
  

The Limits of Regular 
Languages



  

Announcements

● Problem Set 5 due right now.
● Problem Set 6 out, due Friday, November 11 at 

2:15PM.
● Stop by OH with questions!
● Email cs103@cs.stanford.edu with questions!

● Friday Four Square today!

mailto:cs103@cs.stanford.edu


  

A Counting Argument

● There are more languages than strings 
(Cantor's theorem; first lecture!)

● There are no more regular languages than 
strings (can describe regular languages using 
regular expressions).

● So some languages cannot be regular.
● What are they?  What do they look like?
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Visiting Multiple States

● Let D be a DFA with n states.
● Any string w accepted by D that has length at least 

n must visit some state twice.
● Number of states visited is equal to the length of the 

string plus one.
● By the pigeonhole principle, some state is duplicated.

● The substring of w between those revisited states 
can be removed, duplicated, tripled, quadrupled, 
etc. without changing the fact that w is accepted by 
D.



  

Informally

● Let L be a regular language.
● If we have a string w  L that is “sufficiently ∈

long,” then we can split the string into three 
pieces and “pump” the middle.

● Write w = xyz.
● Then xy0z, xy1z, xy2z, …, xynz, … are all in L.

● Notation: yn means “n copies of y.”



  

The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular Languages 
states that

For any regular language L,

     There exists a positive natural number n such that

          For any w  L with |w| ≥ n,∈

               There exists strings x, y, z such that

                    For any natural number i,

                         w = xyz,

                         y ≠ ε

                         xyiz  L∈
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The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular Languages 
states that

For any regular language L,

     There exists a positive natural number n such that

          For any w  L with |w| ≥ n,∈

               There exists strings x, y, z such that

                    For any natural number i,

                         w = xyz,

                         y ≠ ε

                         xyiz  L∈

This number n is 
sometimes called the 
pumping length.



  

The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular Languages 
states that

For any regular language L,

     There exists a positive natural number n such that

          For any w  L with |w| ≥ n,∈

               There exists strings x, y, z such that

                    For any natural number i,

                         w = xyz,

                         y ≠ ε

                         xyiz  L∈

Strings longer than 
the pumping length 
must have a special 

property.
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where the middle piece isn't empty,

w can be broken into three pieces,



  

The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular Languages 
states that

For any regular language L,

     There exists a positive natural number n such that

          For any w  L with |w| ≥ n,∈

               There exists strings x, y, z such that

                    For any natural number i,

                         w = xyz,

                         y ≠ ε

                         xyiz  L∈
where the middle piece can be 
replicated zero or more times.

where the middle piece isn't empty,

w can be broken into three pieces,



  

The Weak Pumping Lemma

● Let Σ = {0, 1} and 
L = { w | w contains 00 as a substring. }

● Any string of length 3 or greater can be split 
into three pieces, the second of which can be 
“pumped.”

0 0 1 01
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The Weak Pumping Lemma

● Let Σ = {0, 1} and 
L = { w | w contains 00 as a substring. }

● Any string of length 3 or greater can be split 
into three pieces, the second of which can be 
“pumped.”

0 01

The first piece is just the 
empty string!  This is 

perfectly fine.
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The Weak Pumping Lemma

● Let Σ = {0, 1} and 
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The Weak Pumping Lemma



  

The Weak Pumping Lemma

● Let Σ = {0, 1} and 
L = { ε, 0, 1, 00, 01, 10, 11 }



  

The Weak Pumping Lemma

● Let Σ = {0, 1} and 
L = { ε, 0, 1, 00, 01, 10, 11 }

● Any string of length 3 or greater can be split 
into three pieces, the second of which can be 
“pumped.”



  

The Weak Pumping Lemma

● Let Σ = {0, 1} and 
L = { ε, 0, 1, 00, 01, 10, 11 }

● Any string of length 3 or greater can be split 
into three pieces, the second of which can be 
“pumped.”

The weak pumping lemma 
holds for finite languages 

because the pumping 
length can be longer than 

the longest string!



  

Testing Equality

● The equality problem is defined as follows:

Given two strings x and y, report whether x = y.

● Let Σ = {0, 1, ?}.  We can encode the equality 
problem as a string of the form x?y.

