

# Utility Systems Technologies, Inc.

Quality Power. Better Business.

# **Power Quality Basics**



### Who cares?

- \$100+ billion in losses per year
  - Just in the U.S.
- Financial impact
  - Scrap, equipment damage, etc.
- Operational impact
  - Downtime, critical shipments, etc.



**Power Quality = Financial Problem** 



### **Trends**

- Electric grid degradation
- Sensitive loads
- Energy costs
- Environmental regulations
- Financial sensitivity



**A Perfect Storm** 



# What does "Quality" mean?

- Absence of malfunctions or failures
- Depends on point of view
  - Utility has one view
  - Customer may have another view



**Quality = Proper Equipment Operation & Longevity** 



# Power = Current, Time & Voltage

- Amps are governed by the load
- Time cannot be changed
- Only voltage is controllable



Power Quality = Voltage Quality

# **Undervoltage**





### Voltage 90% of nominal or less

**Source:** Utility or facility

**Duration:** > 1 minute

Incidence: Medium - high

Symptoms: Malfunction or

premature equipment failure

**Protection:** Voltage regulation

Undervoltage can result from low distribution voltage, high voltage drop, heavy loads, etc. Symptoms include premature failure and overheating of motors. May also increase sensitivity to voltage sags.

**Causes Equipment Shut Down or Malfunction** 

# **Overvoltage**





### Voltage >110% above nominal

**Source:** Utility

**Duration:** > 1 minute

Incidence: Medium - high

**Symptom:** Malfunction or

premature equipment failure

**Protection:** Voltage regulation

Overvoltage usually results from high distribution voltage. Often a problem nights, evening and weekends. Premature failure of electronics and printed circuit boards is a common symptom.

**Causes Premature Circuit Board Failure** 

# **Distribution Voltage Regulation**





Brownout – intentional reduction in grid voltage

**Major Cause of Under/Overvoltage** 

# **Daily Voltage Fluctuations**





**Utility Has Limited Control of Deviations** 

# **Voltage Sag**





Very short, deep voltage drop

**Source:** Utility or large load start

**Duration:** 0.5 cycles – 60 seconds

Incidence: Avg. 40 – 60 events/year in U.S.

Symptom: Shut down or

malfunction

**Protection:** Sag protection

Voltage sags are particularly problematic for industry where the malfunction of a device may result in huge financial losses. Weather and utility equipment problems are major cause of sags.

**Cause Frequent Shut Down of Sensitive Loads** 

# **Voltage Sags**



# **Affect large areas**

- Events usually start on the transmission or distribution system
  - Weather events
  - Cap bank switching
- Affect huge areas
- 75% of sags affect 1 phase



**Often Seem Like Very Brief Interruptions** 

### **Swell**





Very short, high voltage rise

**Source:** Utility or facility

**Duration:** 0.5 cycles – 60 seconds

Incidence: Very low

**Symptom:** Malfunction

**Protection:** Voltage isolation

Swells are not a common problem. Most often caused by energizing a capacitor bank or the sudden shut down of very large loads.

**Most Often Causes Control Problems** 

# Interruption





### **Voltage <10% of nominal**

**Source:** Utility

**Duration:** 0.5 cycle - >1 hour

**Incidence :** ~2 per year in U.S.

**Symptom:** Equipment shutdown

Protection: Energy storage or

self-generation

End users in North America experience real interruptions only a few times per year. Voltage sags occur much more frequently and may be mistaken for interruptions.

**Causes Little Equipment Damage** 

### **Noise**





### **Distortion of voltage waveform**

**Source:** Power Electronics

**Duration:** Steady state

Incidence: Low

**Symptom:** Malfunction

**Protection:** Filters or transformers

Noise seldom reaches the level of being a major power quality problem. Removing or correcting the source of the noise or applying an appropriate filter are the most common remedies.

