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OPTIMAL GROWTH
IN CONTINUOUS-TIME
WITH CREDIT RISK

Sib BROWNE

Graduate School of Business
Columbia University
New York, New York 10027

We consider asset allocation strategies for the case where an investor can allocate
his wealth dynamically between a risky stogkhose price evolves according to a
geometric Brownian motigrand a risky bongwhose price is subject to negative
jumps due to its credit risk and therefore has discontinuous sample Yétluerive
optimal policies for a number of objectives related to grawthparticular we
obtain the policy that minimizes the expected time to reach a given target value of
wealth in an exact explicit fornWe also show that this policy is exactly equivalent

to the policy that is optimal for maximizing logarithmic utility of wealth ahénce

the expected average rate at which wealth gr@ssvell as to the policy that max-
imizes the actual asymptotic rate at which wealth grdus results generalize and
unify results obtained previously for cases where the bond was risk-free in both
continuous- and discrete-time

1. INTRODUCTION

In this paper we consider the optimal investment behavior for an investor who can
diversify his wealth between two assedsrisky stock and a risky bond@he objec-

tives we consider here relate solely to growitha sense soon to be definecthe

price of the risky stock is assumed to follow a geometric Brownian movitiich is

a standard model in financial economisge e.g., Merton[20]). A complication in

our model not present in the usual one studied in the optimal investment literature
(see e.g., Browne[5,6], Hakanssof13], Merton[19,20]) is the fact that here the
bond is not completely risk fredut is in fact stochastjsince it is subject to credit
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130 S. Browne

risk. The assumption we make about how credit risk affects the bond price jsthat
certain random timesan event occurs which reduces the price of the bond by a
random amounfhis eventis usually termed a “corporate reorganizatiset e.g.,
Jarrow and Turnbull15]) and refers to the fact that at a corporate reorganization
epoch there is a partial default on the banthis is an extension of a model first
considered in Mertof19]. Similar models are used ii5] and otherswith the
objective of pricing options on the corporate boriglse also Mertoh20, Ch. 9]).
Here we are interested in determining investment strategies that achieve optimal
growth There areof course a few different ways to define growgfior example
some define growth as tliaveragérate at which wealth compounds and an optimal
growth policy would therefore maximize this ra@r the expected value thereof
This is the approach takenin the discrete-time papers of Keffly Hakanssohl13],
and Markowit4 18], among other<Breiman[ 3] considered an optimal growth strat-
egy to be a strategy that minimizes the expected time to reach a given target level of
wealth He showed that in discrete-timeithout credit risk as the target level of
wealth gets “largg the policy that maximizes the expected rate at which wealth
compounds is also asymptotically optimal for the latter probleamely of mini-
mizing the expected time to the target leMateresting analyses of optimal growth
policies in discrete-time can be found in the papers cited above as well as in Thorp
[22], Ethier and Tavarg9], Algoet and Covef1], and othersln particular Algoet
and Covel1] proved that the policy that maximizes the expected rate at which
wealth compounds also maximizes the actual fatethe time horizon goes to in-
finity ) at which it compounds

Optimal growth strategies have been studied in continuous-time aghelgh
mostly for models with a completely risk-free baritence without credit risksee
[20, Ch. 6] for a survey and discussion of the fundamental role optimal growth
policies play in modern finance affl] for extended optimality properties of these
policies. Merton[19] solved for the policy that maximizes the expected logarithm
and hencethe expected growth rateleath Orey, Pestienand Sudderthl14] were
the first to solve for the policy that minimizes the expected time to a goal in continuous-
time. Unlike the discrete-time asymptotic results of Breinh@h they found that the
policy that maximizes the expected rate at which wealth compounds is in fact ex-
actly optimal for the problem of minimizing the expected time to a gfmlany
fixed goal Merton[20, Ch. 6] recovered these results independently via a different
route and Brownd 5] considered this and other goal-related objectives in a more
general model that incorporates liabiliti@$e results of Algoet and Covgt] have
been extended to the continuous-time cagel 8. Central to the analysis in those
papers was the fact that tlieontrolled wealth process of the investor followed a
diffusion processwith continuous sample pathEhe introduction of the credit risk
problem introduces some new difficulties into the mgdaice now the sample path
of the wealth process is no longer continuous

