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We consider asset allocation strategies for the case where an investor can allocate
his wealth dynamically between a risky stock, whose price evolves according to a
geometric Brownian motion, and a risky bond, whose price is subject to negative
jumps due to its credit risk and therefore has discontinuous sample paths+We derive
optimal policies for a number of objectives related to growth+ In particular, we
obtain the policy that minimizes the expected time to reach a given target value of
wealth in an exact explicit form+We also show that this policy is exactly equivalent
to the policy that is optimal for maximizing logarithmic utility of wealth and, hence,
the expected average rate at which wealth grows, as well as to the policy that max-
imizes the actual asymptotic rate at which wealth grows+Our results generalize and
unify results obtained previously for cases where the bond was risk-free in both
continuous- and discrete-time+

1. INTRODUCTION

In this paper we consider the optimal investment behavior for an investor who can
diversify his wealth between two assets: a risky stock and a risky bond+ The objec-
tives we consider here relate solely to growth, in a sense soon to be defined+ The
price of the risky stock is assumed to follow a geometric Brownian motion,which is
a standard model in financial economics~see, e+g+,Merton@20# !+A complication in
our model not present in the usual one studied in the optimal investment literature
~see, e+g+, Browne@5,6# , Hakansson@13# , Merton @19,20# ! is the fact that here the
bond is not completely risk free, but is in fact stochastic, since it is subject to credit
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risk+ The assumption we make about how credit risk affects the bond price is that, at
certain random times, an event occurs which reduces the price of the bond by a
random amount+This event is usually termed a “corporate reorganization”~see, e+g+,
Jarrow and Turnbull@15# ! and refers to the fact that at a corporate reorganization
epoch, there is a partial default on the bond+ This is an extension of a model first
considered in Merton@19# + Similar models are used in@15# and others, with the
objective of pricing options on the corporate bonds~see also Merton@20, Ch+ 9# !+
Here, we are interested in determining investment strategies that achieve optimal
growth+ There are, of course, a few different ways to define growth; for example,
some define growth as the~average! rate at which wealth compounds and an optimal
growth policy would therefore maximize this rate, or the expected value thereof+
This is the approach taken in the discrete-time papers of Kelly@17# ,Hakansson@13# ,
and Markowitz@18# , among others+Breiman@3# considered an optimal growth strat-
egy to be a strategy that minimizes the expected time to reach a given target level of
wealth+ He showed that in discrete-time, without credit risk, as the target level of
wealth gets “large,” the policy that maximizes the expected rate at which wealth
compounds is also asymptotically optimal for the latter problem, namely of mini-
mizing the expected time to the target level+ Interesting analyses of optimal growth
policies in discrete-time can be found in the papers cited above as well as in Thorp
@22# , Ethier and Tavare@9# , Algoet and Cover@1#, and others+ In particular, Algoet
and Cover@1# proved that the policy that maximizes the expected rate at which
wealth compounds also maximizes the actual rate~as the time horizon goes to in-
finity ! at which it compounds+

Optimal growth strategies have been studied in continuous-time as well, though
mostly for models with a completely risk-free bond, hence without credit risk~see
@20, Ch+ 6# for a survey and discussion of the fundamental role optimal growth
policies play in modern finance and@6# for extended optimality properties of these
policies!+ Merton@19# solved for the policy that maximizes the expected logarithm
and, hence, the expected growth rate+ Heath, Orey, Pestien, and Sudderth@14# were
the first to solve for the policy that minimizes the expected time to a goal in continuous-
time+Unlike the discrete-time asymptotic results of Breiman@3# , they found that the
policy that maximizes the expected rate at which wealth compounds is in fact ex-
actly optimal for the problem of minimizing the expected time to a goal, for any
fixed goal+Merton@20, Ch+ 6# recovered these results independently via a different
route, and Browne@5# considered this and other goal-related objectives in a more
general model that incorporates liabilities+ The results of Algoet and Cover@1# have
been extended to the continuous-time case in@16# + Central to the analysis in those
papers was the fact that the~controlled! wealth process of the investor followed a
diffusion process, with continuous sample paths+ The introduction of the credit risk
problem introduces some new difficulties into the model, since now the sample path
of the wealth process is no longer continuous+

