The Limits of Regular Languages

Announcements

- Problem Set 5 due right now.
- Problem Set 6 out, due Friday, November 11 at 2:15PM.
- Stop by OH with questions!
- Email cs103@cs.stanford.edu with questions!
- Friday Four Square today!

A Counting Argument

- There are more languages than strings (Cantor's theorem; first lecture!)
- There are no more regular languages than strings (can describe regular languages using regular expressions).
- So some languages cannot be regular.
- What are they? What do they look like?

An Important Observation

$\begin{array}{lllllll}0 & 1 & 1 & 0 & 1 & 1 & 1\end{array}$

An Important Observation

$\begin{array}{lllllll}0 & 1 & 1 & 0 & 1 & 1 & 1\end{array}$

An Important Observation

An Important Observation

$\begin{array}{lllllll}0 & 1 & 1 & 0 & 1 & 1 & 1\end{array}$

An Important Observation

$$
\begin{array}{lllllllll}
& 0 & 1 & 1 & 0 & 1 & 1 & 1 & \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
$$

An Important Observation

$$
q_{0}{ }^{0} q_{1}{ }^{1} q_{2}{ }^{1} q_{3}{ }^{0} q_{1}{ }^{1} q_{2}{ }^{1} q_{3}{ }^{1} q_{4}
$$

An Important Observation

$$
q_{0}{ }^{0} q_{1}{ }^{1} q_{2}{ }^{1} q_{3}{ }^{0} q_{1}{ }^{1} q_{2}{ }^{1} q_{3}{ }^{1} q_{4}
$$

An Important Observation

An Important Observation

 (a) 0,1$$
q_{0}{ }^{0} q_{1}{ }^{1} q_{q_{2}}{ }^{1} q_{3}{ }^{1} q_{4}
$$

An Important Observation

$$
q_{0} \quad q_{1} q_{q_{2}}^{1} q_{q_{3}}^{0} q_{1}^{1} q_{2}^{1} q_{q_{3}}^{1} q_{4}
$$

An Important Observation

Visiting Multiple States

- Let D be a DFA with n states.
- Any string w accepted by D that has length at least n must visit some state twice.
- Number of states visited is equal to the length of the string plus one.
- By the pigeonhole principle, some state is duplicated.
- The substring of w between those revisited states can be removed, duplicated, tripled, quadrupled, etc. without changing the fact that w is accepted by D.

Informally

- Let L be a regular language.
- If we have a string $w \in L$ that is "sufficiently long," then we can split the string into three pieces and "pump" the middle.
- Write w = xyz.
- Then $x y^{0} z, x y^{1} z, x y^{2} z, \ldots, x y^{n} z, \ldots$ are all in L.
- Notation: y^{n} means " n copies of y."

The Weak Pumping Lemma

- The Weak Pumping Lemma for Regular Languages states that

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z \\
& y \neq \varepsilon \\
& x y^{i} z \in L
\end{aligned}
$$

The Weak Pumping Lemma

- The Weak Pumping Lemma for Regular Languages states that
\forall regular language L,
\exists a positive natural number n such that
$\forall w \in L$ with $|w| \geq n$,
\exists strings $\mathrm{x}, \mathrm{y}, \mathrm{z}$ such that
\forall natural number i,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{\prime} z \in L
\end{aligned}
$$

The Weak Pumping Lemma

- The Weak Pumping Lemma for Regular Languages states that
\forall regular language L
\exists a positive natur $\forall w \in L$ with |
\exists strings x ,
\forall natura

$$
w=x \text { QUANTIFY Wille YOU QUANI }
$$

$$
y \neq \varepsilon
$$

$$
x y^{\prime} z \in L
$$

The Weak Pumping Lemma

- The Weak Pumping Lemma for Regular Languages states that
For any regular language L ,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z \\
& y \neq \varepsilon \\
& x y^{i} z \in L
\end{aligned}
$$

The Weak Pumping Lemma

- The Weak Pumping Lemma for Regular Languages states that

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z \\
& y \neq \varepsilon \\
& x y^{i} z \in L
\end{aligned}
$$

The Weak Pumping Lemma

- The Weak Pumping Lemma for Regular Languages states that

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n, 4$
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z \\
& y \neq \varepsilon \\
& x y^{i} z \in L
\end{aligned}
$$

The Weak Pumping Lemma

- The Weak Pumping Lemma for Regular Languages states that

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that For any natural number i ,

$$
\begin{aligned}
& w=x y z, \quad \text { w can be broken into three pieces, } \\
& y \neq \varepsilon \\
& x^{\prime} y^{i} z \in L
\end{aligned}
$$

The Weak Pumping Lemma

- The Weak Pumping Lemma for Regular Languages states that

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that For any natural number i ,

$$
\begin{aligned}
& w=x y z, \quad w \text { can be broken into three pieces, } \\
& y \neq \varepsilon \quad \text { where the middle piece isn "t empty, } \\
& x y^{i} z \in L
\end{aligned}
$$

The Weak Pumping Lemma

- The Weak Pumping Lemma for Regular Languages states that

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that For any natural number i ,

$$
\begin{array}{ll}
w=x y z, & w \text { can be broken into three pieces, } \\
y \neq \varepsilon & \text { where the middle piece isn't empty, } \\
x^{\prime} z \in L & \text { where the middle piece can be } \\
\text { replicated zero or more times. }
\end{array}
$$

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

$$
\begin{array}{llll|l|l}
1 & 0 & 0 & 1 & 1 & 0
\end{array}
$$

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

$$
\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}
$$

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The first piece is just the
empty string! This is perfectly fine.