Here we consider the extension of optimal growth policies in continuous-time
to the case where the bond is no longer risk-fea®l is subject to credit riskCredit
risk here means that the organization paying the coupon on the bond may fail to meet
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the couponWhen a coupon payment is missékle value of the bond goes down
There are many ways to model the credit risk problaere we will use the model
firstintroduced in Mertoi19], which was extended and analyzed further in Jarrow
and Turnbul[15], among otherdn the next sectionwe introduce the model of the
primitives namely the stock price and the bond price procedseSection 3we
give our main resujtwhich shows that the same poljayhich is given explicitlyis
optimal for the following three problemél) minimizing the expected time to reach
a given value of wealth(2) maximizing the expected average rate at which wealth
compounds over a fixed horizp(3) maximizing the actual rate at which wealth
compounds over the infinite horizon

The explicit form of our policy given in Theorem 1 below is seen to be not only
a generalization of the continuous-time results of Heath gt 4], Merton[20], and
othersbut our results also unify the discrete-time optimal growth policies studied in
Breiman[3], Ethier and Tavarg9], Finkelstein and Whitely10], Hakanssof13],
Kelly [17], and Thorp[22], with the aforementioned continuous-time results
Section 4 we provide the proof of the theorerihe proofs for the three different
parts are of varying difficultymaximizing the expected average rate at which wealth
compounds over a fixed horizon turns out to be a relatively simple problem and is
solved using some basic facts from the general theory of stochastic integhditien
imizing the expected time to reach a given value of wealttich is in fact the main
contribution of this papeis a more delicate problem and requires a new and more
technical proofWe first show that the Hamilton-Jacobi-BellméhJB) equations of
stochastic control are satisfied and then provide a rigorous proof of optimality by a
martingale argumentinally, using results from the general theory of stochastic
integrationwe show that the ratio of the wealth from any other strategy to the wealth
from the growth-optimal strategy is a nonnegative supermartinghle result then
allows the martingale argument ff] (see alsq16]) to be applied here to verify
optimality for maximizing the actual rate at which wealth compounds over the in-
finite horizon We then concluden Section Swith some suggestions for extensions

2. THE MODEL

Without significant loss of generalityve assume that there is only one risky stock
available for investmer(e.g., a mutual fund, whose price at timéwill be denoted

by S. Following [19], we will assume that the price process of the risky stock
follows a geometric Brownian motign.e., S satisfies the stochastic differential
equation

d§ = pgdt+oSdW (1)
whereu ando are constantand{W;: t = 0} is a standard Brownian motiofihus
S = Sexpl(p— 302)t+ oW}

and so foru > ¢?%/2, the stock is viable over an infinite horizpsince we have
(1/t)Ing = (p— 302) > 0.
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The other investment opportunity iSr@sky) bond(or money market account
whose price satisfies the following stochastic differential equation

dB, = rB,_ dt — B,_ dQ, (2
whereQ, is acompound Poisson procedbat is

Q= EY 3)

where{N;;t = 0} is a simple homogeneous Poisson process with intensiand

{Y;;i = 1} is an ii.d. sequence of random variabld$e compound Poisson process

Q and the Brownian motiokV are assumed to be mutually independdihie inter-
pretation ofY; is the random percentage change in the bond price associated with the
ith jump in N. In the finance literaturey; is called the “percentage writedown”
associated with thieh corporate reorganizatioAs bond prices cannot become neg-
ative we will assume that

PO=Y,=1) =1 (4)

This model of Poisson bankruptcies has been used extensively in finance literature
Merton [19] introduced this model and studied the problem of how an investor
should invest so as to maximize expected utility of terminal wealth for a special case
with Y; =1, whereby the bond defaults completely at the first corporate reorganiza-
tion. However as he himself notes thera complete default is rather ratéus the
model used here might be somewhat more realiddcrow and Turnbull15] use a
simple Poisson bankruptcy model to price options on credit-risky securTtes
empirical distributions of the writedowns for different classes of corporate bonds
have been studiefbor examplein Franks and Toroufsl2]. Here our interests lie in
determining optimal portfolio strategies rather than pricing

