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Abstract 

Suppose that a point process N, = 7"1, T 2 .... on [-0, ~ )  is thinned by independently retaining 
T, with probability p,. Our main examples are the classical p-thinning (p, - p) and the random 
record process (p, = 1/n). When /Vt is a mixed, nonhomogeneous Poisson process, we find 
conditions under which the thinned process is Poisson. When /V, is a pure birth process 
(gamma-mixed Poisson with exponential rate), we show that the record process is Markov 
renewal, with an interesting structure, and we compare this with related asymptotic results. 
When Nt is a Mittag Leffler renewal process (the homogeneous Poisson is a special case), we 
give a "Deheuvels-type" representation of the record process (Deheuvels, 1982) and related 
characterization results. 

A M S  Subject Classifications." Primary 60G55; Secondary 60K99 
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1. Introduction 

Let { T., Z .  },, _> ~ denote a marked point process, where 7"1, T2 . . . .  are the points of  

a simple, nonexplosive point process on [-0, ~),  and the marks {Z.},,> 1 form an i.i.d. 

sequence of  cont inuously distributed random variables (r.v.'s), independent of 

{ T. },, _> ~. The corresponding r a n d o m  record  process  is the process of points at which 

record marks occur, that is, points 7". at which Z.  = max~ < i<,, Z~. Random record 

processes are interesting in their own right, and because of their role in "finding 

explicit solutions of optimal selection problems based on relative ranks" (Bruss and 

Rogers, 1991, p. 331), and also because they may possess exact properties that appear  

as limits in other extremal models (cf. Bunge and Nagaraja,  1992a, Section 7, and 

Section 3.2, below). 
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A theorem of R6nyi states that P{Z. is a record} = 1/n, and that the events {Z. is 
a record}, n _> 1, are independent (see Resnick, 1987, p.169). Thus the random record 
process can be regarded as a thinning of { T. },, > ~, where the point T, is independently 
retained with probability p. = 1/n. The thinning is state-dependent because the prob- 
ability of retention depends on n. In this note we find conditions under which the 
state-dependent thinning of a mixed, nonhomogeneous Poisson process is Poisson, 
for general p.'s, and we give exact, explicit representations for the random record 
process (p. = 1/n) when {T.},, > i is a pure birth process with integer parameter and 
when { T. },, >_~ is a "Mittag-Leffler" renewal process. 

Specifically, then, let { T., B. },, _> ~ denote a bivariate point process on [0, ~), where 

TI, T2 . . . .  are as above and To :=0,  and {B.},,>~ is a sequence of independent 
Bernoulli r.v.'s, independent of { T. },, > ~, with success probabilities 
0 < p. := P {B. = 1 } < 1, n > 1. We assume that { T., B. },, > ~ is defined on a probabil- 
ity space (f2, ~ ,  P), and that it is adapted to a history (~t ,  t > 0) ___ ~ .  Let 

Nt(i)= ~ l (T .<t ) l (B ,=i) ,  i = 0 , 1 ,  t > 0 ,  
n>_l 

where 1 (A) := the indicator of the event A, and let/qt = Nt(O) + N,(I) (see Br6maud, 
1981, ch. II, regarding such models). Since T, appears in Nt(l) iffB, = 1, we call Nt(1) 

a state-dependent thinning of Nt. 
The most general formulation of our problem is: give a representation of Nt(1) 

based on {p,},,> ~ and the properties of ~Tt. B6ker and Serfozo (1983) gave weak 
convergence theory and Arjas et al. (1992) gave filtering formulas for models more 
general than ours, but it may not be possible to find an exact representation without 
making some restrictions. However, there are some tractable special cases, such as the 
random record process (p, = 1/n) and the classical p-thinning, where p, = p for all 
n (Matthes et al., 1978, p. 91). 

