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Abstract

We study stochastic dynamic investment games in continuous time between two
investors (players) who have available two different, but possibly correlated, investment
opportunities. There is a single payoff function which depends on both investors’ wealth
processes. One player chooses a dynamic portfolio strategy in order to maximize this
expected payoff, while his opponent is simultaneously choosing a dynamic portfolio
strategy so as to minimize the same quantity. This leads to a stochastic differential game
with controlled drift and variance. For the most part, we consider games with payoffs
that depend on the achievement of relative performance goals and/or shortfalls. We
provide conditions under which a game with a general payoff function has an achievable
value, and give an explicit representation for the value and resulting equilibrium portfolio
strategies in that case. It is shown that non-perfect correlation is required to rule out
trivial solutions. We then use this general result explicitly to solve a variety of specific
games. For example, we solve a probability maximizing game, where each investor is
trying to maximize the probability of beating the other’s return by a given predetermined
percentage. We also consider objectives related to the minimization or maximization
of the expected time until one investor’s return beats the other investor’s return by a
given percentage. Our results allow a new interpretation of the market price of risk in a
Black–Scholes world. Games with discounting are also discussed, as are games of fixed
duration related to utility maximization.
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martingales

AMS 1991 Subject Classification: Primary 93E05; 90A09
Secondary 93E20; 60G40; 60J60

1. Introduction

This paper treats various versions of stochastic differential games as played between two
‘small’ investors, call them A and B. (The investors are called small in that their portfolio
trading strategies do not affect the market prices of the underlying assets.) The games con-
sidered here are zero-sum, in that there is a single payoff function, with one investor trying to
maximize this expected payoff, while simultaneously the other investor is trying to minimize
the same quantity. There are two correlated risky investment opportunities, only one of which
is available to each investor. The players compete by the choice of their individual dynamic
portfolio trading strategy in the risky asset available to them and a risk-free asset that is
freely available to both. There is complete revelation, or observation, in that A’s strategy is
instantaneously observed by B (without error) and vice versa.

For the most part, the games we consider have discontinuous payoffs where Investor A wins
if his fortune ever exceeds Investor B’s fortune by some predetermined amount, and similarly,
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Investor B wins the game if his fortune ever exceeds Investor A’s fortune by some (possibly
other) predetermined amount. As we show later, we require non-perfect correlation between
the investment opportunities so as to rule out trivial solutions to our games. Specifically, if the
investment opportunities available to A and B are the same, then in any of our continuous-time
stochastic differential games with perfect revelation, any move by Investor A can be imme-
diately reacted to, and perfectly adjusted for, by Investor B, thus heading off any movement
in the state variable. Thus, in our setting, the only interesting games are those where there is
non-perfect correlation between the investment opportunities, allowing non-perfect adjustment
and reaction between the players.

Aside from the intrinsic probabilistic and game-theoretic interest, such a model is applicable
in many economic settings. For example, our results have significant bearing on what is
sometimes referred to as active portfolio management, where the objective of an individual
investor is to beat the performance of a preselected benchmark portfolio (see e.g. Browne
(1999)). While the chosen benchmark is most often a wealth process obtained from a known
deterministic portfolio strategy (e.g. an index, such as the S&P 500), our results would provide
a worst case and minimax analysis for how the benchmark would perform in a game-theoretic
setting. These results could then be used in turn, for example, to set conservative capital
requirements for a given preassigned maximally acceptable probability of underperformance
relative to that benchmark.

Another, perhaps more direct, example occurs in many trading firms, where each individual
stock, or sector of stocks, is assigned to its own individual trader. Our model is then applicable
to an analysis of the performance of these traders when a component of their compensation is
determined by the achievement of relative goals, for example a bonus for the ‘best’ performer
(the winner of the game), and/or a penalty, such as termination, for the worst performer (the
loser). Similarly, our results, are of interest in a partial analysis of the competition played out
between two fund managers, whose funds are invested in different markets and have different
characteristics, who achieve rewards based on the relative performance of their funds.

Finally, we also note that our results also allow new interpretations of the market price of
risk of an asset in a Black–Scholes world, in that we show that the degree of advantage a
player has over the other is determined solely by the market price of risk of his investment
opportunity.

An outline of the remainder of the paper, as well as a summary of our main results, are as
follows. In the next section, we describe the formal model under consideration here. There
are two correlated stocks as well as a risk-free asset called a bond. Each investor can invest
freely in the risk-free asset but is allowed to invest in only one of the stocks, according to
any admissible dynamic portfolio strategy. His opponent can also invest freely in the risk-free
asset, but only in the other stock according to any admissible dynamic portfolio strategy. We
then describe how the investors compete. The relevant state variable is the ratio of the two
investors, and the game terminates when this ratio first exits an interval.

In Section 3, we provide a general result in optimal control for a stochastic differential
game with a general payoff function, in the context of our model. Specifically, we characterize
conditions under which the value of this game will be the smooth solution to a particular non-
linear Dirichlet problem. The equilibrium, or competitively optimal, controls are then given
by an explicit expression involving the derivatives of this value function. We then solve these
Dirichlet problems explicitly for various specific examples in subsequent sections. The proof
of Theorem 3.1 is presented in the final section of the paper.

In Section 4 we consider the probability maximizing game, where Investor A is trying to
maximize the probability of outperforming Investor B by a given percentage, before Investor B
outperforms him by another given percentage. It turns out that a value for this game exists if
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and only if a specific measure of advantage parameter, which is defined here as the ratio of
the market price of risk for A’s investment opportunity over the market price of risk for B’s
investment opportunity, takes values in a particular interval. This interval is determined solely
by the instantaneous correlation between the investment opportunities. If this condition is met,
then we give explicit solutions for the equilibrium portfolio strategies. Among other results,
we show that the disadvantaged player has a relatively bolder strategy than the player who
holds the advantage, as would be expected from the classical results of Dubins and Savage
(1965) for single-player probability maximizing games. For the symmetric case, where no
player holds the advantage, the equilibrium strategies reduce to the growth-optimal strategy.

In Section 5 we consider games where the objective is to minimize the expected time to
outperform the other player. There are two cases to consider, depending on which player
has the advantage. In the symmetric case, the games do not have a finite value. In the
non-symmetric case, the equilibrium portfolio strategies are the individual growth-optimal
strategies, and a new connection is made with maximizing logarithmic utility.

In Section 6 we consider games with discounting, where the objective of one player is to
maximize the discounted reward achieved upon outperforming his opponent. For this game
to have a value, we require a greater degree of advantage to exist than was required for the
probability maximizing game.

In Section 7 we consider fixed-duration utility-based games, where both investors obtain
utility (or disutility) solely on the basis of their relative wealth, i.e. in terms of their ratio. The
value for such games is then given (under appropriate conditions) as the solution to a particular
non-linear Cauchy problem, and the saddlepoints, or competitively optimal control functions,
are obtained in terms of the derivatives of this value function. An explicit solution is given for
the case of power utility.

2. The portfolio model with competition

The model under consideration here consists of three underlying processes: two correlated
risky investment opportunities (e.g. stocks, or mutual funds) S(1) and S(2), and a riskless
asset B called a bond. The price processes for these assets will be denoted, respectively,
by {S(1)t , S(2)t , Bt , t ≥ 0}. While we allow both investors to invest freely in the risk-free asset,
Investor A may trade only in the first stock, S(1), and similarly, Investor B may trade only
in the second stock, S(2). While there are only two correlated risky assets in our model, it is
without any loss of generality since it is just a simple matter of algebra to generalize our results
and analysis to a constant coefficients complete market model (see Duffie (1996)) with n risky
stocks driven by n Brownian motions, for any arbitrary n > 2. In that case, we would split the
n stocks into two groups, say with the first k stocks available to Investor A and the remaining
n −k stocks available to Investor B, with A being restricted from trading in B’s group and vice
versa for B. However, for notational and expositional ease, we consider just the (essentially
equivalent) two-asset case.

