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SURVIVAL AND GROWTH WITH A LIABILITY: OPTIMAL
PORTFOLIO STRATEGIES IN CONTINUOUS TIME

SID BROWNE

We study the optimal behavior of an investor who is forced to withdraw funds continuously
at a fixed rate per unit time (e.g., to pay for a hability, to consume, or to pay dividends). The
investor is allowed to invest mn any or all of a given number of risky stocks, whose prices
follow geometric Brownian motion, as well as in a nskless asset which has a constant rate of
return. The fact that the withdrawal is continuously enforced, regardless of the wealth level,
ensures that there 1s a region where there is a positive probability of ruin. In the complemen-
tary region ruin can be avoided with certainty. Call the former region the danger-zone and
the latter region the safe-region. We first consider the problem of maximizing the probability
that the safe-region is reached before bankruptey, which we call the survival problem. While
we show, among other results, that an optimal policy does not exist for this problem, we are
able to construct explicit e-optimal policies, for any € > 0. In the safe-region, where ultimate
survival is assured, we turn our attention to growth. Among other results, we find the optimal
growth policy for the mvestor, i.e., the pohcy which reaches another (higher valued) goal as
quickly as possible. Other vaniants of both the survival problem as well as the growth problem
are also discussed. Our results for the latter are intimately related to the theory of Constant
Proportions Portfolio Insurance.

1. Introduction. The problem considered here is to solve for the optimal invest-
ment decision of an investor who must withdraw funds (e.g., to pay for some liability
or to consume) continuously at a given rate per unit time. Income can be obtained
only from investment in any of n + 1 assets: n risky stocks, and a bond with a
deterministic constant return. The objectives considered here relate solely to what
can be termed “goal problems,” in that we assume the investor is interested in
reaching some given values of wealth (called goals) with as high a probability as
possible and /or as quickly as possible.

The fact that the investor must continuously withdraw funds at a fixed rate
introduces a new difficulty that was not present in the previous studies of objectives
related to reaching goals quickly (cf. Heath et al. 1987). Specifically the forced
withdrawals ensure that at certain levels of wealth, there is a positive probability of
going bankrupt, and thus the investor is forced to invest in the risky stocks to avoid
ruin. In this paper we address the two basic problems faced by such an investor: how
to survive, and how to grow. The survival problem turns out to be somewhat tricky, in
that we prove that no fully optimal policy exists. Nevertheless, we are able to
construct e-optimal policies, for any e > 0. The growth problem is answered com-
pletely, once the survival aspect is clarified.

While this model is directly applicable to the workings of certain economic
enterprises, such as a pension fund manager with fixed expenses that must be paid
continuously (regardless of the level of wealth in the fund), our results are also
related to investment strategies that are referred to as Constant Proportion Portfolio
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Insurance (CPPI). In fact a related model was used as the economic justification of
CPPI in Black and Perold (1992), where both the theory and application of such
strategies is described. In Black and Perold (1992), optimal strategies were obtained
for the objective of maximizing utility of consumption, for a very specific utility
function, subject to a minimum consumption constraint. However, the analysis and
policies of Black and Perold (1992) are relevant only when initial wealth is in a
particular region (specifically, when initial wealth is above the “floor”), wherein for
that policy, there is no possibility of bankruptcy. Black and Perold (1992) did not
address the fact that for the model described there, ruin, or bankruptcy, is a very real
possibility when initial wealth is in the complementary region (below the “floor”).

Here we focus on the objectives of survival and growth, which are intrinsic
objective criteria that are independent of any specific individual utility function. As
such, our results for both aspects of the problem will therefore complement the
results of Black and Perold (1992) (as well as the more recent related work of Dybvig
1995). Firstly, the survival problem has not been addressed before for this model
(although see Majumdar and Radner 1991 and Roy 1995), and secondly, the optimal
growth policies we obtain provides another objective justification for the use of the
CPPI policies prescribed in Black and Perold (1992), since for this problem we get
similar policies as those obtained there.

The remainder of the paper is organized as follows: In the next section, we will
describe the model in greater detail, and prove a general theorem in stochastic
control from which all our subsequent results will follow. To facilitate the exposition,
we will at first consider the case where there is only one risky stock and where the
withdrawal rate is constant per unit time. It turns out that the state space (for wealth)
can be divided into two regions, which we will call the “danger-zone” and the
“safe-region.” In the latter region, the investor need never face the possibility of ruin,
and so we can concentrate purely on the growth aspects of the investor. (The
aforementioned studies of Black and Perold 1992 and Dybvig 1995 considered only
this region in their analyses of the maximization of utility from consumption problem.)
In the former region, ruin, or bankruptey, is a possibility (hence the term “danger-
zone™) and therefore we first concentrate on passing from the danger-zone into the
safe-region. This is the survival problem and it is completely analyzed in §3. In
particular, two problems are considered, maximizing the probability of reaching the
“safe-region” before going bankrupt, and minimizing the discounted penalty that must be
paid upon reaching bankruptcy. Tt is the former problem that does not admit an
optimal policy, although we are able to explicitly construct an e-optimal policy. The
latter problem does admit an optimal policy, which we find explicitly. The structure of
both policies are quite similar, in that they both essentially invest a (different)
proportional amount of the distance to the safe-region. In §4 we consider the growrh
problem in the safe-region. We define growth as reaching a given (high) level of
wealth as quickly as possible. Two related problems are then solved completely. First,
we find the policy that minimizes the expected time to the (good) goal, and then we find
the policy that maximizes the expected discounted reward of getting to the goal. Our
resulting optimal growth policies turn out to be quite similar to the CPPI policies
obtained for a different problem by Black and Perold (1992), in that they invest a
(different) proportional amount of the distance from the danger-zone. Extensions to
the multiple asset case as well as the case of a wealth-dependent withdrawal rate are
discussed in §§5 and 6.

All the control problems considered in this paper are special cases of a particular
general control problem that is solved in Theorem 2.1 in §2 below. For this problem
we use the Hamilton-Jacobi-Bellman (HJB) equations of stochastic control (see, e.g.,
Fleming and Rishel 1975, or Krylov 1980) to obtain a candidate optimal policy in
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terms of a candidate value function and this value function is then in turn given as the
solution to a particular nonlinear Dirichlet problem. These candidate values are then
verified and rigorously proved to be optimal by the martingale optimality principle (see
§V.15 in Rogers and Williams 1987, or §2 in Davis and Norman 1990). The resulting
nonlinear differential equations are then solved in turn for each of the problems
considered below, yielding the optimal solutions in explicit form.

2. The model and continuous-time stochastic control. Without loss of generality,
we assume that there is only one risky stock available for investment (e.g., a mutual
fund), whose price at time ¢ will be denoted by P,. (Extension to the multidimen-
sional case (for a complete market) is quite straightforward, and since the excess
notation required adds little to the understanding, we will simply outline how to
obtain the results for the multidimensional case in a later section.) As is quite
standard (see, e.g., Merton 1971, 1990, Davis and Norman 1990, Black and Perold
1992, Grossman and Zhou 1993, Pliska 1986), we will assume that the price process of
the risky stock follows a geometric Brownian motion, i.e., P, satisfies the stochastic
differential equation

(1) dP, = uP, dt + o P, dW,

where p and o are positive constants and {W,: ¢ > 0} is a standard Brownian motion
defined on the complete probability space ({2, 7, P), where {} is the P-augmenta-
tion of the natural filtration &" = o{W,; 0 < s < t}. (Thus thc instantaneous refurn
on the risky stock, dP,/P,, is a linear Brownian motion.)

The other investment opportunity is a bond, whose price at time ¢ is denoted by B,.
We will assume that

(2) dB, = rB, dt

where r > 0. To avoid triviality, we assume u > r.

We assume, for now, that the investor must withdraw funds continuously at a
constant rate, say ¢ > 0 per unit time, regardless of the level of wealth. (This would
be applicable for example if the investor faces a constant liability to which $¢ must be
paid continuously.) In a later section we generalize this to a case where the
withdrawals are wealth-dependent.

Let f, denote the total amount of money invested in the risky stock at time t under an
investment policy f. An investment policy f is admissible if {f,, t = 0} is a measurable,
{#)-adapted process for which [[f* dt < =, a.s., for every T < ». Let & denote the
set of admissible policies.