We proceed as follows. In Section 2.1 we assume that ~7 t is a mixed, non- 
homogeneous Poisson process, and we derive a sufficient condition for Nt(1) to be 
a Poisson process; the condition holds if and only if the mixing distribution is either 
degenerate or gamma. In Section 2.2. we relate our results to those of Bruss and 
Rogers (1991) concerning Pascal processes and k-records. In Section 3.1 we take ~Tt to 
be a pure birth process with integer parameter (gamma-mixed Poisson with exponen- 
tial rate), and we show that the record process is a Markov renewal process with an 
interesting structure; this generalizes results of Bruss and Rogers (1991) and Bunge 
and Nagaraja (1992a). In Section 3.2 we compare the aforementioned Markov 
renewal process with the limiting behavior of the record process over an ordinary 
nonhomogeneous Poisson process. In Section 4 we take N, to be a "Mittag Leffler" 
renewal process (the homogeneous Poisson is a special case). In general the Mit- 
tag-Leffler process is not mixed Poisson, so the results of Section 2.1 do not apply. 
However, we give a representation of the record process in the general case, thereby 
extending a result of Deheuvels (1982) (a different proof of the latter result, in the style 
used here, was given by Bunge and Nagaraja, 1992a). We also give two related 
characterizations of the Mittag Leftler distribution. Finally, Section 5 contains the 
proofs. 
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A note on notation: the distribution with density 2;'x;' 1 e ~/F(7) ,  x > 0, with 
parameters  2 > 0 and ~, > 0, will be denoted by F(2, 7); F()~, 1) will be called exp(2). 

2. Thinned mixed Poisson processes that are Poisson 

2.1. A sufficient condition 

Let p (t) denote a strictly increasing, positive, differentiable function on [0, ~ )  (right 
differentiable at 0) such that p(0) = 0 and p(t) T ~ -  Let A denote a positive r.v. on 
(t2, ~ ,  P) with distribution function (d.f.) F and Laplace-Stieltjes t ransform (LST) 
f ( t )  = E(e -At), t > O, and letfl"l(t) denote with nth derivative off. Let ~ ( i )  = ~(N~(i), 

0 _< s < t), i = 0, 1, and suppose that ~ ,  is a history of the form 

(+0) ~ ,  = tr(A) v o ~ ( i )  . 
i 

Finally, suppose that N~ is a mixed, nonhomogeneous  Poisson process with ~c in t en -  

sity i~'(t)A. 

Proposition 1. f f  there is a function p: [-0, ~ ) - ~  [0, ~ )  such that 

fl")(t) 
V n >  1, V t > O ,  - p , f ~ , _ l ~ ( t  ) - p ( t ) ,  

then Nt(1) is a Poisson process, with intensity p'(t)p(p(t)). 

(1) 

While condit ion (1) is appealing, it can be applied in essentially only two cases. 

Proposition 2. Condition (1) holds if and only if either: 

(i) A = 2 with probability l for  some 2 > 0, p, - p for  some pc(0 ,  1], and p(t) - p2, or 

(ii) A ~ F ( 2 , ? ) f o r  some 2 > 0 and t' > O, p, = c/(n - 1 + ?)for  some 0 < c <_ 7, and 

p ( t )  = c/(;~ + t). 

Thus, N,(1) is Poisson in these cases, with rate p'( t)p2 or cp'(t)/(2 + p(t)), respec- 
tively. 

Conversely, suppose that N~ is mixed Poisson and N,(1) is Poisson. Does this imply 
that (1) holds? In general we do not know, but we can answer affirmatively in two 
special cases. First, it can be readily shown that i f p ,  - pe(0 ,  1] then A - )~e (0, ~).  
This also means that if A is nondegenerate  then {p,},,~ ~ must be "nondegenerate"  
(p, ~ p) in order  for N,(1) to be Poisson. Second, if p, = l/n, n > 1, then A ~ exp()~) for 
some 2E(0, oc). This can be proved using the formula for P{N,(1)  = n} given in 
Theorem 4.4 of Bunge and Nagaraja  (1991). But it is also a consequence of the proof  of 
Theorem 2.2 of Bruss and Samuels (1990). In that paper the authors  make extensive 
use of the order statistic property, which is characteristic of mixed Poisson processes; 
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we do not exploit this proper ty  directly here, al though it underlines the result of 
Feigin (1979) that we cite below as Fact  2. 