The probabilistic setting is as follows: we are given a filtered probability space

(�,F , {Ft}, P),

supporting two correlated Brownian motions, W (1), W (2), with E(W (1)
t W (2)

t ) = ρt . (Specifi-
cally, Ft is the P-augmentation of the natural filtration F W

t := σ {W (1)
s ,W (2)

s ; 0 ≤ s ≤ t}.)
We will assume that the price process for each of the risky stocks follows a geometric

Brownian motion, i.e. S(i)t satisfies the stochastic differential equation
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dS(i)t = µi S(i)t dt + σi S(i)t dW (i)
t , for i = 1, 2 (2.1)

where µi , i = 1, 2 are positive constants. The price of the risk-free asset is assumed to evolve
according to

dBt = r Bt dt (2.2)

where r ≥ 0. To avoid triviality, we assume µi > r, for i = 1, 2.
For the sequel, let the parameter θi denote the risk-adjusted excess return of stock S(i) over

the risk-free rate of return, for i = 1, 2. Specifically,

θi = µi − r

σi
, for i = 1, 2. (2.3)

The parameter θi is also called the market price of risk for stock i, for i = 1, 2.
Let ft denote the proportion of Investor A’s wealth invested in the risky stock S(1) at time

t under an investment policy f = { ft , t ≥ 0}, and, similarly, let gt denote the proportion
of Investor B’s wealth invested in the risky stock S(2) at time t under an investment policy
g = {gt , t ≥ 0}. We assume that both { ft , t ≥ 0} and {gt , t ≥ 0} are suitable, admis-
sible Ft -adapted control processes, i.e. ft (or gt ) is a non-anticipative function that satisfies
E

∫ T
0 f 2

t dt < ∞ (or E
∫ T

0 g2
t dt < ∞) for every T < ∞.

We place no other restrictions on f or g, for example, we allow ft (or gt ) ≥ 1, whereby the
investor is leveraged and has borrowed to purchase the stock. (We also allow ft (or gt ) < 0,
whereby the investor is selling the stock short; however, for µi > r, for i = 1, 2, this never
happens in any of the problems considered here.)

For the sequel, we will let G denote the set of admissible controls.
Let X f

t denote the wealth of investor A at time t , if he follows policy f = { ft , t ≥ 0}, with
X0 = x . Since any amount not invested in the risky stock is held in the bond, this process then
evolves as

dX f
t = ft X f

t
dS(1)t

S(1)t

+ X f
t (1 − ft )

dBt

Bt

= X f
t ([r + ftσ1θ1] dt + ftσ1 dW (1)

t ) (2.4)

upon substituting from (2.1) and (2.2) and using the definition (2.3). This is the wealth equation
first studied by Merton (1971). Similarly, if we let Y g

t denote the wealth of investor B under
portfolio policy g = {gt , t ≥ 0}, then Y g

t evolves according to

dY g
t = gt Y

g
t

dS(2)t

S(2)t

+ Y g
t (1 − gt)

dBt

Bt

= Y g
t ([r + gtσ2θ2] dt + gtσ2 dW (2)

t ) (2.5)

where W (2)
t is another (standard) Brownian motion. To allow for complete generality, we allow

W (2)
t to be correlated with W (1)

t , with correlation coefficient ρ, i.e. E(W (1)
t W (2)

t ) = ρt .
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2.1. Competition

While there are many possible competitive objectives, here we are mainly interested in
games with payoffs related to the achievement of relative performance goals and shortfalls.
Specifically, for numbers l, u with lY0 < X0 < uY0, we say, in terms of objectives for
Investor A, that (upper) performance goal u is reached if X f

t = uY g
t , for some t > 0 and

that (lower) performance shortfall level l occurs if X f
t = lY g

t for some t > 0. In general A
wins if performance goal u is reached before performance shortfall level l is reached, while
B wins if the converse happens. (Analogous objectives can obviously be stated in terms of
Investor B with goal and shortfall reversed.) Some of the specific games we consider in the
sequel, stated here from the point of view of Investor A, are: (i) maximizing the probability
that performance goal u is reached before shortfall l occurs (equivalently, maximizing the
probability that A wins); (ii) minimizing the expected time until the performance goal u is
reached; (iii) maximizing the expected time until shortfall l is reached; (iv) maximizing the
expected discounted reward obtained upon achieving goal u; (v) minimizing the expected
discounted penalty paid upon falling to shortfall level l. In each case, Investor B’s objective is
the converse. For all these games, the ratio of the two wealth processes is a sufficient statistic.
In a later section, we also consider a fixed-duration utility-based version of the game where
the ratio is also the pertinent state variable.

Since X f
t is a diffusion process controlled by Investor A, and Y g

t is another diffusion process
controlled by Investor B, the ratio process, Z f ,g, where Z f,g

t := X f
t /Y g

t , is a jointly controlled
diffusion process. Specifically, a direct application of Itô’s formula gives

Proposition 2.1. For the wealth processes X f
t , Y g

t defined by (2.4) and (2.5), let Z f,g
t be

defined by Z f
t := X f

t /Y g
t . Then

dZ f ,g
t = Z f,g

t (m( ft , gt) dt + ftσ1 dW (1)
t − gtσ2 dW (2)

t ), (2.6)

where the function m( f, g) is defined by

m( f, g) ≡ m( f, g : σ1, σ2, θ1, θ2, ρ) = f σ1θ1 − gσ2θ2 + g2σ2
2 − ρσ1σ2 f g (2.7)

and where the parameters θi , i = 1, 2 are defined in (2.3).
Alternatively, in integral form we have

Z f ,g
t = Z0 exp

{∫ t

0
[m( fs , gs)− 1

2v
2( fs , gs)] ds +

∫ t

0
fsσ1 dW (1)

s −
∫ t

0
gsσ2 dW (2)

s

}
(2.8)

where the function v2( f, g) is defined by

v2( f, g) ≡ v2( f, g : σ1, σ2, ρ) = f 2σ 2
1 + g2σ 2

2 − 2 f gσ1σ2ρ. (2.9)

A consequence of this is that for Markovian control processes ft = f (Z f,g
t ) and gt =

g(Z f ,g
t ) (also referred to as pure strategies, see e.g. Friedman (1976)), the ratio process Z f ,g

of (2.6) is a controlled Markov process whose generator, for arbitrary functions ϕ(t, z) ∈ C1,2,
is given by

A f,gϕ(t, z) = ϕt + m( ft , gt)zϕz + 1
2v

2( ft , gt)z
2ϕzz . (2.10)

In the next section we provide a general theorem in stochastic optimal control for differen-
tial games associated with the process {Z f,g

t , t ≥ 0} of (2.6) that covers all the games described
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above as special cases. In a later section we consider the problem of maximizing the expected
discounted utility of the ratio. More general results on stochastic differential games where the
diffusion component of the process, as well as the drift, is controllable by both players are
discussed in e.g. Fleming and Souganides (1989).

3. Value and equilibrium in a stochastic differential game

For the process Z f,g of (2.6), let

τ
f,g

x := inf{t > 0 : Z f ,g
t = x} (3.1)

denote the first hitting time to the point x under the specific policies f = { ft , t ≥ 0} and
g = {gt , t ≥ 0}. For given numbers l, u, with l < Z0 < u, let τ f,g := min{τ f,g

l , τ
f ,g

u } denote
the first escape time from the interval (l, u), under the policies f, g.

For a given non-negative function λ(z) ≥ 0, a given real bounded continuous function c(z),
and a function h(z) given for z = l, z = u, with h(u) < ∞, let ν f,g(z) be the expected payoff
function under the policy pair f, g, defined by

ν f,g(z) = Ez

(∫ τ f,g

0
c(Z f,g

t ) exp

{
−

∫ t

0
λ(Z f,g

s ) ds

}
dt + h(Z f,g

τ f,g ) exp

{
−

∫ τ f,g

0
λ(Z f,g

s ) ds

})
.

(3.2)

(Here and in the sequel, we use the notations Pz(·) and Ez(·) as shorthand for P(· | Z0 = z)
and E(· | Z0 = z).)

