TerraPower, LLC Nuclear Initiative

Berkeley, California April 20, 2009

- Founding idea: to create technological advances of high economic and social value through the invention process
- One corporate goal: new concepts for practical energy systems
 - Economically attractive
 - Sustainable
 - Environmentally responsible
- Led us to investigate and conclude that :
 - Nuclear power is essential to meet growing energy needs with acceptable carbon emissions
 - Improvements are needed for nuclear endeavors to realize full deployment potential

Intellectual Ventures' Initiative

- Exploring significant improvements to nuclear power using:
 - 21st century technologies
 - State-of-the-art computational capabilities
 - Expanded data, openly shared
- Evaluating the impact of new concepts on the entire system
 - Fuel mining, enrichment, production, reprocessing
 - Reactor design construction, operation, decommissioning
 - Spent fuel and waste management
- Pursuing an independent, privately funded path
 - Self-directed effort focused on long-term, global perspective
 - Multidisciplinary approach
- Building our team of technical staff and collaborators as an integrated Intellectual Ventures and TerraPower effort

The Modeling Team

- Charles Whitmer
- Pavel Hejzlar
- John Nuckolls*
- Robert Petroski
- Tom Weaver*
- Lowell Wood*
- George Zimmerman*
- Ehud Greenspan!
- * E. O. Lawrence Award winners (DOE)

Development is Supported by Leading Technical and Business Contributors

former affiliation shown in ()

- Charles Ahlfeld, (Savannah River)
- Tom Burke, (FFTF)
- Ken Czerwinski, UNLV
- Tyler Ellis, (MIT)
- Bill Gates
- John Gilleland, (Archimedes, Bechtel, ITER, GA))
- Pavel Hejzlar , (MIT)
- David McAlees, (Siemens Nuclear)
- Jon McWhirter, (U Idaho)
- Nathan Myhrvold, CEO Intellectual Ventures
- Ash Odedra, (ITER, Archimedes)
- Josh Walter, (Purdue)
- Kevan Weaver, (Idaho National Laboratory)
- Plus 22 Contributors from Argonne National Lab, FFTF staff, MIT, UNLV

What is an "improved" nuclear system?

- Ideally, it is a global nuclear infrastructure that:
 - Meets global energy needs indefinitely
 - Avoids global warming
 - Creates virtually no risk of weapons proliferation
 - Makes nuclear waste disposal easier
 - Meets the highest accident safety standards
 - Minimizes the environmental footprint of the overall nuclear infrastructure
 - Competes favorably with clean coal power generation systems
 - Ideally, without a carbon tax
 - Alternatively, with a carbon tax to level the environmental playing field
- How close we can come?

The "Traveling-Wave Reactor " Concept has the Potential to Approach the Ideal System

- Waves of breeding and burning will propagate through fertile material indefinitely
- Once "ignited," a steady-state deflagration wave propagates through a U-238 core
 - The wave breeds fissile Pu-239
 - The wave fissions the bred Pu-239 as well as some of the U-238 directly
- Huge stores of depleted uranium waste a viable fuel sufficient for tens of thousands of years for 10 billion people!
- enriched U needed only for reactor start U-233, U-235, or Pu-239
 - Then Transplated Wave
 - Perhaps someday with only an accelerated particle beam ©

A Single Cylinder of Depleted Uranium "Waste" has Great Energy Value as Fuel for the MTWR

 Each cylinder contains up to 14 MT of Uranium Hexafluoride

 With the high burn-up efficiency and high thermal efficiency of the MTWR, one cylinder is approximately 60 million Megawatt hours of electricity at the generator

output

Depleted UF₆ Cylinder Storage Yard at Portsmouth, OH

38,000 Cylinders of Depleted UF₆ Waste at Paducah is Fuel!

The Site Represents a Man-Made Mine of Extraordinary Value as TWR Fuel

- Supports 260,000 GW years of electrical energy assuming MTWR efficiencies
- "Waste" is already in the hexafluoride form used for fuel fabrication
- Represents an almost three millennia reserve at present U.S. nuclear generation rate
- Supports ~\$100 trillion of electricity at present rates in 2007 dollars

Physics

The "usual" breeder reactions:

... but applied differently!

The Wave

 A self-sustaining deflagration of breeding and burning.

Simplified Wave Reactor Concept

Single Pass In-Situ Fuel Production and Burn

The Early Results Encouraged us to Keep Going

Uranium

- A range of core arrangements using U-238 as fuel support a steady-state wave
- The wave may be "transplanted" to the next plant, thus eliminating need for an enrichment plant to make the igniter for the next plant
- Materials damage limits, tough problem but probably doable

Thorium

- An Ideal He-cooled thorium-fueled system sustains a wave!
- Paucity of neutrons presents practical engineering challenges
- Uranium 238- Thorium-232 Hybrid?

Previous Work

Saveli M. Feinberg: Unenriched fuel concept

1958

Michael J. Driscoll: Breed-burn concepts

1979

Edward
Teller,
Lowell
Wood:
Breed-burn
"deflagration waves"

1996

Hugo van
Dam:
Mathematical analysis
of fission
waves

2000

Hiroshi Sekimoto: Analysis of CANDLE

Early 2000s

Intellectual Ventures:

INVENTION!