Here we consider the extension of optimal growth policies in continuous-time
to the case where the bond is no longer risk-free, and is subject to credit risk+ Credit
risk here means that the organization paying the coupon on the bond may fail to meet
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the coupon+When a coupon payment is missed, the value of the bond goes down+
There are many ways to model the credit risk problem, here we will use the model
first introduced in Merton@19# , which was extended and analyzed further in Jarrow
and Turnbull@15# , among others+ In the next section, we introduce the model of the
primitives, namely the stock price and the bond price processes+ In Section 3, we
give our main result, which shows that the same policy, which is given explicitly, is
optimal for the following three problems: ~1! minimizing the expected time to reach
a given value of wealth; ~2! maximizing the expected average rate at which wealth
compounds over a fixed horizon; ~3! maximizing the actual rate at which wealth
compounds over the infinite horizon+

The explicit form of our policy given in Theorem 1 below is seen to be not only
a generalization of the continuous-time results of Heath et al+ @14# ,Merton@20# , and
others, but our results also unify the discrete-time optimal growth policies studied in
Breiman@3# , Ethier and Tavare@9# , Finkelstein and Whitely@10# , Hakansson@13# ,
Kelly @17# , and Thorp@22# , with the aforementioned continuous-time results+ In
Section 4, we provide the proof of the theorem+ The proofs for the three different
parts are of varying difficulty:maximizing the expected average rate at which wealth
compounds over a fixed horizon turns out to be a relatively simple problem and is
solved using some basic facts from the general theory of stochastic integration+Min-
imizing the expected time to reach a given value of wealth,which is, in fact, the main
contribution of this paper, is a more delicate problem and requires a new and more
technical proof+We first show that the Hamilton-Jacobi-Bellman~HJB! equations of
stochastic control are satisfied and then provide a rigorous proof of optimality by a
martingale argument+ Finally, using results from the general theory of stochastic
integration,we show that the ratio of the wealth from any other strategy to the wealth
from the growth-optimal strategy is a nonnegative supermartingale+ This result then
allows the martingale argument of@1# ~see also@16# ! to be applied here to verify
optimality for maximizing the actual rate at which wealth compounds over the in-
finite horizon+We then conclude, in Section 5,with some suggestions for extensions+

2. THE MODEL

Without significant loss of generality, we assume that there is only one risky stock
available for investment~e+g+, a mutual fund!, whose price at timet will be denoted
by St + Following @19# , we will assume that the price process of the risky stock
follows a geometric Brownian motion; i+e+, St satisfies the stochastic differential
equation

dSt 5 µSt dt 1 sSt dWt (1)

wherem ands are constants, and$Wt : t $ 0% is a standard Brownian motion+ Thus,

St 5 S0 exp$~µ2 2
12s2 !t 1 sWt %

and so forµ . s202, the stock is viable over an infinite horizon, since we have
~10t! ln St r ~µ2 1

2
_s2! . 0+
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The other investment opportunity is a~risky! bond~or money market account!
whose price satisfies the following stochastic differential equation:

dBt 5 rBt2 dt 2 Bt2 dQt , (2)

whereQt is acompound Poisson process; that is,

Qt 5 (
i51

Nt

Yi , (3)

where$Nt ; t $ 0% is a simple homogeneous Poisson process with intensityl, and
$Yi ; i $ 1% is an i+i+d+ sequence of random variables+ The compound Poisson process
Q and the Brownian motionW are assumed to be mutually independent+ The inter-
pretation ofYi is the random percentage change in the bond price associated with the
ith jump in N+ In the finance literature, Yi is called the “percentage writedown”
associated with theith corporate reorganization+As bond prices cannot become neg-
ative, we will assume that

P~0 # Y1 # 1! 5 1+ (4)

This model of Poisson bankruptcies has been used extensively in finance literature+
Merton @19# introduced this model and studied the problem of how an investor
should invest so as to maximize expected utility of terminal wealth for a special case
with Y1 [1, whereby the bond defaults completely at the first corporate reorganiza-
tion+ However, as he himself notes there, a complete default is rather rare, thus the
model used here might be somewhat more realistic+ Jarrow and Turnbull@15# use a
simple Poisson bankruptcy model to price options on credit-risky securities+ The
empirical distributions of the writedowns for different classes of corporate bonds
have been studied, for example, in Franks and Torous@12# + Here our interests lie in
determining optimal portfolio strategies rather than pricing+

Elementary results on stochastic integration show that the solution to Eq+ ~2! is

Bt 5 B0ert )
i51

Nt

~12 Yi !, (5)

with the understanding that an empty product is 1+ Thus, the bond price is always
nonnegative for everyt ,`+Whether the bond is viable in the long run depends, of
course, on the relationship among the parameters+ For example, a simple condition-
ing argument shows thatEBt 5B0exp$t~r 2lE~Y1!!%, from which we may conclude
that it is sufficient to assumer0l . EY1 to ensure that~10t! ln EBt r r 2 lEY1 . 0+
However, it is also clear that, since lnBt 5 ln B0 1 rt 1 (i51