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

$$
\begin{array}{l|l|l|l|l}
1 & 1 & 1 & 0 & 0
\end{array}
$$

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

$$
\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}
$$

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

$$
\begin{array}{lllll|l|l}
1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}
$$

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

$$
\begin{array}{lllll|l|l}
1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}
$$

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

$$
\left.\begin{array}{lllll|l|l|l|l}
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array} \right\rvert\,
$$

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{w \mid w$ contains 00 as a substring. $\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The Weak Pumping Lemma

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{\varepsilon, 0,1,00,01,10,11\}$

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{\varepsilon, 0,1,00,01,10,11\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The Weak Pumping Lemma

- Let $\Sigma=\{0,1\}$ and $L=\{\varepsilon, 0,1,00,01,10,11\}$
- Any string of length 3 or greater can be split into three pieces, the second of which can be "pumped."

The weak pumping lemma
holds for finite languages
because the pumping
length can be longer than
the longest string:

Testing Equality

- The equality problem is defined as follows:

Given two strings x and y, report whether $x=y$.

- Let $\Sigma=\{0,1, ?\}$. We can encode the equality problem as a string of the form x?y.
- "Is 001 equal to 110?" would be 001?110
- "Is 11 equal to 11 ?" would be 11 ? 11
- "Is 110 equal to 110 ?" would be 110 ? 110
- Let $E Q U A L=\left\{w ? w \mid w \in\{0,1\}^{*}\right\}$
- Question: Is EQUAL a regular language?

The Weak Pumping Lemma

- The Weak Pumping Lemma for Regular Languages states that

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that For any natural number i ,

$$
\begin{array}{ll}
w=x y z, & \text { w can be broken into three pieces, } \\
y \neq \varepsilon & \text { where the middle piece isn't empty, } \\
x y^{i} z \in L & \begin{array}{l}
\text { where the middle piece can be } \\
\text { replicated zero or more times. }
\end{array}
\end{array}
$$

Using the Weak Pumping Lemma

$$
E Q U A L=\left\{w ? w \mid w \in\{0,1\}^{*}\right\}
$$

$\begin{array}{lllllll}0 & 0 & 0 & ? & 0 & 0 & 0\end{array}$

Using the Weak Pumping Lemma

$$
E Q U A L=\left\{w ? w \mid w \in\{0,1\}^{*}\right\}
$$

$0 \quad 0 \quad 0 \quad ? \quad 0 \quad 0 \quad 0$

Using the Weak Pumping Lemma

$$
E Q U A L=\left\{w ? w \mid w \in\{0,1\}^{*}\right\}
$$

$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$

Using the Weak Pumping Lemma

$$
E Q U A L=\left\{w ? w \mid w \in\{0,1\}^{*}\right\}
$$

Using the Weak Pumping Lemma

$$
E Q U A L=\left\{w ? w \mid w \in\{0,1\}^{*}\right\}
$$

$\begin{array}{lllllll}0 & 0 & 0 & ? & 0 & 0 & 0\end{array}$

Using the Weak Pumping Lemma

$$
E Q U A L=\left\{w ? w \mid w \in\{0,1\}^{*}\right\}
$$

0 0 00 ? 000

Using the Weak Pumping Lemma

$$
E Q U A L=\left\{w ? w \mid w \in\{0,1\}^{*}\right\}
$$

$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & ? & 0 & 0 & 0\end{array}$

Using the Weak Pumping Lemma

Using the Weak Pumping Lemma

$$
E Q U A L=\left\{w ? w \mid w \in\{0,1\}^{*}\right\}
$$

$\begin{array}{lllllll}0 & 0 & 0 & ? & 0 & 0 & 0\end{array}$

Using the Weak Pumping Lemma

$$
E Q U A L=\left\{w ? w \mid w \in\{0,1\}^{*}\right\}
$$

$0 \quad 0 \quad 0 \quad ? \quad 0 \quad 0 \quad 0$

Using the Weak Pumping Lemma

$$
E Q U A L=\left\{w ? w \mid w \in\{0,1\}^{*}\right\}
$$

000300

Using the Weak Pumping Lemma

$$
E Q U A L=\left\{w ? w \mid w \in\{0,1\}^{*}\right\}
$$

What's Going On?

- The weak pumping lemma says that for "sufficiently long" strings, we should be able to pump some part of the string.
- We can't pump any part containing the ?, because we can't duplicate or remove it.
- We can't pump just one part of the string, because then the strings on opposite sides of the ? wouldn't match.
- Can we formally show that EQUAL is not regular?

For any regular language L ,
There exists a positive natural number n such that For any $w \in L$ with $|w| \geq n$,

There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{i} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{i} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular.

For any regular language L,
There exists a positive natural number n such that
There exists strings x, y, z such that For any natural number i ,

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular.

For any regular language L,

There exists a positive natural number n
There exists strings x, y, z such that For any natural number i ,

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma.