Elementary results on stochastic integration show that the solution {@Hg

B, = Boe™ [] (1Y), ©)

with the understanding that an empty product.igfius the bond price is always
nonnegative for every<< co. Whether the bond is viable in the long run deperds
courseon the relationship among the paramet&i@ examplea simple condition-
ing argument shows th&B, = Byexp{t(r — AE(Y;))}, from which we may conclude
that it is sufficient to assumeA > EY; to ensure thafl/t)InEB, — r — AEY; > 0.
However it is also clear thatsince InB, = In By + rt + ¢, In(1 — Y,), the law of
large numbers implies that

(1/0)InB; — (r + AEIn(1—-Y,)),

which is positive only ifr /A > —E In(1-Y;), which is in fact, a stricter assumption
than the former(This of course follows from Jensen’s inequaliéyd the fact that
r/A > 1—e "A) For the remainder of the pap@re do not particularly care about the
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long-term viability of the bondand so we make no assumptions regarding the pa-
rameters or distribution of the writedowns

We will let 7 denote the underlying filtration of intereshat is we are given a
filtered probability spacéQ, F,{%}, P) which supports the standard Brownian mo-
tion Wand the compound Poisson proc€ssvhere, is theP-augmentation of the
natural filtration /"9 := o {(W,,Q,), 0 = s=t}.

Let f, denote the fraction of wealth invested in the risky stock at timeder
an investment policy, where we assume thaff,} is a suitable /_ admissible
adapted control procesghat is f; is a nonanticipative function that satisfies
fOT f2dt < oo, a.s,, for everyT < co. We will constrain the controf f;} by requir-
ing 0= f, =1 for all t. This rules out short sales as well as borrowing from some
other external source

Let X, denote the wealth of the investor at timé it follows policy f, with Xq=
X. Since any amount not invested in the risky stock is held in the lfohéch has a
greater return than caghhis process then evolves as

ds dB,
fx Dxiao) 2
dX; = f_ X, S X (1 —12) B,

=X [r+f_(p—r)]dt+f_ X odW — (1—f_ )X dQ (6)

upon substituting from Eq$1) and(2).
Thus for Markov control processels wheref,_ = f(t—, X,_), and functions
g € C? the generator of the wealth process is

A'g(x) = [T(n—=r1) +r]xg + 3 f 202G+ A[EQ([1 — (1 - F)V1]x) — g(xX)],
)

where the expectation operator in the last term is on the random percentage,change
Y;.
Recognizing thatif a jump in N occurs at times, then the jump in the wealth
process is
AXI = XE= X = =X (L= ) Yas

allows us to use standard results in the theory of stochastic integfetiprProtter
[21, Thm. 11.36]) to solve Eq(6) as

t 1 t
thzxoexp{J<r+fu(u—r)—§fu202> du+f afudm}
0 0

X _E[l(l—(l—ffif)Yi), (8)

where{r;,i = 1} are the points of the Poisson proceds, t = 0}.
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3. OPTIMAL GROWTH POLICIES

Our interestin this paperlies in determining optimal growth policies for the inves-
tor. As noted earlier thouglgrowth can be interpreted in different wayor exam-

ple, we can take growth to mean reaching a given target value of wealth as quickly
as possibleThis investment objective was treated 4] (see alsd5,20]) for the

case without credit riski.e., N; = 0 for allt = 0, hence a deterministic boindn the
absence of credit risk\; = 0), it is clear from Eq(8) that it is possible to find an
investment policy that causes wealth to grow exponentialty, simply takef, to be

an appropriate constamossibly Q. Thus it is natural to consider* In(X,/X,) as

the average growth rate of wealténd therefore one may call a policy that maxi-
mizes either the expected average growth (@ter a fixed time intervalor the limit

of the average growth ratealled the actual asymptotic growth rategrowth op-
timal policy as well Maximizing the expected average growth rate over a fixed
finite horizon say(0,T], is seen to be equivalent to maximiziEgn(XTf), over all
admissible policiedt turns out that the optimal policy for the latter two objectives

is equivalent to the one that is optimal for the problem of reaching a target goal in
minimal expected timethus for that modeli.e., without credit risk, we can call it

the optimal growth policy{6].