Nt ln~12 Yi !, the law of
large numbers implies that

~10t! ln Bt r ~r 1 lE ln~12 Y1!!,

which is positive only ifr0l . 2E ln~12 Y1!,which is, in fact, a stricter assumption
than the former+ ~This of course follows from Jensen’s inequality, and the fact that
r0l . 12e2r0l+! For the remainder of the paper,we do not particularly care about the
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long-term viability of the bond, and so we make no assumptions regarding the pa-
rameters or distribution of the writedowns+

We will let F denote the underlying filtration of interest, that is, we are given a
filtered probability space~V,F,$Ft %,P! which supports the standard Brownian mo-
tion Wand the compound Poisson processQ, whereFt is theP-augmentation of the
natural filtrationFt

W,Q :5 s$~Ws,Qs!, 0 # s# t%+
Let ft denote the fraction of wealth invested in the risky stock at timet under

an investment policyf, where we assume that$ ft % is a suitable, Ft2 admissible
adapted control process, that is, ft is a nonanticipative function that satisfies
*0

T ft
2 dt , `, a+s+, for everyT , `+ We will constrain the control$ ft % by requir-

ing 0 # ft # 1 for all t+ This rules out short sales as well as borrowing from some
other external source+

LetXt
f denote the wealth of the investor at timet, if it follows policy f,with X05

x+ Since any amount not invested in the risky stock is held in the bond~which has a
greater return than cash!, this process then evolves as

dXt
f 5 ft2 Xt2

f dSt

St

1 Xt2
f ~12 ft2!

dBt

Bt

5 Xt2
f @r 1 ft2~µ2 r !# dt 1 ft2 Xt2

f s dWt 2 ~12 ft2!Xt2
f dQt (6)

upon substituting from Eqs+ ~1! and~2!+
Thus, for Markov control processesf, whereft2 5 f ~t2,Xt2!, and functions

g [ C2, the generator of the wealth process is

A fg~x! 5 @ f ~µ2 r ! 1 r #xgx 1 2
12 f 2s2x2gxx 1 l@Eg~ @12 ~12 f !Y1#x! 2 g~x!# ,

(7)

where the expectation operator in the last term is on the random percentage change,
Y1+

Recognizing that, if a jump in N occurs at times, then the jump in the wealth
process is

DXs
f :5 Xs

f 2 Xs2
f [ 2Xs2

f ~12 fs2!YN~s2!11

allows us to use standard results in the theory of stochastic integration~e+g+, Protter
@21, Thm+ II +36# ! to solve Eq+ ~6! as

Xt
f 5 X0 expHE

0

tSr 1 fu~µ2 r ! 2
1

2
fu

2s2D du1E
0

t

sfu dWuJ
3 )

i51

Nt

~12 ~12 fti2
!Yi !, (8)

where$ti , i $ 1% are the points of the Poisson process, $Nt , t $ 0%+
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3. OPTIMAL GROWTH POLICIES

Our interest, in this paper, lies in determining optimal growth policies for the inves-
tor+As noted earlier though, growth can be interpreted in different ways+ For exam-
ple, we can take growth to mean reaching a given target value of wealth as quickly
as possible+ This investment objective was treated in@14# ~see also@5,20# ! for the
case without credit risk~i+e+, Nt 5 0 for all t $ 0, hence a deterministic bond!+ In the
absence of credit risk~Nt 5 0!, it is clear from Eq+ ~8! that it is possible to find an
investment policy that causes wealth to grow exponentially~e+g+, simply takefu to be
an appropriate constant, possibly 0!+ Thus, it is natural to considert21 ln~Xt

f0X0! as
the average growth rate of wealth, and, therefore, one may call a policy that maxi-
mizes either the expected average growth rate~over a fixed time interval! or the limit
of the average growth rate~called the actual asymptotic growth rate! a growth op-
timal policy as well+ Maximizing the expected average growth rate over a fixed
finite horizon, say~0,T # , is seen to be equivalent to maximizingE ln~XT

f!, over all
admissible policies+ It turns out that the optimal policy for the latter two objectives
is equivalent to the one that is optimal for the problem of reaching a target goal in
minimal expected time; thus, for that model~i+e+, without credit risk!, we can call it
theoptimal growth policy@6# +

As we will show directly, a similar result holds for the model with credit risk,
although the policy is somewhat different and, in fact, generalizes the previous re-
sults+

To formalize this, consider the following three problems associated with the
controlled wealth process given in Eq+ ~6!:

Problem 1. Choose an admissible investment policy tominimize the expected
time to reach a given level, say b, of wealth, that is, for X0 5 x , b, let

