(µ|X) =
∫ 2π

0

∫ 1

0
ρ(cos ϕ, sin ϕ)

1 − ρ cos(� − ϕ)

π
ρ dρ dϕ

= −(cos �, sin �)/4 = −X/4,

which is an eminently reasonable estimator under the circumstances.

REFERENCE

1. J. P. Romano and A. F. Siegel, Counterexamples in Probability and Statistics, Wadsworth & Brooks/Cole,
Monterey, CA, 1986.

Department of Mathematics, University of Toledo, 2801 W. Bancroft, Toledo OH 43606-3390
michael.hardy@utoledo.edu

A Norm Inequality for Hermitian Operators

Ritsuo Nakamoto

It is well known that the following inequality holds: for any real number θ

|eiθ − 1| ≤ |θ |; (1)

equivalently,

|eiθ1 − eiθ2 | ≤ |θ1 − θ2| (2)

for all real numbers θ1 and θ2.
Inequality (1) is easily proved by a direct calculation. Geometrically, this is inter-

preted as a relationship between chordal distance and arclength on the unit circle in
the complex plane.

Now, by the spectral theorem (see [2]), we have

‖ei H − 1‖ ≤ ‖H‖
for any Hermitian (bounded linear) operator H on a Hilbert space. Furthermore, if
Hermitian operators H and K commute, we have an analogue of (2):

‖ei H − ei K ‖ ≤ ‖H − K‖. (3)

It might be expected that (3) would hold for Hermitian operators H and K without the
commutativity assumption.

On the other hand, we recall the differential equation d X/dt = H X + X K for ma-
trices. Its solution is given by X = et H Cet K , where C = X (0) (see [1, chap. 10, The-
orem 5]). Related to this, we note Lyapunov’s theorem on stability, which says that the
real part of each eigenvalue of a real matrix A is negative if and only if there exists
a unique positive definite matrix Y satisfying A′Y + Y A = −I , in which A′ signifies
the transpose of A (see [1, chap. 13, Theorem 2]).
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