**Causes Malfunctions or Overheating** 

### **Harmonics**





### **Deformed voltage waveform**

**Source:** Power Electronics

**Duration:** Steady state

Incidence: Low - medium

Symptom: Overheating or

malfunction

**Protection:** Filters

Harmonics seldom reach the level of being a major power quality problem. High levels of harmonics can be treated by modifying or isolating the source or applying active or passive harmonic filters.

**Causes Significant Overheating** 

### **Transient**





### Very high voltage pulse

**Source:** Typically lightning

**Duration:** <50 ns - 5 ms

**Incidence:** Low

**Symptom:** Equipment damage

**Protection:** Surge suppression

Damage from transients occurs infrequently but it can be very devastating when it does occur. Surge suppression is very inexpensive "insurance" for business and industry.

**Potentially Widespread Equipment Damage** 

### **Unbalance**





### Varying voltage levels

**Source:** Utility or facility

**Duration:** Steady state

Incidence: Medium

**Symptom:** Malfunction and

overheating

**Protection:** Voltage balancing

Voltage unbalance affects only three phase systems. Most often it is caused by unequal loads on distribution lines or within a facility. High voltage unbalance can severely degrade motor efficiency and life.

**Causes Efficiency Loss and Overheating** 

# **Notching**





### **Deformed voltage waveform**

Source: Electronic devices

**Duration:** Steady state

**Incidence**: Very low

**Symptom:** Malfunction

**Protection:** None

Notching can be caused by certain electronic devices. While it is rarely a problem, the solution usually involves isolation of sensitive equipment from the offending device.

**Causes Operation Problems** 

### **Other PQ Terms**



### Common, but undefined, terms:

- "Outage" or "Blackout" ≈ interruption
- "Brownout" ≈ intentionally low grid voltage
- Surge ≈ high energy transient

**Avoid these terms** 



Glitch
Clean power
Spike
Dirty power

**Proper Terminology Is Important** 

# **Voltage Problem Summary**



| Problem       | Typical Duration    | Typical Voltage<br>Change from<br>Nominal | Typical Incidence<br>Frequency/Cost |
|---------------|---------------------|-------------------------------------------|-------------------------------------|
| Transient*    | <50 ns – 5 ms       | Thousands of %                            | Low/\$\$\$\$                        |
| Sag*          | 0.5 cycles – 60 s   | 10 – 90%                                  | High/\$-\$\$\$                      |
| Swell         | 0.5 cycles - 60 s   | 110 – 180%                                | Low/\$                              |
| Interruption* | 0.5 cycles ->1 hour | <10%                                      | Very Low/\$\$-\$\$\$                |
| Undervoltage* | >1 minute           | 90 – 99%                                  | <b>Medium/\$\$-\$\$\$</b>           |
| Overvoltage*  | >1 minute           | 101 – 110%                                | <b>Medium/\$\$-\$\$\$</b>           |
| Harmonics     | Constant            | 0 – 20%                                   | Low/\$-\$\$                         |
| Noise         | Constant            | 0 – 1%                                    | Low/\$-\$\$                         |
| Notching      | Constant            |                                           | Very Low/\$                         |
| Unbalance     | Fluctuating         | 0 – 15% Phase-Phase                       | Medium/\$-\$\$                      |

**Most Problematic \*** 

# **Identifying PQ Problems**



Document symptoms & conditions

Identify potential PQ problem & source

Confirm PQ problem & source

**Problem Identification Is Key** 

# **Document Symptoms**



### **Record suspected PQ events**

- Malfunction or damage
- Time & date
- Any power info available
- Weather conditions
- Operating situation
- Loads starting/stopping
- Recent changes
- Other anomalies



First Step in Solving PQ Problems

# **Identify Problems**



### A process of elimination

- Measure RMS voltages over time
  - At service entrance
  - At machine level
  - Check unbalance
- Then, check for sag or transients
- Then, check for noise or harmonics
- Etc.