C~1! ~x! :5 inf
0#f#1

Ex~tb
f!, (9)

where

tb
f :5 inf $t $ 0 :Xt

f 5 b%+ (10)

Let f ~1! 5 $ ft
~1!; t $ 0% denote the optimal policy for this problem, that is,

f ~1! 5 arg inf
0#f#1

Ex~tb
f!+ (11)

Problem 2. Choose an admissible investment policy tomaximize the loga-
rithm of terminal wealth at the fixed terminal time T,that is, for X0 5 x, let

C~2! ~x! 5 sup
0#f#1

Ex @ ln~XT
f!# , (12)

with the corresponding optimal policyf ~2! 5 $ ft
~2! : 0 # t # T %,

f ~2! :5 arg sup
0#f#1

Ex @ ln~XT
f!# + (13)
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Problem 3. Choose an admissible investment policy tomaximize the actual
growth rate of wealth, that is, for X0 5 x, let

C~3! ~x! 5 sup
0#f#1

Hlim inf
Tr`

1

T
ln~XT

f !J , (14)

with the corresponding optimal policyf ~3! 5 $ ft
~3! : t $ 0%,

f ~3! :5 arg sup
0#f#1

Hlim inf
Tr`

1

T
ln~XT

f !J + (15)

In the theorem below we show that the same policy is optimal for all three
problems and give the policy explicitly+ It is interesting to note that while it was to
be expected a priori that Problem 2 should have a solution similar to that of Problem
3, there does not seem to be that direct of a connection between Problem 1~for any
arbitrary wealth levelb! and the other two+ Similar to the case without credit risk
~see, e+g+, @6# ! this optimal growth policy invests a constant proportion of wealth in
the stock with the remainder in the bond, independent of the size of wealth, although,
of course, in our case the constant is different and our results~especially for Prob-
lem 1! could not have been obtained from the previous results+

Remark 1: It is clear from Problem 2 thatf ~2! is also the optimal policy for maxi-
mizing the expected growth rate, lim Tr`~10T !E @ ln XT

f# + This is the problem first
introduced in@17# for simple discrete-time problems+ However, the criteria in Prob-
lem 3 is the actual growth rate, which is harder to establish+

Our main result is now given in the following theorem+

Theorem 1: Let C~ f ! denote the function

C~ f ! 5 r 1 f ~µ2 r ! 2 2
12 f 2s2 1 lE~ ln~12 ~12 f !Y1!! (16)

and let f* denote its maximizer, that is, let f * denote the constant determined by

f * 5 arg sup
0#f#1

$r 1 f ~µ2 r ! 2 2
12 f 2s2 1 lE~ ln~12 ~12 f !Y1!!%+ (17)

Then for every t$ 0,

ft
~1! 5 ft

~2! 5 ft
~3! [ f * (18)

with corresponding optimalvalue functions

C~1! ~x! 5
1

C~ f * !
lnSb

x
D (19)

C~2! ~x! 5 ln x 1 C~ f * !T (20)

C~3! ~x! 5 C~ f * !+ (21)

OPTIMAL GROWTH IN CONTINUOUS-TIME WITH CREDIT RISK 135



Remark 2:Observe that the investor holds more stock in the~downward! Poisson
jump model treated here than in the corresponding riskless case, since it can be
shown that the optimal policy of Eq+ ~17! is increasing inl+

Note that whenl 5 0, Eq+ ~17! shows thatf * reduces to

f * 6l50 5 maxH1, µ2 r

s2 J + (22)

This is indeed the optimal policy obtained in Heath et al+ @14# for Problem 1~see also
@20,5# !, as well as the optimal policy for Problems 2 and 3 obtained in Merton@19#
and Karatzas@16# +Whenr 5 µ5 s 5 0, and when we takeZi 5 2Yi , whereby the
only investment opportunity is a “bond” that appreciates at the points of a Poisson
process, and set 12 f 5 a, thenf * reduces to

arg sup
a

E ln~11 aZ1!, (23)

which is equivalent to the discrete-time optimal growth, or Kelly strategies, studied
in Kelly @17# , Breiman@3# , Thorp @22# , Finkelstein and Whitely@10# , Ethier and
Tavare@9# ,Bell and Cover@2#, and others+ABayesian version of the optimal growth
policy in both discrete and continuous time is studied in Browne and Whitt@7# +
Thus, in some sense, the optimal policy obtained here is a hybrid of the continuous-
time and discrete-time optimal growth policies+Note, however, that in discrete-time
it is only an asymptotic version of Problem 1 that is related to Problems 2 and 3, as
analyzed in Breiman@3# +

Remark 3:The computation ofC~ f ! and then the maximization thereof is quite
straightforward, although simple closed-form solutions seem rare+ For example, if
the writedowns are assumed to be uniformly distributed on~0,1!, then it is easy to
show that

C~ f ! 5 r 1 f ~µ2 r ! 2
s2

2
f 2 2 l 2 l

f ln~ f !