As we will show directly a similar result holds for the model with credit rjsk
although the policy is somewhat different aimfact, generalizes the previous re-
sults

To formalize this consider the following three problems associated with the
controlled wealth process given in E&):

Problem 1. Choose an admissible investment policytmimize the expected
time to reach a given level, say b, of wealthat is for X, = x < b, let

D(x) = i f
v ()= inf Ex(7), 9)
where
= inf{t = 0: X =b}. (10)
Letf @ ={fY;t = 0} denote the optimal policy for this problethat is
D — i f
f arg()slpsf1 E.(mp). (12)

Problem 2. Choose an admissible investment policynt@aximize the loga-
rithm of terminal wealth at the fixed terminal timethat is for X, = x, let

v@(x) = sup E[In(X7)], (12)
O=f=1
with the corresponding optimal polidy? = {f?: 0=t =T},

f@ := arg sup E[In(X{)]. (13)
0=f=1
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Problem 3. Choose an admissible investment policyriaximize the actual
growth rate of wealththat is for X, = x, let

v (x) = sup{llmmf In(XT)} (14)

with the corresponding optimal polidy® = { f* :t = 0},
f®:=arg sup{llmmf In(XT)} (15)
o=f=1( T

In the theorem below we show that the same policy is optimal for all three
problems and give the policy explicitlit is interesting to note that while it was to
be expected a priori that Problem 2 should have a solution similar to that of Problem
3, there does not seem to be that direct of a connection between Prolfferrahy
arbitrary wealth leveb) and the other twoSimilar to the case without credit risk
(seee.g., [6]) this optimal growth policy invests a constant proportion of wealth in
the stock with the remainder in the bqimddependent of the size of wealdithough
of coursein our case the constant is different and our resi@specially for Prob-
lem 1) could not have been obtained from the previous results

Remark 1:It is clear from Problem 2 thdt® is also the optimal policy for maxi-
mizing the expected growth ratém +_, . (1/T)E[In X1]. This is the problem first
introduced iff 17] for simple discrete-time problemidowever the criteria in Prob-
lem 3 is the actual growth ratevhich is harder to establish

Our main result is now given in the following theorem
THEOREM 1: Let C( ) denote the function
C(fy=r+f(p—r)—%f202+ AE(IN(L-(1-1)Yy) (16)
and let f* denote its maximizethat is let f* denote the constant determined by
f*= argogflie{r +f(u—r)—2f2024+ AE(IN(1— (1 —f)Y))} a7)
Then for @ery t= 0,

=12 =1 =t (18)

with corresponding optimalalue functions

(0 o
c(t "\ x (19)

YA(x)=Inx+C(f*)T (20)
W (x) = C(f*). (1)

\If(l)(x) =
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Remark 2: Observe that the investor holds more stock in (th@wnward Poisson
jump model treated here than in the corresponding riskless sas®e it can be
shown that the optimal policy of EQ17) is increasing im.

Note that whem = 0, Eq. (17) shows thaf * reduces to

—r
f* 20 = max{], uaz } (22)

Thisisindeed the optimal policy obtained in Heath ef 4] for Problem 1(see also
[20,5]), as well as the optimal policy for Problems 2 and 3 obtained in Mdrt8h

and Karatza$16]. Whenr = p = o = 0, and when we tak&; = —Y,, whereby the

only investment opportunity is a “bond” that appreciates at the points of a Poisson
processand set - f = a, thenf * reduces to

arg sugEIn(1+ aZ,), (23)

which is equivalent to the discrete-time optimal groyghKelly strategiesstudied

in Kelly [17], Breiman[3], Thorp[22], Finkelstein and Whitely10], Ethier and
Tavard 9], Bell and Covef2], and othersA Bayesian version of the optimal growth
policy in both discrete and continuous time is studied in Browne and WHhijtt
Thus in some sensehe optimal policy obtained here is a hybrid of the continuous-
time and discrete-time optimal growth policié®te howeverthat in discrete-time

it is only an asymptotic version of Problem 1 that is related to Problems 2,aawl 3
analyzed in Breimap3].