Extensive physics and engineering work on TWR

2006

Early Thoughts about TWR Concepts

- Engineering sketches of several embodiments, for different markets with different requirements
 - Plant power ratings
 - Physical deployment approaches
 - Fueling approaches
 - Site characteristics
 - Levels of investment

Large-Core Traveling-Wave Reactor

Design features:

- ~1,000 MW_e
- Core life of up to 100 years without reloading or reprocessing
- Enriched uranium at start-up only
- Toroidal core geometry
- Core composed of modular wedges
- Perhaps a path to true modularity
 - More predictable schedule
 - More predictable cost
 - Deployable in regions that lack nuclear infrastructure

Confidential and Proprietary

No reproduction or distribution without express
written permission of TerraPower, LLC

LCTWR in Modified AP-1000 Containment

Confidential and Proprietary No reproduction or distribution without express written permission of TerraPower, LLC

1 GW_e sodiumcooled pool-type reactor

Intermediate heat exchanger Pump

Gas plenum

Fuel

Confidential and Proprietary
No reproduction or distribution without express
written permission of TerraPower, LLC

Long-Term Potential

- Enough fuel for millennia of TWR fleet operation
 - Depleted uranium

Long-Term Potential

- Enough fuel for millennia of TWR fleet operation
 - Depleted uranium
 - Thorium
 - -Spent LWR fuel

Long-Term Potential, cont'd.

- Simple, once-through fuel cycle
 - Economically more attractive
 - Little, then no enrichment
 - No reprocessing
 - Better proliferation resistance
 - Little, then no enrichment
 - No reprocessing
 - Even fewer greenhouse-gas-emitting steps than in the (already low-carbon) fuel cycle for conventional nuclear power
 - Lower risk of accidents during fuel transport and processing

Characteristics of a Traveling Wave Reactor (TWR)

- Reactor core behaves as an in-situ breeder
 - Small, fissile region "ignites" breeding & burning in fertile core
 - No reprocessing/recycling of fuel is required
- Critical region propagates a slow-moving wave
 - Wave speed less than 1 cm/month
 - Wave manipulated to achieve not more than 20% 30% burn-up in first pass.
- Once "ignited", no fissile material required
 - Thorium or depleted uranium is predominate core material
 - Igniter requires enriched U or Pu
 - Core life of 60 years or more is practical
 - Spent fuel waste comparable to LWR per unit energy produced

Simulations for a First Generation TWR

- Rebuilt MCNPX-CINDER90 for TWR simulations as well as completely new tools
- Modeling tools benchmarked by TerraPower and Argonne against existing fast and thermal references
- 1-D models for general physics understanding
- 2-D cylindrical models for igniter & finite TWR
- 3-D homogeneous and heterogeneous modeling underway
- 2000 core blade system being implemented

Engineering a Candidate Gen-I TWR

- Considered all practical system options
- Selected proven technologies to reduce FOAK uncertainties
- Accommodated challenging features (e.g. high power density, high burnup, power peaking, etc.)
- Developed reactor point design considering other point designs

Fuel Composition	Fuel Form	Primary Coolant	Energy Conversion
Uranium	Oxide Ceramic	Gas – Helium, CO ₂	Steam – Rankine Cycle
Thorium	Metal Alloy	Other – Water Molten Salt	Direct Brayton Cycle
Mixed U & Th	Other Ceramics	Liquid Metal – Na, Pb, Pb-Bi	Combined Cycles

Coolant Performance at High Power Density

Reactor	Coolant	Power Density (MW/m³)
PWR	Light Water	98
CANDU	Heavy Water	12
BWR	Light Water	56
Gen IV - GFR	Helium	100
Gen IV - LFR	Lead-Bismuth	69
Gen IV - MSR	Molten Salt	22
Gen IV - SFR	Sodium	350
Gen IV - SCWR	Super Critical H ₂ O	100
Gen IV - VHTR	Helium	10

Major Design Features for Gen-I TWR

- 1000 MW_e low-leakage core design
- Uranium metal alloy fuel and igniter
- Na cooled, pool-type configuration
- Steam driven Rankine energy conversion
- HT-9 fuel clad & core internals
- B₄C control and safety rods
- Innovative IHX

A Gen-I TWR Nuclear Island Using Proven Fast Reactor Systems

Realistic Deployment Schedule

- Any development plan must take into account the realities of thorough testing and regulatory requirements.
- Operation of a Traveling Wave Reactor can be demonstrated in less than ten years
- Commercial Deployment can begin in less than fifteen years

Advantages of TWR from an NP Perspective--

- Waste contained in reactor during 40-100 year life of plant
- Use of fissionable U-235 used only during startup
- Reduced risk of diversion of material during operation and fuel transport
- Host country does not need "nuclear infrastructure" to safely operate reactor or insure fuel supply.
- Reprocessing of fuel and separation of weaponisable material not required

Current and Future Work

- We have engaged Burns&Roe to assist in a one GW(e) plant conceptual design and cost estimate
- We will soon embark on a "right size" (100MW(e) to 300 MW(e)?) trade study in which we will attempt to determine the impact of modularity on safety, reliability, cost and program predictability.
- The results of these studies will give required insight into the best prototype development approach.

