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N jobs are to be processed sequentially on a single machine. While waiting for processing, jobs deteriorate, causing the
random processing requirement of each job to grow at a job-specific rate. Under such conditions, the actual processing
times of the jobs are no longer exchangeable random variables and the expected makespan is no longer invariant under
any scheduling strategy that disallows idleness. In this paper, we analyze the effects of different deterioration schemes
and derive optimal scheduling policies that minimize the expected makespan, and, for some models, policies that
minimize the variance of the makespan. We also allow for random setup and detaching times. Applications to optimal
inventory issuing policies are discussed and extensions are considered.

ypical single processor stochastic scheduling
models deal with N jobs waiting to be processed
sequentially, with job i/ having positive random pro-
cessing requirement X,. It is usually assumed that X;
isindependent of X;j# i, i, j=1,..., N, so that the
expected makespan (completion time of the N jobs) is
invariant under any scheduling policy that disallows
idleness. Thus, research has centered on minimizing
(weighted) flow times (e.g., Conway, Maxwell and
Miller 1967) or maximizing rewards (e.g., Ross 1983).
In this paper, we introduce cases where jobs can
deteriorate as they await service, causing their pro-
cessing times to grow (at job-specific rates) during
their wait. For these types of models, the makespan is
no longer invariant and is a function of the scheduling
policy, as are the actual processing times. We consider
the class of nonpreemptive processing strategies and
find policies to minimize expected makespans for
different deterioration schemes and, in some cases, to
minimize the variance of the makespan. These models
are discussed in greater detail in Browne (1988, Chap.
5) where they were developed to deal with the control
of some queueing and communication systems (see
also, Browne and Yechiali 1989).

1. LINEAR DETERIORATION

As stated above, we are interested only in nonpreemp-
tive strategies; we also do not allow the processor to
idle if jobs are available so that we need consider only

the class II, where policy = € II is a permutation of
the index set 7 = {1, 2, ..., N} such that #(i) =
means that job j (of 7) is the ith one to be processed.

As all models of deterioration to be discussed in the
sequel yield objective functions of similar form, we
state here for reference a well known result (see Rau
1971 who stated it with summation reversed, where it
is intimately related to a class of optimal search prob-
lems; see also Kelly 1982).

Lemma 1. The sum

N

~
DIRTRT | e (1)
i=1 r=i+l
is minimized (maximized) when calculated over the
permutation ordered by increasing (decreasing) values

of uflyi = 11.

(The proof is direct upon an interchange argument.)

Consider N jobs, all available for processing at time
0, with initial processing requirements X, (that is, the
(random) time to complete job i if it is processed first).
If job i’s processing is delayed until ¢, we assume the
initial requirement deteriorates in such a manner that
its processing requirement grows linearly with the
delay to

Y1) = Xi + a;t

where «; is job i’s (specific) processing growth rate.
We assume further that a job stops decaying as soon
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as it is put on the processor. For notational conven-
ience consider policy 7o = (1, 2,..., N). Let Y;denote
the actual processing time of job / in 7o, and let S, =
3% Y: denote the completion time of the kth job in =,

with So = 0. Then Y, = Y (S5-) = X, + oS-,
Jj =1, ..., N, or equivalently, S, — (1 + ;)S;-;, =
X;,j=1, ..., Nwhich exhibits the solution

2 X; H (1 + ) )

r=i+l

(where an empty product is defined to be 1).

As Sy is the makespan of =, identification of the
proper terms in Lemma 1 shows that the expected
makespan is minimized when the jobs are scheduled
by increasing values of E(X;)/«;, the ratio of expected
1nitial processing requirement to growth rate.

The decomposition in (2) exhibits clearly how the
makespan is simply the sum of delays to all future
jobs caused by the initial requirements.

Furthermore, as in some applications it is of interest
to minimize the variance of the makespan rather than
its expectation, utilization of (2) suggests

N N
Var(Sy(m)) = X Var(X.i)) [ (1 + o)) (3)
i=1 J=i+1
which upon identification with Lemma 1| implies
that the variance of the makespan is minimized
when the jobs are scheduled by increasing
Var(X)/[(1 + a;)* = 1].

Consider the case where job i deteriorates rather as
external shocks arrive via a job-specific homogenous
Poisson stream of intensity A\;. Every shock arriving
while job i is waiting for processing inflicts random
damage, causing job i’s processing time to grow by a
random jump having mean d;. The (increased) pro-
cessing times remain constant between shocks. Let Y;
be the actual processing time of job j (in =), S; =

‘., Y., Z; = E(S,) and let N,(¢) denote the Poisson
count of shocks to job j in (0, ¢] with parameter A,.
Then if D, is the jump in job j’s processing time
caused by the kth shock with mean E(D;) = d;, clearly

Ni(Sj—y)
Y, =X + 2 Dy, j=1,...,N
=1
which, upon expectating, yields ( for the expected com-
pletion times)
J J
=Y EX) [I a+xd). (5)
i=1 r=i+l1
Once again, a glance at Lemma 1 shows that the
expected makespan is minimized when the jobs are
scheduled in increasing order of E(X,)/\.d,.

This policy is also optimal to a first order approxi-
mation when in fact the job’s processing requirement
grows by a shot noise type process (see Browne).