Remark 3: The computation of£( f) and then the maximization thereof is quite
straightforwardalthough simple closed-form solutions seem r&@r exampleif
the writedowns are assumed to be uniformly distributed®1), then it is easy to
show that

Ch =4 f(uor)— gz AN
=T o r 2 1—f

If the writedowns are taken to be a constaatya, where 0< o < 1, thenf * is seen
to be the root to a simple quadratic equation

4. PROOFS

We will prove the theorem in three stege will first solve for the optimal policy of
Problem 2 A standard argument can be modified to treat this case so that no new
difficulties arise Problem 1 which is the main contribution of this papes the
tricky ong and we will treat it nextWe will first show that the optimal wealth
process generated by the policydoes indeed solve the appropriate Dirichlet prob-
lem arising from the Hamilton—Jacobi—Bellman equatidiis will then use a mar-
tingale argument to verify rigorously that it is indeed optimé&k will then treat
Problem 3The proof that the same policy is optimal for this case relies on the rather
interesting factwhich we state as a theorem belaat the ratio of the wealth
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process obtained from any arbitrary admissible policy to the wealth process ob-
tained from the optimal growth policy*, is in fact a supermartingal®©nce we
establish thiswe can use arguments similar to thos¢dh(see als¢16]) to com-

plete the proaf

Proor oF PrRoBLEM 2: We can modify a fairly standard argument to obtain.tfis
proceedrecall that the solution to E@6) is

T 1 T
Xszxexp{f <r+fu(u—r)—§fu202>du+af fudw,}
0 0

x TT@—@—1,)%), (24)

where{r;: i =1} are the points of the Poisson procgNs: t = 0}, andX, = x. Taking
logarithms on Eq(24) therefore gives

T 1 T
InXTf=Inx+f <r+fu(u—r)—§fu202>du+crj fudW,
0 0

F 3@ @Y. (25)

Since we will be taking expectations on.Egb5), it is convenient to recall here the
following basic factwhich follows directly from the definition of stochastic inten-
sity in Bremaud4, Sect I1.3]. Itis also a simple version of the Campbell theorem
for compound Poisson processes wittti jumps(seg e.g., Daley and Vere-Jones
[8, Sect 12.1]).

Lemma 1: Let{N;,t =0} denote a simple Poisson process with po{atsi =1} and
intensityA, and let Q = >N Y, wherelY,,i = 1} areii.d., and independent of the
Poisson process.N'hen for any measurable functiorxgy),

£ g7 ) = A f Elg(u Yy du (26)

where the expectation in the rightand side of Eq(26) is with respect to the random
variable Y,.

It follows from Eq (26) that

E_ZT In(L-(1—f, )Y) = /\fTE[In(l— (1—f,)Y,)]du. (27)
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Taking expectations now on E(R5) using(27) gives

T 1
EInX{=Inx+ EJ (r + fu(u—r) — > f2o?+ AE[In(1— (1—fu)Y1)]) du
0

=|nx+ Ef C(f,) du, (28)
0

whereC(-) was defined earlier in Eq16). Since there is no explicit dependence on
the wealth procesX/in the integrand on the right-hand side of.E28), it suffices
to maximize the integranevhich yields thgconstantpolicy f “ of Eq. (17). Thus all
assertions relating to Problem 2 in the theorem have been established B

Remark 4:Note that when we place theonstant optimal policy f* back into
Eqg. (6), we obtain an optimal wealth processy X*, which by Eq (24) is