12 f
+

If the writedowns are taken to be a constant, saya, where 0, a , 1, thenf * is seen
to be the root to a simple quadratic equation+

4. PROOFS

We will prove the theorem in three steps:We will first solve for the optimal policy of
Problem 2+ A standard argument can be modified to treat this case so that no new
difficulties arise+ Problem 1, which is the main contribution of this paper, is the
tricky one, and we will treat it next+ We will first show that the optimal wealth
process generated by the policyf * does indeed solve the appropriate Dirichlet prob-
lem arising from the Hamilton–Jacobi–Bellman equations+We will then use a mar-
tingale argument to verify rigorously that it is indeed optimal+ We will then treat
Problem 3+ The proof that the same policy is optimal for this case relies on the rather
interesting fact, which we state as a theorem below, that the ratio of the wealth
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process obtained from any arbitrary admissible policy to the wealth process ob-
tained from the optimal growth policy, f *, is in fact a supermartingale+ Once we
establish this, we can use arguments similar to those in@1# ~see also@16# ! to com-
plete the proof+

Proof of Problem 2: We can modify a fairly standard argument to obtain this+ To
proceed, recall that the solution to Eq+ ~6! is

XT
f 5 x expHE

0

TSr 1 fu~µ2 r ! 2
1

2
fu

2s2D du1 sE
0

T

fu dWuJ
3 )

i51

NT

~12 ~12 fti2
!Yi !, (24)

where$ti : i $1% are the points of the Poisson process$Nt : t $ 0%, andX05x+ Taking
logarithms on Eq+ ~24! therefore gives

ln XT
f 5 ln x 1E

0

TSr 1 fu~µ2 r ! 2
1

2
fu

2s2D du1 sE
0

T

fu dWu

1 (
i51

NT

ln~12 ~12 fti2
!Yi !+ (25)

Since we will be taking expectations on Eq+ ~25!, it is convenient to recall here the
following basic fact, which follows directly from the definition of stochastic inten-
sity in Bremaud@4, Sect+ II +3# + It is also a simple version of the Campbell theorem
for compound Poisson processes with i+i+d+ jumps~see, e+g+, Daley and Vere-Jones
@8, Sect+ 12+1# !+

Lemma 1: Let$Nt , t $ 0% denote a simple Poisson process with points$ti , i $1% and
intensityl, and let Qt 5 (i51

Nt Yi , where$Yi , i $ 1% are i+i+d+ , and independent of the
Poisson process N+ Then for any measurable function g~x, y!,

E (
i51

Nt

g~ti ,Yi ! 5 lE
0

t

E @g~u,Y1!# du (26)

where the expectation in the right-hand side of Eq+ ~26! is with respect to the random
variable Y1+

It follows from Eq+ ~26! that

E (
i51

NT

ln~12 ~12 fti2
!Yi ! 5 lE

0

T

E @ ln~12 ~12 fu!Y1!# du+ (27)
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Taking expectations now on Eq+ ~25! using~27! gives

E ln XT
f 5 ln x 1 EE

0

TSr 1 fu~µ2 r ! 2
1

2
fu

2s2 1 lE @ ln~12 ~12 fu!Y1!#D du

[ ln x 1 EE
0

T

C~ fu! du, (28)

whereC~{! was defined earlier in Eq+ ~16!+ Since there is no explicit dependence on
the wealth processXu

f in the integrand on the right-hand side of Eq+ ~28!, it suffices
to maximize the integrand,which yields the~constant! policy f * of Eq+ ~17!+Thus all
assertions relating to Problem 2 in the theorem have been established+ n

Remark 4:Note that when we place the~constant! optimal policy, f *, back into
Eq+ ~6!, we obtain an optimal wealth process, sayX*, which by Eq+ ~24! is

Xt
* 5 x expHSr 1 f *~µ2 r ! 2

1

2
~ f * !2s2D t 1 sf *WtJ)

i51

Nt

~12 ~12 f * !Yi !+

(29)

Since the Brownian motion$Wt , t $ 0%, the Poisson process$Nt , t $ 0%, and the i+i+d+
writedowns, $Yi , i $1%, are all assumed to be mutually independent, it is straightfor-
ward to take expectations on Eq+ ~29! to find that

