Eruption Primer

Where Volcanoes Occur:

Occurrence	Divergent	Converging	Converging	Hot Spots
(Where)	Plates	Ocean-Ocean	Ocean –	_
		Plates	Continent Plates	
Description	Earth opens and magma comes out. Piles up through cooling.	Subduction of one ocean plate under another creates Island Arc Partial melting	Subduction of oceanic crust under continental crust creates a Volcanic Arc	Hot Spot - hot magma deep within mantle leaves trail as plate moves across magma chamber
Comparition	n ani datita an d	Ŭ	an daaitia an d	hazaltia
Composition	peridotite and basaltic	basaltic and andesitic	andesitic and rhyolitic	basaltic
Examples	Mid-Atlantic Ridge, East Pacific Rise	Aleutians, Japan, Philippines	Andes, Cascade Range	Emperor Seamounts, Hawaiian Islands, Iceland, Yellowstone Caldera

Violent vs. Effusive Eruptions:

What determines whether a volcano erupts magma violently or effusively (gently)?

- 3 Factors affecting Viscosity (- a measure of a fluid's resistance to flow):
- 1. Chemical Composition more silica in magma, increases viscosity

Magma Composition	Silica Content	Viscosity	Lava Flows
Basaltic	50%	least viscous	long, thin flows
Andesitic	60%	intermediate viscosity	
Rhyolitic	70%	most viscous	short, thick flows

2. Temperature - as lava cools, viscosity increases, therefore mobility decreases

3. Dissolved Gases - dissolved gases increase fluidity, expansiveness of gas adds buoyancy, helps molten lava propel from a vent, highly viscous magmas block the upward migration of gases, pressure increases until violent eruption occurs

Types of Eruptions:

Plinian Eruption	Pelean Eruption	Hawaiian Eruption	Strombolian Eruption	Vulcanian Eruption
Plinian	Pele	Hawaiian	Strombolian	Vulcanian
These awesome eruptions can inflict serious damage on nearby areas the eruption that buried Pompeii and Herculaneam was a Plinian eruption. They are initiated by magma with very high viscosity and gas content. The powerful upward thrust of the expanding gases propels pyroclastic material as high as 30 miles (48 km) in the air, at hundreds of feet per second. The eruption, which can last hours or even days, produces a towering, sustained eruption plume . This dumps a huge amount of tephra , fallen volcanic material, on surrounding areas (usually more to one side, depending on how the wind blows). Additionally, a Plinian eruption can produce extremely fast moving rhyolite lava flows from the eruption column collapse that destroy everything in their path.	This eruption style occurs when a deep plug of cooled, intermediate to high silica magma is violently forced out of the volcanic vent. A massive ash eruption and explosion may occur as gasses expand violently. Often a collapse (explosive or gravitational) of a lava dome occurs. Nuee ardente (French for glowing cloud) are common in this style. This eruptive style builds a large stratovolcano. Examples of this type volcano are Mt. Pelee on Martinique in the Caribbean, and Mt. Mazama in California.	Gentle eruption of low silica (low-viscosity, low- gas-content) basalt lava. Gas release may produce a fire fountain , a fountain of bright orange lava pouring hundreds of feet in the air, for a few minutes or sometimes several hours. The more typical eruption style is a steady lava flow from a central vent, which can produce wide lava lakes , ponds of lava forming in craters or other depressions. Lava flows and spatter from fire fountains can certainly destroy surrounding vegetation or trees, but the flow is usually slow enough that people have plenty of time to make it to safety. So named because they are common to Hawaii's volcanoes. <i>Lava</i> <i>flow</i> (aa, pahoehoe); <i>scoria</i> <i>cone</i> from fountaining.	These eruptions are fairly impressive but not particularly dangerous. They thrust small amounts of lava 50 to a few hundred feet (15 to 90 meters) in the air, in very short bursts. The lava has a fairly high viscosity, so gas pressure has to build to a high level before it will thrust the material upward. These regular explosions can produce impressive booming sounds, but the eruptions are relatively small. Strombolian eruptions generally don't produce lava flows, but some lava flow may follow the eruption. These eruptions produce a small amount of ashy tephra and build scoria cones.	Like Strombolian eruptions, these eruptions are characterized by many short, moderately violent gas explosions. Vulcanian eruptive columns are typically larger than Strombolian columns, however; and they are mostly made up of ashy pyroclastic material (pumice). The explosions are initiated by high-viscosity, high-gas- content andesitic magma in which small amounts of gas pressure build up and thrust material into the air. In addition to ashy tephra, Vulcanian eruptions will also launch football-sized pyroclastic bombs into the air. Vulcanian eruptions generally aren't associated with lava flow.

Comparin	g Volcanoes:			
-	C	omparing Volcanic	Landforms	
	Slope angles	Kamakaia	Hills, a cinder cone	Feet
	_45	80°		E 100
	3	15°		Feet
		-0° 0 200	400 600 800	1,000
			_ · _ · _ ·	
				Feet r5,000
	M	ount St. Helens, a stratov	olcano	-4,000
				-3,000
				-2,000
				-1,000
				Lo
	°	1 Miles	2	3
	Mauna	Loa, a shield volcano		Feet
				E15,000
	0		Miles	
		20 40	60	80
Type of	Shield	Cinder	Composite/	Dome
Volcano		(Scoria/Tephra) Cone	Stratovolcano	
Description	 broad, 	 conical hill 	 steep- 	 The lava,
Desersperen	gently sloping	composed of	sides, symmetrical	even though emitted at
	landform	pyroclastic debris,	landform	high temperature, is
	small	cinders	 built of 	extremely viscous.
				 Eruptions are
	percentage of	iow noight,	alternating layers	
	pyroclastic	~ 400 meters	of pyroclastic	separated by long
	material	 gas-charged 	debris capped by	intervals. They begin
	 greater 	magma	high viscosity lava	with a preliminary
	width than	 after gas is 	flows	phase characterized by
	height, slope	expelled from	 Nuee 	emissions of smoke
	angles less than	magma, lava pours	Ardente and	and cinders, followed
	12 degrees	from vent, generally	ignimbrites	by an enormous
		flows under the	associated	explosion.
		cinder cone		
Type of Lava	Basaltic	Basaltic scoria	andesitic and	rhyolitic
1 JPC OI Dava	Dubuitiv	Eubuitie Seolia	rhyolitic	
Type of	Hawaiian	Strombolian	Plinian eruptions	Pelean eruptions
• •		eruptions	i iiiiaii cruptions	r clean cruptions
Eruption	eruptions	eruptions	Cult duration manage	n ann a ann a aite
Location			Subduction zones	near composite
	Dees diamate	Deee diamontan d	Dees diamentany	volcanoes
Slope /	Base diameter	Base diameter ~1	Base diameter up	Usually fairly flat
Height, etc.	up to 100 km,	km, height a few	to 10s of km,	(slope < 7°) with
	height up to 5	100 m; slope 30° to	height up to 4-5	knobs or spines
	km; slope <10°	33°	km; slope 15° to	where the lava
			33°	slowly bubbles out
Eruption	Typically active	Active for 1 to 100	Typically active	Typically active for
Frequency	for 100,000 to	years	for 10,000 to	10,000 to 100,000
	1,000,000		100,000 years	years
	years.			
Examples	Mauna Loa,	Sunset Crater,	Mt. St. Helens,	Kelut, Indonesia
	Kilaeau	Arizona	Mt. Fuji, Vesuvius	
L				l

Comparing Volcanoes: