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1 Lie groups

1.1 Lie groups, direct products

Notation: by a manifold and submanifold we will always mean C∞–smooth manifolds and
submanifolds. We use the following definition of a submanifold. A subset S ⊂ M of a manifold
M is a submanifold if for every point x ∈ S (not x ∈ M !) there exists a chart U of x in M
diffeomorphic to an affine space V such that U ∩ S is diffeomorphic to a subspace of V .

Definition 1. A real Lie group is a real manifold G together with a group structure such that
the multiplication map

G×G → G; (x, y) 7→ xy

and the inversion map
G → G; x → x−1

are smooth. A complex Lie group is defined analogously: G must be a complex manifold and
the multiplication map and the inversion map must be complex differentiable. In the same way,
one can define a Lie group over any field K as long as the notion of a manifold over K makes
sense.

Note that any complex Lie group of dimension n can be regarded as a real Lie group of
dimension 2n.

Examples:

1. Any real or complex vector space. The group operation is addition of vectors.

2. The multiplicative groups R∗ = R \ {0} and C∗ = C \ {0}.
3. The circle T = {z ∈ C∗ : |z| = 1} is a real Lie group.

4. Any finite or countable group with discrete topology regarded as a 0-dimensional manifold
is a Lie group.
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5. Less trivial examples include linear groups familiar to us from linear algebra, e.g. general
linear groups GLn(R) and GLn(C), that are the groups of invertible linear operators in
Rn and Cn, respectively. A Lie group is called linear if it is a subgroup of some general
linear group. Classical examples include:

• special linear group SLn = all operators preserving a nondegenerate alternating
n-form,

• orthogonal group On = all operators preserving a nondegenerate symmetric 2-form,
which in the real case must also be positive definite,

• symplectic group Sp2n = all operators preserving a nondegenerate skew-symmetric
2-form (which exists only for even-dimensional vector spaces),

• unitary group Un(C) = all operators in GLn(C) preserving a non-degenerate positive
definite hermitian form.

• pseudo orthogonal group Op,q(R) = all operators preserving a nondegenerate sym-
metric 2-form of signature (p, q) on a (p + q)-dimensional vector space

It is not evident why all these groups are manifolds. We will prove this later. Other
classical groups are special orthogonal group SOn = On∩SLn, special pseudo orthogonal
group SOp,q(R) = Op,q ∩SLp+q(R) and special unitary group SUn(C) = Un(C)∩SLn(C).

One can get new examples of Lie groups by taking direct products.

Definition 2. Let G1 and G2 be Lie groups. Their direct product G1×G2 is Cartesian product
of the manifolds G1 and G2 together with group structure of direct product.

Examples:

1. A real torus Tn = T1 × . . .× T1

︸ ︷︷ ︸
n

is a direct product of circles.

2. A complex torus (C∗)n is a direct product of multiplicative groups C∗.

Exercises:

1. Show that the group G of non-degenerate upper-triangular n× n matrices over a field K
(the field K here is either R or C) is a Lie group and find its dimension. Show then that
G is diffeomorphic as a manifold but not isomorphic as a group to the direct product of
several copies of K∗ and K.

2. Show that if the multiplication map in Definition 1 is smooth then so is the inversion map
(i.e. the second condition in the definition of a Lie group can be dropped).

3. Show that the direct product of Lie groups is a Lie group.

4. Show that SL2, SO2 and SU2(C) are Lie groups and find their dimensions.
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5. Show that all operators from the symplectic group Sp2n have determinant one.

6. Which of the classical groups are compact? Connected?

7. Show that the tangent bundle of any Lie group is trivial (i.e. it is diffeomorphic to the
direct product of the Lie group and a vector space of the same dimension).

8. Which of the following manifolds can be endowed with the structure of a Lie group?

(a) S1 (b) S2 (c*) S3 (d*) RP3 (e) T2 (f) Klein bottle

9. Show that

(a) SO2(R) is isomorphic to T1

(b) SO1,1(R) is isomorphic to R∗

(c) SU2(C) is diffeomorphic to S3

(d) SO3(R) is diffeomorphic to RP3

1.2 Subgroups, homomorphisms

Definition 3. A subgroup H of a Lie group G is called a Lie subgroup of G if H ⊂ G is a
submanifold.