For each admissible control process f € &, let {X/, t > 0} denote the associated
wealth process, i.e., X/ is thc wcalth of the investor at time ¢, if he follows policy f.
Since any amount not invested in the risky stock is held in the bond, this process then
evolves as

dP dB
(3) dth=ft?tt + (th—fz)# —cdt

4
= [rX! +f(u—r)—c|dt+foaw,

upon substituting from (1) and (2).
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Thus, for Markov control processes f, and functions W(z, x) € €2, the generator
of the wealth process is

4) Mf‘lf(t,x)=\1’t+[ft(/.l,—r)-i—rx—c]‘lfx—kéﬁza'z‘lfx

x*

We will put no constraints on the control f, (other than admissibility). In particu-
lar, we will allow f, <0, as well as f, > X/. In the first instance, the company is
selling the stock short, while in the second instance it is borrowing money to invest
long in the stock. (While we do allow shortselling, it turns out that none of our
optimal policies will ever in fact do this.)

What will differentiate our model and results from previous work are the objectives
considered and the fact that here the withdrawal rate ¢ is constant, and not a
decision variable.

The usual portfolio and asset allocation problems considered in the financial
economics literature deal with an investor whose wealth also evolves according to a
stochastic differential equation as in (3), where instead of being constant, ¢ is now a
control variable as well, i.e., the consumption function ¢, = ¢(X/). For a specific
utility function u(-), the investor’s objective is then to maximize the expected utility of
consumption and terminal wealth over some finite horizon, i.c., for 7 > 0, and some
“bequest function” W(-), the investor wishes to solve

&) supEx(fOTe_“u(c,) dt + e MW( X)),
f.c

for some discount factor A > 0. Alternatively, the investor may wish to solve the
discounted infinite horizon problem

(6) supE, [ e Mu(c,) dt.
fie 70

In both of these cases, since the process {c,} is usually assumed to be completely
controllable, it is clear that for certain utility functions at least, ruin need never occur,
since we may simply stop consuming at some level. Alternatively, as is the case when
the utility function is of the form wu(c) = ¢' "R /(1 — R) for some R < 1, or u(c) =
In(c), the resulting optimal policy takes both investment f; and consumption ¢, to be
proportional to wealth, ie., f, = m(1)X,, ¢, = m,(t)X,, which in turns makes the
optimal wealth process into a geometric Brownian motion, and thus the origin
becomes an inaccessible barrier. Classical accounts of such (and more sophisticated)
problems are discussed in Merton (1971, 1990) and Davis and Norman (1990) among
others.

Optimal investment decisions with constraints on consumption have also been
considered in the literature previously. Most relevant to our model is the literature on
constant proportion portfolio insurance (CPPI), as introduced in Black and Perold
(1992), where the resulting policy is to invest a constant proportion of the excess of
wealth over a given constant floor. (As its name suggests, portfolio insurance can be
loosely considered any trading and investment strategy that ensures that the value of
a portfolio never decrease below some limit. Alternative approaches to portfolio
insurance using options and other techniques are described in e.g., Luskin 1988.)
Black and Perold (1992) introduced this policy as the solution to the discounted
infinite horizon problem of (6) subject to the constraint that ¢, > ¢, where c__ is

min ?
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some given constant. The specific utility function considered there was

R/ (1= R) fore=c¥,
u(e) = K, — K;c for ¢ < ¢¥,

where c* is a given constant, R < 1 and K, K, are constants chosen to ensure u(-)
continuous throughout. While others (e.g., Dybvig 1995) have raised some technical
questions about the analysis in Black and Perold (1992), more relevant to our point of
view is the fact that this model (and the resulting optimal policy) allows for the
possibility of ruin, or bankruptcy, if wealth is initially below the given floor. This
possibility was never addressed in Black and Perold (1992).

In this paper we do not concentrate on the usual utility maximization problems of
(5) and (6). Rather, here we are concerned with the objective problems of survival and
growth. In particular, we first study the problem of how the investor (whose wealth
evolves according to (3)) should invest to maximize the probability that the investor
survives forever (which turns out to be related to maximizing the probability of
achieving a given fixed fortune before going bankrupt), as well as the problem of how the
investor should invest so as fo minimize the time until a given level of wealth has been
achieved. The former problem is called the survival problem, and is discussed in §3.
The latter is called the growth problem and is the content of §4. Related problems
have been studied in general under the label of “goal problems” in the works of
Pestien and Sudderth (1985, 1988), Heath et al. (1987) and Orey et al. (1987). The
survival problem for some specific related models were studied in Browne (1995) and
Majumdar and Radner (1991). The former treated an “incomplete market” model,
where the withdrawals are not fixed but rather follow a stochastic process, and the
latter treated a model with forced constant consumption but without the possibility of
investing in a risk free asset.

Recently, in order to provide a consumption based economic justification for the
interesting portfolio strategies introduced in Grossman and Zhou (1993) (where the
optimal policy invests a constant proportion of wealth over a stochastic floor), Dybvig
(1995) considered the consumption-investment problem of (6) with the constraint that
consumption never decrease, i.c., that ¢, > ¢, for all ¢ > s, with ¢, > 0. Thus consump-
tion is forced in his model as well. He considered utility functions of the form
u(c) = ¢ % /(1 — R) and u(c) = In(c). However he only considered the problem in
the feasible region, where initial wealth X, satisfies X, > ¢,/r, and so for which ruin
need not occur. Dybvig (1995) did not consider the case when X, > ¢,/r, and hence
where ruin is possibility, and so our results on this problem in §3 will complement his
analysis as well. Since in this paper our objectives deals solely with the achievement
of particular goals associated with wealth, it is clear that if there is a constraint on
consumption as in the models of Black and Perold (1992) and Dybvig (1995), we
should always set consumption at the minimum level, which in both cases is a
constant (¢, in Black and Perold 1992 and ¢, in Dybvig 1995). This is consistent
with the model we analyze here, where we will (at least at first) take consumption as a
fixed constant ¢ per unit time. This implies that at least for some values of wealth,
the origin is accessible, and thus ruin is in fact a possibility.

In the next section we consider the problem of how to invest in order to survive.
However, before we study that problem, we need a preliminary result from control
theory that will provide the basis of all our future results.

2.1. Optimal control. The problems of survival and growth considered in this
paper are all special cases of (Dirichlet-type) optimal control problems of the
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following form: For each admissible control process {f,, ¢ = 0}, let
=/ = inf{t > 0: X/ = z}

denote the first hitting time to the point z of the associated wealth process {X/} of
(3), under policy f. For given numbers (/, u) with [ < X, < u, let /= min{z/, 7./}
denote the first escape time from the interval (/, u).

For a given nonnegative continuous function A(x) = 0, a given real bounded
continuous function g(x), and a function /(x) given for x =/, x = u, let v/(x) be
defined by

f

7 (%) =E(f0 g(X,f)exp{—fOt)\(Xsf)ds} dr + h(Xf/)exp{—fOTf)\(Xsf)ds})
with

v(x) = supv/(x) and f*(x) = argsupv/(x).
feg

feg

We note at the outset that we are only interested in controls (and initial values x) for
which v/(x) < <.

As a matter of notation, we note first that here, and throughout the remainder of
the paper, the parameter y will be defined by

5

THEOREM 2.1.  Suppose that w(x): (I,u) > (—=,) is a &* function that is the
concave increasing (i.e., w, > 0 and w,, < 0) solution to the nonlinear Dirichlet problem

(8) y =

ST

(9) (x—c)yw(x)— y% +g(x) — Mx)w(x) =0, forl <x<u,
with
(10) w(l) =h(l) and w(u) = h(u),

and satisfies the conditions:
() w2(x)/w, (x) is bounded for all x in (I, u);
(ii) there exists an integrable random variable Y such that for all t > 0,w(X]) > Y;
(iil) w(x)/w, (x) is locally Lipschitz continuous.
Then w(x) is the optimal value function, i.e., w(x) = v(x), and moreover the optimal
control, f¥, can then be written as

(11) i (x) = _(MU—ZV);V)C((?) , forl <x<u.