The two investors compete in the following form: Investor A would like to choose a control
function f in order to maximize ν f,g(z), while simultaneously Investor B is trying to choose
a control function g in order to minimize ν f,g(z). We consider here only games with perfect
revelation, or perfect observation, so that the players’ choices are instantaneously revealed to
their opponents. The game, or competition, terminates when the ratio process Z f ,g first exits
the interval (l, u).

Let
ν(z) = sup

f ∈G
inf
g∈G

ν f,g(z) and ν(z) = inf
g∈G

sup
f ∈G

ν f,g(z)

denote the lower and upper values of the game, respectively.
If ν(z) = ν(z) for every z, then the value of the game is given by ν(z) := ν(z) = ν(z). This

value can be attained if a Nash equilibrium, equivalently a saddlepoint for the payoff ν f,g(z),
exists, i.e. if there exist two strategies, f ∗ = { f ∗

t , t ≥ 0} and g∗ = {g∗
t , t ≥ 0} such that for

all z ∈ (l, u), and all other admissible f and g

ν f,g∗
(z) ≤ ν f ∗,g∗

(z) ≤ ν f ∗,g(z). (3.3)

If (3.3) holds, then ν(z) = ν f ∗,g∗
(z) (see for example Elliott (1976); Fleming and Souganides

(1989); Maitra and Sudderth (1996)). The saddlepoint strategies f ∗, g∗ are referred to as the
equilibrium, or competitively optimal, strategies.

In the following theorem, we provide an explicit evaluation of the value of the game as the
appropriate solution to a particular non-linear Dirichlet problem, as well as an evaluation of
the competitively optimal strategies f ∗

t and g∗
t , under suitable conditions. To enable the reader

to proceed directly to the specific examples and applications in the subsequent sections, the
proof of this theorem is presented in the final section of the paper.

To state results more compactly, let us first introduce some notation and definitions:
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1. For an arbitrary function ψ(z) ∈ C2, let � denote the differential operator defined by

�ψ(z) := (1 − ρ2)[ψz(z)+ zψzz (z)]2 −ψz(z)
2. (3.4)

2. For the sequel, we will say that an increasing strictly concave function ψ(z) ∈ C2 (so
ψzz < 0) is sufficiently fast-increasing on an interval (a, b) if the following condition
holds:

2ψz(z)+ zψzz (z) > 0, for all a < z < b. (3.5)

(Observe that the fast-increasing condition (3.5) is equivalent to requiring that the Arrow–
Pratt measure of relative risk-aversion for ψ , defined as −zψzz/ψz , is less than 2.)

3. For the sequel, the parameter κ will denote the ratio of the market prices of risk for the
two risky assets. Specifically, for θi as defined in (2.3) for i = 1, 2, define the parameter
κ by

κ := κ(θ1 , θ2) = θ1

θ2
. (3.6)

We will see later that the parameter κ is a measure of the degree of advantage one player
has over the other. Investor A is said to have the advantage if κ > 1 and Investor B has
the advantage if κ < 1. In the symmetric case the two are neutral.

Theorem 3.1. Suppose that �(z) : (l, u) �→ � is a C2 strictly concave, sufficiently fast-
increasing (as in (3.5)) solution to the non-linear Dirichlet problem for l ≤ z ≤ u:

z�z(z)2

2��(z)
θ2

2 [(1 − κ2)�z(z)− (1 + κ2 − 2ρκ)(�z (z)+ z�zz (z))] + c(z)− λ(z)�(z) = 0

(3.7)

with

�(l) = h(l) and �(u) = h(u). (3.8)

Also suppose that for all admissible policies f and g, Ez(τ
f,g) < ∞ for l < z < u, and

that�(z) satisfies the following conditions:

(i) for all admissible policies f and g, and for all t ≥ 0, the following moment condition
holds

∫ t

0
E([Z f,g

s �z(Z
f,g

s )]2[ f 2
s + g2

s ]) ds < ∞; (3.9)

(ii) the function z�z(z)H (z) is bounded on (l, u), where

H (z) := �z(z)[�z(z)+ z|�zz(z)|]/|��(z)|;

(iii) the function zH (z)[1 + H (z)] is Lipschitz continuous on (l, u).
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Then �(z) is the value of the game described earlier, i.e. �(z) = ν(z) ≡ ν f ∗,g∗
(z), and

moreover this value is achieved at the saddlepoint control functions, or competitively-optimal
portfolio strategies, f ∗

ν (z) and g∗
ν (z), given by

f ∗
ν (z) = θ1

σ1

(
�z(z)

��(z)

)[(
ρ

κ
− 1

)
(�z(z)+ z�zz (z))−�z(z)

]
(3.10)

g∗
ν (z) = θ2

σ2

(
�z(z)

��(z)

)
[(1 − ρκ)(�z (z)+ z�zz(z)) −�z(z)]. (3.11)

Remark 3.1. The technical conditions (i), (ii) and (iii) above play a role at various points in
the proof of Theorem 3.1, which is presented in the final section. Specifically, if condition (i)
holds, then a stochastic integral term, which in general is only a continuous local martingale,
is a martingale. If condition (ii) holds, then a particular martingale is uniformly integrable
(and hence the martingale stopping theorem is valid), and condition (iii) ensures that the
stochastic differential equation for the competitively optimal ratio process Z∗,∗, obtained when
the controls of (3.10) and (3.11) are placed back into (2.6), admits a strong solution. (If (iii)
holds, then z f ∗

ν (z), zg∗
ν(z) and zm( f ∗

v , g∗
ν) are all Lipschitz continuous.)

Remark 3.2. The parameters θi/σi , i = 1, 2, in the optimal control functions, f ∗
ν (z) and

g∗
ν (z) of (3.10) and (3.11), are the individual growth-optimal portfolio strategies for the

respective investors. Specifically, Investor A will choose f (z) = θ1/σ1 for all z, if he is
interested in any or all of the following individual objectives, without any regard to actions
by Investor B: maximizing logarithmic utility of wealth at a fixed terminal time; minimizing
the expected time to reach any arbitrary fixed (obviously higher than initial) level of wealth;
maximizing the growth rate of wealth, defined by sup f {lim inft→∞ log(X f

t )/t}. (See e.g.
Merton (1990), Chapter 6 and Browne (1998) for reviews and further optimality results.) The
obvious analogous results hold for Investor B.

3.1. The symmetric case

In the (fully) symmetric case, µ1 = µ2 = µ and σ1 = σ2 = σ , and so the market prices of
risk for the two stocks are the same, i.e. θ1 = θ2 ≡ θ say, and of course κ = 1. For this case
we observe that the determining ODE for the optimal value function of (3.7) reduces to

−θ z�z(z)2

��(z)
(1 − ρ)[�z(z)+ z�zz (z)] + c(z) − λ(z)�(z) = 0, (3.12)

and the associated equilibrium controls of (3.10) and (3.11) reduce to

f ∗
ν (z) = θ

σ

(
�z(z)

��(z)

)
[(ρ − 1)(�z(z)+ z�zz(z)) −�z(z)] (3.13)

g∗
ν (z) = θ

σ

(
�z(z)

��(z)

)
[(1 − ρ)(�z(z)+ z�zz(z)) −�z(z)]. (3.14)

Observe that the only difference between the players’ strategies in (3.13) and (3.14) is in
the treatment of the instantaneous correlation ρ.
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3.2. The complete, symmetric case

The ‘complete’ case occurs when ρ2 = 1, in that there is then only one Brownian motion
in the model. Without any loss of generality, let us consider only the case ρ = 1. For the
symmetric version of this case it is seen that the control functions of (3.13) and (3.14) reduce
further to the growth-optimal proportion f ∗

ν (z) ≡ g∗
ν (z) = θ/σ , regardless of the particulars

of the objective of the game and the value of �(z). However, when both players choose this
policy, the functions m(·, ·) of (2.7) and v2(·, ·) of (2.9) both reduce to zero, i.e. in this case we
have

m

(
θ

σ
,
θ

σ
: σ, σ, θ, θ, 1

)
≡ v2

(
θ

σ
,
θ

σ
: σ, σ, 1

)
≡ 0

and as such we see from (2.6) that for the resulting ratio process we have dZt = 0 for all t . As
such, the state never changes, as any movement by a player will be immediately negated by
his opponent. (This is never optimal if ρ2 < 1.) The ODE of (3.12) reduces to the degenerate
�(z) = c(z)/λ(z), which need not be the value to the game.