E~XT
*! 5 x exp$@r 1 f *~µ2 r ! 2 l~12 f * !E~Y1!#T %+

We now move on to consider the substantially harder problem of minimizing the
expected time to get to a target level of wealth+

Proof of Problem 1: Define nowt* :5 inf $t $ 0 :Xt
*5 b%,whereX* is the wealth

process obtained from using the strategyf *+ To prove thatf * is indeed optimal for
this problem, we must show that

inf
0#f#1

Ex~tb
f! 5 C~1! ~x! 5 Ex~t* !, (30)

whereC~1!~x! is given in Eq+ ~19!+
Observe first that for any policy, the goalb is reached by diffusion and not by

jumps+ Hence, a necessary condition for the first equality in~30! to hold is that the
value functionC~1!~x! solves the HJB optimality equation~see, e+g+, Fleming and
Soner@11# !

inf
0#f#1

A f C~1! ~x! 1 1 5 0,

with the boundary conditionC~1!~b! 5 0, whereA f is the generator of Eq+ ~7!+
Let A* denote the generator of the~claimed optimal! wealth processXt

* ~i+e+,
when ft 5 f * !+ Then the fact thatf * solves the HJB optimality equation, and the
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second equality in~30!, can be verified directly by observing that the functionC~1!~x!
solves the Dirichlet problem

A*C~1! ~x! 1 1 5 0, for 0 # x , b and C~1! ~b! 5 0+ (31)

This can be seen by substitutingf * andC~1!~x! of Eq+ ~19! into the generator~7!,
which gives

A*C~1! ~x! 1 1 5 A*S 1

C~ f * !
lnSb

x
DD1 1

5 2
1

C~ f * ! Fr 1 f *~µ2 r ! 2
1

2
~ f * !2s2

1 lE ln~12 ~12 f * !Y1!G1 1 [ 0, (32)

where the last equality follows from the definition ofC~ f * ! andf *+
Since we have shown thatC~1!~x! solves the appropriate HJB equations, it re-

mains only to prove sufficiency, that is, to verify that f * is in fact optimal for the
problem of minimizing the expected time to the goal+ To do this, we will make use
of themartingale optimality principle+ For this case, this means finding an appro-
priate functional which is a uniformly integrable martingale under the policyf *, but
is a supermartingale under any other admissible policy+

To proceed, observe that by Eq+ ~29! we have for the processX*,

ln~Xt
*! 5 ln x 1 HSr 1 f *~µ2 r ! 2

1

2
~ f * !2s2D t 1 sf *WtJ

1 (
i51

Nt

ln~12 ~12 f * !Yi ! (33)

and, hence, using Eq+ ~27!, we find that

E ln~Xt
*6Fs! 5 ln~Xs

*! 1 C~ f * !~t 2 s!+

From this it follows that the process$ln~Xt
*! 2 tC~ f * !, t $ 0% is a martingale with

respect to the filtrationF 5 $Ft : t $ 0%+
Define now the function

M~t, x! :5 C~1! ~x! 1 t [ C~ f * !21 lnSb

x
D2 t, for 0 , x # b+ (34)

Consider now any other admissible policy, sayh 5 $ht , t $ 0%, which determines a
corresponding wealth process$Xt

h, t $ 0%+ Let tb
h denote the first hitting time to the

wealth levelb for this process, that is, let

tb
h :5 inf $t $ 0 :Xt

h 5 b%+

We are interested only in control policiesh for which Etb
h , `+
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Optimality of the policyf * for the problem of minimizing the expected time to
a goal will now follow directly from the following:

Lemma 2: Let h denote an admissible policy with Etb
h , `+ Then for any such h,

E~M~t,Xt
h!6Fs! $ M~s,Xs

h!, for 0 # s# t # tb
h (35)

with equality holding if and only if h5 f *, where f* is the policy given by Eq+ ~17!+

Proof: For t , tb
h, Eq+ ~24! shows that

Xt
h 5 x expHE

0

tSr 1 hu~µ2 r ! 2
1

2
hu

2s2D du1 sE
0

t

hu dWuJ
3 )

i51

Nt

~12 ~12 hti2
!Yi !, (36)

which allows us to write, for t , tb
h

M~t,Xt
h! 5 M~s,Xs

h! 1 ~t 2 s! 2
1

C~ f * !

3 FE
s

tSr 1 hu~µ2 r ! 2
1

2
hu

2s2D du

1E
s

t

shu dWu 1 (
i5Ns

Nt

ln~12 ~12 hti2
!Yi !G+ (37)

Since$Nu% is a simple Poisson process, it follows that

ES(
i5Ns

Nt

ln~12 ~12 hti2
!Yi !6FsD 5 lESE

s

t

E ln~11 huY1! du6FsD,
and by the admissibility ofh, it follows thatE*s

t hu dWu 5 0+
Hence, after some manipulation, we can write, again fort , tb

h,

E~M~t,Xt
h!6Fs! 5 M~s,Xs

h! 1 ~t 2 s! 2
1

C~ f * !