Proor. The appropriate HIB optimality equation of dynamic programming for
maximizing v/(x) of (7) over control policies f,, to be solved for a function v is
sup; ¢ A#’v + g — Av} = 0, subject to the Dirichlet boundary conditions v(1) = h(l)
and v(u) = h(u) (cf. Theorem 1.4.5 of Krylov 1980). Since »(x) is independent of
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time, the generator of (4) shows that this is equivalent to
(12) sup{(f(,u—r)+rx—c)vx+%fzozvm+g——)\v}=O.
feg

Assuming now that (12) admits a classical solution with », > 0 and »,, < 0 (see, e.g.,
Fleming and Soner 1993), we may then use standard calculus to optimize with respect
to f in (12) to obtain the maximizer f* = —((p — r)/c?)v,/v,, (compare with
(11)). When this f*(x) is then substituted back into (12) and the resulting equation is
simplified, we obtain the nonlinear Dirichlet problem of (9) (with » = w).

It remains only to verify that the policy f* is indeed optimal. The aforementioned
theorem in Krylov (1980) does not apply here, since in particular the degeneracy
condition (Krylov 1980, page 23) is not met. We will use instead the martingale
optimality principle, which entails finding an appropriate functional which is a
uniformly integrable martingale under the (candidate) optimal policy, but a super-
martingale under any other admissible policy, with respect to the filtration .# (see
Rogers and Williams 1987, Davis and Norman 1990).

To that end, let A/(s,t) = ['A(X/) dv, and define the process

(13)  M(t,X]) = e""f(o”)w(X,f) + fte*‘““’“‘)g(Xsf) ds, for0 <t <7/,
0
where w is the concave increasing solution to (9).

Optimality of f* of (11) is then a direct consequence of the following lemma.
LEMMA 2.2.  For any admissible policy f, and M(t, - ) as defined in (13), we have
(14) E(M(t ~ 7/, X!, 1)) < M(0, X,) = w(x),
with equality holding if and only if f = ¥, where fF is the policy given in (11). Moreover,
under policy f*, the process {M(t A 77, X}, ./)} is a uniformly integrable martingale.

PrROOF. Applying Ito’s formula to M(¢, X/) of (13) using (3) shows that for
O0<s<t<t/

3

(15) M(t, le) =M(S,Xf) + /‘tefz\/(‘r,l))Q(fu; X{)dv + fe‘““*“)vfuwx(Xi)qu

s
s

where Q(z; y) denotes the quadratic (in z) defined by

S ()| + [ = ryw ()]

O(z;y) =2°

+(y —w(y) +8(y) —Ay)w(y).

Recognize now that since Q,.(z;y) = o°w, (y) < 0, we always have O(z;y) <0,
and the maximum is achieved at the value

wr oy o (m )y w(y)
2(y) = ( o? )WXX(Y)
with corresponding maximal value
Q(%:3) = (3 = ply) = 7 g(3) = A(pw(y) =0
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where the final equality follows from (9). Therefore the second term in the r.h.s. of
(15) is always less than or equal to 0. Moreover (15) shows that we have

T[ —
fm e MO0y W (X])aw,
0

2

= M(t Ao, XL ) = w(x) = [T NOD0( 5 ) dv
0

>M(t A7l XS, L) —w(x).

Thus, by (ii) we see that the stochastic integral term in (15) is a local martingale that
is in fact a supermartingale. Hence, taking expectations on (15), with s = 0, therefore
shows that

(16) E(M(r A7/, X[, 1)) < w(x) + E(fmfeAf“””)Q(fu; x{) dU)
0

<w(x) + E(ftATfe_‘\f(‘)”’)[supQ(fu; Xg)] du)
0 1o

=w(x)

with the equality in (16) being achieved at the policy f*.

Thus we have established (14).

Note that under the policy f* of (11), the wealth process X* satisfies the
stochastic differential equation

. _ vy (XF) _ w(X)
(17) dX,—[(rXt c 2yw”(Xt*) dt mwm(Xz*)de I A

where 7* = 7/, By (iii) this equation admits a unique strong solution (Karatzas and
Shreve 1988, Theorem 5.2.5).
Furthermore note that under the (optimal) policy, £, we have, forall 0 <5 < ¢ <
T
2 *
£y = £y _ ool [ wy (X))
(18)  M(1, X}) = M(s, X¥) ,/2y];exp{ [ M X )dp} sy W

which by (i) above is seen to be a uniformly integrable martingale. This completes the
proof of the theorem. ©
We now return to the survival problem.

3. Maximizing survival. We consider in this section two objectives related to
maximizing the survival of the investor. First we consider the problem of minimizing
the probability of ruin which is related to the problem of maximizing the probability of
reaching a particular given upper level of wealth before a given lower level. We will show
that an optimal strategy for this latter problem does not exist, although exploiting the
solution to a related solvable problem will allow us to explicitly construct e-optimal
ones. Next we consider the related objective of minimizing the expected discounted
penalty of ruin, which is equivalent to minimizing the expected discounted time to
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bankruptcy. This problem does admit an optimal solution and we find it explicitly. The
structure of the (optimal) survival policies obtained in this section are similar in that
they all invest a fixed fraction of the positive distance of wealth to a particular goal.

3.1. Minimizing the probability of ruin. The evolutionary equation (3) exhibits
clearly that under policy f, the wealth process is a diffusion with drift function m and
diffusion coefficient function v given respectively by

(19) m(f,x,t)y=f(p—r)+m—c, o(f,x,t) =fo’.

Thus for any admissible control f < o there is a region (in X space) where there is a
positive probability of bankruptcy. This is due to the fact that while the variance of
the wealth process is completely controllable, as is apparent from (19), the drift is not
completely controllable due to the fact that ¢ >0, and hence the drift can be
negative at certain wealth levels. This feature differentiates this model from those
usually studied in the investment literature (e.g., Merton 1971, 1990, Pliska 1986,
Davis and Norman 1990), with Majumdar and Radner (1991) being a notable
exception. (For results on an “incomplete market” model where the variance, as well
as the drift, is also not completely controllable, see Browne 1995.) Specifically, let a
denote the bankruptcy level or point, with corresponding “bankruptcy time” (or ruin
time) 1/, where 0 < a < X,. One survival objective is then to choose an investment
policy which minimizes the probability of ruin, i.e., one which minimizes P(r] < =),
or equivalently, maximizes P(7/ = «) (see, ¢.g., Majumdar and Radner 1991, Browne
1995, Roy 19953).

Clearly this objective is meaningless for X /> ¢ /r. To see this directly, consider the
case where the wealth level is x > ¢/r. We may then choose a policy which puts all
wealth into the bond, and then under this policy the probability of bankruptcy is 0.
Specifically, if we take f = 0 for x > ¢ /r, (3) shows that the wealth will then follow
the deterministic differential equation dX, = (*X, — ¢)dt, X, = x > ¢ /r, which ex-
hibits exponential growth and for which P(r,_, = %) =1, for all € > 0. Thus the
survival problem is interesting and relevant only in the region a < x < c/r, which we will
call the “danger-zone.” This is of course due to the fact that ¢/r = ¢fy e” " dt is the
amount that is needed to be invested in the perpetual bond to pay off the forced
withdrawals forever. Since the investor need never face the possibility of ruin for
x > c¢/r, we will call the region (c/r, =) the “safe-region.”

Our objective in this section therefore is to determine a strategy that maximizes the
probability of hitting the safe-region or “safe point,” ¢ /r, prior to the “bankruptcy point,”
a, when initial wealth is in the danger-zone, i.c., a <x < c/r. As noted above, we will
show that an optimal policy for this problem does not exist, necessitating the
construction of an e-optimal strategy.

A somewhat related survival problem with constant withdrawals was studied in
Majumdar and Radner (1991) in a different setting, although without a risk-free
investment, and hence without a safe-region. Moreover, their results are not applica-
ble to our case since here inf, v2(f, x,t) = 0, which violates the conditions of the
model in Majumdar and Radner (1991). As we shall see, it is in fact precisely this fact
that negates the existence of an optimal policy for our problem. A related survival
model which allows for investment in a risk-free asset, but where the “withdrawals”
are assumed to follow another (possibly dependent). Brownian motion with drift, was
treated in Browne (1995). Since the Brownian motion is unbounded, there was no
safe-region in Browne (1995) either. A discrete-time model with constant withdrawals
that does allow for a risk-free investment was treated in Roy (1995), but with no
borrowing allowed and bounded support for the return on the risky asset.
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To show explicitly why no policy obtains optimality for the model treated here, and
how we may construct e-optimal strategies, we will first consider the following
problem: for any point b in the danger-zone, i.e., with @ <x < b < ¢ /r, we will find
the optimal policy to maximize the probability of hitting b before a. For b strictly less
than ¢ /r, an optimal policy does exist for this problem, and we will identify it in the
following theorem. To that end let

V(x:a,b) = supP(7/ > 7[), andlet f} = argsup P,(7/ > /).
feg feg

THEOREM 3.1.  The optimal policy is to invest, at each wealth level a < x < b, the
state dependent amount

(20) fp(x) = 22 (€ - x).

The optimal value function is

(C _ ra)y/rJrl _ (C _ ’x)y/r+1

(c — m)y/rﬂ - (c — rb)y/r+1 ’

(21) V(x:a,b) = fora <x < b,

where vy is defined by (8).

REMARK 3.1 Note that the policy of (20) invests less as the wealth gets closer to
the goal b. In fact, it invests a constant proportion of the distance to the “safe point”
¢/r, regardless of the value of the goal b, and the bankruptcy point a. It is interesting to
observe that while here this constant proportion is independent of the underlying
diffusion parameter o?, this does not hold when there are multiple risky stocks in
which to invest in (see §5 below). The constant proportion is greater (less) than 1 as
p/r < (>) 3. Thus it is interesting to observe that as the wealth gets closer to the
bankruptcy point, a, the optimal policy does nor “panic” and start investing an
enormous amount, rather the optimal policy stays calm and invests at most fila) =
2(c = ra)/(u — r). The investor does get increasingly more cautious as his wealth
gets closer to the goal . (This behavior should be compared with the “timid” vs.
“bold” play in the discrete-time problems considered in the classic book of Dubins
and Savage 1965. See also Majumdar and Radner 1991 and Roy 1995.)

Observe further that the investor is borrowing money to invest in the stock only
when x <2c/(u + r) but not when 2¢/(u +r) <x < ¢/r. This can be seen by
observing directly that in the former case f(x) > x and in the latter case () <x.
(The fact that 2¢/(u + r) < ¢ /r follows from the assumption that w > r.)

PrOOF.  While we could prove Theorem 3.1 from a more general theorem in
Pestien and Sudderth (1985) (see also Pestien and Sudderth 1988) which we will
discuss later (see Remark 3.4 below), recognize that this is simply a special case of the
control problem solved in Theorem 2.1 for / =a,u =b with A = 0, g =0 and
h(b) = 1, h(a) = 0. As such the nonlinear Dirichlet problem of (9) for the optimal
value function I becomes in this case

VZ
(22) (rx—c)Vx—yV" =0, fora<x<b

subject to the (Dirichlet) boundary conditions V(a) = 0, V(b) = 1.
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The general solution to the second-order nonlinear ordinary differential equation
of (22) is K, — K,(c — )?/"*!, where K, K, are arbitrary constants which will be
determined from the boundary conditions. The boundary condition V(a) = 0 deter-
mines that K, = K,(¢ — ra)?/""!, and the boundary condition V'(b) = 1 then deter-
mines K,, which then leads directly to the function V'(x) given in (2D). It is clear that
this function V is in &2 and does in fact satisfy ¥, > 0 and V,, < 0, and moreover
satisfies conditions (i), (ii) and (iii) of Theorem 2.1 on the interval (a, b). (Condition
(i) is trivially met since V' is bounded on (a, b).) As such I/ is indeed the optimal
value function and the associated optimal control function f;¥ of (20) is then obtained
by substituting the function V' of (21) for w in (11). O

Note that under policy f, the wealth process, say X/*, satisfies the stochastic
differential equation

20
m—=r

(23) dXF = (¢ —rX})dt + (c —rXj})ydw,, fort<T*,

where T* = min{r*, 7}}, and 7* = inf{r > 0: X* = z}. This is obtained by placing
the control (20) into the evolutionary equation (3). Equation (23) defines a linear
stochastic differential equation, i.e.,, X* is a time-homogeneous diffusion on (a, b)

with drift function w,(x) =c — rx, and diffusion coefficient function o?,.(x) =
(2o/(u — e — m)? = (2/yXNec — ). As such its scale function is defined by

(24)

§*(x) = fxexp{—fyz:—i’%du} dy = —(y+r)'1(c —rx)wr“, fora<x<b

where y = 3((u — r)/0)*. For this process therefore,

S*(x) = S*(a) _ (c— ra)”"" — (c - )"
S*(b) = S*(a)  (c—ra)” = (c =) ’

P (7} > 1) =

which of course agrees with (21). Thus the process {S*(X/)} is a diffusion in namural
scale, and is therefore a (uniformly integrable) martingale with respect to the
filtration % (as is the optimal value function), i.e., E(S*(X)|F) = SH(X[) for
0<s <t < r* where 7* := min{r*, 7). Note further that the scale function S *(x)
of (24), is increasing in x (although negative) for 0 <x <c/r.

3.1.1. Inaccessibility of the safe-region under £}, and e-optimal strategies. While
we have found a policy that maximizes the probability of reaching any b < ¢ /r before
any a < b, it is important to realize that if we extend b to ¢/r, then this policy will
never achieve the safe point ¢ /r with positive probability in finite time. We can of course
extend the function displayed in (21) to the point ¢/r to get

(25) V(x:a,c/r) =P, (7} > TC*/,)

% _ Cx _ Jr+1
S*(x) —S*(a) —1_(c rx)V <ew, fora<x<c/r

T S*(c/r) —S5*(a) - c—ra

which shows than in fact ¢ /r is an attracting barrier for the process X*. However, it is
an unattainable barrier. (See §15.6 in Karlin and Taylor (1981) for a discussion of the
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boundary classification terminology used here.) To verify this, first recall that if we let

s*(x) = dS*(x)/dx denote the scale density of the diffusion X*, then its speed density
is given by

(26) m*(x)

(305 () " = [Se—mye—my” )

(y/r+2)

'y _
= 5(c—m)
and it is well known then that
E (min{7},7*,}) <o if and only if j:/r[S*(c/r) — S*(y)|m*(y) dy < .

However, it can be seen from (24) and (26) that the latter quantity is

187/ = SO & = 505y [V 2y ==

and thus we see that while f;' minimizes the probability of hitting the ruin point a,
and so is in fact optimal for the problem of min, P(1/ = =), it does so in a way which
makes the upper goal, ¢ /r, unattainable in finite expected time. In fact, under f;} we
have 7%, = o a.s., and thus no optimal policy exists for the problem of maximizing the
probability of reaching the safe-region prior to bankruptcy!

Intuitively, what’s going on is that as the wealth gets closer to the boundary of the
safe-region, c/r, the investor gets increasingly more cautious so as not to forfeit his
chances of getting there. This of course entails investing less and less, but in
continuous-time, where the wealth is infinitely divisible, this just means eventually
investing (close to) nothing. However while this in turn does in effect shut off the drift
of the resulting wealth process (see (23)), it also shuts off the variance, and some
positive variance is needed to cross over the c¢/r-barrier from the danger-zone into
the safe-region. This is not supplied by the policy described above, which essentially
tells the investor that the best he can hope to do (i.e., with maximal probability) is to
try to get pulled into an asymptote that is drifting toward c/r.

In terms of our Theorem 2.1, it is clear that V" is no longer concave increasing for
x > c/r (e, for x > ¢/r, we have V(x) > 0 and V,,(x) < 0), and thus Theorem 2.1
is not valid for any u > c/r.