● “Is 001 equal to 110?” would be 001?110

● “Is 11 equal to 11?” would be 11?11

● “Is 110 equal to 110?” would be 110?110

● Let EQUAL = { w?w | w  {0, 1}* }∈
● Question: Is EQUAL a regular language?



  

The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular Languages 
states that

For any regular language L,

     There exists a positive natural number n such that

          For any w  L with |w| ≥ n,∈

               There exists strings x, y, z such that

                    For any natural number i,

                         w = xyz,

                         y ≠ ε

                         xyiz  L∈

w can be broken into three pieces,

where the middle piece can be 
replicated zero or more times.

where the middle piece isn't empty,



  

Using the Weak Pumping Lemma

EQUAL = { w?w | w  {0, 1}* }∈

0 0 0 ? 0 0 0
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What's Going On?

● The weak pumping lemma says that for 
“sufficiently long” strings, we should be able to 
pump some part of the string.

● We can't pump any part containing the ?, 
because we can't duplicate or remove it.

● We can't pump just one part of the string, 
because then the strings on opposite sides of 
the ? wouldn't match.

● Can we formally show that EQUAL is not 
regular?



  

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular.  Let n be the pumping 
length guaranteed by the weak pumping lemma.  Let w = 0n?0n.  Then 
w  ∈ EQUAL and |w| = 2n + 1 ≥ n.  Thus by the weak pumping lemma, we can 
write w = xyz such that y ≠ ε and for any natural number i, xyiz  ∈ EQUAL.  Then 
y cannot contain ?, since otherwise if we let i = 0, xyiz = xz does not contain ? 
and would not be in EQUAL.  So y is either completely to the left of the ? or 
completely to the right of the ?.  Let |y| = k, so k > 0.  Since y is completely to the 
left or right of the ?, then y = 0k.  Now, we consider two cases:

Case 1: y is to the left of the ?.  Then xy2z = 0n+k?0n  ∉ EQUAL, contradicting the 
weak pumping lemma.

Case 2: y is to the right of the ?.  Then xy2z = 0n?0n+k  ∉ EQUAL, contradicting 
the weak pumping lemma.

In either case we reach a contradiction, so our assumption was wrong and 
EQUAL is not regular. ■ 

For any regular language L,
     There exists a positive natural number n such that
          For any w  L with |w| ≥ n,∈
               There exists strings x, y, z such that
                    For any natural number i,

                    w = xyz,
                    y ≠ ε
                    xyiz  L∈
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pumping lemma is choosing some string that 
we should be able to pump but cannot.  In 
this case, we already saw a good example, 

so we'll choose it here.
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At this point, we have some string that we 
should be able to split into pieces and 

pump.  The rest of the proof shows that 
no matter what choice we make, this is 

impossible.
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Nonregular Languages

● The weak pumping lemma describes a property 
common to all regular languages.

● Any language L which does not have this 
property cannot be regular.

● What other languages can we find that are not 
regular?



  

A Canonical Nonregular Language

● Consider the language L = { 0n1n | n   }.∈ ℕ

L = { ε, 01, 0011, 000111, 00001111, … }
● L is a classic example of a nonregular 

language.
● Intuitively: If you have only finitely many states 

in a DFA, you can't “remember” an arbitrary 
number of 0s.

● How would we prove that L is nonregular?



  

The Pumping Lemma as a Game

● The weak pumping lemma can be thought of as a game 
between you and an adversary.

● You win if you can prove that the pumping lemma fails.
● The adversary wins if the adversary can make a choice 

for which the pumping lemma succeeds.
● The game goes as follows:

● The adversary chooses a pumping length n.
● You choose a string w with |w| ≥ n and w  L.∈
● The adversary breaks it into x, y, and z.
● You choose an i such that xyiz  L (if you can't, you lose!)∉
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Theorem: L = { 0n1n | n   } is not regular.∈ℕ
Proof: By contradiction; assume L is regular.  Let n be the pumping 
length guaranteed by the weak pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  L, so we can write ∈
w = xyz such that y ≠ ε, and for any natural number i, xyiz  L.  We ∈
consider three cases:

Case 1: y consists solely of 0s.  Then xy0z = xz = 0n - |y|1n, and since 
|y| > 0, y  L.∉

Case 2: y consists solely of 1s.  Then xy0z = xz = 0n1n - |y|, and since 
|y| > 0, y  L.∉

Case 3: y consists of k 0s followed by m 1s.  Then xy2z has the 
form 0n+k1m0k1n + m, so xy2z  L.∉