3 ESE
s

tFr 1 hu~µ2 r ! 2
1

2
hu

2s2

1 lE ln~12 ~12 hu!Y1!G du6FsD, (38)

which it is convenient to rewrite, using Eq+ ~16!, as

E~M~t,Xt
h!6Fs! 5 M~s,Xs

h! 1
1

C~ f * !
ESE

s

t

~C~ f * ! 2 C~hu!! du6FsD,
for t # tb

h+ (39)
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But it follows from the definition ofC~ f * ! thatC~ f * ! $ C~h! for anyh, hence
the integrand above is always nonnegative and is equal to 0 only forhu 5 f * for all
u $ 0+ Hence, the lemma is proved, and so we may conclude that, in fact, f * is
optimal for Problem 1+ n

Remark 5:This proof holds also for the casel 5 0, thus offering an alternative
proof for the case without credit risk treated earlier in@14,20,5# +

We next move on to consider the maximization of theactual growth rate of
wealth+

Problem 3. To prove thatf * 5 ft
~3! , we will first show that for any other

wealth process, sayXt
h, the ratioZt :5 Xt

h0Xt
* is a~nonnegative! local martingale+ If

this is the case, then since a nonnegative local martingale is also a nonnegative
supermartingale, we can adapt the arguments of Algoet and Cover@1# ~see also@16,
Sect+ 9+6# ! to this case to show the comparison

lim
Tr`

1

T
ln XT

h # lim
Tr`

1

T
ln XT

*[ C~ f * ! (40)

holds almost surely for every admissible portfolio policyh and its associated wealth
processXh+ Thus, the assertions in Theorem 1 regarding Problem 3 will follow if we
prove:

Lemma 3: Let f * denote the constant policy of Eq+ ~17!, and let h5 $ht % denote any
other admissible policy+ Then the ratio of the corresponding wealth processes, $Zt %
where Zt 5 Xt

h0Xt
*, is a ~nonnegative! supermartingale, that is, for s# t,

ES Xt
h

Xt
* *FsD #

Xs
h

Xs
* + (41)

Proof: Let Zt :5 Xt
h0Xt

*+ Recognizing that

DZt :5 Zt 2 Zt2 [ 2S12
~12 ht2!YN~t2!11

~12 f * !YN~t2!11
DZt2

allows us to apply the multidimensional general version of Ito’s formula@21, Thm+
II +33# to show, after much simplification, thatZs satisfies

Zt 5 Zs 1E
s

t

Zu2~~µ2 r !~hu 2 f * ! 1 s2 @~ f * !2 2 f *hu# ! du

1E
s

t

Zu2~hu 2 f * ! dWu

2 (
i5Ns

Nt

Zti2S12
12 ~12 hti2

!Yi

12 ~12 f * !Yi
D+ (42)
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SinceZ is a nonnegative process, the stochastic integral term in Eq+ ~42! is a non-
negative local martingale, hence a nonnegative supermartingale+ As such, taking
expectations on Eq+ ~42! gives

E~Zt 6Fs! # Zs 1 ESE
s

t

Zu2~~µ2 r !~hu 2 f * ! 1 s2 @~ f * !2 2 f *hu# ! du6FsD
2 ES(

i5Ns

Nt

Zti2S12
12 ~12 hti2

!Yi

12 ~12 f * !Yi
D*FsD+ (43)

An application of Eq+ ~26! allows us to evaluate the last term in Eq+ ~43! as

ES(
i5Ns

Nt

Zti2S12
12 ~12 hti2

!Yi

12 ~12 f * !Yi
D*FsD

5 lESE
s

t

Zu2 ES12
12 ~12 hu!Y1

12 ~12 f * !Y1
D du*FsD

which in turn shows that Eq+ ~42! can be written as

E~Zt 6Fs! # Zs 1 ESE
s

t

Zu2 G~hu! du6FsD, (44)

where the functionG is defined by

G~ y! :5 ~µ2 r !~ y 2 f * ! 1 s2 @~ f * !2 2 f *y# 2 lES12
12 ~12 y!Y1

12 ~12 f * !Y1
D,

(45)

wheref * is given by Eq+ ~17! and where the expectation in the last term is on the
random variableY1+

Equation~44! shows that~41! will be established ifG~ y! # 0, which we now
show is indeed the case+