**Electrical Forensic Investigation** 

# **Power Quality Monitoring**



#### **Invaluable Protection**

- Easily identify problem & trends
- Permits proactive protection
- Support for insurance claims
- Protect major investments
- Relatively inexpensive (\$2 5K)
- At least one unit at service entrance



**An Important Maintenance Tool** 

### **Confirm Source**



### **Compare records & measurements**

- Records should confirm measurements
- Identify source of problem
  - External, internal or both
- Identify PQ problem type
  - May be multiple problems



**Solution Depends on Source & Problem** 

# **Under/Overvoltage Solutions**



### **Typical products**

| Device                                     | kVA Size  | Advantages                        | Disadvantages                          |  |
|--------------------------------------------|-----------|-----------------------------------|----------------------------------------|--|
| Servo-mechanical voltage regulator         | 5 – 2,000 | Low price                         | Slow response<br>High Maintenance      |  |
| Electronic tap switching voltage regulator | 5 – 2,000 | Very fast response<br>Solid state | Higher price                           |  |
| Ferroresonant transformer                  | 0.5 - 25  | Very fast response<br>Solid state | Very poor efficiency Single phase only |  |

Three phase regulators are often used to correct voltage unbalance

**Voltage Regulators** 

# **Voltage Sag Solutions**



### **Typical products**

| Device                     | kVA Size   | Advantages                       | Disadvantages                    |  |
|----------------------------|------------|----------------------------------|----------------------------------|--|
| UPS                        | 5 – 2,000  | Line isolation<br>Many choices   | Poor efficiency<br>High cost     |  |
| Flywheel                   | 20 – 150   | No batteries                     | Small sizes<br>Mechanical device |  |
| Active voltage conditioner | 10 – 2,000 | Lowest cost Very high efficiency | Sag protection only              |  |

**Swells** often require a custom solution

**Very Different Technology Choices** 

# **Interruption Solutions**



### **Typical products**

| Device                  | kVA Size  | Advantages                          | Disadvantages                    |  |
|-------------------------|-----------|-------------------------------------|----------------------------------|--|
| UPS – double conversion | 5 – 2,000 | Voltage regulation Line isolation   | Poor efficiency<br>High O&M cost |  |
| UPS – line interactive  | 20 – 50   | Voltage regulation<br>Lower cost    | Mostly smaller sizes             |  |
| UPS - standby           | 0.3 – 5   | Lowest cost<br>Very high efficiency | No regulation                    |  |

**Lots of Products – Lots of Confusion** 

### **Noise & Harmonics Solutions**



### **Typical products**

- Filters, transformers and other devices
- Passive devices designed for a specific problem
- Active devices respond to changing problems
- Typically designed for the specific application

**Solutions May Require Customization** 

### **Transient Solutions**



### **Typical products**

- TVSS Transient Voltage Surge Suppressor
- Large variation in protection levels & price
- Usually applied at service entrance
- May be included in other devices

**Inexpensive Protection from Catastrophe** 

# **Comparing Typical Solutions**



|                                      | Effectiveness for Power Quality Problems |                 |                 |                           |
|--------------------------------------|------------------------------------------|-----------------|-----------------|---------------------------|
| Power Conditioner Type               | Undervoltage<br>Overvoltage              | Voltage Sags    | Interruptions   | Typical<br>Efficiency (%) |
| Mechanical Voltage Regulator         | Fair - Good                              | None            | None            | 97 - 99                   |
| Electronic Voltage Regulator         | Superior                                 | Poor - Fair     | None            | 95 - 99                   |
| Ferroresonant Transformer            | Good - Superior                          | Poor - Fair     | None            | 60 - 90                   |
| Active Voltage Conditioning          | None - Poor                              | Superior        | None - Poor     | 94 - 99                   |
| Double Conversion UPS w/o Batteries  | Fair - Good                              | None - Poor     | None            | 85 - 94                   |
| Double Conversion UPS with Batteries | Fair - Good                              | Good - Superior | Good - Superior | 85 - 94                   |
| Line Interactive UPS                 | Fair                                     | Good            | Good            | 94 – 97                   |
| Standby UPS                          | None - Poor                              | Poor - Fair     | Good            | 97 – 98                   |
| Flywheel UPS                         | None - Poor                              | Superior        | Poor - Fair     | 96 – 98                   |