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{i} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma.

For any $w \in L$ with $|w| \geq n$,

There exists strings x, y, z such that

 For any natural number iTheorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma.

For any $w \in L$ with $|w| \geq n$,

For any natural number i

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma.

```
The hardest part of most proofs with the
pumping lemma is choosing some string that
we should be able to pump but cannot. In
this case, we already saw a good example,
    so we'll choose it here.
```


For any $w \in L$ with $|w| \geq n$,

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $w=0^{n} ? 0^{n}$.

For any $w \in L$ with $|w| \geq n$,

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $w=0^{n} ? 0^{n}$. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$.

For any regular language L,

There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{i} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $w=0^{n} ? 0^{n}$. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$.

```
For any \(w \in L\) with \(|w| \geq n\),
    There exists strings \(x, y, z\) such that
    For any natural number i ,
    w = xyz,
    \(y \neq \varepsilon\)
    \(x y^{i} z \in L\)
```

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $w=0^{n} ? 0^{n}$. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$.

```
For any \(w \in L\) with \(|w| \geq n\),
    There exists strings \(x, y, z\) such that
        For any natural number i ,
        \(\mathrm{w}=\mathrm{xyz}\),
        \(y \neq \varepsilon\)
    \(x y^{i} z \in L\)
```

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $\mathrm{w}=0^{n}$? 0^{n}. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$. Thus by the weak pumping lemma, we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{\prime} z \in E Q U A L$.

For any regular language L ,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{i} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $w=0^{n} ? 0^{n}$. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$. Thus by the weak pumping lemma, we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{\prime} z \in E Q U A L$.

For any regular language L ,

There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{i} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $w=0^{n} ? 0^{n}$. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$. Thus by the weak pumping lemma, we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{i} z \in E Q U A L$.

```
At this point, we have some string that we
    should be able to split into pieces and
pump. The rest of the proof shows that
    no matter what choice we make, this is
    impossible.
```

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{i} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $w=0^{n} ? 0^{n}$. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$. Thus by the weak pumping lemma, we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{i} z \in E Q U A L$. Then y cannot contain ?, since otherwise if we let $i=0, x y^{\prime} z=x z$ does not contain ? and would not be in EQUAL.

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{i} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $w=0^{n} ? 0^{n}$. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$. Thus by the weak pumping lemma, we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{i} z \in E Q U A L$. Then y cannot contain ?, since otherwise if we let $i=0, x y^{\prime} z=x z$ does not contain ? and would not be in EQUAL. So y is either completely to the left of the ? or completely to the right of the ?.

For any regular language L ,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{i} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $w=0^{n} ? 0^{n}$. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$. Thus by the weak pumping lemma, we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{i} z \in E Q U A L$. Then y cannot contain ?, since otherwise if we let $i=0, x y^{i} z=x z$ does not contain ? and would not be in EQUAL. So y is either completely to the left of the ? or completely to the right of the ?. Let $|\mathrm{y}|=\mathrm{k}$, so $\mathrm{k}>0$.

For any regular language L ,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{\prime} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $\mathrm{w}=0^{n}$? 0^{n}. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$. Thus by the weak pumping lemma, we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{\prime} z \in E Q U A L$. Then y cannot contain ?, since otherwise if we let $i=0, x^{\prime} z=x z$ does not contain? and would not be in EQUAL. So y is either completely to the left of the ? or completely to the right of the ?. Let $|\mathrm{y}|=\mathrm{k}$, so $\mathrm{k}>0$. Since y is completely to the left or right of the ?, then $y=0^{k}$.

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{i} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $w=0^{n} ? 0^{n}$. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$. Thus by the weak pumping lemma, we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{i} z \in E Q U A L$. Then y cannot contain ?, since otherwise if we let $i=0, x y^{\prime} z=x z$ does not contain ? and would not be in EQUAL. So y is either completely to the left of the ? or completely to the right of the ?. Let $|\mathrm{y}|=\mathrm{k}$, so $\mathrm{k}>0$. Since y is completely to the left or right of the ?, then $y=0^{k}$. Now, we consider two cases:

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{i} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $w=0^{n} ? 0^{n}$. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$. Thus by the weak pumping lemma, we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{i} z \in E Q U A L$. Then y cannot contain ?, since otherwise if we let $i=0, x y^{\prime} z=x z$ does not contain ? and would not be in EQUAL. So y is either completely to the left of the ? or completely to the right of the ?. Let $|\mathrm{y}|=\mathrm{k}$, so $\mathrm{k}>0$. Since y is completely to the left or right of the ?, then $y=0^{k}$. Now, we consider two cases:

Case 1: y is to the left of the?

For any regular language L ,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{\prime} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $\mathrm{w}=0^{n}$? 0^{n}. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$. Thus by the weak pumping lemma, we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{\prime} z \in E Q U A L$. Then y cannot contain? since otherwise if we let $i=0, x^{\prime} z=x z$ does not contain? and would not be in EQUAL. So y is either completely to the left of the ? or completely to the right of the ?. Let $|\mathrm{y}|=\mathrm{k}$, so $\mathrm{k}>0$. Since y is completely to the left or right of the ?, then $y=0^{k}$. Now, we consider two cases:

Case 1: y is to the left of the ?. Then $x^{2} z=0^{n+k} ? 0^{n} \notin E Q U A L$, contradicting the weak pumping lemma.