1 A
X = xexp{(r +f*(p—r)— E(f*)202>t+af*V\/t}H(l— 1—f*)Y).

(29)

Since the Brownian motiof\\,, t = 0}, the Poisson proce$bl;, t = 0}, and the i.d.
writedowns{Y;,i = 1}, are all assumed to be mutually independénms straightfor-
ward to take expectations on EQ9) to find that

E(X§) = xexp{[r +f*(u—r) = A(L—-f*)E(YD)]T}

We now move on to consider the substantially harder problem of minimizing the
expected time to get to a target level of wealth

Proor oF PROBLEM 1: Define nowr* := inf{t = 0: X;" = b}, whereX* is the wealth
process obtained from using the stratédyTo prove thaf * is indeed optimal for
this problemwe must show that

Jnf Ed(ry) = T (x) = E(r), (30)

where¥ M (x) is given in Eq (19).

Observe first that for any poli¢cyhe goalb is reached by diffusion and not by
jumps Hence a necessary condition for the first equality(B0) to hold is that the
value function¥ ' (x) solves the HIB optimality equatidseg e.g., Fleming and
Soner11])

inf ATW®(x)+1=0,
0=f=1

with the boundary conditio® @ (b) = 0, where A" is the generator of Eq7).
Let A* denote the generator of tlielaimed optima)l wealth proces¥ (i.e.,
whenf, = f*). Then the fact that* solves the HIB optimality equatipand the
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second equality if30), can be verified directly by observing that the functibf (x)
solves the Dirichlet problem

A WD(x)+1=0, for0=x<b and ¥®(b)=0. (31)

This can be seen by substitutinyand¥ ¥ (x) of Eq. (19) into the generatof7),
which gives

AT D (x) +1= A*< ! |n<l—)>> +1
C(f*) X

— l |:+f* _ _} .I:*22
= C(f*)r (=) 2( )o

+AE|n(1—(1—f*)Y1)]+1so, (32)

where the last equality follows from the definition 6f f*) andf *.

Since we have shown thd@t?(x) solves the appropriate HIJB equatipitse-
mains only to prove sufficiengyhat is to verify thatf * is in fact optimal for the
problem of minimizing the expected time to the go&d do this we will make use
of themartingale optimality principleFor this casgthis means finding an appro-
priate functional which is a uniformly integrable martingale under the pdficlut
is a supermartingale under any other admissible policy

To proceedobserve that by Eq29) we have for the process”,

In(X{) =Inx+ {(r +f*(u—r)— % (f*)202>t+af*vvt}

Ne
+ > In(@—(1-1)Y) (33)
i=1

and henceusing Eq (27), we find that
EIn(X{| ) = In(XZ) + C(f*)(t—s9).

From this it follows that the procegh (X)) — tC(f*), t = 0} is a martingale with
respect to the filtratiooF = {F:t = 0}.
Define now the function

b
M(t,X) := TP (x)+t=C(f*)* In(;) —t, forO<x=h. (34)

Consider now any other admissible polisgyh = {h;, t = 0}, which determines a
corresponding wealth procefs", t = 0}. Let 7! denote the first hitting time to the
wealth levelb for this processthat is let

D= inf{t = 0: X = b,

We are interested only in control policiagor which E7{! < co.
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Optimality of the policyf * for the problem of minimizing the expected time to
a goal will now follow directly from the following
LemMmA 2: Let h denote an admissible policy withE< co. Then for any such,h
EMM(t X[ F) =M(s X), foro0=s=t=rm (35)
with equality holding if and only if k= f *, where f* is the policy gien by Eq(17).