In all three cases we reach a contradiction, so our assumption was 
wrong and L is not regular. ■



  

Theorem: L = { 0n1n | n   } is not regular.∈ℕ
Proof: By contradiction; assume L is regular.  Let n be the pumping 
length guaranteed by the weak pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  L, so we can write ∈
w = xyz such that y ≠ ε, and for any natural number i, xyiz  L.  We ∈
consider three cases:

Case 1: y consists solely of 0s.  Then xy0z = xz = 0n - |y|1n, and since 
|y| > 0, y  L.∉

Case 2: y consists solely of 1s.  Then xy0z = xz = 0n1n - |y|, and since 
|y| > 0, y  L.∉

Case 3: y consists of k 0s followed by m 1s.  Then xy2z has the 
form 0n+k1m0k1n + m, so xy2z  L.∉

In all three cases we reach a contradiction, so our assumption was 
wrong and L is not regular. ■



  

Theorem: L = { 0n1n | n   } is not regular.∈ℕ
Proof: By contradiction; assume L is regular.  Let n be the pumping 
length guaranteed by the weak pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  L, so we can write ∈
w = xyz such that y ≠ ε, and for any natural number i, xyiz  L.  We ∈
consider three cases:

Case 1: y consists solely of 0s.  Then xy0z = xz = 0n - |y|1n, and since 
|y| > 0, y  L.∉

Case 2: y consists solely of 1s.  Then xy0z = xz = 0n1n - |y|, and since 
|y| > 0, y  L.∉

Case 3: y consists of k 0s followed by m 1s.  Then xy2z has the 
form 0n+k1m0k1n + m, so xy2z  L.∉

In all three cases we reach a contradiction, so our assumption was 
wrong and L is not regular. ■



  

Theorem: L = { 0n1n | n   } is not regular.∈ℕ
Proof: By contradiction; assume L is regular.  Let n be the pumping 
length guaranteed by the weak pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  L, so we can write ∈
w = xyz such that y ≠ ε, and for any natural number i, xyiz  L.  We ∈
consider three cases:

Case 1: y consists solely of 0s.  Then xy0z = xz = 0n - |y|1n, and since 
|y| > 0, y  L.∉

Case 2: y consists solely of 1s.  Then xy0z = xz = 0n1n - |y|, and since 
|y| > 0, y  L.∉

Case 3: y consists of k 0s followed by m 1s.  Then xy2z has the 
form 0n+k1m0k1n + m, so xy2z  L.∉

In all three cases we reach a contradiction, so our assumption was 
wrong and L is not regular. ■



  

Theorem: L = { 0n1n | n   } is not regular.∈ℕ
Proof: By contradiction; assume L is regular.  Let n be the pumping 
length guaranteed by the weak pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  L, so we can write ∈
w = xyz such that y ≠ ε and for any natural number i, xyiz  L.  ∈ We 
consider three cases:

Case 1: y consists solely of 0s.  Then xy0z = xz = 0n - |y|1n, and since 
|y| > 0, y  L.∉

Case 2: y consists solely of 1s.  Then xy0z = xz = 0n1n - |y|, and since 
|y| > 0, y  L.∉

Case 3: y consists of k 0s followed by m 1s.  Then xy2z has the 
form 0n+k1m0k1n + m, so xy2z  L.∉

In all three cases we reach a contradiction, so our assumption was 
wrong and L is not regular. ■



  

Theorem: L = { 0n1n | n   } is not regular.∈ℕ
Proof: By contradiction; assume L is regular.  Let n be the pumping 
length guaranteed by the weak pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  L, so we can write ∈
w = xyz such that y ≠ ε and for any natural number i, xyiz  L.  We ∈
consider three cases:

Case 1: y consists solely of 0s.  Then xy0z = xz = 0n - |y|1n, and since 
|y| > 0, y  L.∉

Case 2: y consists solely of 1s.  Then xy0z = xz = 0n1n - |y|, and since 
|y| > 0, y  L.∉

Case 3: y consists of k 0s followed by m 1s.  Then xy2z has the 
form 0n+k1m0k1n + m, so xy2z  L.∉

In all three cases we reach a contradiction, so our assumption was 
wrong and L is not regular. ■



  