This degeneracy should be contrasted with the discrete-time complete case treated by Bell
and Cover (1980), where a randomized version of the growth-optimal strategy is shown to be
game-theoretic optimal for maximizing the probability of beating an opponent in a single play.
Such a result obviously cannot hold in a continuous-time stochastic differential game with
full revelation, since any randomization by a player will be immediately revealed to the other
player, who can immediately (and exactly) adjust.

4. The probability maximizing game

In this section, we consider the game where for two given numbers l < 1 < u, the objective
of Investor A is to maximize the probability that he will outperform Investor B by u−1% before
Investor B can outperform him by 1/ l − 1%. Similarly, Investor B wants to maximize the
probability that he will outperform Investor A by 1/ l − 1% before Investor A can outperform
him by u − 1%. Put more simply: Investor A wants to maximize the probability of reaching
u while Investor B is trying to maximize the probability of reaching l. Single-player games
with related objectives have been studied previously in Pestien and Sudderth (1985, 1988),
Mazumdar and Radner (1991) and Browne (1995, 1997, 1999).

Let V (z) denote the value for this game—should it indeed exist: i.e.

V (z) = sup
f

inf
g

Pz(τ
f,g

l > τ
f,g

u ) = inf
g

sup
f

Pz(τ
f,g

l > τ
f,g

u ). (4.1)

Theorem 3.1 applies to the probability maximizing game by taking λ = c = 0 in (3.7), and
setting h(l) = 0 and h(u) = 1. Specifically, by Theorem 3.1, we find after simplification that
V (z) must be the fast-increasing (in the sense of (3.5)) concave solution to

(1 − κ2)�z(z)− (1 + κ2 − 2ρκ)(�z (z)+ z�z(z)) = 0, for l < z < u (4.2)

with V (l) = 0 and V (u) = 1.
The solution to the non-linear Dirichlet problem of (4.2), subject to the boundary conditions

�(l) = 0, �(u) = 1, is seen to be �(z) = (zγ − lγ )/(uγ − lγ ), where the parameter γ is
defined by

γ = γ (κ, ρ) := 1 − κ2

1 + κ2 − 2ρκ
. (4.3)
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Observe that for ρ2 < 1, the denominator of (4.3) is positive for all κ. As such, the sign of
γ depends on the sign of the numerator. Specifically, γ < 0 if A has the advantage (i.e. if
θ1 > θ2), while γ > 0 if B has the advantage.

Observe further that for the solution found above we have �z > 0, regardless of the sign
or magnitude of γ , while �zz < 0 only for γ < 1. Moreover, the required fast-increasing
condition of (3.5), 2�z + z�zz > 0, holds only for the case where −1 < γ . Thus, we see
that we require −1 < γ < 1 for the game to have a value. It follows from (4.3) that this
requirement is equivalent to the following two requirements on the parameters ρ and κ:

ρ < κ and ρ <
1
κ
. (4.4)

Since we assumed that θi > 0 for i = 1, 2, it follows that κ > 0 and hence these conditions
are trivially satisfied if ρ ≤ 0. Otherwise they are equivalent to

ρ < κ <
1

ρ
. (4.5)

Assuming that (4.4) holds, it is straightforward to verify that conditions (i), (ii) and (iii) of
Theorem 3.1 hold (in particular, �(z) is bounded) and, as such, it is seen by Theorem 3.1 that
the value of the game, V (z), is indeed given by

V (z) := V (z; γ, u, l) = zγ − lγ

uγ − lγ
, for l < z < u (4.6)

where γ is defined in (4.3). Therefore, since we now have the value of the game, V (z), in
explicit form, we can now use (3.10) and (3.11) of Theorem 3.1 to obtain the equilibrium, or
competitively optimal, portfolio strategies. Specifically, by substituting V (z) of (4.6) for�(z)
in (3.10) and (3.11) and then simplifying (and using the definition of γ from (4.3)), we obtain
the following.

Theorem 4.1. Suppose that (4.4) holds, then for l < z < u and γ as defined in (4.3), the
value of the probability maximizing game of (4.1) is given by V (z) of (4.6), and the associated
optimal portfolio policies are given by

f ∗
V (z) = θ1

σ1
C (4.7)

g∗
V (z) = θ2

σ2
κ2 C, (4.8)

where C is the positive constant given by

C := C(κ, ρ, γ ) = (ρ/κ − 1)γ − 1

(1 − ρ2)γ 2 − 1
. (4.9)

Observe that the portfolio strategies of (4.7) and (4.8) are constant proportion portfolio
strategies: regardless of the level of wealth of the individual investor, or the level of wealth of
his competitor (or their ratio), the proportion of wealth invested in the risky asset (available
to that investor) is held constant, with the remainder in the risk-free asset. Moreover, for each
investor, the constant is independent of the levels l and u. (See Browne (1998) for further
optimality properties of constant proportion portfolio strategies.)
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To see that these constants are positive, and so both players take a positive position in their
respective stock, we need only show that C > 0. The denominator of C is always negative
(since γ 2 < 1), while the sign of the numerator of C depends on the sign of the quadratic
Q1(κ; ρ), where

Q1(κ; ρ) = ρκ2 − 2κ + ρ, (4.10)

since the numerator of C can be written as Q1(κ; ρ)/κ.
For ρ < 0, Q1(κ; ρ) is trivially negative, and so C > 0. For ρ > 0, the two roots to the

equation Q1(κ) = 0 are given by

κ− = 1

ρ
(1 −

√
1 − ρ2 ) and κ+ = 1

ρ
(1 +

√
1 − ρ2 ),

with Q1(κ) < 0 for κ− < κ < κ+. Since we required κ < 1/ρ, it is clear that we are only
interested in the smaller root, κ−, and so for κ− < κ < 1/ρ, it follows that Q1(κ) < 0.
Moreover, a simple computation will show that κ− < ρ, for ρ > 0, and since we in fact
required κ > ρ, we finally see that for all relevant κ, we have Q1(κ) < 0, giving C > 0.

Remark 4.1. The value function of (4.6) shows one manner in which the parameter κ is a
measure of advantage. Specifically, consider the probability maximizing game with l = 1/u
and Z0 = 1. Then it is natural to say that the player who has the higher probability of winning
is the one with the advantage. Some direct manipulations will show that V (1 : γ, u, 1/u) > 1

2
if and only if γ < 0, i.e. if and only if κ > 1. That is, Investor A has the advantage (a greater
probability of winning) if his investment opportunity has the higher market price of risk.

Remark 4.2. Observe that the only structural difference in the investment policies of (3.10)
and (3.11) is in the treatment of the measure of advantage parameter κ. Specifically, we see
from (3.10) and (3.11) that if A has the advantage, then the relative investment of B is greater,
with the converse holding if B has the advantage. Thus a relatively ‘bolder’ strategy must be
followed by the disadvantaged player, in particular on the order of the square of the measure
of advantage parameter κ.

It is interesting to note that the determination of which player invests the larger absolute
fraction of his wealth turns out to depend only on the instantaneous returns µi , i = 1, 2 and
not the volatility parameters σi , i = 1, 2. Specifically, after simplifying we observe that

f ∗
V

g∗
V

= σ2θ2

σ1θ1
≡ µ2 − r

µ1 − r

implying that the player with the lower instantaneous return must invest more in his stock, in
order to overcome the advantage of the other player. As can be seen, the volatility parameters,
σ1 and σ2, do not play a role in determining which player invests a larger fraction of wealth.

Remark 4.3. Observe further that since f ∗
V and g∗

V are constants, Proposition 2.1 implies that
the optimal ratio process, Z∗,∗, is a geometric Brownian motion. Specifically, when we place
the optimal controls of (4.7) and (4.8) into the functions m( f, g) of (2.7), and v2( f, g) of (2.9),
we find that they reduce to (using the obvious identity θ1 = θ2κ)

m

(
θ1C

σ1
,
θ2κ

2C

σ2

)
= C2θ2

1 κ(κ − ρ) and v2
(
θ1C

σ1
,
θ2κ

2C

σ2

)
= C2θ2

1 (1 + κ2 − 2ρκ).

(4.11)
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From (2.8), we find that the optimal ratio process is the geometric Brownian motion

Z∗,∗
t = Z0 exp{1

2 C2θ2
1 (κ

2 − 1)t + θ1C(W (1)
t − W (2)

t )}. (4.12)

Observe that the constant m in (4.11) is positive (since κ > ρ), regardless of which player
has the advantage, i.e. whether κ > 1 or κ < 1. However, the sign of E ln(Z∗,∗

t ) depends on
whether κ > 1 or κ < 1, with E ln(Z∗,∗

t ) > 0 if Investor A has the edge, and vice versa if
Investor B has the edge.

Remark 4.4. Proposition 2.1 exhibits the fact that for any admissible control functions f (z),
g(z), the ratio process Z f,g is a diffusion process with scale function given by

S f ,g(z) =
∫ z

exp

{
−

∫ ξ 2
y

[
m( f (y), g(y))

v2( f (y), g(y))

]
dy

}
dξ, for l < z < u, (4.13)

where m( f, g) and v2( f, g) are the functions defined in (2.7) and (2.9). As such for these
given policies, the probability that Investor A wins the game can be written as

Pz(τ
f,g

u < τ
f,g

l ) = S f,g(z)− S f,g(l)

S f,g(u) − S f,g(l)
. (4.14)

It follows from the single-player results of Pestien and Sudderth (1985, 1988) (see also
Browne (1997), Remark 3.4) that for any given control function g(z), Investor A can maximize
the probability in (4.14) by choosing the control policy that pointwise maximizes the ratio
[zm( f, g)]/[z2v2( f, g)], which is equivalent to the pointwise maximizer of m( f, g)/v2( f, g).
Similarly, for any given control policy f (z), Investor B can minimize the probability in (4.14)
by choosing g to be the pointwise minimizer of the quantity m( f, g)/v2( f, g). Some computa-
tions will now accordingly show that the minimax value of the the function m( f, g)/v2( f, g)
in fact occurs at the policies fV and gV of (4.7) and (4.8). See Nilakantan (1993) for some
more general results along these lines.

Remark 4.5. The value function of (4.6) can be used to set conservative capital requirements
by setting it equal to a given preassigned probability of outperformance, say p, and then
inverting for the required initial capital. Specifically, setting V (z0) = p and then solving
for z0 gives z0 = (lγ + p[uγ − lγ ])1/γ .

4.1. The symmetric case

For the symmetric case, we have θ1 = θ2 = θ , σ1 = σ2 = σ , and κ = 1. For this case, so
long as ρ2 < 1, (4.3) becomes γ (1, ρ) = 0. As such, by taking limits appropriately in (4.6)
we observe that in the symmetric case the optimal value function reduces to

lim
γ→0

V (z; γ, u, l) = V (z; 0, u, l) = ln
(

z

l

)/
ln

(
u

l

)
. (4.15)

Moreover, for ρ2 < 1, we see that C of (4.9) reduces to C(1, ρ, 0) = 1, and, as such, the
competitively optimal controls of (4.7) and (4.8) reduce in the symmetric case to f ∗

V = g∗
V =

θ/σ .
Since the function in (4.15) satisfies the appropriate version of the Dirichlet problem of

(3.12), we have the following.
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Corollary 4.1. In the symmetric case, so long as ρ2 < 1, the value of the game is given by
(4.15), and the competitively optimal policies for the probability maximizing problem are for
each player to play the growth-optimal strategy, θ/σ .

Observe that while the correlation parameter ρ does not play an explicit role here at all, in
either the value function of (4.15) or the game-theoretic controls θ/σ , all of this holds only for
ρ2 < 1. Specifically, the limit in (4.15) is valid only for ρ2 < 1. This can be seen by observing
that from (4.3) we have γ (κ, 1) = (1 + κ)/(1 − κ). As such,

lim
ρ→1

lim
κ→1

γ (κ, ρ) = 0 �= lim
κ→1

lim
ρ→1

γ (κ, ρ) = ∞.

5. Expected time minimizing/maximizing games

In this section we consider games where the objective is the minimization (maximization) of
the expected time for one investor to outperform the other by a given percentage. The existence
of a value for such games depends on which investor has the advantage, i.e. whether κ > 1 or
κ < 1. Since the game is symmetric, in that one player’s advantage is the other’s disadvantage,
we need only consider one game. Here we choose to study only the case where Investor A has
the advantage (i.e. κ > 1) and as such is the minimizer (Investor A would be the maximizer if
he were at a disadvantage with κ < 1). Single-player games with minimal/maximal expected
time objectives have been studied in Heath et al. (1987) and Browne (1997, 1999).

If Investor A has the advantage, in that κ > 1, then he is trying to minimize the expected
time to the performance goal u, while Investor B, in an effort to stop him, is trying to maximize
the same expected time. Let G∗(z) denote the value to this game, should it exist, i.e.

G∗(z) = inf
f

sup
g

Ez(τ
f,g

u ) = sup
g

inf
f

Ez(τ
f,g

u ), for z < u. (5.1)

As we show in the following theorem, the equilibrium portfolio policies turn out to be the
individual growth-optimal portfolio policies.

Theorem 5.1. Let G∗(z) be the value of the game in (5.1) with associated optimal strategies
f ∗(z) and g∗(z).

Then, for κ > 1,

G∗(z) = 2

θ2
2 (κ

2 − 1)
ln

(
u

z

)
, with f ∗(z) = θ1

σ1
, g∗(z) = θ2

σ2
for all z ≤ u. (5.2)

Proof. While Theorem 3.1 is stated in terms of a maximization objective for Investor A
and a minimization objective for Investor B, it can be applied to G∗(z) of (5.1) by taking
c(z) = −1, λ = 0 and h(u) = 0. Specifically, G∗(z) = −G̃(z) where

G̃(z) = sup
f

inf
g

{−Ez(τ
f,g

u )} = inf
g

sup
f

{−Ez (τ
f,g

u )}, for z < u.

As such, Theorem 3.1 applies directly to G̃, which in turn must be the fast-increasing concave
solution to

zGz(z)2

2�G(z)
θ2

2 [(1 − κ2)Gz (z)− (1 + κ2 − 2ρκ)(Gz (z)+ zGzz (z))] − 1 = 0, for z < u,

(5.3)
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with G̃(u) = 0. It can be checked that the appropriate solution to (5.3) is indeed given by
G̃(z) ≡ −G∗(z), where G∗(z) is given in (5.2). (Observe that −G∗(z) is sufficiently fast-
increasing and concave only for κ > 1.)

It is easy to see that conditions (i), (ii) and (iii) of Theorem 3.1 hold for the appropriate
value functions in the respective cases. In particular, condition (i) holds since for this case
dG∗(z)/ dz = −2[zθ2

2 (κ
2 − 1)]−1, and so (3.9) reduces to

(
2

θ2
2 (1 − κ2)

)2 ∫ t

0
([ f (Z f,g

s )]2 + [g(Z f ,g
s )]2) ds < ∞,

which must hold by the admissibility requirement on the policies f and g.
As such, we may conclude that G∗ is the value of the game and substitute it into (3.10) and

(3.11) to obtain the competitively optimal controls, which in this case reduce to the individual
growth-optimal strategies.