Remark 3.3. This difficulty disappears if r = 0, since if there is no risk-free
investment, the investor always faces a positive probability of ruin and the only way to
survive is to always invest in the risky stock. To see this, note that letting @ = 0 and
taking limits as » | 0 (so that the “safe point” goes to infinity, i.e., when r = 0, there is
always a positive probability of bankruptcy) shows that the value function, V(x:
0, c/r), then goes to an exponential, i.e., as r |0,

(27) V(x:0,c/r) =1 — exp{— 2:20x>

and for this case the (unconstrained) optimal control to minimize the probability of
ruin is to always invest the fixed constant 2c¢/p. (This model then becomes a
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degenerate special case of Browne 1995.) In this case the optimal wealth process
follows a linear Brownian motion with drift ¢ and diffusion coefficient 2co/u, for
which the probability of ruin is the exponential (27). Ferguson (1965) conjectured that
an ordinary investor (in discrete-time and space) can asymptotically minimize the
probability of ruin by maximizing the exponential utility of terminal wealth, for some risk
aversion parameter. It is interesting to observe that for this model the conjecture turns
out to be true. To verily this, one would have to solve the finite-horizon utility
maximization problem for the utility function u(x) = 8§ — 5 exp{—2cx/u}, with arbi-
trary n > 0 and 6. Since this problem is then essentially a special case of the
(Cauchy) problem considered in §3 of Browne (1995), we refer the reader there for
further details. If we impose the constraint that the investor is not allowed to borrow,
then it can be shown (Browne 1995, Theorem 3) that the optimal control in this case
is f* = max{x,2c/u}, whereby the investor must invest all his wealth in the risky
stock when wealth is below the critical level 2¢ /u. In this case the value function is
no longer concave below 2¢/u. Such extremal behavior (or “bold” play, ala Dubins
and Savage 1965) and nonconcavity of the value function below a threshold is also a
feature of the optimal policies in the related survival models studied in Majumdar
and Radner (1991) and Roy (1995), where borrowing is not allowed.

REMARK 3.4. This inaccessibility and the resulting nonexistence of an optimal
policy can be best understood in the context of the more general “goal” problem:
Consider a controlled diffusion {Y/} on the interval (a, b) satisfying

dY/ = m(f,y)dt + v(f.y) dW,,

with the objective of determining a control to maximize the probability of hitting b
before a. Let ¥(x) denote the optimal value function for this problem, i.e., ¥(x) =
sups & P(r/ > 7[) with optimal control ¢(x) = argsup,. , P(z] > 7/). This prob-
lem was first studied by Pestien and Sudderth (1985, 1988), who showed—using a
different formulation—that

x) = argsu —m(f,x)}
(28) ¥(x) agSfp{Uz(f’x) :

and indeed our f;5(x) of (20) can be obtained from maximizing m /v* for m and v? in
(19). However as noted in Pestien and Sudderth (1985, 1988), this is the case only
when inf 02 (f, x) > 0, where ¢ = m,, /v°,.

These results can be obtained from somewhat simpler methods (albeit with some
lesser generality) then those used in Pestien and Sudderth (1985, 1988) as follows:
W(x) must satisfy the HIB equation

1
29 up {m(f, x)¥, + 50*(f, x)¥,,
(29) sup {m( £, X)W, + 50°(,0) e

o[ b o) -

subject to the Dirichlet boundary conditions ¥(a) = 0, ¥(b) = 1.

If W is a classical solution to the HJB equation (29), then we must have ¥, > 0 and
W . < 0. Therefore as long as v*(f, x) > 0, it is clear from (29) that the maximum of
(29) occurs at the maximum of m /v*, which by (28) is denoted by . If we now let
p(x) = sup{m(f, x) /0 f, X}, ie., p(x) = m(P(x), x)/v*((x), x), then the solu-
tion to (29) subject to the Dirichiet conditions is simply ¥(x) = [*s(z) dz/ [!s(2) dz,
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where s(z) = exp{—2/%(y) dy}, with which our value function (21) of course agrees,
for b <c/r.

However, it is also clear from (29) that for v?(f, x) = 0, the HIB equation need not
hold, and therefore, no policy is in general optimal when this is the case, which is
precisely what is happening here for b = ¢ /r (see also Example 4.1 in Pestien and
Sudderth 1988).

For more details on the general problem from a different perspective, we refer the
reader to the fundamental papers of Pestien and Sudderth (1985, 1988). We now
return to the problem of determining a ‘good’ strategy for crossing the c/r barrier.

An e-optimal strategy. As we have just seen, the inaccessibility of ¢ /r is due to
the fact that f;f dictates an investment policy that causes the drift and variance of the
resulting wealth process to go to zero as the ¢ /r barrier is approached from below. A
practical way around this difficulty is to modify £} as follows:

Let f; denote the (suboptimal) policy which agrees with f; below the point
¢/r — 6, and then above it invests « in the risky stock until the ¢/r barrier is
crossed, i.e.,

*(x forx <c/r -8,

o - [FF0 oreserr-
K orx >c/r— 8.

Now V(x, a,c/r) as given in (25) is an upper bound on the probability of escaping
the interval (a, ¢ /r) into the safe-region starting from an initial wealth level xg <c/r
(see Krylov 1980, page 5). Without loss of generality, we may take a = 0 here. Thus
for any € > 0, and initial wealth x, < c/r, the best we can do is find a policy which
gives

(30) V(xe:0,¢c/r) —e=1-— ( - %)WHI

— €

as its value. Therefore for any given €, and initial wealth x4 < c¢/r, we need to find
8 = 8(x(, €) and k = k(x,, €) which will achieve the value (30). To keep the drift
and diffusion parameters continuous, we must take « = (2r/(u — r))8(x,, €), and so
fs(x) = @r/(u — r))max{c/r - x, 8}, which then gives a corresponding wealth pro-
cess X ° which has the (continuous) drift function u,(x) and diffusion function a2 (x)
given by ps(x) = max{c — =, 2r8 + x — ¢}, and ¢,2(x) = max{2(c —
%) /y,2r%8%/y).
The scale density for this new process, defined by

w00 - em| - [ 25

can then be written as

(C_”)’)Y/r fory <c/r -2,

ss(y) = (ra)v/r ey/(2r)\/5;¢ y+2—c/r

fory =c/r— 8,
\/rﬁz/v) =</

where ¢ denotes the standard normal p.d.f.
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The probability of reaching the safe-region from initial wealth x, < ¢/r under this
policy is therefore

Jiss(y) dy

=V(x,:0,c/r)(1 + 8/ " H(y,r,c B
f()C/rsé(y) dy ( 0 / )( ('}’ ))

Vs(x,:0,c/r) =

where V is as in (25) and H is given by

H(y,r.c) = (1+ y/r)(r/e) " e/ 2mr/y [®(2/v/r) — @(Yv/r)],

where ® denotes the standard normal c.d.f. Setting V5 = V' — ¢, and then solving for
8 therefore gives

€

(31) 8(xg,€) = (H('y,r,c)[V(x(J:O,C/r) — €]

)r/(y+r)

Therefore, for the particular 8(x,, €) given in (31), the policy f; is within e of
optimality. Since we chose a = 0 here purely for notational convenience, we summa-
rize this in the following theorem for the case with an arbitrary bankruptcy point a,
with 0 < a <x,.

THEOREM 3.2.  The policy f§, given by
(32)

fE(x) fora <x<c/r— 9,

fB*(x)z M_z_r_r[e/(H('y,r,C)[V(xo:asc/r) _G])]

)
e forx=c/r— 8,

is an eoptimal policy for maximizing the probability of crossing the c/r barrier before
hitting the point a, starting from an initial wealth level x,, where a <x, <c/r, and
V(-: a, c/r) is the function given by (25).

3.2. Minimizing discounted penalty of bankruptcy. Suppose now that instead of
minimizing the probability of ruin, we are instead interested in choosing a policy that
maximizes the time until bankruptcy, in some sense. Obviously, this problem is nontriv-
ial only in the danger-zone a < x < ¢/r, which is the case considered here. Maximiz-
ing the expected time until bankruptcy is a trivial problem, since there are any number
of policies under which the expected time to bankruptcy is in fact infinite. In
particular the e-optimal policy described above gives a positive probability of reaching
the ¢ /r barrier, and since the safe-region (x > ¢/r) is absorbing, it therefore gives an
infinite expected time to ruin. Thus we need to look at other criteria. Here we will
consider the objective of minimizing the expected discounted time until bankruptcy (a
related problem without forced withdrawals was treated in Dutta 1994 in a different
framework, and in an incomplete market in Browne 1995). In particular, suppose
there is a large penalty, say M, that must be paid if and when the ruin point a is hit.
If there is a (constant) discount rate A > 0, then the amount due upon hitting this
point is therefore M e *{ and we would like to find a policy that minimizes the
expected value of this penalty. Clearly, this policy is equivalent to the policy that
minimizes E, (e ™).

To that end, let F(x)=inf, Ex(e‘)‘”f ), and let fF denote the associated
optimal policy, i.e., fif = arginf, . El(e*“t{). For reasons that will become clear
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soon, define the constants n* and D by
1
(33) n"=n"(2) = 5. [(r + v+ 1) + VD],

(34) D=D(A) =(y+A—r) +dry,

where vy is defined by (8). The optimal policy and optimal value function for this
problem is then given in the following theorem.