Proor: Fort < 7f!, Eq. (24) shows that

t 1 t
X{‘zxexp{f(r+hu(u—r)—§h§az> du+af hudV\{J}
0 0

x [T a-@-h, ¥, (36)

which allows us to writgfor t < 7

M(t, X)) = M(s,X{) + (t—s) —

C(f*)
' 1 2 .2
X[L<r+hu(u—r)—§hua )du
t Ne
+f oh, dW, + Z In1-(1- hTI_)Yi)]. (37)

Since{N,} is a simple Poisson processfollows that

E(Z In(1— (1— h,l_)Yi)|]-'s> = AE(ftEln(lJr hqu)du|]-'s>,

and by the admissibility off, it follows thatEf; h,dW, = 0.
Hence after some manipulatignve can write again fort < 7,

E(M(LX)|F) = M(S XD +(t=9) = =

t 1
X E(f {r+hu(u—r)— —hZg?
N 2

+AEIN(1— (1— hu)Yl)] du|]-"s>, (38)

which it is convenient to rewritausing Eq (16), as

E(M(t, X{)|F) = M(s,X) + E<f (C(f7) = C(hy) dulﬁfs),

fort=70. (39)

1
C(f*)
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But it follows from the definition ofC( f *) thatC( f*) = C(h) for anyh, hence
the integrand above is always nonnegative and is equal to 0 onky, ferf * for all
u = 0. Hence the lemma is provedand so we may conclude than fact, f* is
optimal for Problem 1 u

Remark 5:This proof holds also for the case= 0, thus offering an alternative
proof for the case without credit risk treated earlief14,20,5].

We next move on to consider the maximization of #wtual growth rate of
wealth

Problem 3. To prove thatf* = ¥, we will first show that for any other
wealth processayX{, the ratioZ, := X'/X;" is a(nonnegativglocal martingalelf
this is the casethen since a nonnegative local martingale is also a nonnegative
supermartingalave can adapt the arguments of Algoet and Cdtétsee als$16,
Sect 9.6]) to this case to show the comparison

lim ?Inx#‘sll_m?lnxifEC(f*) (40)

T—o T—oo

holds almost surely for every admissible portfolio policgnd its associated wealth
procesX". Thus the assertions in Theorem 1 regarding Problem 3 will follow if we
prove

Lemma 3: Let f* denote the constant policy of E47), and let h={h,} denote any
other admissible policyThen the ratio of the corresponding wealth proces§gs
where Z = X{'/X{, is a(nonnegatie) supermartingalethat is for s=<t,

E X! = X (41)
X{ °) X&'
Proor: LetZ, := X{'/X{. Recognizing that

(1 - ht—)YN(t—)+1)
— o | Z-
(1 —f )YN(t—)+1

allows us to apply the multidimensional general version of Ito’s formh2la Thm.
11.33] to show after much simplificationthatZs satisfies

Azt = Zt_Zt* = _<1_

Z, = Zs+ftzu—((u_ r(hy =) +a?[(f*)? = f*h,]) du
+f Zuf(hu_f*)dV\{l

(42)

N, _ _ /
Ba (i)
i=Ng

1—(1—f*)Y,
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SinceZ is a nonnegative procedhe stochastic integral term in E@2) is a non-
negative local martingajéhence a nonnegative supermarting@le such taking
expectations on Ed42) gives

E(Z|F) = Zs+ E<f Z, (p=n)(hy =)+ a?[(f7)? —f*hu])de's>

- 1-A-h, ¥
- E<i2NSZ“<1_ ==ty > J—;) (43)

An application of Eq(26) allows us to evaluate the last term in.E43) as
& 1-(1-h, )Y
E(?ﬁ“(l_ 1-a-y )1
7

_ t _1-A-h)v
= /\E(L ZUE<1 1—(1—f*)Y1>du

which in turn shows that Eq42) can be written as

t
E(Z|F) = Zs+ E(f ZuG(hu)dUIfs>, (44)
where the functior is defined by
. . . 1-1-yY
- _ g 2 #\2 _ fay] _
G(y):==(H=r)(y—=f*)+o?[(f7)* = f"y] AE(l 1_(1_f*)Y1>,

(45)

wheref * is given by Eq(17) and where the expectation in the last term is on the
random variabley;.