5.1. Connections with logarithmic utility

Observe that if we take logarithms in (2.8) and then take expectations, we get

E(ln(Z f ,g
t )) = ln(Z0)+ E

∫ t

0
[m( fs , gs)− 1

2v
2( fs , gs)] ds (5.4)

where m and v2 are the functions given in (2.7) and (2.9). Observe now that for any given g,
the argument that achieves the maximum value of m( f, g)−v2( f, g)/2 is θ1/σ1 and, similarly,
for any given f , the argument that minimizes m( f, g)−v2( f, g)/2 is given by θ2/σ2. As such,
it is clear that the growth-optimal policies give the minimax value for m − v2/2, given by

m

(
θ1

σ1
,
θ2

σ2

)
− 1

2v
2
(
θ1

σ1
,
θ2

σ2

)
= 1

2θ
2
2 (κ

2 − 1). (5.5)

This in turn implies, by (5.4), that these policies are also the competitively optimal policies for
the game where Investor A is trying to maximize the value of E ln(Z f,g

T ), while Investor B is
trying to minimize the same quantity, for a fixed terminal time T . This of course is trivially
obvious, since, for every t , we have ln(Z f ,g

t ) = ln(X f
t )− ln(Y g

t ), and so the minimax occurs
when each player maximizes the expected logarithm of his own terminal wealth. Thus we find
that maximizing individual logarithmic utility is also game-theoretically optimal for minimiz-
ing (resp. maximizing) the expected time to beat an opponent. (This generalizes the single-
player results of Heath et al. (1987), Merton (1990), Chapter 6, and Browne (1997, 1999).)
While this observation is now obvious in light of the logarithmic value function of (5.2), this
was by no means obvious a priori. Fixed-horizon utility-based games will be discussed in
Section 7.

5.2. The symmetric case

The equivalence between the minimal/maximal expected time game and the logarithmic
utility game of fixed duration just discussed does not carry forth to the symmetric case.

Specifically, the argument above, for the utility-based game of fixed duration (i.e. where
for some fixed T , Investor A wants to maximize E ln(Z f,g

T ) while B is trying to minimize the
same quantity) is still valid for the symmetric case, where κ = 1. As such we see from (5.5)
that the minimax value of m − v2/2 is zero, and so the value of this game is E ln(Z f,g

T ) = Z0,
with saddlepoint, or competitively optimal polices, given by f = g ≡ θ/σ .
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However, as we see from (5.2) of Theorem 5.1, the goal-based game of (5.1) does not
have a finite value in the symmetric case where κ = 1. The reason for this is the fact that
in the symmetric case, for the game of (5.1), where the lower goal is 0, the expected time to
the upper goal, u, is infinite. This follows directly from elementary properties of geometric
Brownian motion, and the fact that the minimax value of m − v2/2 is zero. Specifically, for
a geometric Brownian motion, Xt = X0 exp{δt + βWt }, it is well known that if δ = 0, then
inf0≤t<∞ Xt = 0 and sup0≤t<∞ Xt = ∞.

6. Games with discounting

In this section we consider games where one player wants to maximize the expected dis-
counted reward achieved upon outperforming his opponent, while the other is trying to mini-
mize the same quantity. Symmetry again implies that we need only consider one game, and we
will again consider only the maximizing game in terms of Investor A. Specifically, we consider
the game where Investor A wants to maximize the expected discounted reward of reaching the
upper goal, u, while Investor B wants to minimize the same quantity. Single-player games with
related objectives have been studied in Orey et al. (1988) and Browne (1995, 1997, 1999).

Let F∗(z) denote the value of this game—should it exist. Specifically, let

F∗(z) = sup
f

inf
g

Ez(e−λτ f,g
u ) = inf

g
sup

f
Ez(e−λτ f,g

u ), for z < u. (6.1)

Theorem 3.1 applies here with c = 0, λ(z) = λ > 0 in (3.7), and setting h(u) = 1.
Specifically, by Theorem 3.1, F∗(z) must be the fast-increasing concave solution to

zFz(z)2

2�F(z)
θ2

2 [(1 − κ2)Fz(z)− (1 + κ2 − 2ρκ)(Fz (z)+ zFzz (z))] − λF(z) = 0, for z < l,

(6.2)

with F∗(u) = 1. Solutions to the non-linear Dirichlet problem of (6.2) are of the form (z/u)η,
where η is a root to the quadratic

η2[θ2
2 (1 + κ2 − 2ρκ)+ 2λ(1 − ρ2)] − ηθ2

2 (1 − κ2)− 2λ = 0. (6.3)

The discriminant of this quadratic is

D = [θ2
2 (1 − κ2)]2 + 8λ[θ2

2 (1 + κ2 − 2ρκ)+ 2λ(1 − ρ2)]
which is positive. As such, the quadratic of (6.3) admits the two real roots η+(λ; κ, ρ) and
η−(λ; κ, ρ), where

η+,− = θ2
2 (1 − κ2)± √

D

2[θ2
2 (1 + κ2 − 2ρκ) + 2λ(1 − ρ2)] . (6.4)

Moreover, these roots are of different sign (since λ > 0, and [θ2
2 (1+κ2−2ρκ)+2λ(1−ρ2)] >

0) with η− < 0 < η+ for λ > 0.
Since we require Fz > 0, as well as 2Fz + zFzz > 0, it is the positive root, η+, that is

relevant here. However, concavity of F (Fzz < 0) requires that η+ < 1. This in turn is
equivalent to the condition Q2(κ) > 0, where

Q2(κ) := κ2θ2
2 − κρθ2

2 − λρ2. (6.5)
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(The equivalence follows from the elementary fact that for the quadratic equation ax2+bx +c,
with a > 0, the requirement that the larger root be less than 1, i.e. [−b +√

(b2 −4ac)]/(2a) <
1, is algebraically equivalent to the requirement a +b +c > 0, which for the quadratic of (6.3)
reduces to Q2(κ) > 0.)

The quadratic equation Q2(κ) = 0 admits the two roots

κ̃−(λ) = 1
2ρ

(
1 −

√
1 + 4λ/θ2

2

)
and κ̃+(λ) = 1

2ρ

(
1 +

√
1 + 4λ/θ2

2

)
(6.6)

with Q2(κ) > 0 only for k < κ̃−(λ) and for k > κ̃+(λ). Note that κ̃−(0) = 0 and κ̃+(0) = ρ.
As such, we now have the requisite condition for a value to exist, and can therefore now use

(3.10) and (3.11) of Theorem 3.1 to find the competitively optimal control functions, which
once again turn out to be constant proportion strategies.

Theorem 6.1. Suppose the measure of advantage parameter, κ, satisfies

κ > κ̃+ and κ < κ̃− (6.7)

where κ̃+ and κ̃− are defined in (6.6). Then the value of the discounted game of (6.1) is given
by

F∗(z) =
(

z

u

)η+

for z < u (6.8)

where η+ is defined in (6.4), and the associated saddlepoint is given by

f ∗
F (z) = θ1

σ1

[
(ρ/κ − 1)η+ − 1

(1 − ρ2)(η+)2 − 1

]
and g∗

F(z) = θ2

σ2

[
(1 − ρκ)η+ − 1

(1 − ρ2)(η+)2 − 1

]
. (6.9)

Remark 6.1. Observe that for ρ < 0 we have κ̃+ < ρ < 0 < κ̃−, while for ρ > 0, we have
κ̃− < 0 < ρ < κ̃+. Thus if ρ < 0, condition (6.7) becomes κ̃+ < κ < κ̃−, while for ρ > 0,
condition (6.7) becomes κ > κ̃+. Since in the latter case we must also have k̃+ > ρ, we see
that for the discounted game of (6.1) to have a value, we require Investor A to have a greater
degree of advantage parameter κ, than was required for the probability maximizing game to
have a value. (Recall that (4.5) required that κ > ρ.)

Remark 6.2. Observe further that by letting the discount factor λ go to zero, we obtain
η−(0; κ, ρ) = 0 and η+(0; κ, ρ) = γ , where γ is the parameter defined earlier in (4.3).
As such we also find that in this case the strategies in (6.9) reduce to the strategies obtained
previously in (4.7) and (4.8) for the probability maximizing game of Theorem 4.1. (A similar
analysis from the minimizer’s point of view will show that the resulting optimal strategies will
reduce to the growth-optimal strategies of the previous section.)