THEOREM 3.3.  The optimal control is

n—r c
(35) fr(x )“T+—)(——x), fora <x <c/r,
and the optimal value function is
(36) F(X)=(g:f;)n, fora <x <c/r.

REMARK 3.5. Note that "> 1, and that F(a) =1, F(c/r) =0, and F(x) is
monotonically decreasing on the interval (a, ¢ /r), as is the optimal policy f;*, which
once again invests a constant proportion of the distance to the goal. Observe too that we
are therefore once again faced with the problem that under this policy, the safe-point
¢/r is inaccessible. However, in this case it is indeed the unique optimal policy. The
condition F(a) = 1 is by construction, but the fact that F(c/r) = 0 is determined by
the optimality equation itself, i.c., optimality determines that the c¢/r barrier is
inaccessible. The intuition behind this is that this policy—although it never allows the
fortune to cross the ¢ /r-barrier—does indeed minimize the expected discounted time
until ruin. The best one can do in this case is to get trapped in an asymptote
approaching c¢/r, which this policy tries to do. Any additional investment near the
¢/r-barrier (such as in the e-optimal strategy of the previous problem) allows a
greater possibility of hitting a, thus increasing the value of E (e *™),

REMARK 3.6.  As a consistency check, note too that when we substitute the control
fF of (35) back into the evolutionary equation (3), we obtain a wealth process, say

*, that satisfies the stochastic differential equation

(37)

= |Gy (e -y e =y o<1

where 7* = min{r} c/,} where 7.} = inf(t > 0: X} = z}.
For this process, 1t is well known that the Laplace transform of 7} evaluated at the
point A, say L(x: A) = E (e”*™), is the unique solution of the Dirichlet problem
2y 1 W )2 3
[(n+_1)r l](c )L, + + (G(n (e —m)) L =L =0,
with L(a: A) = 1 and L(c/r: A) = 0. It can be easﬂy checked that we do in fact have

F(x) = L(x: A). It should be noted that 7} is a defective random variable, with
E (7)) = =, as can be seen from the fact that

y/r+1
) =1-V(x:a,c/r),

L(x:0) = (c:ra
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where V(x: -, -) is the function defined by (21). This of course is due to the fact that
¢/r essentially acts as an absorbing barrier, and it can be hit with positive probability
(albeit in infinite time). Specifically, as A | 0, it is clear that n*(A) — *(0) = y/r + 1,
and thus F(x) converges (uniformly in x) to the probability that the bankruptcy point
a is hit before the safe point ¢/r, which implies that the control f/(x) converges
(uniformly in x) to the control fj¥(x) of (20), i.e. as A} 0:

2

F(x) > 1—-V(x:a,c/r) and ff(x)— 7

(c —m) =fi(x).

Note also that for A > 0, we have fjf > f;i, which is of course consistent with the fact
that a “bolder” strategy maximizes the probability of survival, while a “timid” strategy
maximizes expected playing time (for subfair games).

PrOOF. Theorem 2.1 is again relevant, however since Theorem 2.1 deals with the
maximization problem, recognize that F = —supf{—EX(e’“uf )}. We can now apply
Theorem 2.1 to F := —F with Mx) = A, g = 0, h(a) = —1. Reverting back to F, we
then see that the nonlinear Dirichlet problem of (9) for F becomes then:

2

L~ AF =0, fora<x<c/r,

(38) ('x—c)Fx_'YFx

subject to the Dirichlet boundary condition F(a) = 1, where y = Wpu—r)/o)
Observe of course that we now require F, < 0 and F,, > 0.

The nonlinear second-order ordinary differential equation in (38) admits the two
solutions C(c — mx)"", and K(c¢ — mx)"~, where C and K are constants to be deter-
mined from the boundary condition, and where nt,n~ are the roots to the quadratic
equation Q(n) = 0, where

(39) O(m) =m*r—m(y+A+r)+A

To determine which (if any) of these two solutions are appropriate we need to
examine these toots in greater detail. The discriminant of (39) is the constant D of
(34) which is clearly positive, and thus the two roots are real and, for A > 0, distinct.
In particular

(40) n+=§1;[(r+v+)t)+\/5] and n_=%[(r+y+)\)—\/ﬁ].

Since "~ = A/r > 0, both roots are of the same sign, and since n* > 0, they are
both positive. The boundary condition F(a) = 1 determines the constants C, K as
C=(c—ra)" and K=(c —ra)"" and so clearly C > 0 and K > 0, and there-
fore, F, < 0 for both solutions. However it is easy to check the roots in (40) to see
that "> 1, while n~ < 1, and so F,, > 0 only for the root . Thus we find that the
(unique) solution to the (38) that satisfies F(a) =1 and F, <0 F,, > 0 is given by
the function F(x) defined in (36). Moreover, it is a simple matter to check that
conditions (i), (ii) and (iii) of Theorem 2.1 are indeed met for F (F is bounded on
(a, b)), and so we may conclude that F is optimal. The associated optimal control
function, f# of (35), is then obtained by placing F (or F = —F) into (11). O

REMARK 3.7. An alternative proof of Theorem 3.4 can be constructed by modify-
ing the arguments in Orey et al. (1987), who treat the converse problem of maximiz-
ing discounted time to a goal, to deal with the minimization problem treated here.
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The evolutionary equation (3) would have to be reparameterized by taking f, = r, -
(c/r — X), for admissible control processes 7, and then applying the results of Orey
et al. (1987) to the further transformed process Y, = In[(c — rX™) /(c — rb)].

Note that since the wealth process, say X, under the policy f, satisfies the
stochastic differential equation (37), we can apply Ito’s formula to the function F(-)
given by (36) to show, after simplification, that

(41)

+32 + +
— +
dF(X}) = F(X,A)[("” ) rnﬂ 1“ ) g - 2y nﬂ ]th], for0 <t < T*.

The quadratic of (39) then shows that (n*)*r — 97 (r + y) = Mn™— 1), and thus
substituting this into the r.hs. of (41), and then solving the resulting (linear)
stochastic differential equation gives

+ 2 +
F(Xt)\) = F(X())exp{(,\ - y(nTn_—]—) )t - m TIII— I W,}, fort < T*,

which shows that the value function F(-) operating on the process X is a geometric
Brownian motion on the interval (0, 1), for a < X} <c/r.

Unfortunately, as noted above, this policy, while optimal for the stated problem,
will never cross the c /r barrier into the safe-region, and thus the investor should utilize a
policy similar to the e-optimal policy described earlier to get into the safe-region.
Since this can be achieved at relatively little cost, we will assume for the sequel that
the investor does in fact invest in a way that will allow a positive probability of getting
into the safe-region. When (if) the safe-region is achieved, the investor no longer
faces the problem of bankruptcy, and should then be concerned with other optimality
criteria. We consider two such criteria in the next section.

4. Optimal growth policies, in the safe-region. Suppose now that we have
survived, i.e., we have achieved a level x > ¢ /r. As noted earlier it is clear that in this
region there need never be a possibility of ruin, and therefore the investor who has
achieved this safe-region will be interested in criteria other than survival. In particu-
lar, we assume here that in this region the investor is interested in growth, by which
we mean achieving a high level of wealth as quickly as possible. Suppose therefore
that there is now some target goal, which we will denote again by b with b > x, which
the investor wants to get to (e.g., to pay out dividends) as quickly as possible. In this
section we consider two related aspects of this problem. First we consider the
problem of minimizing the expected time to the goal, and then we consider the related
problem of maximizing the expected discounted reward of achieving the goal. In both
cases, the optimal strategies are interesting generalizations of the Kelly criterion that
has been studied in discrete-time in Kelly (1956), Breiman (1961) and Thorp (1969),
and in continuous-time in Pestien and Sudderth (1985) and Heath et al. (1987). (See
also Theorem 6.5 in Merton 1990, where it is called the growth-optimum strategy. For
Bayesian versions of both the discrete and continuous-time Kelly criterion, see
Browne and Whitt 1996.) Such policies dictate investing a constant multiple of the
wealth in the risky stock. Here our policies invest a constant multiple of the excess
wealth over the boundary c/r, in the risky stock. This will make the ¢ /r boundary
inaccessible from above, ensuring that the investor will stay in the safe-region forever,
almost surely.
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4.1. Minimizing the time to a goal. To formalize this, let X, = x, but now with
¢/r <x < b. For 7 = inf{t > 0: X/ = b}, let

G(x) = fiél;Ex(’Tg), and let f& = argfiél;Ex(be).