2.2. Pascal processes and k-records 

Bruss and Rogers (1991) studied the case where A ~ exp(1) (i.e., 2 = 7 = 1 in 
Proposi t ion 2(ii)); they called { T, },, >_t a Pascal process in this case. To discuss their 
results we need the following definitions. Returning to the marked point  process 
{ T., Z .  },_> ~ of Section 1, define Z ,  to be a k-record if Z ,  is the kth largest among 
Z1 . . . . .  Z , ,  1 < k < n. Let Rt(k) denote the k-record process, i.e., the process of points 
at which k-records occur, and let K be a fixed positive integer. Bruss and Rogers (1991) 
proved the following theorem. 

Fact  1 (Bruss and Rogers, 1991). I f  { T,},,> i is a Pascal process then (R,(1) . . . . .  Rt(K)) 

are i.i.d, nonhomogeneous Poisson processes on (TK 1, ~).  

Proposi t ion 1, with A ~ exp(1) and p,  = 1/n, provides a simplified proof  of Fact  
1 for the case K = 1. Fur thermore ,  al though our  bivariate process { T,, B,},, > ~ cannot  

jointly represent (Rt(1) . . . . .  Rt(K)) for K > 1, it is possible to reformulate our  model so 
that N,(1) (based on {T,, B,},,> t) can represent Rt(k) maroinally for any k > 1, by 
setting p,  = 0, 1 _< n < k - 1, p.  = l/n, n >_ k. (This again is due to R6nyi's theorem; 
see Resnick, 1987, p. 169). By suitably modifying (1) to hold for n > k, one can then 
show that marginally R,(1) . . . . .  Rt(K) are identically distributed nonhomogeneous  
Poisson processes on (TK-1, ~) .  

3. Record processes over birth processes 

3.1. An exact representation 

We begin this section with a result of Feigin (1979, p. 303) which connects mixed, 
nonhomogeneous  Poisson processes and pure birth processes. (For  further discussion 
see Resnick, 1992, ch. 5.11.) The setup is the same as in the previous sections; we refer 
to Anderson (1991, p. 19) in regard to birth processes. Throughou t  this section m will 
denote an arbi t rary but fixed nonnegative integer. 

Fact  2 (Feigin, 1979). Let (v.  t >_ O) denote a continuous-time Markov process, defined 

on (Q,o~,P) ,  with state space {0,1,2 . . . .  } and P{v  o = O] = l, and with q-matrix 

given by 

q. . .+ l  = - q . . . =  t + m + n ,  n : 0 , 1  . . . . .  

qij = 0 otherwise. In this case (v.  t _> 0) is a pure birth process. Then it is possible to 

define a mixed, nonhomogeneous Poisson process (Nt, t >_ 0) on (Q, ~ ,  P) (as in Section 
2.1), with A ~ F(1 + m, I + m) and kl(t) = (1 + m)(e t -- 1), such that 

(Nt, t _> 0) = (vt, t >_ O) P-almost surely. 
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In this case [T.  - To- 1 }n _> I are independent r.v.'s with 7", - T,_ 1 ~ exp(n + m), 

n > l .  
For  this 57, (1) holds with p,  = 1/(n + m) (by Proposi t ion 2(ii)), but more can be 

said about  the record process, where Po = 1/n regardless of  m. In fact we have the 

following representation, special cases of which were proved by Bruss and Rogers 

(1991) (m = 0) and Bunge and Nagara ja  (1992a) (m = 0, 1). We refer to Cinlar (1975, 

ch. 10) for a discussion of  Markov  renewal processes. 

Theorem 1. Suppose that 57, is a pure birth process as in Fact 2, and that p, = 1/n, 

n > 1. Let  {z., 0o}, > ~ denote a Markov  renewal process with parameter space {[0, Go)} 

and state space {1,2 . . . . .  1 + m}, defined on a probability space (Q~, ~ # ,  P~), with 

semi-Markov kernel 

{ P # ( z l  < t }  = 1 - e  "+m~' 

P~ {r ,+l  - ~. < t, 0,+1 = J l  0, = i} = 7rij(1 - e-J ' ) ,  n > 1, 

where Ol = 1 + m with probability 1, and 

Cl'~ij] 

1 0 0 . . .  0 

1 1 0 0 ~ . . .  

± ! ! ..• 0 3 3 3 

1 1 1 1 
+m l+m l + m  "'" 

l < i < _ j < _ l + m .  

Let  M t =  ~,>_ll(zo < t ) , t > O .  Then 

( N , ( 1 ) ,  t >_ 0) =d ( m r ,  t _> 0), 

where a= denotes equality in distribution• 

t>_O, l<_ i<_ j<_ l+m,  

Intuitively, Mt can be described as follows: zl - z0, "t2 - -  r l  . . . .  are conditionally 

independent given 01,02 . . . . .  with ~ . - ~ ,  i ~ exp(0.), n >  1 (Zo:=0) ,  where 
01,02 . . . .  are the outcomes of  a finite Markov  chain on {1,2 . . . . .  1 + m} with initial 

state 1 + m, transition matrix [gij] ,  and absorbing state 1. In particular, let 

A = min{n _> 1: 0, = 1} - 1; then Za+l -- za, ra+2 -- r a+ l  . . . .  are i.i.d, exp(1) r.v.'s; 

that  is, Mt is homogeneous  Poisson after Za. Note  also that A - 0 iff m = 0 and 

P # { A  = 1} = P~ {02 = 1} = 1/(1 + m) > 0  for any m > 0 .  

N o w  let TI(I) ,T2(1) , . . .  denote the points of N , (1 ) (wi th  To( l ) :=  0), and let 
U,(1) = To(l) - T~_ 1 (1), n > 1. Theorem 1 says that when 57, is a pure birth process as 
in Fact  2, (UI(1), U 2 ( 1 )  . . . .  ) d (rl -- ~0, Z2 -- Zl . . . .  ). Heuristically speaking, then, 

UI(1), U2(1) . . . .  can be generated as follows in this case. Initially, set 01 = 1 + m and 

generate U I ( 1 ) ~  exp(01). Then for n _> 1, given 0,, draw 0,+1 according to the 

discrete uniform distribution on {1 . . . . .  0,}, and given 0,+1, generate 

/.,1,+ 1 (1) ~ exp(0,+ 1). In particular, if A is as above then UA+ 1 (1), U A + 2 ( 1 )  . . . .  are 
i.i.d, exp(1) r.v.'s and N,(1) is homogeneous  Poisson after TA(1). 
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3.2. Comparison of  exact and limiting behavior 

Let (U* . . . . .  U*) denote  i.i.d, exp(1) r.v.'s, n > 1. It was shown in Bunge and 

Naga ra j a  (1992b) that  if A -= 1 (the ordinary  nonhomogeneous  Poisson case), and 

#'(t)/l~(t)~ 1 as t--* ~ ,  then (UK+ 1(1), U~+,(1)) d (U*, U*) as K ~ oo, where 
d denotes convergence in distribution. We can then make  the following compar i son  

with Theorem 1. 

___~"(t). 1 "} 
~(t) 

and ~ (UK+,(1), UK+,(1)) d (U*, U*), (2) 
• " ~  - - - 4 -  " ' ' ,  

A-- -1  

/~(t) = (1 + m)(e' - 1) ) 

and I ~ (UA+,(1) . . . . .  UA+,(I)) 0__ (U~' . . . . .  U*). (3) 

A ,,- F(1 + m ,  1 + m )  

Note  that  I~'(t)/l~(t)~ 1 as t ~  oo when /~(t)= (1 + m)(e t -  1), and that  E ( A ) =  1 
when A ~ F(1 + m, 1 + m). In particular,  m = 0 implies that  A - 0, and (3) then says 

that  exponential  randomiza t ion  of the rate has the same effect on N,(1) as does 

passage to the limit under  the n o n r a n d o m  rate. Fur thermore ,  i f#(t)  = (1 + m)(e' - 1) 
and A ~ F(1 + m, 1 + m), then as m ~  oo, I~'(t)/l~(t)~ 1 for all t > 0, A ~ 1, and 
A p oo, where p denotes convergence in probabil i ty.  Thus as m ~ ~ ,  (3) can be 

regarded as a " random- index"  version of (2), with A playing the role of  ~. 