Proposition 1: Let G~ y! denote the function defined in Eq+ ~45!+ Then G~ y! # 0 for
0 # y # 1+

Proof: Some manipulations show that we can writeG~ y! as

G~ y! 5 ~ y 2 f * !C '~ f * !, (46)

whereC '~{! is the derivative of the function given by Eq+ ~16!, that is,

C '~g! 5 ~µ2 r ! 2 s2g 1 lES Y1

12 ~12 g!Y1
D+

Consider then the nonlinear programming problem of

maxC~ f ! subject to f # 1, f $ 0+
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Setting up the LagrangianL~ f,u! :5 C~ f ! 1 u~12 f !, whereu is the Lagrang-
ian multiplier, the Kuhn–Tucker optimality conditions are: ~i! C '~ f * ! # u*; ~ii !
f *~C'~ f * ! 2 u* ! 5 0; ~iii ! f * # 1; ~iv! u*~12 f * ! 5 0; ~v! u* $ 0+

Hence, it is immediate that

G~ y! [ ~ y 2 f * !C '~ f * ! # ~ y 2 f * !u*

with u*5 0 if f * , 1, andu* . 0 if f *5 1+ If the former case holds, then we have
G~ y! 5 0, while if the latter case holds we haveG~ y! # 0, sincey # 1+ n

Therefore, it follows now from Eq+ ~44! thatE~Zt 6Fs! # Zs, which establishes
Eq+ ~41!+ n

To continue now,we have shown thatZt is a nonnegative supermartingale,with
Z0 5 1, hence it converges, that is, Zt r Z` , `+ Therefore, we may now simply
repeat the argument in@1# or @16# to complete the proof, that is, by Kolmogorov’s
inequality

PS sup
n#t,`

Xt
h

Xt
* . ednD # e2dn

for every integern $ 1 andd . 0+ It follows, therefore, that

(
n51

`

PS sup
n#t,`

lnS Xt
h

Xt
*D . dnD # (

n51

`

e2dn , `,

and so, by the Borel–Cantelli lemma, there exists an integer valued random variable
Nd such that

lnS Xt
h

Xt
*D # dn # dt, for all n $ Nd andt $ n+

It follows that supt$n~10t! ln~Xt
h0Xt

*! # d holds for everyn $ Nd, and therefore we
also have

lim
tr`

1

t
lnS Xt

h

Xt
*D # d a+e+

The inequality~40! now follows from the fact thatd is arbitrary+ n

5. CONCLUSIONS

We have shown that for the case of a single stock whose price process follows a
geometric Brownian motion, and a risky bond whose price may fall by random
amounts at the jumps of a homogeneous Poisson process, the same investment pol-
icy is optimal for the three objectives of~i! minimizing the expected time to reach a
given level of wealth, ~ii ! maximizing the expected rate of growth over a finite
horizon~which is equivalent to maximizing terminal logarithmic utility of wealth!,
and~iii ! maximizing the actual rate of growth over an infinite horizon+
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It is a relatively simple matter to extend our results to the case of multiple stocks
and bonds+ It is also a simple matter to extend the model of the default rate to the case
of an arbitrary point process, as well as to stock prices that follow stochastic differ-
ential equation with more general coefficients than the constant ones treated here+
However, while we could then still show that the solutions to Problems 2 and 3 are
equivalent, Problem 1,minimizing the expected time to the goal, which is the main
point of this paper, cannot in general be solved in closed form for processes more
general than those considered here+ The reason for this, of course, is that any time
dependence in the underlying parameters will also make the optimal policy for Prob-
lems 2 and 3~they will in general be the same! time-dependent as well,which would
in turn make the expected value of the logarithm of the resulting wealth process a
nonlinear function of time+ However, it is precisely the linearity of the expected
logarithm of wealth that allowed the explicit analysis for Problem 1, so we cannot as
yet prove that the optimal policy for the minimum time to the goal problem is indeed
the same as that for the others for more general models+We conjecture at this point
that indeed such is the case at least asymptotically~as b F `! by the results of
Breiman@3# +

It would, of course, be very interesting to know what the optimal policy is for
Problem 1 for more general processes than those treated here, and we leave this
problem open for future research+ It is interesting to note that even if the constant
coefficient model holds, together with a simple Poisson jump process but with neg-
ative as well as positive jumps allowed, then our results for Problem 1 are no longer
valid+The reason for this is that, in that case, the wealth process may in fact reach the
goal ~and beyond! by taking a jump+ In that case, the HJB equations need to be
modified for this possibility, and there does not appear to be a closed form solution
to the problem+We leave this problem, too, for future research+
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