THEOREM 4.1.  For the problem of minimizing the expected time to the goal b, the
optimal policy is to invest

(42) fé(x) = M—zr(x—%), forc/r <x <b.

o

The optimal value function is

(43) G(x) = — 1(’b_c

Pyl rx—c)’ forc/r <x <b.

REMARK 4.1.  Note that the proportion (u — r)/co* in (42) is the same proportion
as in the ordinary continuous-time Kelly criterion (or optimal growth policy) (see
Heath et al. 1987, Merton 1990, Browne and Whitt 1996). However in our policy f£,
this proportion operates only on the excess wealth over the boundary ¢ /r. Under this
policy therefore, the lower boundary, c¢/r is inaccessible. It is quite interesting to
observe that this policy is independent of the goal b. This is quite remarkable, since
while it was to be expected a priori that the optimal policy should look something like
(42) near the point c¢/r, which ensures that c¢/r is inaccessible from above, it is not
clear why one should expect such behavior to continue throughout even when the
wealth is far away from c/r. Nevertheless, it appears that the best one can do is to
simply put c/r into the safe asset, and leave it there forever, continuously compound-
ing at rate r. This is the endowment which will finance the withdrawal at the constant
rate ¢ forever. (Recall, ¢ /r = cfi e " dt.) Once this is done, the optimal policy then
plays the best ordinary optimal growth game with the remainder of the wealth,
x — ¢ /r. This policy is quite similar to the policy prescribed in Proposition 11 of Black
and Perold (1992) as a form of CPPI (see also Dybvig 1995). Thus, we have shown
that CPPI has another optimality property associated with it, namely that of optimal
growth.

PROOF. Since here we are minimizing expected time, we could apply Theorem 2.1
to G(x) = supf{—Ex(r,{)}, with g(x) = —1, A = 0, A(b) = 0. Recognizing that G =
—G, it is then seen that in terms of G, Theorem 2.1 now requires G, <0 and
G,, > 0, and that the nonlinear Dirichlet problem of (9) specializes to

2

G
(44) (rx—c)Gx—ny +1=0, forc/r<x<b,

subject to the boundary condition G(b) = 0. It is readily verified that the function G
of (43) satisfies this, and that moreover for this function we have G, < 0 and G,, > 0
for all ¢/r < x < b. The control function fZ(x) of (42) is obtained by substituting G
of (43) for » in (11). However, note that while it is easy to see that conditions (i) and
(iii) of Theorem 2.1 are satisfied by G, it is also clear that G is unbounded on
(¢/r,b), since G(x)— » as x|c/r. Thus it is doubtful that condition (ii) of
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Theorem 2.1 holds for this case. Nevertheless, we will show that Theorem 4.1 holds
and f¥ is indeed the optimal policy, however the final proof of this awaits the
development in §4.2, and we will complete the proof there after Lemma 4.3. O

Note that when we substitute the control f* of (42) back into the evolutionary
equation (3), we obtain an (optimal) wealth process, say X b, that satisfies

45y dx’ = (r+2y)(x = $)ar + Y2y (xP - S)aw,, for0 <1<,
) , ,

where 7 := inf{r > 0: X = b}, which is again a linear stochastic differential equa-
tion. (It is clear from this that c /7 is in fact an inaccessible lower boundary for X b)
The solution to (45) is

Xt = (Xob - %)exp{(r+ y)t + \/ZW,} + %, forO0 <t <y,

from which it follows that

2
2y

(46) G(XP)=G(X,) —t— A

for0 <t < 7y,

i.e., under the (optimal) policy fZ, the process {G(X}) — G(X,)}, follows a simple
Brownian motion on (0, ) with a drift coefficient equal to — 1. (From this it is easy to
recover the value function (43) from (46) by evaluating the expected value of (46) at
t = 7} using the fact that G(b) = 0, which then gives E () = G(x).)

REMARK 4.2. The “minimal time to a goal” problem for the case ¢ = 0 was first
solved in the fundamental paper of Heath et al. (1987) without direct recourse to
HJIB methods (see also Schil 1993). The result in that case is simply (42) with ¢ = 0
(see §4 in Heath et al. 1987). Merton (1990, Theorem 6.5), also obtained this policy
via another, rather complicated, argument. Since the proof given here holds too for
the case ¢ = 0, our results also provide an alternative and complementary proof for
that case to the ones in Heath et al. (1987) and Merton (1990).

In fact, it is possible to apply the results of Heath et al. (1987) to construct a
different proof of Theorem 4.1. First one would need to reparameterize the weaith
equation (3) by taking f, = m,- (X/ — ¢/r), and then applying resuits of Heath et al.
(1987) to the further transformed process Y,” = In[(xX]” — ¢)/(rb — ¢)]. However the
results in Heath et al. (1987) are specific to the case where the controls must lie on a
given constant set that is independent of the current wealth, while the approach here,
based on the HIB methods of Theorem 2.1 could be modified to allow for a state
dependent opportunity set.

4.2. Maximizing expected discounted reward of achieving the goal. Suppose now
that instead of minimizing the expected time to the goal b, we are instead interested
in maximizing E (e *"), for ¢ /r < x < b. To that end let

U(x) = supEx(e*w), and let f(x) = argSupEx(e‘“Z),
feg feg

As we show in the following theorem, the optimal policy for this problem also

invests a (different) constant proportion of the excess wealth above the c/r barrier,
and is hence another version of the CPPI strategy as in Black and Perold (1992).
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THEOREM 4.2.  The optimal control is
—r ¢
(47) fU(x) _—Tl——)(x_?)’ forc/r <x <b,

and the optimal value function is

(48) U(x) = (g :2)7,-’ forc/r<x<b,

where 1~ = 17 (A) was defined previously in (40).

REMARK 4.3. Recall that 7~ is the root that satisfies 0 < 5~ < 1 to the quadratic
equation Q(n) = 0, where Q(-) is given in (39). Note that U(bh) = 1, U(c /r) = 0, with
U(x) monotonically increasing on (¢ /r, b). As was the case earlier in §3, the fact that
U(b) = 1 is by construction, but it is optimality that causes U(c/r) = 0, and hence
makes the danger-zone inaccessible from the safe-region.

PROOF. The proof is essentially the same as for Theorem 3.3. Specifically, here
Theorem 2.1 applies directly with u = b, A(x) = A >0, g =0 and h(b) = 1. Thus
the nonlinear Dirichlet problem of (9) for this case specializes to

2
U,

xx

(49) (x—c)U, — v - AU =0, forc/r<x<b,

subject to the boundary condition U(b) = 1. Since we require U, > 0 and U,, < 0, it
is clear the solution of interest here involves the smaller root, 7, to the quadratic
O(n) = 0 (see (39)), since 7~ < 1. The control function f¥(x) of (47) is then obtained
by substituting U of (48) for v into (11). Finally, it is easy to check that U of (48)
satisfies conditions (i), (ii) and (iii) of Theorem 2.1, and we may therefore conclude
that f is indeed optimal. ©

It is interesting to observe that when we place the control f back into the
evolutionary equation (3), we find that the resulting optimal wealth process, say X},
satisfies the stochastic differential equation

(50)

V2y
(I—=m7)r

where 7 = inf{r > 0: )?,)‘ = b}. An application now of Itos formula to the function
U(-) of (48) using (50) (and (39)) gives

4% — [J_ ; 1](023 )i+ (PX} — ¢)aw,, fort <}

(1=m7)r

L+ 42y 1 = ,}, forz < 7,

o) - sinoes {2

which shows that the value function U(-) operating on the process X » is a geometric
Brownian motion on the interval (0, 1), for ¢/r < X} < b.

REMARK 4.4.  Orey, Pestien and Sudderth (1987), using different methods, studied
some general goal problems with a similar objective as that considered here, and as a
particular example study a version of our problem with r = ¢ = 0 (Orey Pestien and
Sudderth 1987, page 1258). An alternative proof of Theorem 4.3 can therefore be
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constructed by using the results of Orey et al. (1987) using the transformation and
reparameterization described above in Remark 4.2.