Theorem: L = { 0n1n | n   } is not regular.∈ℕ
Proof: By contradiction; assume L is regular.  Let n be the pumping 
length guaranteed by the weak pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  L, so we can write ∈
w = xyz such that y ≠ ε and for any natural number i, xyiz  L.  We ∈
consider three cases:

Case 1: y consists solely of 0s.  Then xy0z = xz = 0n - |y|1n, and since 
|y| > 0, y  L.∉

Case 2: y consists solely of 1s.  Then xy0z = xz = 0n1n - |y|, and since 
|y| > 0, y  L.∉

Case 3: y consists of k 0s followed by m 1s.  Then xy2z has the 
form 0n+k1m0k1n + m, so xy2z  L.∉

In all three cases we reach a contradiction, so our assumption was 
wrong and L is not regular. ■



  

Theorem: L = { 0n1n | n   } is not regular.∈ℕ
Proof: By contradiction; assume L is regular.  Let n be the pumping 
length guaranteed by the weak pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  L, so we can write ∈
w = xyz such that y ≠ ε and for any natural number i, xyiz  L.  We ∈
consider three cases:

Case 1: y consists solely of 0s.  Then xy0z = xz = 0n - |y|1n, and since 
|y| > 0, y  L.∉

Case 2: y consists solely of 1s.  Then xy0z = xz = 0n1n - |y|, and since 
|y| > 0, y  L.∉

Case 3: y consists of k 0s followed by m 1s.  Then xy2z has the 
form 0n+k1m0k1n + m, so xy2z  L.∉

In all three cases we reach a contradiction, so our assumption was 
wrong and L is not regular. ■



  

Theorem: L = { 0n1n | n   } is not regular.∈ℕ
Proof: By contradiction; assume L is regular.  Let n be the pumping 
length guaranteed by the weak pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  L, so we can write ∈
w = xyz such that y ≠ ε and for any natural number i, xyiz  L.  We ∈
consider three cases:

Case 1: y consists solely of 0s.  Then xy0z = xz = 0n - |y|1n, and since 
|y| > 0, xz  L.∉

Case 2: y consists solely of 1s.  Then xy0z = xz = 0n1n - |y|, and since 
|y| > 0, y  L.∉

Case 3: y consists of k 0s followed by m 1s.  Then xy2z has the 
form 0n+k1m0k1n + m, so xy2z  L.∉

In all three cases we reach a contradiction, so our assumption was 
wrong and L is not regular. ■



  

Theorem: L = { 0n1n | n   } is not regular.∈ℕ
Proof: By contradiction; assume L is regular.  Let n be the pumping 
length guaranteed by the weak pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  L, so we can write ∈
w = xyz such that y ≠ ε and for any natural number i, xyiz  L.  We ∈
consider three cases:

Case 1: y consists solely of 0s.  Then xy0z = xz = 0n - |y|1n, and since 
|y| > 0, xz  L.∉

Case 2: y consists solely of 1s.  Then xy0z = xz = 0n1n - |y|, and since 
|y| > 0, xz  L.∉

Case 3: y consists of k 0s followed by m 1s.  Then xy2z has the 
form 0n+k1m0k1n + m, so xy2z  L.∉

In all three cases we reach a contradiction, so our assumption was 
wrong and L is not regular. ■



  

Theorem: L = { 0n1n | n   } is not regular.∈ℕ
Proof: By contradiction; assume L is regular.  Let n be the pumping 
length guaranteed by the weak pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  L, so we can write ∈
w = xyz such that y ≠ ε and for any natural number i, xyiz  L.  We ∈
consider three cases:

Case 1: y consists solely of 0s.  Then xy0z = xz = 0n - |y|1n, and since 
|y| > 0, xz  L.∉

Case 2: y consists solely of 1s.  Then xy0z = xz = 0n1n - |y|, and since 
|y| > 0, xz  L.∉

Case 3: y consists of k 0s followed by m 1s.  Then xy2z has the 
form 0n+k1m0k1n + m, so xy2z  L.∉

In all three cases we reach a contradiction, so our assumption was 
wrong and L is not regular. ■



  

Theorem: L = { 0n1n | n   } is not regular.∈ℕ
Proof: By contradiction; assume L is regular.  Let n be the pumping 
length guaranteed by the weak pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  L, so we can write ∈
w = xyz such that y ≠ ε and for any natural number i, xyiz  L.  We ∈
consider three cases:

Case 1: y consists solely of 0s.  Then xy0z = xz = 0n - |y|1n, and since 
|y| > 0, xz  L.∉

Case 2: y consists solely of 1s.  Then xy0z = xz = 0n1n - |y|, and since 
|y| > 0, xz  L.∉

Case 3: y consists of k 0s followed by m 1s.  Then xy2z has the 
form 0n1m0k1n + m, so xy2z  L.∉

In all three cases we reach a contradiction, so our assumption was 
wrong and L is not regular. ■



  

Theorem: L = { 0n1n | n   } is not regular.∈ℕ
Proof: By contradiction; assume L is regular.  Let n be the pumping 
length guaranteed by the weak pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  L, so we can write ∈
w = xyz such that y ≠ ε and for any natural number i, xyiz  L.  We ∈
consider three cases:

Case 1: y consists solely of 0s.  Then xy0z = xz = 0n - |y|1n, and since 
|y| > 0, xz  L.∉

Case 2: y consists solely of 1s.  Then xy0z = xz = 0n1n - |y|, and since 
|y| > 0, xz  L.∉

Case 3: y consists of k 0s followed by m 1s.  Then xy2z has the 
form 0n1m0k1n + m, so xy2z  L.∉

In all three cases we reach a contradiction, so our assumption was 
wrong and L is not regular. ■



  

Theorem: L = { 0n1n | n   } is not regular.∈ℕ
Proof: By contradiction; assume L is regular.  Let n be the pumping 
length guaranteed by the weak pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  L, so we can write ∈
w = xyz such that y ≠ ε and for any natural number i, xyiz  L.  We ∈
consider three cases:

Case 1: y consists solely of 0s.  Then xy0z = xz = 0n - |y|1n, and since 
|y| > 0, xz  L.∉

Case 2: y consists solely of 1s.  Then xy0z = xz = 0n1n - |y|, and since 
|y| > 0, xz  L.∉

Case 3: y consists of k 0s followed by m 1s.  Then xy2z has the 
form 0n1m0k1n + m, so xy2z  L.∉

In all three cases we reach a contradiction, so our assumption was 
wrong and L is not regular. ■



  

Counting Symbols

● Consider the alphabet Σ = { 0, 1 } and the 
language

BALANCE = { w | w contains an equal number 
of 0s and 1s. }

● For example:
● 01  ∈ BALANCE
● 110010  ∈ BALANCE
● 11011  ∉ BALANCE

● Question: Is BALANCE a regular language?
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BALANCE and the Weak Pumping Lemma

BALANCE = { w | w contains an equal number of 0s and 1s. }

01 10 01 10 01 10



  

An Incorrect Proof

Theorem: BALANCE is regular.

Proof: We show that BALANCE satisfies the condition of 
the pumping lemma.  Let n = 2 and consider any string 
w  ∈ BALANCE such that |w| ≥ 2.  Then we can write 
w = xyz such that x = z = ε and y = w, so y ≠ ε.  Then for 
any natural number i, xyiz = wi, which has the same 
number of 0s and 1s.  Since BALANCE passes the 
conditions of the weak pumping lemma, BALANCE is 
regular. ■
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The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular Languages 
states that

For any regular language L,

     There exists a positive natural number n such that

          For any w  L with |w| ≥ n,∈

               There exists strings x, y, z such that

                    For any natural number i,

                         w = xyz,

                         y ≠ ε

                         xyiz  L∈
where the middle piece can be 
replicated zero or more times.

where the middle piece isn't empty,

w can be broken into three pieces,
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states that

For any regular language L,

     There exists a positive natural number n such that

          For any w  L with |w| ≥ n,∈

               There exists strings x, y, z such that

                    For any natural number i,

                         w = xyz,

                         y ≠ ε

                         xyiz  L∈
where the middle piece can be 
replicated zero or more times.

where the middle piece isn't empty,

w can be broken into three pieces,

This says nothing about 
languages that aren't regular!



  

Caution with the Pumping Lemma

● The weak (and full) pumping lemma describe a 
necessary condition of regular languages.
● L is regular → L passes the pumping lemma

● The weak (and full) pumping lemma is not a sufficient 
condition of regular languages.
● “L passes the pumping lemma → L is regular” is not true.

● If a language fails the pumping lemma, it is definitely 
not regular.