4. The Mittag-LetHer renewal process 

We now consider a different general izat ion of the Poisson process for Nt. Let 
U, = T, - T._ ~, n > 1, and suppose that  

n~  1 = - -n  Yn , 
n >_ l  

where {X.},  >, is an i.i.d, sequence of exp(1) r.v.'s and { Y,},, > ~ is an i.i.d, sequence of 
positive a-stable r.v.'s independent of { X ,  }, > ~ (Y1 has LST e - s., s _> 0, where ct e (0, 1]). 
In this case UI has LST 1/(1 + (s/2)'), and is said to have a "Mit tag-Leff ler  (~, 2)" 
distribution (Pillai, 1990); thus/qt  is a Mit tag-Leffler  (~t, 2) renewal process. I f~  = I then 
/qt is a homogeneous Poisson process of rate 2. Now it is readily shown that ifp,  - p then 

N , (1) ~ ~7,, 

for all pE(0, 1]. This implies that  Nt is a Cox process (Mat thes  et al., 1978, Theorem 
7.2.8, p. 295), but  it is not mixed Poisson (Grandell ,  1976, Theorem l(i), p. 35), so 
Section 2 does not  apply  for ct < 1. Nevertheless we have the following representat ion 
of the record process, for all ~ e (0, 1]. This generalizes Theorem 2 of Deheuvels  (1982) 
(ct = 1) and Theorem 7.1 of Bunge and Nagara ja  (1992a) (ct = 1). 



S. Browne, J. Bunge/Stochastic Processes and their Applications 55 (1995) 131 142 137 

Theorem 2. I f  ]V~ is a Mittag-Leff ler (or, 2) renewal process and p, = 1/n, n >_ 1, then 

d {~UneR .. . .  '~} IU,(I)},, >, = , (4) 
n >  1 

where R1, R2 . . . .  are the points of  a homogeneous unit Poisson process (with Ro := 0), 
independent of { U, },, > t. 

The presence of U,, the renewal time of Nt, in the right-hand side of (4) suggests that 
record processes over other renewal processes might admit an analogous representa- 
tion. However, with a Poisson process "in the exponent," (4) characterizes the 
Mittag-Leffier process. 

Proposition 3. I f  Nt is an arbitrary renewal process and (4) holds, where p, = 1/n, 
{R,},,>o is defined in Theorem 2 and ~ > O, then 1~, is a Mittag-Leff ler (:~, 2) renewal 
process (and ~ ( 0 ,  1]). 

Finally, it is readily shown that 

Vn >_ 1, X~/~ y~ d= Xi Yo, (5) 
i = l  i = 1  

where {X,), ,> ~ and { Y.I,,>_ ~ are defined above, and Y0 ~ Y1. That is, the stable r.v. 
has "factored out" of the sum. The proof of Theorem 2 depends in part upon (5); 
attempts to extend the theorem to other mixed-exponential renewal processes using 
an analogous factorization were fruitless, due to the following fact. 

Proposition 4. Let {X,},,>, be an i.i.d, sequence ofexp(1) r.v.'s, let { Y,},,>, be an i.i.d. 
sequence of  nonnegative r.v.'s independent of  {X.},,_> t, let Yo be a nonnegative r.v. 
independent of{X,},,>_ 1, and let ot > O. Then (5) holds if and only if Yo d= )'1 and Y1 is 
a scale multiple of  a positive or-stable r.v. (in which case ~E(0, 1]). 

In other words, (5) holds with exp(1) X f s  (for some Yo) if and only if X~/~ Y1 
Mittag-Leffler (a, 2). 

5. Proofs 

Proof of Proposition 1. The ~t-intensity of Nt(l) is p~,+~t~'(t)A, and by Br~maud 
(1981), Lemma 5, p. 171) the V~_o o~ff(i)-intensity of N,(1) is 

( ) ~ 2 N ' + I e - ~ " ' d F ( 2 )  
E p~ ,+ , l / ( t )A  V/~=offff(i) = t/(t)pt~,+, ~o ~ 2~,e_ZU.,dF(2 ) 

f'N'+ "(/~(tt)'~ 
=/~'(t) -- P~7,+, ~ j- (6) 
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Under  (1), the r ightmost  term of (6) reduces to p ' ( t ) p ( p ( t ) ) ,  and Watanabe ' s  theorem 

(Br6maud, 1981, Theorem 5, p. 25) then implies that  Nt(1) is a Poisson process with 
intensity p ' ( t ) p ( p ( t ) ) .  [] 

Proof of Proposit ion 2. " I f "  is readily verified by direct computa t ion .  Conversely,  

taking n = 1 and n = 2 in (1) and eliminating p(t ) ,  we obtain the second-order  
ordinary  differential equat ion 

p ~ f ' 2 ( t )  - p 2 f " ( t ) f ( t )  = 0 (7) 

for all t > 0. Suppose first that  p~ = P2 = P for some pE(0, 1]. Then the only LST 
solutions of (7) are f ( t ) =  e -at for arbi t rary  )~ > 0, in which case assertion (i) of the 

Propos i t ion  follows. On the other  hand, ifp~ ~ P2 then it can be shown that  the only 

LST solutions of(7) a r e f ( t )  = (1 + t /2)  p2/tp~-p~) for arbi t rary  2 > 0, where necessar- 

ily p~ > P2. That  is, A ~ F(2, 7), where 7 = Pz/(P~ - P2) > 0. Then applying (1) again, 

f ( ' ) ( t )  1 
Pn f ( n -  l}(t  ) -- pn(n -- 1 + 7 ) ~  = p( t )  

for all n >  1, which implies that  P n = c / ( n - l + 7 )  for some 0 < c < 7 ,  and 
p( t )  = c/ (2  + t). [] 

Proof  of Theorem 1. We begin by comput ing  the joint  LST of (U1 (1) . . . . .  Un(1)), for 
arbi t rary  n > 1. Let Ln = min {j: ~{= ~ Bi = n}, the index of the nth point  in the record 

process, n > 1 (L~ = 1). By R6nyi's theorem, 

P { L 2  = a2 . . . . .  Ln = a , }  = 
(a2 - -  1) - - ' ( an -  1)a . '  

1 < a 2 < . . .  < a n. Then 

1 E e  (slUl(1)+'"+snUn(1)) = E e - S l V l  S" 
I<.~ <~. . . . . .  ( a z -  1)'"(an-  1)a. 

a i  

Fl +e -+`v+, (8) 
i = 2  j=ai 1 + 1  

S i _> 0 ,  i ---- 1 . . . . .  n ,  a I := 1. Note  that  he -S~vJ  = ( j  + m ) / ( j  + m + si) = 

( j  + m ) / ( j  + ~i), where ~ i :=  m + si, i = 1 . . . . .  n (Anderson, 1991, p. 16). Then (8) 
becomes 

l + m  1 f i  al~_~ j + m 

1 + ~a1<,2< ~ <,. ( a 2  - -  1)..-(a, -- Dan -= ,_ ) + ¢i • .. i = 2  j a + 1  

_ 1 + m ~ I (a n + m)!/(1 + m)! 

1 + ~1 I . . . .  <~. . . . . .  (a 2 -- 1)-..(a, -- 1)a, l ] ~ . 2 F ( a i  + ~i + 1) /F(a i -1  + ~i + 1) 

__ 1 f i  F(ai -1  + ~i + 1) r ( a . )  f i  (a. + j). 
j = l  

(9) 
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Setting bi = ai - 1 and tli = ~ + 1 = 1 + m + si, we rewrite (9) as 

1 ~< (I F(b i -n  +t l i  + 1)F(b.  + 1) f i  (b, + 1  +j) .  (10) 
l~l m !  I<_h2 " " < h . i = 2  b / ~ i - J r -  ' i  q- 1) j = l  

It is easy to show by induction on m that 

( b , +  1 + j ) =  ( b , + r ) ,  
j = l  j = O T r = l  

m = 0, 1 . . . . .  Hence (10) is equal to 

1 ~ m !  h 
t / lm'  ~o 7~-. v <~ j= - I<h2_ .,- <h . i=2  

J 
F(bi_ l + qi + 1) F(b ,  + 1) 1~ (b, + r) 
b iF(b  i + r h + 1) ,=1 

= __ 1+,. _1 ~< f i  F ( b i 1 + rh + 1) 

ql k 1( k 1)!l<h, ..<t, i :2  b i F ( b i + r l i +  1) F ( b n + k ) "  
( l l )  

It is readily shown by induction on k that 

~< h F(bi_~ + rli + 1) F(b .  + k) 
I < h  2 . . -<  h. 1:2 biF(bi  + rli + 1) 

i1+1 
= ( k -  1)! ~, I~ q ; '  

iL + "'" + i~ - n [ jl  -- 2 
q ..... i~ >_ 0 

I~I {r/j~ - (k - 1))- 1 

j k = i l + . . . + i k - t + 2  

i l+ i2+ l  
1-~ ( q j 2 _ l )  1... 

j2=i1+2 

k = 1, 2 . . . .  (for k = 1 see Bunge and Nagaraja, 1992a, Lemma 2.2(i), p. 24). Thus, 
resubstituting for the qi's, (11) is finally 

( ( l ~ m )  ) 1 l + "  i ~ l  ( ~ 1 1 + (1 +m)  ~ ~ (1 +m)  i, 1 + s~, 
k=l  i ,+ . ' -+ i~=n- -1  j l=2  1 + m / /  

i~ . . . . .  i~ > 0 

i1+i2+1//  Sj  2 ~ l 

FI (1+ / ... 
j~=i~+2\ (1 + m)-- 1 

×((1 + m ) - ( k -  1)) i~ 1 + sj~ 
j k = i l + . . . + i k  1+2\ (1 + m ) : ( k - -  1 ' 

(12) 

si>__O, i =  1 . . . . .  n. 

On the other hand, it can be shown that (12) is also the joint LST of 
(zl - z0 . . . . .  z. - z._ 1 ) (the renewal times of Mr), by conditioning on (01 . . . . .  0.) and 
using [~ii] and the law of total probability. Therefore (T~(1)-  T0(l) . . . . .  T . ( 1 ) -  
T. l ( 1 ) ) = ( U l ( l )  . . . . .  U,,(I)) d ( Z l - - Z O  . . . . .  Z,, -- r,,- I ) for all n_> l ,  and hence 
(N, i1),t>O) ~=(M.t>O). [] 
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Proof  of  Theorem 2. We compute  the joint  characteristic function (ch.f.) of 

(log U~ (1) . . . . .  log U,(1)), first for 2 = 1. Setting zj = its, where 1:= x / -  1 and t~e~t, 
j =  1 . . . . .  n, th is i s  

EeZllogUt(l)+...+z.logU.(1) 

1 . . . . . .  (a2 - 1)...(a. - 1)a. E exp zi log Uj 
"" i = 2  j = a i - l + l  

, )z 
, . . . . . . . . .  ( 2 1 ) . . . ( a . -  l ) a .  E Uj  . (13) 

< i = j=ai 1 + 1  

Now it is easy to show that ~'= . . . .  +IU~ ~ W~/'Yi, where W,.~ F ( a ~ -  ai-1,  1), 
Y~ ~ positive s-stable, and W~ and Y~ are independent.  Hence 