We may now use the results of Theorem 4.2 to complete the proof of Theorem 4.1.
However, we first need the following lemma, which is of independent interest since it
is applicable to more general processes than those considered here (for related
results, see Schal 1993, §4).

LEMMA 4.3, Suppose that for every A > 0, we have

_ ,—Arl
l_e_)’ with optimal control f*(x; A),

v(x;A) = iI}fEx( 3

with v(x; A) <, lim, | 5 v(x; A) = v(x;0) < o, and lim, , f*(x; A) = f(x;0).
Then

1—e 1—e f
51 li fE,| ————| = infE | lim ———— | = infE ,
(1) AL H} ( A ) 7 X(Al?g A ) 7 A7)
with inf; E (/) = v(x;0) and with optimal control f(x; 0).

PrOOF. It is the first equality in (51) that needs to be estabhshed since the second
is just an identity. To proceed it is obvious that A~'[1 — e *"'] < 7/ for all A > 0,
and hence E (A '[1 —e '] < E(z7), as well as inf; E (A~ 1 —e )<
inf, E NCID) Slnce the rh s. of this mequallty is 1ndependent of the parameter A, it
follows that we may take limits on A to get

(52) lim inf £, (A1 —e]) < intE,(+).

For notational convenience now, let f* denote the policy f*(-; A), and for any pohcy

f. let 7[f] = 1/. Note that under this notation, we may write »(x; A) = E(A~'[1
*/\T i ]])

To go the other way now, suppose that there is an admissible policy, say f, such
that r[f¥] #[f1as A 10. Then it is clear that

intE, (/) < E,(+[ f]) = E(il?a A1 ),

An application of Fatou’s lemma then shows that

E(l'm)\ 1 - *“ml)<1 E (A~ e MY,
« lim 1 —-e ] lim E, N 1)

and since E (A7'[1 — e VUF]) = inf, E.(A"'[1 — e *'7), we in turn conclude that
53 infE,(7/) < lim infE (A1 — e=*]).

(53) ntE (/) < lim infE, (A" )

The inequalities (52) and (53) yield (51). o

COMPLETION OF PROOF OF THEOREM 4.1. Observe first that n7(A) — 0 as A |0,
and that therefore fj — f& as A 10, where f and f} are given by (47) and (42).
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Note further that for any ¢ /r <x < b, we have

lim

1-U(x) _
Lo A = G(x),

where U and G are given by (48) and (43). Finally, since n (A) — 0 as A 10, we have
X . - X} . as A0, where X and X} are defined by (45) and (50), from
which it is clear that 7 —»*% 7, as A 0. Therefore, Lemma 4.3 may be applied

directly to Theorem 4.2 to deduce Theorem 4.1. O

5. The multiple asset case. As promised earlier, here we show how all of our
previous results extend in a very straightforward way to the case with multiple risky
stocks. The model here is that of a complete market (as in, e.g., Karatzas and Shreve
1988) where there are n risky assets generated by n independent Brownian motions.
The prices of these stocks evolve as

n
pdt + ) o, dW

7=1

(54) dpP (1) = P(t)

s i=1,...,n,

while the riskless asset, B,, still evolves as dB, = rB, dt. The wealth of the investor
therefore evolves as

(55) M#{mhc+iﬂm—n

=1

n n
+ Y X fo, dWY,
=1 j=1

where now f, denotes the total amount of money invested in the ith stock.

If we introduce now the matrix o = (o), and the (column) vectors p =
(s oo s )= (f1,..., £)7, and then set A = oo’, we may write the generator
of the (one-dimensional) wealth process, for functions ¥(x) € ¢ as

(56) A'U(x) = (" (w—rl) +x—c)¥ + %fTAf\If“,

where 1 denotes a vector of 1’s. The assumption of completeness implies that A~
exists, and thus all our results will go through exactly as before. In particular, if an
optimal value function for a specific problem is denoted by »(x), the optimal control
vector is £¥(x) where

Yy

(57) £5(x) = —A(n—r1)

VXX

The differential equations ((22), (38), (44) and (49)), and hence the value functions
((21), (36), (43) and (48)), all remain the same except for the fact that now the scalar y
is evaluated as

(58) y=2(n—r)TA (p—r1),

It is interesting to note that for the problem of maximizing the probability of
reaching b before @ when b is in the danger-zone, considered in §3.1, the optimal
policy now does depend on the variances and covariances of the risky assets, since
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instead of (20), in the multiple asset case we now get
_ r(c
(59) £5(x) = A l(u—rl);(;—x).

The e-optimal policy of §3 needs to be modified, but the extension is straightforward
and we leave the details for the reader. For reference, we note further that if we
define the vector K by K :== A~ !'(p — r1), then the optimal controls (35), (42) and
(47) of §83.2, 4.1 and 4.2 become, respectively

(60) () =K'= 1) (5 -x) w0 =K(x- 7).

£ (x) =K1 - 7)) (2= 3.

6. Linear withdrawal rate. In this section we show how all of our previous
results and analysis for the case of forced withdrawals at the constant rate ¢ > 0 can
be generalized to the case where there is a wealth-dependent withdrawal rate, c(x)
where

c(x) =c+ 0x.

Here we will only consider the case where 0 < 6 < r. For notational ease, we will
consider again only the case with one risky stock. The generalization to the multiple
stock case as in the previous section is very straightforward, and so we leave the
details for the reader.

For this case the evolutionary equation (3) becomes

(61) dX,f=f,% +(th—f,)%—(c+0th)dt
i

= [(r= )X/ +f(n—r)—c|di+fodW,.

If we now define 7 := r — 6 > 0, then for Markov control processes f, and ¥ € @
the generator of the wealth process is

(62) TU(x) = [f(n =) + B - c] ¥, + 2fW,.

The parameter 7 is simply the adjusted (risk-free) compounding rate. Essentially,
nothing really changes except for the fact that the danger-zone is now the region
x < ¢/F, and the safe-region is its complement. The differential equations (22), (38),
(44) and (49) all remain the same except for the fact that we must replace x — ¢ with
7x — c. The parameter y in all those equations, as well as here, is still defined as in
(8), i.e., y = 3(( — r)/o)?*, where r is the standard interest rate. Thus, the previous
analysis will go through with relatively little change, and so we will only point out the
essential differences. In particular, the structure of the policies remain the same, in
that the optimal survival policies of §3 invest a fixed proportion of the distance to the
(new) safe-region barrier, ¢ /F, while the optimal growth policies of §4 invest a fixed
proportion of the excess of wealth over the barrier.

6.1. Survival problems in the danger-zone. The analysis of §§3.1 and 3.2 can be
repeated almost verbatim. What changes is that now for a <x < b < ¢/F, the value
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function V(x; a, b) of (21) becomes instead

_EAY/FHL =NV
(c — 7a) (c — i)

e \Y/FEL AN 72k
(¢ ~ ra) (c — 7b)

(63) V(x:a,b) = fora <x <b.

Since (11) still holds, the resulting optimal control becomes, instead of (20),

2F (c )
= — X).
—r\7F

For the discounted problem of §3.2 (as well as for the discounted problem of §4.2),
the quadratic OC) of (39) changes to Q(n) = 1?7 — 9y + A + 7) + A, and thus the
two (real) roots to O(n) = 0, denoted by 7" and 7, become, instead of (40),

(64) fr(x) =

(63) 7-7+’_=%[(7+7+/\)i\/(7+)\+r”)2—4r'/\],

It is easy to check that once again, we have 0 < 7 < 1 < 7", and so the optimal
value function (36) and the optimal control function (35) become, respectively

x

(66) F(x) = (Eifa)ﬁ: ) = et (5 )

6.2. Growth policies in the safe-region. Once again, the analysis is almost
identical to that in §§4.1 and 4.2. The value and the optimal control functions for the
minimal expected time to the goal problem, (43) and (42) are replaced respectively by

(67) G(x) = = 1y1(fb_c), fg;(x)=“0_2r(x—%), for ¢ /7 < x < b.

X —c

Note that the optimal (Kelly) proportion of the excess wealth invested in the stock,
(u —r)/o?, is unchanged in this case.

Similarly for the discounted problem considered in §4.2, the value function (48)
and optimal policy (47) become

The case where 8 > r, and hence with 7 < 0, introduces new difficulties that will
be discussed elsewhere.

C r

@ v =(Fe) = h (e

~| 0
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