● If a language passes the pumping lemma, we learn 
nothing about whether it is regular or not.



  

BALANCE is Not Regular

● The language BALANCE can be proven not to 
be regular using a stronger version of the 
pumping lemma.

● To see the full pumping lemma, we need to 
revisit our original insight.
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Weak Pumping Lemma Intuition

● Let D be a DFA with n states.
● Any string w accepted by D that has length at least n 

must visit some state twice. within its first n 
characters.
● Number of states visited is equal to |w| + 1.
● By the pigeonhole principle, some state is duplicated.

● The substring of w in-between those revisited states 
can be removed, duplicated, tripled, quadrupled, etc. 
without changing the fact that w is accepted by D.
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The Pumping Lemma

For any regular language L,

     There exists a positive natural number n such that

          For any w  L with |w| ≥ n,∈

               There exists strings x, y, z such that

                    For any natural number i,

                         w = xyz,

                         |xy| ≤ n,

                         y ≠ ε

                         xyiz  L∈
where the middle piece can be 
replicated zero or more times.

where the middle piece isn't empty,

w can be broken into three pieces,

where the first two pieces occur at 
the start of the string,



  

Why This Change Matters

● The restriction |xy| ≤ n means that we can limit 
where the string to pump must be.

● If we specifically craft the first n characters of 
the string to pump, we can force y to have a 
specific property.

● We can then show that y cannot be pumped 
arbitrarily many times.



  

BALANCE and the Pumping Lemma

BALANCE = { w | w contains an equal number of 0s and 1s. }
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Since |xy|  4, the ≤

string to pump must 
be somewhere in 

here.



  

BALANCE and the Pumping Lemma

BALANCE = { w | w contains an equal number of 0s and 1s. }

Suppose the pumping length is 4.

0 00 0 1 1 1 1



  

BALANCE and the Pumping Lemma

BALANCE = { w | w contains an equal number of 0s and 1s. }

Suppose the pumping length is 4.

0 0 1 1 1 1



  

BALANCE and the Pumping Lemma

BALANCE = { w | w contains an equal number of 0s and 1s. }

Suppose the pumping length is 4.

0 0 1 1 1 1



  

BALANCE and the Pumping Lemma

BALANCE = { w | w contains an equal number of 0s and 1s. }

Suppose the pumping length is 4.

0 00 0 1 1 1 1



  

BALANCE and the Pumping Lemma

BALANCE = { w | w contains an equal number of 0s and 1s. }

Suppose the pumping length is 4.

1 1 1 1



  

BALANCE and the Pumping Lemma

BALANCE = { w | w contains an equal number of 0s and 1s. }

Suppose the pumping length is 4.

1 1 1 1



  

BALANCE and the Pumping Lemma

BALANCE = { w | w contains an equal number of 0s and 1s. }

Suppose the pumping length is 4.

0 00 0 1 1 1 1



  

BALANCE and the Pumping Lemma

BALANCE = { w | w contains an equal number of 0s and 1s. }

Suppose the pumping length is 4.

00 0 1 1 1 1



  

BALANCE and the Pumping Lemma

BALANCE = { w | w contains an equal number of 0s and 1s. }

Suppose the pumping length is 4.
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Theorem: BALANCE is not regular.

Proof: By contradiction; assume that BALANCE is regular.  Let n 
be the length guaranteed by the pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  ∈ BALANCE.  Therefore, 
there exist strings x, y, and z such that w = xyz, |xy| ≤ n, y ≠ ε, and 
for any natural number i, xyiz  ∈ BALANCE.  Since |xy| ≤ n, y must 
consist solely of 0s.  But then xy2z = 0n+|y|1n, and since |y| > 0, 
xy2z  ∉ BALANCE.  We have reached a contradiction, so our 
assumption was wrong and BALANCE is not regular. ■



  

Theorem: BALANCE is not regular.

Proof: By contradiction; assume that BALANCE is regular.  Let n 
be the length guaranteed by the pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  ∈ BALANCE.  Therefore, 
there exist strings x, y, and z such that w = xyz, |xy| ≤ n, y ≠ ε, and 
for any natural number i, xyiz  ∈ BALANCE.  Since |xy| ≤ n, y must 
consist solely of 0s.  But then xy2z = 0n+|y|1n, and since |y| > 0, 
xy2z  ∉ BALANCE.  We have reached a contradiction, so our 
assumption was wrong and BALANCE is not regular. ■



  

Theorem: BALANCE is not regular.