In general, it is clearly the linearity of the (expected)
rate of growth (during delay) that enables the reduc-
tion of the expected makespan to form, such as Equa-
tions 2 and 5, hence allowing the optimality of a
simple index policy upon application of Lemma 1.
Therefore, as long as the deterioration is of a type that
causes the jobs’ processing times to grow in a (job-
specific) Lévy process (that is, a process with stationary
independent increments that is continuous in proba-
bility, see e.g., Prabhu 1980), an index policy of the
form {[EXPECTED INITIAL REQUIREMENT]/
[EXPECTED GROWTH RATE]} will minimize the
expected (total) compietion time or makespan. For
example, consider the case where the actual processing
requirement of job 7 in m, is

)/i = )(1 + alSl—l

NetSim)
+ Bi(Si-1) + Z Dy, (6)
k=1
where B;(1) denotes a Brownian motion with positive
drift x;. Then (neglecting the possibility of negative
processing times), expectating (6) yields the expected
growth rate o, + u; + A, d;, and the index is obvious.
In fact, consideration of the following simple
inequality suffices to show that these indices corre-
spond to the Gittin’s index (Whittle 1981) even
though the problem is not directly a multiarmed
bandit.

Proposition 1. If

EX) _E(L) - _ EXy)

o [+ 7] aN
then
E(XK) i E(X) [N a4 + o)

(7% H (1 + a,) -1

K=1,...,N
Proof
ZE(X)H(1+a,) _I—[(1+a,)
EXK

[H(l+a,)—l]

Furthermore, consideration of the interpretation of
the initial processing requirement enables us to imme-
diately deduce results for setup times. Specifically,
assume that a random time 7, (independent of X;)
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must be devoted to setting up or adjusting the machine
to process job i—during which job i continues to
deteriorate. We may assume as well that a random
(mutually independent) time 6; must be expended after
processing job i to switch-out (e.g., detach or cleanse
the machine) of job i. Letting «; denote the general
expected rate at which job i’s processing grows during
its delay, it is immediate that the expected makespan
is minimized by scheduling the jobs in increasing
order of the index

[E(X) + E(r)(1 + a;) + E(0))]/a (7)

as now job /’s initial service requirement is the setup
time for i, the growth caused by this setup, the original
X;, and the time to detach or switch-out of job i.

These results can be treated in the framework of
optimal stock depletion with stochastic field lives or
optimal inventory issuing policies (Derman and Klein
1958, Brown and Solomon 1973, Albright 1976). The
model is usually developed in the context of N iden-
tical spares of an item (e.g., batteries) of different ages
waiting in a stockpile or on a shelf. Items are issued
into the field sequentially upon the death of the pres-
ent working item. Research has previously centered
on characterizations of the field life function L(x) for
FIFO or LIFO to be optimal, where if x is an item’s
shelf life, L(x) is its field life.

Here we have considered N different items—type i
with initial random field life X;, which if put into
the field at ¢ will yield (expected) field life E(Y;(¢)) =
E(X;) — a;t. For practical purposes «; is assumed to
be of an order of magnitude such that each spare has
a positive expected field life in every permutation
rell,i=1,..., N

As such, it is immediate that expected (total) field
life is maximized by issuing the items sequentially into
the field by increasing values of E(X;)/a;. The fact
that the X;’s are of different types motivates the use
of setup and detaching times as in Equation 7, because
if we allow differences among the spares it is only
natural to expect that we would need different times
to detach the previously used dead spare and to hook
up and adapt a new one.

2. CONCLUSIONS AND OPEN PROBLEMS

We have established policies to minimize expected
makespans for some cases of deteriorating jobs. It
would be of great interest to determine policies to
minimize (as is usual) the sum of weighted completion
times. However, if ¢; is the waiting cost rate of job j,
utilization of Equation 2 yields for the total cost under
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policy m

J

N j
Cr)=2 ¢ 2 X [ (1+a) (8)
j=1 i=1 r=i+l
which does not yield to an easy analysis even for
special cases and is conjectured to be NP-hard, a proof
of which still awaits.
However, consideration of an adjacent pairwise

interchange yields (where 7, = (1,2, ...,j—1,j+ 1,
Jj,j+ 2, ..., N), that is, 7, simply interchanges the
jth and j + 1st terms in mo)

C(mo) — C(my)

=S ilgsia;(l1 + o) — Gy (1 + )]

. [/YjCj-H(l + aj+l) - X_/+lcj(1 + aj)]

N r
+ Z Cr H (I + e[ X — X y]

r=j+2 k=j+2

from which the following proposition is apparent.

Proposition 2. If

E(X)) < < E(Xy)
—a[ . —aN
and

S S . <\
Cl(l +011) T C}y(l + aN)

then o minimizes the weighted expected completion
times.

Another open problem is that of nonlinear type
deterioration. Consider the simple case of exponential
growth

Yi(t) = X.e® )
yielding the completion times (in =)
ng = AS‘]—I + A’jeu/sj—l

from which no closed form expression for the expected
makespan appears to exist, although note that for 3;
small enough for all j (i.e., neglecting O(8; ) terms), it
is obvious that the expected (approximated)
makespan is minimized when the jobs are scheduled
by decreasing §3;.

It would be interesting to see if any other deterio-
ration functions yield an index policy.
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