For any regular language L ,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{\prime} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $\mathrm{w}=0^{n}$? 0^{n}. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$. Thus by the weak pumping lemma, we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{\prime} z \in E Q U A L$. Then y cannot contain? since otherwise if we let $i=0, x^{\prime} z=x z$ does not contain? and would not be in EQUAL. So y is either completely to the left of the ? or completely to the right of the ?. Let $|\mathrm{y}|=\mathrm{k}$, so $\mathrm{k}>0$. Since y is completely to the left or right of the ?, then $y=0^{k}$. Now, we consider two cases:

Case 1: y is to the left of the ?. Then $x^{2} z=0^{n+k} ? 0^{n} \notin E Q U A L$, contradicting the weak pumping lemma.

Case 2: y is to the right of the ?

For any regular language L ,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{\prime} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $\mathrm{w}=0^{n}$? 0^{n}. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$. Thus by the weak pumping lemma, we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x^{\prime} z \in E Q U A L$. Then y cannot contain?, since otherwise if we let $i=0, y^{\prime} z=x z$ does not contain? and would not be in EQUAL. So y is either completely to the left of the ? or completely to the right of the ?. Let $|\mathrm{y}|=\mathrm{k}$, so $\mathrm{k}>0$. Since y is completely to the left or right of the ?, then $y=0^{k}$. Now, we consider two cases:

Case 1: y is to the left of the ?. Then $x^{2} z=0^{n+k} ? 0^{n} \notin E Q U A L$, contradicting the weak pumping lemma.

Case 2: y is to the right of the ?. Then $\mathrm{xy}^{2} \mathrm{z}=0^{n} ? 0^{n+k} \notin E Q U A L$, contradicting the weak pumping lemma.

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{\prime} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $\mathrm{w}=0^{n}$? 0^{n}. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$. Thus by the weak pumping lemma, we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x^{\prime} z \in E Q U A L$. Then y cannot contain ?, since otherwise if we let $i=0, x^{\prime} z=x z$ does not contain? and would not be in EQUAL. So y is either completely to the left of the ? or completely to the right of the ?. Let $|\mathrm{y}|=\mathrm{k}$, so $\mathrm{k}>0$. Since y is completely to the left or right of the ?, then $y=0^{k}$. Now, we consider two cases:

Case 1: y is to the left of the ?. Then $x y^{2} z=0^{n+k} ? 0^{n} \notin E Q U A L$, contradicting the weak pumping lemma.

Case 2: y is to the right of the ?. Then $\mathrm{xy}^{2} \mathrm{z}=0^{n} ? 0^{n+k} \notin E Q U A L$, contradicting the weak pumping lemma.

In either case we reach a contradiction, so our assumption was wrong and $E Q U A L$ is not regular.

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \\
& y \neq \varepsilon \\
& x y^{\prime} z \in L
\end{aligned}
$$

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Let $\mathrm{w}=0^{n}$? 0^{n}. Then $\mathrm{w} \in E Q U A L$ and $|\mathrm{w}|=2 \mathrm{n}+1 \geq \mathrm{n}$. Thus by the weak pumping lemma, we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x^{\prime} z \in E Q U A L$. Then y cannot contain ?, since otherwise if we let $i=0, x^{\prime} z=x z$ does not contain? and would not be in EQUAL. So y is either completely to the left of the ? or completely to the right of the ?. Let $|\mathrm{y}|=\mathrm{k}$, so $\mathrm{k}>0$. Since y is completely to the left or right of the ?, then $y=0^{k}$. Now, we consider two cases:

Case 1: y is to the left of the ?. Then $x^{2} z=0^{n+k} ? 0^{n} \notin E Q U A L$, contradicting the weak pumping lemma.

Case 2: y is to the right of the ?. Then $\mathrm{xy}^{2} \mathrm{z}=0^{n} ? 0^{n+k} \notin E Q U A L$, contradicting the weak pumping lemma.

In either case we reach a contradiction, so our assumption was wrong and $E Q U A L$ is not regular.

Nonregular Languages

- The weak pumping lemma describes a property common to all regular languages.
- Any language L which does not have this property cannot be regular.
- What other languages can we find that are not regular?

A Canonical Nonregular Language

- Consider the language $L=\left\{0^{n 1} 1^{n} \mid n \in \mathbb{N}\right\}$.

$$
L=\{\varepsilon, 01,0011,000111,00001111, \ldots\}
$$

- L is a classic example of a nonregular language.
- Intuitively: If you have only finitely many states in a DFA, you can't "remember" an arbitrary number of 0 s .
- How would we prove that L is nonregular?

The Pumping Lemma as a Game

- The weak pumping lemma can be thought of as a game between you and an adversary.
- You win if you can prove that the pumping lemma fails.
- The adversary wins if the adversary can make a choice for which the pumping lemma succeeds.
- The game goes as follows:
- The adversary chooses a pumping length n.
- You choose a string w with $|\mathrm{w}| \geq \mathrm{n}$ and $\mathrm{w} \in \mathrm{L}$.
- The adversary breaks it into x, y, and z.
- You choose an i such that $x y^{i} z \notin L$ (if you can't, you lose!)