Note that not every subgroup of a Lie group is a Lie subgroup. E.g. the cyclic subgroup
H = 〈e2πi

√
2〉 ⊂ T1 is everywhere dense in T1 and. hence, is not a submanifold.

Examples:

1. A subspace of a vector space is a Lie subgroup.

2. All n-th roots of unity in C for a given n form a Lie subgroup of the circle T1.

3. The real torus Tn is a Lie subgroup of the complex torus (C∗)n (regarded as a real Lie
group) since T1 is a subgroup of C∗.

4. The group of non-degenerate upper-triangular square matrices, the group of non-
degenerate diagonal square matrices and all classical groups are Lie subgroups of general
linear groups.

Definition 4. Let G1 and G2 be Lie groups. A map G1 → G2 is called a Lie group homomor-
phism if it is a group homomorphism and is also smooth.

Note that the image of a Lie group under a Lie group homomorphism is not always a Lie
subgroup. E.g. the map h : R→ T2; h : x → (e2πix, e2πi

√
2x) is a Lie group homomorphism but

h(R) ⊂ T2 (an irrational winding of the torus) is everywhere dense in T2 and, hence, is not a
Lie subgroup.

Examples:
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1. An exponential homomorphism: exp : R→ R∗; exp : x 7→ ex.

2. Another exponential homomorphism: exp : R→ T; exp : x 7→ eix.

3. Determinant: det : GLn(R) → R∗; det : A 7→ det(A).

4. For any Lie group G and any element g ∈ G there is an inner automorphism: a(g) : G →
G; a(g) : x 7→ gxg−1.

5. A Lie group homomorphism G → GLn is called an n-dimensional linear representation
of a Lie group G.

Exercises:

1. For each pair of real numbers α and β define the subgroup H ⊂ T2 as follows:

H = {(eiαx, eiβx), x ∈ R}.
Under what conditions on α and β is H a Lie subgroup?

2. Show that every Lie subgroup is a Lie group.

3. Let H be a subgroup of a Lie group G. Show that if there exists a neighborhood Ue ⊂ G
of the identity element e ∈ G such that H ∩ Ue is a submanifold of G, then H is a Lie
subgroup of G.

4. Prove that a Lie subgroup is a closed submanifold (note that in Definition 3 we do not
require that a Lie subgroup be a closed submanifold). See also Problem 11 in the end of
this section.

5. For any Lie group G denote by G0 the connected component of the identity element.
Show that G0 is a normal Lie subgroup of G.

6. Find the differential dedet at the identity of the determinant homomorphism det :
GLn(R) → R∗.

7. Show that the kernel of a Lie group homomorphism is a Lie subgroup.

1.3 Actions

Definition 5. Let G be a Lie group, and M a manifold. A homomorphism α from G to the
group of diffeomorphisms of M is called an action of G on M if the map

G×M → M ; (g, x) → α(g)x

is smooth. The orbit Gx of a point x ∈ M is the image of G under the map

αx : g → α(g)x.
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The stabilizer Gx of x is the preimage of x under the map αx, i.e.

Gx = {g ∈ G : α(g)x = x}

Examples:

1. There are three important types of actions of a Lie group G on itself:

• Left action: l(g) : x → gx;

• Right action: r(g) : x → xg−1;

• Adjoint action: a(g) : x → gxg−1.

2. Any linear representation of a Lie group G on a vector space V provides an action of G
on V .

3. The group SOn acts on the unit sphere in Rn.

Exercises:

1. Find all orbits and stabilizers of the adjoint action of GL2(C).

2. Show that for any point x ∈ M the map αx from Definition 5 is smooth of constant rank.
Show also that if the rank of αx is k, then

(a) The stabilizer Gx is a Lie subgroup of codimension k in G. The tangent space TeGx

of Gx at the identity is the kernel of the differential deαx : TeG → Tx(Gx).

(b) For some sufficiently small neighborhood Ue ⊂ G of the identity element e ∈ G the
set α(Ue)x is a submanifold of dimension k in M .

(c) If the orbit Gx is a submanifold of M , then its dimension is k.