Proof: By contradiction; assume that BALANCE is regular.  Let n 
be the length guaranteed by the pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  ∈ BALANCE.  Therefore, 
there exist strings x, y, and z such that w = xyz, |xy| ≤ n, y ≠ ε, and 
for any natural number i, xyiz  ∈ BALANCE.  Since |xy| ≤ n, y must 
consist solely of 0s.  But then xy2z = 0n+|y|1n, and since |y| > 0, 
xy2z  ∉ BALANCE.  We have reached a contradiction, so our 
assumption was wrong and BALANCE is not regular. ■



  

Theorem: BALANCE is not regular.

Proof: By contradiction; assume that BALANCE is regular.  Let n 
be the length guaranteed by the pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  ∈ BALANCE.  Therefore, 
there exist strings x, y, and z such that w = xyz, |xy| ≤ n, y ≠ ε, and 
for any natural number i, xyiz  ∈ BALANCE.  Since |xy| ≤ n, y must 
consist solely of 0s.  But then xy2z = 0n+|y|1n, and since |y| > 0, 
xy2z  ∉ BALANCE.  We have reached a contradiction, so our 
assumption was wrong and BALANCE is not regular. ■



  

Theorem: BALANCE is not regular.

Proof: By contradiction; assume that BALANCE is regular.  Let n 
be the length guaranteed by the pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  ∈ BALANCE.  Therefore, 
there exist strings x, y, and z such that w = xyz, |xy| ≤ n, y ≠ ε, and 
for any natural number i, xyiz  ∈ BALANCE.  Since |xy| ≤ n, y must 
consist solely of 0s.  But then xy2z = 0n+|y|1n, and since |y| > 0, 
xy2z  ∉ BALANCE.  We have reached a contradiction, so our 
assumption was wrong and BALANCE is not regular. ■



  

Theorem: BALANCE is not regular.

Proof: By contradiction; assume that BALANCE is regular.  Let n 
be the length guaranteed by the pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  ∈ BALANCE.  Therefore, 
there exist strings x, y, and z such that w = xyz, |xy| ≤ n, y ≠ ε, and 
for any natural number i, xyiz  ∈ BALANCE.  Since |xy| ≤ n, y must 
consist solely of 0s.  But then xy2z = 0n+|y|1n, and since |y| > 0, 
xy2z  ∉ BALANCE.  We have reached a contradiction, so our 
assumption was wrong and BALANCE is not regular. ■



  

Theorem: BALANCE is not regular.

Proof: By contradiction; assume that BALANCE is regular.  Let n 
be the length guaranteed by the pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  ∈ BALANCE.  Therefore, 
there exist strings x, y, and z such that w = xyz, |xy| ≤ n, y ≠ ε, and 
for any natural number i, xyiz  ∈ BALANCE.  Since |xy| ≤ n, y must 
consist solely of 0s.  But then xy2z = 0n+|y|1n, and since |y| > 0, 
xy2z  ∉ BALANCE.  We have reached a contradiction, so our 
assumption was wrong and BALANCE is not regular. ■



  

Theorem: BALANCE is not regular.

Proof: By contradiction; assume that BALANCE is regular.  Let n 
be the length guaranteed by the pumping lemma.  Consider the 
string w = 0n1n.  Then |w| = 2n ≥ n and w  ∈ BALANCE.  Therefore, 
there exist strings x, y, and z such that w = xyz, |xy| ≤ n, y ≠ ε, and 
for any natural number i, xyiz  ∈ BALANCE.  Since |xy| ≤ n, y must 
consist solely of 0s.  But then xy2z = 0n+|y|1n, and since |y| > 0, 
xy2z  ∉ BALANCE.  We have reached a contradiction, so our 
assumption was wrong and BALANCE is not regular. ■

This is why the pumping lemma is more powerful 
than the weak pumping lemma.  We can force y 
to be made purely of 0s, rather than some 

combination of 0s and 1s.
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Summary of the Pumping Lemma

● Using the pigeonhole principle, we can prove 
the weak pumping lemma and pumping 
lemma.

● These lemmas describe essential properties of 
the regular languages.

● Any language that fails to have these properties 
cannot be regular.



  

Next Time

● Beyond Regular Languages
● Context-free languages.
● Context-free grammars.
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