The Pumping Lemma Game

ADVERSARY

The Pumping Lemma Game

ADVERSARY

The Pumping Lemma Game

ADVERSARY

Maliciously choose pumping length n .

YOU

Cleverly choose a string

$$
w \in L,|w| \geq n
$$

The Pumping Lemma Game

ADVERSARY

Maliciously choose pumping length n.

Maliciously split

$$
w=x y z, y \neq \varepsilon
$$

YOU

Cleverly choose a string

$$
w \in L,|w| \geq n
$$

The Pumping Lemma Game

ADVERSARY

Maliciously choose pumping length n .

YOU

Cleverly choose a string

$$
w \in L,|w| \geq n
$$

Maliciously split

$$
w=x y z, y \neq \varepsilon
$$

Cleverly choose i such that $x y^{\prime} z \notin L$

The Pumping Lemma Game

ADVERSARY

Maliciously choose pumping length n .

YOU

Cleverly choose a string

$$
w \in L,|w| \geq n
$$

Maliciously split

$$
w=x y z, y \neq \varepsilon
$$

Cleverly choose i such that $x y^{\prime} z \notin L$
Grr! Aaaargh!

The Pumping Lemma Game
 $$
L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}
$$

ADVERSARY

Maliciously choose pumping length n .

YOU

Cleverly choose a string

$$
w \in L,|w| \geq n
$$

Maliciously split $w=x y z, y \neq \varepsilon$

Cleverly choose i such that $x y^{\prime} z \notin L$
Grrr! Aaaargh!

The Pumping Lemma Game
 $$
L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}
$$

ADVERSARY

Maliciously choose pumping length n .

YOU

Cleverly choose a string

$$
w \in L,|w| \geq n
$$

Maliciously split $w=x y z, y \neq \varepsilon$

Cleverly choose i such that $x y^{\prime} z \notin L$
Grrr! Aaaargh!

Theorem: $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is not regular.

Theorem: $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is not regular. Proof: By contradiction; assume L is regular.

Theorem: $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is not regular. Proof: By contradiction; assume L is regular. Let n be the pumping length guaranteed by the weak pumping lemma.

Theorem: $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is not regular.
Proof: By contradiction; assume L is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Consider the string $w=0^{n} 1^{n}$.

Theorem: $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is not regular.
Proof: By contradiction; assume L is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Consider the string $w=0^{n} 1^{n}$. Then $|w|=2 n \geq n$ and $w \in L$, so we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{i} z \in L$.

Theorem: $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is not regular.
Proof: By contradiction; assume L is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Consider the string $w=0^{n} 1^{n}$. Then $|w|=2 n \geq n$ and $w \in L$, so we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{i} z \in L$. We consider three cases:

Theorem: $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is not regular.
Proof: By contradiction; assume L is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Consider the string $w=0^{n} 1^{n}$. Then $|w|=2 n \geq n$ and $w \in L$, so we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{i} z \in L$. We consider three cases:

Case 1: y consists solely of 0s.

Theorem: $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is not regular.
Proof: By contradiction; assume L is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Consider the string $w=0^{n} 1^{n}$. Then $|w|=2 n \geq n$ and $w \in L$, so we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{i} z \in L$. We consider three cases:

Case 1: y consists solely of 0 s . Then $x y^{0} z=x z=0^{n-|y| 1 n}$, and since $|y|>0, y \notin L$.

Theorem: $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is not regular.
Proof: By contradiction; assume L is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Consider the string $w=0^{n} 1^{n}$. Then $|w|=2 n \geq n$ and $w \in L$, so we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{i} z \in L$. We consider three cases:

Case 1: y consists solely of $0 s$. Then $x y^{0} z=x z=0^{n-|y| 1} 1^{n}$, and since $|y|>0, x z \notin L$.

Case 2: y consists solely of 1 s .

Theorem: $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is not regular.
Proof: By contradiction; assume L is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Consider the string $w=0^{n} 1^{n}$. Then $|w|=2 n \geq n$ and $w \in L$, so we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{i} z \in L$. We consider three cases:

Case 1: y consists solely of $0 s$. Then $x y^{0} z=x z=0^{n-|y| 1} 1^{n}$, and since $|y|>0, x z \notin L$.

Case 2: y consists solely of 1 s . Then $x y^{0} z=x z=0^{n} 1^{n-|y|}$, and since $|y|>0, x z \notin L$.

Theorem: $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is not regular.
Proof: By contradiction; assume L is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Consider the string $w=0^{n} 1^{n}$. Then $|w|=2 n \geq n$ and $w \in L$, so we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{\prime} z \in L$. We consider three cases:

Case 1: y consists solely of $0 s$. Then $x y^{0} z=x z=0^{n-|y| 1} 1^{n}$, and since $|y|>0, x z \notin L$.

Case 2: y consists solely of 1 s . Then $x y^{0} z=x z=0^{n} 1^{n-|y|}$, and since $|y|>0, x z \notin L$.

Case 3: y consists of k 0s followed by m 1s.

Theorem: $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is not regular.
Proof: By contradiction; assume L is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Consider the string $w=0^{n} 1^{n}$. Then $|w|=2 n \geq n$ and $w \in L$, so we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{i} z \in L$. We consider three cases:

Case 1: y consists solely of 0 s . Then $x y^{0} z=x z=0^{n-|y| 1 n}$, and since $|y|>0, x z \notin L$.