In part (c), could it be that the orbit is not a submanifold?

3. Let a compact Lie group act on a manifold M . Show that all orbits are closed submanifolds
of M .

4. Prove that SLn is a Lie subgroup of GLn and find its dimension. Describe explicitly the
tangent space TeSLn (this is some vector subspace in the space of all linear operators).

5. Do the same for On. (Hint: consider the action of GLn on the space of positive definite
symmetric bilinear forms.)

6. Do the same for the other classical groups.
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1.4 Exponential map and one-parameter subgroups

The case of linear Lie groups. Denote by gln = TeGLn the space of all linear operators
on an n-dimensional vector space.

Definition 6. Define the exponential map exp : gln → GLn by the formula exp(A) = eA, where
eA is the matrix exponent:

eA = I + A +
A2

2!
+ . . . +

An

n!
+ . . . .

Exercises:

1. (a) Show that the power series defining the matrix exponent eA converges for every
operator A ∈ gln.

(b) Show that if AB = BA, then eAeB = eA+B.

(c) Show that det(eA) = etrace(A)

2. Show that the exponential map is a diffeomorphism of some neighborhood of 0 in gln to
some neighborhood of the identity element e in GLn.

3. Show that the exponential map for GLn(C) is surjective. Is it injective?

4. Show that the exponential map for SL2(R) is not surjective.

5. Verify that for each classical group G the image of the tangent space TeG under the
exponential map lies in G. Show also that the exponential map provides a diffeomorphism
between some neighborhood of 0 in TeG and some neighborhood of e in G.

6. Verify that for any A ∈ gln the map

ϕ : R→ GLn; ϕ : t → eAt

satisfies the differential equation

dϕ(t)

dt
= Aϕ(t); ϕ(0) = e,

dϕ(t)

dt

∣∣∣∣
t=0

= A.

The product Aϕ(t) here is the composition of linear operators A and ϕ(t).

General case

Definition 7. Let G be a Lie group. A Lie group homomorphism ϕ : R → G is called a
one-parameter subgroup.

Examples:
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1. G = R∗; ϕ : t → et;

2. G = C∗; ϕ : t → eat, where a ∈ C is any complex number;

3. G = GLn; ϕ : t → eAt,

4. G is any Lie group; ϕv(t) is the solution of the differential equation

dϕ(t)

dt
= ϕ(t)v; ϕ(0) = e,

dϕ(t)

dt

∣∣∣∣
t=0

= v,

where v is any vector in the tangent space TeG and vg is a shorthand notation for the
image of v in TgG under the differential der(g) : TeG → TgG.

Exercise:

1. Show that the one-parameter subgroup ϕv(t) in the last example is well-defined (i.e. the
solution of the differential equation exists for all t ∈ R and provides a homomorphism
R→ G).

Definition 8. Let G be a Lie group. Denote by g the tangent space TeG. Define the exponential
map exp : g → G as follows:

exp(v) = ϕv(1).

Exercises:

1. Show that for the classical groups this definition is equivalent to Definition 6.

2. Show that the exponential map is a diffeomorphism of some neighborhood of 0 in g to
some neighborhood of the identity element e in G.

Problems:

1. Classify all connected real Lie groups of dimension 1.

2. Classify all connected complex Lie groups of dimension 1.

3. Show that a compact Lie group of positive dimension has Euler characteristic zero.

4. Find all compact real Lie groups of dimension 2.

5. Denote by G̃ the universal cover of a Lie group G. Show that G̃ can be endowed with the
structure of a Lie group.

6. A discrete normal subgroup of a connected Lie group G lies in the center of G.

7. The fundamental group of a connected Lie group is Abelian.

7



8. Show that if G is a connected commutative Lie group then the exponential map exp :
g → G is a Lie group homomorphism (the group operation on the vector space g is vector
addition). Use this to classify all commutative connected Lie groups.

9. Show that any connected compact complex Lie group is commutative.

10. Is it true that the intersection of two submanifolds is also a submanifold? Prove that the
intersection of Lie subgroups is always a Lie subgroup.

11. (very difficult!) Prove that if a subgroup of a Lie group is closed then it is a Lie subgroup.
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