E = E(WU~ y~)z, = E W['/~'EY:2 '. 
\ j = a i - , + l  

So (13) becomes 

EU~' EYT' ~', (az 1 ) . . . ( a . -  1)a, ,  EWf'/ '"  (14) 
i = 2  l < a z < . . . < a  . - -  " =  

But 

fo  wai-ai- ~- l e - w  
EWF'/~= wZ'/~ F(al - ai-1) dw 

r(a, -a~_~ + z~/~) 

r ( a i -  ai-l) 

so setting bi = ai - 1, (14) is 

f i  1 f i  r (bi  - bi- 1 + zil~) EU~ l EYr  i Y 
i = 2  1 . < h 2 < . . . < h  . 2 "  

= EU~' EYZ'F(z i /~  + 1) 1 - , (15) 
i = 2  

where the last equality is a consequence of the proof  of Theorem 7.1, Bunge and 
Nagara ja  (1992a, p. 37). It is readily shown that (15) is the joint  ch.f. of 
{log(UieR'-'/')}~'=~, so {Ui(1)}7_ a d {UieR,-,/,}~,=~, and multiplication by 1/2 com- 
pletes the proof. [] 

P roof  of Proposition 3. It suffices to show that 

U~ + ... + UN o= UeR/~, 

if and only if U ~ Mit tag-Let t ter  (~, 2), where { Uj }j >_ 1 are i.i.d, nonnegative r.v.'s, N is 
independent  of {Us}s>1 with P { N  = n} = 1/(n(n + 1)), U d U~, and R ~ exp( l )  
independent  of U. The proof  of this is a simple extension of the proof  of Theorem 7.3 
in Bunge and Nagaraja  (1992a) (1/~ plays the role of a scale factor). [] 
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Proof  of  Proposit ion 4. " I f"  follows by a direct computa t ion .  So assume that  (5) holds. 

First, taking n = 1 in (5), we have X~/'Y~ ~ X~/~ Yo, or 

_1 log Xa + log Y1 a_ _1 log X1 ÷ log Yo. 

Then 

~ / t ~ . ~ ,  C t ~ l o g X l / a ( t )  i ~ l o g Y , ( t )  = ~ l o g X 1 / ~ ( t ) ~ l o g y o ( t ) ,  

where qS,,. denotes the ch.f. of rv. But log X 1 is infinitely divisible (Steutel, 1973, p. 131), 

so ~b,ogX,/~(t) :~ 0 V t ~  and hence ~blogr,(t) = ~b,ogyo(t) V t e ~ ,  i.e., I/1 ~ Yo. 
Next,  it is required to show that  the LST of Y~ is e - t ~ '  for some 2 > 0. Tak ing  the 

LST of both  sides of  (5), with f(s) := Ee ~r l  we have 

(fo i fo • srl/ ' )e-*dr = f ( s w l / ~ )  F(n) dw. (16) 

Let c(s) = ~of(sr~/ ')e- 'dr.  Then (16) implies that  

o r  

/Ioc e - W  

F(n) = J0 w"- l f (swl/ ' )  c~)s) dw, 

( n -  1)! = w"-l f(s(c(s)w)l/~)e-Cl~)Wdw= w" lp(w;s)dw, 

where p(w; s) is a probabi l i ty  density function in w with pa ramete r  s > 0. But the 

exponential  dis tr ibution is uniquely determined by the sequence of its moments ,  so 

p(w; s) = f (s(c(s)w)l/~)e clslw = e-W 

for a lmost  every w (with respect to Lebesgue measure). Hence by the continuity of 

both  sides 

f (s(c(s)w)l/~)e -c~s)w = e-W 

for every w _> 0. Since f is an LST it has a (continuous) inverse f ~ ,  and we have 

for all w > 0 and s > 0. Therefore  

lims(c(s)) l/" = l imw 1/" f ~  (etCts~- l)w) = w-1/" f ~  (e ") 
s ~ az. s ~ ,~5 

for all w > 0, and hence w -  1/ , f~  (e -  ~') = 2* for some 2* > 0, that  is, e -w = f ( 2 * w  1/~) 
o f f ( s )  = e -la~)', s > 0. [] 
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