Case 2: y consists solely of 1 s . Then $x y^{0} z=x z=0^{n} 1^{n-|y|}$, and since $|y|>0, x z \notin L$.

Case 3: y consists of k 0s followed by m 1s. Then $x^{2} z$ has the form $0^{n} 1^{m} 0^{k} 1^{n+m}$, so $x y^{2} z \notin L$.

Theorem: $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is not regular.
Proof: By contradiction; assume L is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Consider the string $w=0^{n} 1^{n}$. Then $|w|=2 n \geq n$ and $w \in L$, so we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{i} z \in L$. We consider three cases:

Case 1: y consists solely of 0 s . Then $x y^{0} z=x z=0^{n-|y| 1 n}$, and since $|y|>0, x z \notin L$.

Case 2: y consists solely of 1 s . Then $x y^{0} z=x z=0^{n} 1^{n-|y|}$, and since $|y|>0, x z \notin L$.

Case 3: y consists of k 0s followed by m 1s. Then $x^{2} z$ has the form $0^{n} 1^{m} 0^{k} 1^{n+m}$, so $x y^{2} z \notin L$.

In all three cases we reach a contradiction, so our assumption was wrong and L is not regular.

Theorem: $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is not regular.
Proof: By contradiction; assume L is regular. Let n be the pumping length guaranteed by the weak pumping lemma. Consider the string $w=0^{n} 1^{n}$. Then $|w|=2 n \geq n$ and $w \in L$, so we can write $w=x y z$ such that $y \neq \varepsilon$ and for any natural number $i, x y^{i} z \in L$. We consider three cases:

Case 1: y consists solely of 0 s . Then $x y^{0} z=x z=0^{n-|y| 1 n}$, and since $|y|>0, x z \notin L$.

Case 2: y consists solely of 1 s . Then $x y^{0} z=x z=0^{n} 1^{n-|y|}$, and since $|y|>0, x z \notin L$.

Case 3: y consists of k 0s followed by m 1s. Then $x^{2} z$ has the form $0^{n} 1^{m} 0^{k} 1^{n+m}$, so $x y^{2} z \notin L$.

In all three cases we reach a contradiction, so our assumption was wrong and L is not regular. $■$

Counting Symbols

- Consider the alphabet $\Sigma=\{0,1\}$ and the language
BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s . \}
- For example:
- $01 \in$ BALANCE
- $110010 \in$ BALANCE
- $11011 \notin$ BALANCE
- Question: Is BALANCE a regular language?

BALANCE and the Weak Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$
$\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 1\end{array}$

BALANCE and the Weak Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$

$$
\begin{array}{ll|l|l|l|l}
1 & 1 & 0 & 0 & 0 & 1
\end{array}
$$

BALANCE and the Weak Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$

$$
\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}
$$

BALANCE and the Weak Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$

$$
\begin{array}{ll|l|l|l|l}
1 & 1 & 0 & 0 & 0 & 1
\end{array}
$$

BALANCE and the Weak Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$

$$
\begin{array}{ll|l|l|l|l|l}
1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}
$$

BALANCE and the Weak Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$
11

0

01

BALANCE and the Weak Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$

BALANCE and the Weak Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$

10001

BALANCE and the Weak Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$

$\begin{array}{llll}1 & 0 & 0 & 1\end{array}$

BALANCE and the Weak Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$

BALANCE and the Weak Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$

$\begin{array}{llll}1 & 0 & 0 & 1\end{array}$

BALANCE and the Weak Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$

$$
\begin{array}{l|l|l|l|l|l|l|l}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}
$$

BALANCE and the Weak Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$
$\begin{array}{llllllllllll}1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1\end{array}$

An Incorrect Proof

Theorem: BALANCE is regular.
Proof: We show that BALANCE satisfies the condition of the pumping lemma. Let $\mathrm{n}=2$ and consider any string $w \in B A L A N C E$ such that $|w| \geq 2$. Then we can write $w=x y z$ such that $x=z=\varepsilon$ and $y=w$, so $y \neq \varepsilon$. Then for any natural number $i, x y^{i} z=w^{i}$, which has the same number of 0 s and 1 s . Since BALANCE passes the conditions of the weak pumping lemma, BALANCE is regular. ■

An Incorrect Proof

The Weak Pumping Lemma

- The Weak Pumping Lemma for Regular Languages states that

For any regular language L,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that For any natural number i ,

$$
\begin{array}{ll}
w=x y z, & w \text { can be broken into three pieces, } \\
y \neq \varepsilon & \text { where the middle piece isn't empty, } \\
x^{\prime} z \in L & \text { where the middle piece can be } \\
\text { replicated zero or more times. }
\end{array}
$$

The Weak Pumping Lemma

- The Weak Pumping Lemma for Regular Languages states that

This says nothing about
For any regular language $L, 4$ languages that aren't regular!
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{array}{ll}
w=x y z, & \text { w can be broken into three pieces, } \\
y \neq \varepsilon & \text { where the middle piece isn't empty, } \\
x y^{i} z \in L & \begin{array}{l}
\text { where the middle piece can be } \\
\text { replicated zero or more times. }
\end{array}
\end{array}
$$

Caution with the Pumping Lemma

- The weak (and full) pumping lemma describe a necessary condition of regular languages.
- L is regular $\rightarrow L$ passes the pumping lemma
- The weak (and full) pumping lemma is not a sufficient condition of regular languages.
- "L passes the pumping lemma $\rightarrow L$ is regular" is not true.
- If a language fails the pumping lemma, it is definitely not regular.
- If a language passes the pumping lemma, we learn nothing about whether it is regular or not.