**No Device Solves Every Problem** 

### **Power Conditioners**



### What is a power conditioner?

- No standard definition
- Traditionally a voltage regulating device with other capability
- Could be almost anything
- Check the specs



**A Very Confusing Term** 

# **Evaluating PQ Solutions**



### What is the best solution?

- Define \$ cost of PQ problems
- Define cost of solution
- Calculate solution effectiveness
- Calculate payback



**Simple Cost-Benefit Analysis** 

### **Cost of PQ Problems**



# Define \$ cost per PQ event

- Scrap, disposal & cleanup
- Lost productivity & overtime
- Lost energy or extra energy
- Maintenance & service costs
- Extra QA or mandatory reporting



**Easy to Under-Estimate PQ Costs** 

### **Cost of PQ Solutions**



# Owning cost of PQ solutions

- First cost + installation
- Operation & maintenance
  - Energy cost
  - Service & maintenance labor
  - Regular replacement parts
    - Batteries, capacitors, etc.



O&M Can Be a Major Cost

### **PQ Solution Effectiveness**



# How many events are avoided?

- Compare performance to problems
  - Will solution correct all events
- Availability & reliability
  - Is solution "on-line" 24/7/365
  - Estimate service or recharge time
  - Adjust effectiveness for unavailability



**Consider Time "Off-line" Solution Requires** 

# **Solution Payback**



### Calculate value of solutions

**Problem Cost** 

- Solution Cost

**\$ Savings** 



**Solution First Cost** 

÷ \$ Savings

**Investment Payback** 

Payback May Be In Months or # of Events

# **Sag Protection Example**



# A food/beverage plant -

- 5 deep voltage sag events/year
  - Shut down only bottling line
  - Rest of plant rides through sags
  - But, bottling line shutdown stops plant
  - Costs \$20,000 per sag event
  - Bottling line needs 500 kVA



**A Typical Problem** 

# **Sag Protection Example**



### Compare UPS and sag mitigator each 500 kVA, 480V, 3 phase

|                                                    | UPS    | Sag Mitigator |
|----------------------------------------------------|--------|---------------|
| First cost, typical installation                   | \$210K | \$130K        |
| Annual service contract                            | \$7K   | N/A           |
| Annualized wear parts (batteries)*                 | \$18K  | N/A           |
| Annual energy losses**                             | \$50K  | \$4K          |
| Total annual operation & maintenance cost          | \$75K  | \$4K          |
| 10 year total owning cost (First + 10x annual O&M) | \$960K | \$170K        |

<sup>\*24</sup> to 30 month replacement cycle \*\*UPS: 90% efficiency, \$0.10/kw-hr, HVAC load

**Huge Difference in Owning Cost** 

# **Sag Protection Example**



Assume both solutions correct same # of sag events

Both solutions save =  $5 \times $20,000 = $100,000/year$ 

**UPS costs \$96K/year - Sag mitigator costs \$17K/year** 

**UPS saves \$4K/year – Sag mitigator saves \$83K/year** 

Payback: UPS ~ 50 years – Sag mitigator ~ 18 months

**Sag Mitigator Needs No Batteries** 

# **Key Evaluation Parameters**



- Performance
  - More may not mean better
  - Buy only what is needed
- Operating costs
  - Efficiency (e.g. energy cost)
  - Maintenance (e.g. batteries)
  - Service contracts
  - Required redundancy



**Know What You Are Buying** 

# **Choosing a "Green" Solution**



- Efficiency
  - Choose the highest possible
  - Can up to 99%
- Environmental issues
  - Avoid batteries when possible
- Some solutions can save energy
  - With high efficiency, and
  - Optimized voltage levels



**Eco-Friendly Power Quality**