Equation(44) shows that41) will be established if5(y) = 0, which we now
show is indeed the case

ProrosiTION 1: Let G(y) denote the function defined in E¢45). Then Q'y) = 0for
O=sy=1

ProoF: Some manipulations show that we can wi&ey) as

G(y) = (y—f7)C'(f"), (46)
whereC’(-) is the derivative of the function given by E@.6), that is
C(g=(p—r)—oc?g+ AE(L)
1-1-9V
Consider then the nonlinear programming problem of

maxC(f) subjectto f=1f=0.
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Setting up the Lagrangidn( f,6) := C(f) + 8(1—f), wheref is the Lagrang-
ian multiplier, the Kuhn-Tucker optimality conditions ar@) C'(f*) = 0*; (ii)
f5(C'(f*)—6%)=0;(iii)f*=1;(iv)0*1—-1*)=0; (v) 6* = 0.

Hence it is immediate that

Gy)=(y—fH)C(f")=(y—-f")e"
with * =0if f* < 1 and®* > 0 if f* = 1. If the former case holdshen we have
G(y) = 0, while if the latter case holds we ha®y) = 0, sincey =< 1 u

Thereforeit follows now from Eq (44) thatE(Z,| %) = Zs, which establishes
Eq. (41). u

To continue noywwe have shown tha&, is a nonnegative supermartingaléth
Zy =1, hence it convergeshat is Z; — Z., < co. Therefore we may now simply
repeat the argument [11] or [16] to complete the progthat is by Kolmogorov's
inequality

Xh
P( sup — >e5”> e

n=t<oo Xt*
for every integen = 1 ands > 0. It follows, therefore that
e Xth o
SPl supIn[ = |>dn)=> e <o,
n=1 n=t<oo Xt n=1

and soby the Borel-Cantelli lemmahere exists an integer valued random variable
N; such that

Xh
|n<x—;>55ns5t, foralln=N; andt=n.

t

It follows that sup.,(1/t)In(X"/X;") = & holds for everyn = N;, and therefore we

also have
— 1 /X
lim-In| ;)| =6 ae
t—oo Xt
The inequality(40) now follows from the fact thad is arbitrary n

5. CONCLUSIONS

We have shown that for the case of a single stock whose price process follows a
geometric Brownian motignand a risky bond whose price may fall by random
amounts at the jumps of a homogeneous Poisson prdbessame investment pol-

icy is optimal for the three objectives @) minimizing the expected time to reach a
given level of wealth (ii) maximizing the expected rate of growth over a finite
horizon(which is equivalent to maximizing terminal logarithmic utility of wealth
and(iii ) maximizing the actual rate of growth over an infinite horizon
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Itis arelatively simple matter to extend our results to the case of multiple stocks
and bondsltis also a simple matter to extend the model of the default rate to the case
of an arbitrary point procesas well as to stock prices that follow stochastic differ-
ential equation with more general coefficients than the constant ones treated here
However while we could then still show that the solutions to Problems 2 and 3 are
equivalentProblem 1 minimizing the expected time to the gowalhich is the main
point of this papercannot in general be solved in closed form for processes more
general than those considered hdree reason for thiof courseis that any time
dependence in the underlying parameters will also make the optimal policy for Prob-
lems 2 and 3they will in general be the samgme-dependent as wellvhich would
in turn make the expected value of the logarithm of the resulting wealth process a
nonlinear function of timeHowever it is precisely the linearity of the expected
logarithm of wealth that allowed the explicit analysis for Problemmadwe cannot as
yet prove that the optimal policy for the minimum time to the goal problemis indeed
the same as that for the others for more general modédonjecture at this point
that indeed such is the case at least asymptotidatyp T o) by the results of
Breiman[3].

It would, of course be very interesting to know what the optimal policy is for
Problem 1 for more general processes than those treatedadmetave leave this
problem open for future researdhis interesting to note that even if the constant
coefficient model holdgogether with a simple Poisson jump process but with neg-
ative as well as positive jumps allowgtien our results for Problem 1 are no longer
valid. The reason for this is thah that casethe wealth process may in fact reach the
goal (and beyond by taking a jumpIn that casethe HIB equations need to be
modified for this possibilityand there does not appear to be a closed form solution
to the problemWe leave this problemntoo, for future research
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