BALANCE is Not Regular

- The language BALANCE can be proven not to be regular using a stronger version of the pumping lemma.
- To see the full pumping lemma, we need to revisit our original insight.

An Important Observation

$\begin{array}{lllllllllllll}0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1\end{array}$

An Important Observation

An Important Observation

An Important Observation

$q_{0}^{0} q_{1} q_{2} q_{3} q_{1} q_{1} q_{2} q_{3} q_{1} q_{2} q_{3} q_{1} q_{2} q_{3} q_{4}$

Weak Pumping Lemma Intuition

- Let D be a DFA with n states.
- Any string w accepted by D that has length at least n must visit some state twice.
- Number of states visited is equal to $|\mathrm{w}|+1$.
- By the pigeonhole principle, some state is duplicated.
- The substring of w in-between those revisited states can be removed, duplicated, tripled, quadrupled, etc. without changing the fact that w is accepted by D.

Pumping Lemma Intuition

- Let D be a DFA with n states.
- Any string w accepted by D that has length at least n must visit some state twice within its first \mathbf{n} characters.
- Number of states visited is equal $\mathbf{n + 1}$.
- By the pigeonhole principle, some state is duplicated.
- The substring of w in-between those revisited states can be removed, duplicated, tripled, quadrupled, etc. without changing the fact that w is accepted by D.

The Weak Pumping Lemma

For any regular language L ,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{aligned}
& w=x y z, \quad \text { w can be broken into three pieces, } \\
& y \neq \varepsilon \quad \begin{array}{l}
\text { where the middle piece isn"t empty, } \\
x^{\prime} z \in L \quad \begin{array}{l}
\text { where the middle piece can be } \\
\text { replicated zero or more times. }
\end{array}
\end{array}
\end{aligned}
$$

The Pumping Lemma

For any regular language L ,
There exists a positive natural number n such that
For any $w \in L$ with $|w| \geq n$,
There exists strings x, y, z such that
For any natural number i ,

$$
\begin{array}{ll}
w=x y z, & \text { w can be broken into three pieces, } \\
|x y| \leq n, & \begin{array}{l}
\text { where the first two pieces occur at } \\
\text { the start of the string, }
\end{array} \\
y \neq \varepsilon & \begin{array}{l}
\text { where the middle piece isn "t empty, }
\end{array} \\
x^{i} z \in L & \begin{array}{l}
\text { where the middle piece can be } \\
\text { replicated zero or more times. }
\end{array}
\end{array}
$$

Why This Change Matters

- The restriction $|x y| \leq n$ means that we can limit where the string to pump must be.
- If we specifically craft the first n characters of the string to pump, we can force y to have a specific property.
- We can then show that y cannot be pumped arbitrarily many times.

BALANCE and the Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$

BALANCE and the Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$
Suppose the pumping length is 4.

BALANCE and the Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$
Suppose the pumping length is 4.
$\begin{array}{llllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$

BALANCE and the Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$
Suppose the pumping length is 4 .

$\begin{array}{llllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$

Since $|x y| \leq 4$, the
string to pump must
be somewhere in
here.

BALANCE and the Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$
Suppose the pumping length is 4 .
$\begin{array}{llllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$

BALANCE and the Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$
Suppose the pumping length is 4.
$\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 1\end{array}$

BALANCE and the Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$

BALANCE and the Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$
Suppose the pumping length is 4 .
$\begin{array}{llllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$

BALANCE and the Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$
Suppose the pumping length is 4.

BALANCE and the Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$

BALANCE and the Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$
Suppose the pumping length is 4 .

BALANCE and the Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$
Suppose the pumping length is 4 .

$$
\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}
$$

BALANCE and the Pumping Lemma

BALANCE $=\{\mathrm{w} \mid \mathrm{w}$ contains an equal number of 0 s and 1 s.$\}$

Theorem: BALANCE is not regular.

Theorem: BALANCE is not regular.
Proof: By contradiction; assume that BALANCE is regular.

Theorem: BALANCE is not regular.
Proof: By contradiction; assume that BALANCE is regular. Let n be the length guaranteed by the pumping lemma.

Theorem: BALANCE is not regular.
Proof: By contradiction; assume that BALANCE is regular. Let n be the length guaranteed by the pumping lemma. Consider the string $w=0^{n} 1^{n}$.

Theorem: BALANCE is not regular.
Proof: By contradiction; assume that BALANCE is regular. Let n be the length guaranteed by the pumping lemma. Consider the string $\mathrm{w}=0^{n} 1^{n}$. Then $|\mathrm{w}|=2 \mathrm{n} \geq \mathrm{n}$ and $\mathrm{w} \in B A L A N C E$.