Remark 6.3. For the symmetric case, the root η+ reduces to

η+(λ; 1ρ) =
[

λ

(1 − ρ)[θ2 + λ(1 + ρ)]
]1/2

and the condition for a value to exist becomes θ2(1 − ρ) > λρ2.
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7. Utility-based games

So far, the objectives considered have related solely to the achievement of relative per-
formance goals and shortfall levels, and the games considered allowed only one winner. In
this section, we consider games of a fixed duration T , where both investors receive utility (or
disutility) from the ratio of the wealth processes (i.e. from the relative performance of their
respective wealths).

Specifically, for given concave-increasing utility functions β(z) and U (z), and for a given
fixed terminal time T , let J f ,g(t, z) be the expected payoff function under the policy pair f, g,
defined by

J f ,g(t, z) = Et ,z

(∫ T

t
β(Z f,g

s ) exp
{
−

∫ s

t
λ(Z f,g

v ) dv
}

ds + U (Z f ,g
T ) exp

{
−

∫ T

t
λ(Z f ,g

s ) ds

})
.

(7.1)

(Here we use the notation Et ,z(·) as shorthand for E(· | Zt = z).) Once again we assume that
A is trying to maximize this quantity while B is trying to minimize it.

Let J (t, z) denote the value of this game, should it exist, i.e.

J (t, z) = inf
g

sup
f

J f ,g(t, z) = sup
f

inf
g

J f,g(t, z), (7.2)

and let fJ (t, z) and gJ (t, z) denote the associated optimal strategies. Note that in this case
we have time-dependence, which will lead to a non-linear Cauchy problem, as opposed to the
Dirichlet problem of Theorem 3.1. An analysis similar to that of Theorem 3.1 and its proof
(see next section) will show that, if ϒ(t, z) : [0, T ] × (0,∞) �→ � is a C1,2 concave and
sufficiently fast-increasing solution (in z) to the non-linear Cauchy problem:

ϒt + zϒ2
z

2�ϒ
θ2

2 [(1 − κ2)ϒz − (1 + κ2 − 2ρκ)(ϒz + zϒzz )] + β − λϒ = 0 (7.3)

with ϒ(T, z) = U (z), then subject to the appropriate regularity conditions (e.g. that ϒ(z)
satisfies conditions (i), (ii) and (iii) of Theorem 3.1),ϒ(t, z) is the competitively optimal value
function of the game in (7.2), i.e. ϒ(t, z) = J (t, z), and in this case the competitively optimal
control functions are given by

f ∗
J (t, z) = θ1

σ1

(
ϒz(t, z)

�ϒ(t, z)

)[(
ρ

κ
− 1

)
(ϒz(t, z)+ zϒzz (t, z))−ϒz(t, z)

]
(7.4)

g∗
J (t, z) = θ2

σ2

(
ϒz(t, z)

�ϒ(t, z)

)
[(1 − ρκ)(ϒz (t, z)+ zϒzz (t, z))−ϒz(t, z)]. (7.5)

(The proof of this result is in fact easier than that of its Dirichlet counterpart, Theorem 3.1, and
so we leave it for the reader to fill in the missing details.)

As an example of a utility-based game, consider the case where β(z) = λ(z) = 0, and
where U (z) = zα , for 0 < α < 1. (The logarithmic case treated earlier would correspond to
the limiting case of α = 0, since limα→0(zα − 1)/α = ln(z).)

For this case we find the value function

J (t, z) = eq(α)(T−t)zα (7.6)
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where q(α) is defined by

q(α) := αθ2
2
(1 − κ2)− α(1 + κ2 − 2ρκ)

2[(1 − ρ2)α2 − 1] .

The associated optimal strategies are again constant proportions, with

f ∗
J (t, z) = θ1

σ1

[
(ρ/κ − 1)α − 1

(1 − ρ2)α2 − 1

]
and g∗

J (z) = θ2

σ2

[
(1 − ρκ)α − 1

(1 − ρ2)α2 − 1

]
. (7.7)

Comparison of the policies of (7.7) with those obtained previously for goal-based games
will provide obvious further analogues between objective criteria and utility function (see
Browne (1995, 1997, 1999) for other equivalences in single-player games).

8. Proofs

To prove Theorem 3.1, we first exploit the the Hamilton–Jacobi–Bellman (HJB) equations
of dynamic programming for single-player games (cf. Krylov (1980)) to obtain candidate value
functions and equilibrium portfolio control strategies for the two-player games considered
here. These controls and value functions will then be verified to be in fact competitively
optimal via an extension of a fairly standard martingale argument.

To proceed, observe that for any given policy function g(z) used by Investor B, the HJB
optimality equation for Investor A for maximizing ν f,g(z) of (3.2) over control policies { ft } ∈
G, to be solved for a function ν∗,g is (see e.g. Krylov (1980), Theorem 1.4.5):

sup
f

{A f,gν∗,g + c − λν∗,g} = 0, ν∗,g(l) = h(l), ν∗,g(u) = h(u), (8.1)

where A f,g is the generator given by (2.10). The infimum of this, ν(z) = infg ν
∗,g(z), is the

upper-value function (see e.g. Fleming and Souganides (1989)).
Similarly, for any given policy function f (z) used by Investor A, the HJB optimality

equation for Investor B for minimizing ν f,g(z) of (3.2) over control policies {gt } ∈ G, to
be solved for a function ν f,∗ is

inf
g

{A f,gν f,∗ + c − λν f,∗} = 0, ν f,∗(l) = h(l), ν f,∗(u) = h(u). (8.2)

The supremum of this, ν(z) = sup f ν
f,∗(z), is the lower-value function.

Assuming now that (8.1) admits a classical solution with ν∗,g
zz < 0, we may use calculus to

optimize with respect to f in (8.1) to obtain the maximizer (as a function of g)

f̃ (z : g) = − θ1

σ1

(
ν

∗,g
z

zν∗,g
zz

)
+ g(z)ρ

σ2

σ1

(
1 + ν

∗,g
z

zν∗,g
zz

)
. (8.3)

Similarly, if we assume that (8.2) admits a classical solution with 2zν f ,∗
z + z2ν

f,∗
zz > 0, its

minimizer will be given by

g̃(z : f ) = θ2

σ2

(
zν f,∗

z

2zν f,∗
z + z2ν

f,∗
zz

)
+ f (z)ρ

σ1

σ2

(
zν f,∗

z + z2ν
f,∗

zz

2zν f,∗
z + z2ν

f,∗
zz

)
. (8.4)
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(Observe that B’s second-order condition is the basis of the fast-increasing condition of (3.5).)
The optimizers f̃ (z : g) and g̃(z : f ) of (8.3) and (8.4) are also referred to as the optimal
reaction functions.

Let us assume now that a saddlepoint exists, and that hence the game must have an achiev-
able value with ν∗,g̃ = ν f̃ ,∗ ≡ ν (see e.g. Elliott (1976), Maitra and Sudderth (1996), Fleming
and Souganides (1989)). If this is the case, then we can find the saddlepoint by substituting
g̃ into (8.3) and f̃ into (8.4) and solving the resulting linear equations. When we do this we
obtain the optimal control functions

f ∗(z) = θ1

σ1

(
νz(z)

�ν(z)

)[(
ρ

κ
− 1

)
(νz(z)+ zνzz(z)) − νz(z)

]
(8.5)

g∗(z) = θ2

σ2

(
νz(z)

�ν(z)

)
[(1 − ρκ)(νz (z)+ zνzz(z)) − νz(z)] (8.6)

where κ is the measure of advantage parameter defined in (3.6), and where � is the differential
operator of (3.4).

When the control functions f ∗(z), g∗(z) of (8.5) and (8.6) are then in turn substituted back
into either (8.1) or (8.2), with ν = ν∗,g∗ = ν f ∗,∗, we obtain, after some manipulations, the
non-linear Dirichlet problem of (3.7), with� = ν.