Theorem: BALANCE is not regular.
Proof: By contradiction; assume that BALANCE is regular. Let n be the length guaranteed by the pumping lemma. Consider the string $\mathrm{w}=0^{\mathrm{n} 11^{\mathrm{n}} \text {. Then }|\mathrm{w}|=2 \mathrm{n} \geq \mathrm{n} \text { and } \mathrm{w} \in \text { BALANCE. Therefore, }}$ there exist strings x, y, and z such that $w=x y z,|x y| \leq n, y \neq \varepsilon$, and for any natural number $\mathrm{i}, \mathrm{xy} \mathrm{z}^{\prime} \in B A L A N C E$.

Theorem: BALANCE is not regular.
Proof: By contradiction; assume that BALANCE is regular. Let n be the length guaranteed by the pumping lemma. Consider the string $\mathrm{w}=0^{\mathrm{n}} 1^{\mathrm{n}}$. Then $|\mathrm{w}|=2 \mathrm{n} \geq \mathrm{n}$ and $\mathrm{w} \in$ BALANCE. Therefore, there exist strings x, y, and z such that $w=x y z,|x y| \leq n, y \neq \varepsilon$, and for any natural number i , $\mathrm{xy} \mathrm{y}^{\prime} \in B A L A N C E$. Since $|\mathrm{xy}| \leq \mathrm{n}$, y must consist solely of 0 s .

Theorem: BALANCE is not regular.
Proof: By contradiction; assume that BALANCE is regular. Let n be the length guaranteed by the pumping lemma. Consider the string $w=0^{n} 1^{n}$. Then $|w|=2 n \geq n$ and $w \in B A L A N C E$. Therefore, there exist strings x, y, and z such that $w=x y z,|x y| \leq n, y \neq \varepsilon$, and for any natural number $\mathrm{i}, \mathrm{xy}^{i} \mathrm{z} \in B A L A N C E$. Since $|x y| \leq \mathrm{n}, \mathrm{y}$ must consist solely of 0 s .

```
This is why the pumping lemma is more powerful
than the weak pumping lemma. We can force y
    to be made purely of os, rather than some
        combination of OS and 1s.
```

Theorem: BALANCE is not regular.
Proof: By contradiction; assume that BALANCE is regular. Let n be the length guaranteed by the pumping lemma. Consider the string $\mathrm{w}=0^{\mathrm{n} 11^{\mathrm{n}} \text {. Then }|\mathrm{w}|=2 \mathrm{n} \geq \mathrm{n} \text { and } \mathrm{w} \in \text { BALANCE. Therefore, }}$ there exist strings x, y, and z such that $w=x y z,|x y| \leq n, y \neq \varepsilon$, and for any natural number $\mathrm{i}, \mathrm{xy} \mathrm{z}^{\prime} \in B A L A N C E$. Since $|\mathrm{xy}| \leq \mathrm{n}$, y must consist solely of 0 s . But then $\mathrm{xy}{ }^{2} \mathrm{z}=0^{n+|y|} 1^{n}$, and since $|y|>0$, $x y^{2} z \notin B A L A N C E$.

Theorem: BALANCE is not regular.
Proof: By contradiction; assume that BALANCE is regular. Let n be the length guaranteed by the pumping lemma. Consider the string $\mathrm{w}=0^{\mathrm{n} 11^{\mathrm{n}} \text {. Then }|\mathrm{w}|=2 \mathrm{n} \geq \mathrm{n} \text { and } \mathrm{w} \in \text { BALANCE. Therefore, }}$ there exist strings x, y, and z such that $w=x y z,|x y| \leq n, y \neq \varepsilon$, and for any natural number $\mathrm{i}, \mathrm{xy} \mathrm{y}^{\prime} \in B A L A N C E$. Since $|\mathrm{xy}| \leq \mathrm{n}$, y must consist solely of 0 s . But then $x y^{2} z=0^{n+|y|} 1^{n}$, and since $|y|>0$, $x y^{2} z \notin B A L A N C E$. We have reached a contradiction, so our assumption was wrong and BALANCE is not regular.

Theorem: BALANCE is not regular.
Proof: By contradiction; assume that BALANCE is regular. Let n be the length guaranteed by the pumping lemma. Consider the string $\mathrm{w}=0^{\mathrm{n} 11^{\mathrm{n}} \text {. Then }|\mathrm{w}|=2 \mathrm{n} \geq \mathrm{n} \text { and } \mathrm{w} \in \text { BALANCE. Therefore, }}$ there exist strings x, y, and z such that $w=x y z,|x y| \leq n, y \neq \varepsilon$, and for any natural number $\mathrm{i}, \mathrm{xy} \mathrm{y}^{\prime} \in B A L A N C E$. Since $|\mathrm{xy}| \leq \mathrm{n}$, y must consist solely of 0 s . But then $x y^{2} z=0^{n+|y|} 1^{n}$, and since $|y|>0$, $x y^{2} z \notin B A L A N C E$. We have reached a contradiction, so our assumption was wrong and BALANCE is not regular. -

Summary of the Pumping Lemma

- Using the pigeonhole principle, we can prove the weak pumping lemma and pumping lemma.
- These lemmas describe essential properties of the regular languages.
- Any language that fails to have these properties cannot be regular.

Next Time

- Beyond Regular Languages
- Context-free languages.
- Context-free grammars.