To complete the argument (i.e. to verify that ν is indeed the value of the game, and is
achieved by the policies f ∗, g∗ of (8.5) and (8.6)), we can now rely on the results of Flem-
ing and Souganides (1989), who provide a quite general verification argument for stochastic
differential games, of which the model treated here is a special case. Alternatively, we can
construct a verification argument directly, similar to the standard martingale arguments in, for
example, Fleming and Soner (1993). To carry out the latter program, define for any admissible
policy pair f, g = { ft , gt , t ≥ 0}, the process

M(t : f, g) := e−� f,g
t �(Z f,g

t )+
∫ t

0
e−� f,g

s c(Z f,g
s ) ds, for t ≥ 0, (8.7)

where � is the concave fast-increasing solution of (3.7), (3.8), and � f,g
t := ∫ t

0 λ(Z
f,g

s ) ds.
M(t : f, g) may be interpreted as a conditional (on Ft ) expectation of the gain if controls
f, g are used up to time t , and the optimal controls thereafter. It can be shown that, under
the conditions given in Theorem 3.1, M is a (uniformly integrable) martingale under the pair
{ f ∗

t , g∗
t ; t ≥ 0}, but a supermartingale under the pair { ft , g∗

t ; t ≥ 0}, for any admissible { ft },
and a submartingale under the pair { f ∗

t , gt; t ≥ 0} for any admissible {gt }, where f ∗ and g∗
are the policies given in (8.5) and (8.6).

The representation of the function �(z) of Theorem 3.1 as the value of the game, and the
competitive optimality of the saddlepoint policies ( f ∗, g∗) of (8.5) and (8.6), will now follow
as a consequence of the following lemma.

Lemma 8.1. For any admissible policies f = { ft , t ≥ 0} and g = {gt , t ≥ 0}, with M(t :
f, g) as defined in (8.7), and f ∗, g∗ as defined in (8.5) and (8.6), we have

Ez[M(t ∧ τ f,g∗ : f, g∗)] ≤ M(0, f, g∗) ≡ �(z) for t ≥ 0 (8.8)

Ez[M(t ∧ τ f ∗,g : f ∗, g)] ≥ M(0 : f ∗, g) ≡ �(z), for t ≥ 0, (8.9)

with equalities holding if and only if f = f ∗ and g = g∗.
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Proof. An application of Itô’s formula to the process M(t : f, g) of (8.7) using (2.6) gives

M(t ∧ τ f,g : f, g) = M(0 : f, g)+
∫ t∧τ f,g

0
e−� f,g

s Q( fs , gs : Z f,g
s ) ds

+
∫ t∧τ f,g

0
e−� f,g

s Z f ,g
s �z(Z

f,g
s )[ fsσ1dW (1)

s − gsσ2 dW (2)
s ], (8.10)

where the quadratic form Q( f, g : z) is defined by

Q( f, g : z) := f 2σ2
1 (

1
2 z2�zz (z))+ g2σ 2

2 (
1
2 z2�zz (z)+ z�z(z))

+ ( f σ1θ1 − gσ2θ2)z�z(z)− f gρσ1σ2(z
2�zz(z)+ z�z(z))

+ c(z)− λ(z)�(z).

Observe first that if assumption (i) holds, then the stochastic integral term in (8.10) is a
finite-variance martingale, and hence uniformly integrable. Some direct computations will
now show that for any given g, the max f ∈G Q( f, g : z) is achieved at the control function
f̃ (z : g) of (8.3), and similarly, for any given f , the ming∈G Q( f, g : z) is achieved at the
control function g̃(z : f ) of (8.4). Therefore, the minimax value of Q is reached at the policies
f ∗ and g∗ of (8.5) and (8.6), and is equal to

Q( f ∗, g∗ : z) = z�2
z

2��
θ2

2 [(1 − κ2)�z − (1 + κ2 − 2ρκ)(�z + z�zz)] + c(z) − λ(z)� = 0

(8.11)

where the last equality follows from (3.7). As such, for f ∗ of (8.5), g∗ of (8.6), and for all
other possible f, g, we have

Q( f, g∗ : z) ≤ sup
f

Q( f, g∗ : z) = Q( f ∗, g∗ : z) ≡ 0 = inf
g

Q( f ∗, g : z) ≤ Q( f ∗, g : z).

(8.12)

Therefore, from (8.10) we see that for all admissible control functions f , and g∗ of (8.6)
we have

∫ t∧τ f,g∗

0
exp{−� f,g∗

s }Z f,g∗
s �z(Z

f,g∗
s )[ fsσ1 dW (1)

s − g∗(Z f,g∗
s )σ2 dW (2)

s ]

= M(t ∧ τ f,g∗ : f, g∗)− M(0, f, g∗)−
∫ t∧τ f,g∗

0
exp{−� f,g∗

s } Q( fs , g∗ : Z f ,g∗
s ) ds

≥ M(t ∧ τ f,g∗ : f, g∗)− M(0, f, g∗)−
∫ t∧τ f,g∗

0
exp{−� f,g∗

s } {sup
f

Q( fs , g∗ : Z f,g∗
s )} ds

= M(t ∧ τ f,g∗ : f, g∗)− M(0, f, g∗). (8.13)

(The inequality in (8.13) following from (8.12).) Observe now that the stochastic integral term
on the left-hand side of (8.13) is a continuous local martingale that is in fact a martingale by
assumption (i) of Theorem 3.1. Hence, taking expectations on (8.13) directly gives the desired
inequality of (8.8). Equality holds in both (8.13) and (8.8) for f = f ∗.
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Similarly, for all admissible control policies g, and f ∗ of (8.5) we have

∫ t∧τ f ∗,g

0
exp{−� f ∗,g

s } Z f ∗,g
s �z(Z

f ∗,g
s ) [ f ∗(Z f ∗,g

s )σ1 dW (1)
s − gsσ2dW (2)

s ]

= M(t ∧ τ f ∗,g : f ∗, g)− M(0, f ∗, g)−
∫ t∧τ f ∗,g

0
exp{−� f ∗,g

s } Q( f ∗, gs : Z f ∗,g
s ) ds

≤ M(t ∧ τ f ∗,g : f ∗, g)− M(0, f ∗, g)−
∫ t∧τ f ∗,g

0
exp{−� f ∗,g

s } {inf
g

Q( f, g : Z f ∗,g
s )} ds

= M(t ∧ τ f ∗,g : f ∗, g)− M(0, f ∗, g), (8.14)

where again, the inequality follows from (8.12). Now once again assumption (i) of Theorem
3.1 shows that the stochastic integral term in (8.14) is a continuous local martingale that is in
fact a martingale.

As such, inequality (8.9) is established by taking expectations in (8.14), with equality
holding only if g = g∗.

Finally, observe that if condition (iii) of Theorem 3.1 holds, then both z f ∗(z) and zg∗(z)
as well as the function zm( f ∗(z), g∗(z)), where m( f, g) is defined in (2.7), are all Lipschitz
continuous, implying therefore that the drift and diffusion coefficients of the resulting com-
petitively optimal ratio process, Z∗,∗ := Z f ∗,g∗

, are locally Lipschitz continuous; there-
fore the equation (2.6) with f = f ∗, g = g∗ admits a strong solution. Moreover, since
Q( f ∗, g∗; z) ≡ 0, the process {M(t ∧ τ f ∗,g∗ : f ∗, g∗), t ≥ 0} is a (uniformly integrable)
martingale under the conditions of Theorem 3.1. Thus we have shown that

Ez[M(t ∧ τ f ,g∗ : f, g∗)] ≤ Ez[M(t ∧ τ f ∗,g∗ : f ∗, g∗)] ≤ Ez[M(t ∧ τ f ∗,g : f ∗, g)]. (8.15)

Since Ez[limt→∞ inf M(t ∧ τ f,g : f, g)] = ν f,g(z), we may now complete the proof by
sending t → ∞ in (8.15) to obtain ν f,g∗

(z) ≤ ν f ∗,g∗
(z) ≤ ν f ∗,g(z). The passage to the limit

is justified for the left-hand side by Fatou’s lemma (since everything is bounded from below),
and for the other terms by using uniform integrability and the martingale stopping theorem
(which is valid by the assumption that Ez(τ

f,g) < ∞ for all admissible f and g).
This completes the proof of Theorem 3.1.
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