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Abstract. This paper presents a systematic way to examine
the origin of variety in falling snow. First, we define shape
diversity as the logarithm of the number of possible distin-
guishable crystal forms for a given resolution and set of con-
ditions, and then we examine three sources of diversity. Two
sources are the range of initial-crystal sizes and variations in
the trajectory variables. For a given set of variables, diver-
sity is estimated using a model of a crystal falling in an up-
draft. The third source is temperature-updraft heterogeneities
along each trajectory. To examine this source, centimeter-
scale data on cloud temperature and updraft speed are used
to estimate the spatial frequency (m−1) of crystal feature
changes. For air-temperature heterogeneity, this frequency
decays asp−0.66, wherep is a measure of the temperature-
deviation size. For updraft-speed heterogeneity, the decay is
p−0.50. By using these frequencies, the fallpath needed per
feature change is found to range from∼0.8 m, for crystals
near−15◦C, to∼8 m near−19◦C – lengths much less than
total fallpath lengths. As a result, the third source dominates
the diversity, with updraft heterogeneity contributing more
than temperature heterogeneity. Plotted against the crystal’s
initial temperature (−11 to −19◦C), the diversity curve is
“mitten shaped”, having a broad peak near−15.4◦C and a
sharp subpeak at−14.4◦C, both peaks arising from peaks in
growth-rate sensitivity. The diversity is much less than previ-
ous estimates, yet large enough to explain observations. For
example, of all snow crystals ever formed, those that began
near−15◦C are predicted to all appear unique to 1-µm reso-
lution, but those that began near−11◦C are not.
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1 Introduction

The deposition of water vapor in air produces crystals with a
surprising degree of variety, symmetry, and intricacy. For-
mation of various intricate features have been studied on-
and-off over the years (e.g. Nakaya, 1954; Yamashita, 1976;
Frank, 1982; Hallett and Knight, 1994; Nelson, 2005), and
the symmetry is now understood to arise from the growth
mode (Frank, 1982), but the sources of snow crystal variety
have not been examined systematically.

The variety is generally equated to the number of possible
crystal forms, a quantity that has been estimated through two
approaches. The first approach is to estimate the number of
possible distinct crystal forms for a given crystal radius (e.g.
Knight and Knight, 1973). However, this approach yields no
insights into the origin of the variety and it does not include
limitations from the growth process; in particular, we neither
learn the role of the crystal-growth response to the environ-
ment nor do we see how this response may limit the types of
crystal forms. A different approach was suggested much ear-
lier by Bentley (1901) when he wrote that the various crystal
features originate from the various “atmospheric layers” the
crystal falls through1. As a preliminary step in this direction,
Hallett (1984) used knowledge of the crystal response to es-
timate the variety. His result, about 1030 000, is immense (and
much less than the∼103 000 000of the first approach), but the
method involved guessing the crystal’s environment. Now,
34 years later, we still do not know if crystals pass through
enough “layers” (regions) to produce the observed variety,
or even if those layers are the main source of variety. We
address these questions here, and suggest that the answer to
both is “yes”.

1He earlier used the more poetic expression “Was ever life his-
tory written in more dainty hieroglyphics!” (1898). Some time later
(∼1939), Nakaya expressed a similar idea in his now famous ex-
pression, translated as “A snow crystal is a letter from the sky”.
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Fig. 1  

 

Fig. 1. Tabular snow crystals and their distinguishing features.
Crystal(a) grew at low humidity near−9◦C in constant conditions,
suspended by a capillary (radial line). The perimeter shows the six
prism faces. Crystal(b) grew in free-fall under nearly constant con-
ditions of −12.2◦C and liquid-water saturation (Takahashi et al.,
1991). Crystals(c)–(e) are from natural snowfall. Distinguishing
features of(a)–(c) are sketched, half-size, at right. Crystal(e) likely
grew near−14◦C. All crystals viewed in transmitted light. Photos
(b)–(e)courtesy of Tsuneya Takahashi.

This paper described a growth-deviation model to system-
atically examine contributions to snow-crystal variety from
several sources. These sources are the initial states of a crys-
tal, idealized (constant updraft) trajectories to cloudbase, and
modifications to the trajectories from temperature and up-
draft heterogeneities. By analyzing temperature and updraft-
speed heterogeneities from recent cloud data, we derive an
air-region thickness corresponding to Bentley’s layers. This
“Bentley length”LB varies from about 0.8 m, when the air
surrounding the crystal is near−15◦C, to 8 m near−19◦C,
both of which are much less than the estimated crystal fall-
paths of∼1800–2000 m for these temperatures. Thus, crys-
tals should pass through enough regions to account for the
variety. Of the three sources, the heterogeneities produced
the most variety. The total value depends on the assumed
resolution, but for micron-scale resolution, the variety is
∼10500, which is much less than previous estimates, though
still immense. The results apply only to single crystals grown
in relatively ideal conditions (yielding the more picturesque
forms), but the model may be extended to irregular forms and
more realistic conditions in typical snow clouds.

2 Diversity and growth

2.1 Shape diversity as the logarithm of variety

Regardless of how we estimate it, the variety, or number of
possible distinguishable shapes, will be a very large number.
For this reason, we instead work with shape diversityS, de-
fined here as the base-10 logarithm of the variety. As such,
the diversity is similar to entropy, which is proportional to the
logarithm of the number of possible states instead of distin-
guishable shapes2. The shape diversity has similarities and
differences with the diversity that we perceive upon viewing
snow. For example, both types of diversity will be large when
crystals can grow in a wide range of conditions. But the di-
versity we perceive in some crystal collection will depend on
the degree and kind of differences between the crystals, not
just on the existence of differences. However, this perceived
diversity is hard to define unambiguously, whereas the shape
diversity can be analysed mathematically. So, we analyze the
latter in the hope that the results shed light on the former.

2.2 Distinguishing shapes

One can characterize a crystal shape by the dark lines in its
image, lines that mark places where growth produced a sharp
bend in the surface. For our purposes, these lines are the crys-
tal features. For example, the feature of the crystal in Fig. 1a
is the perimeter, traced and scaled-down at right. Crystals in
Fig. 1b and c have additional features in the interior, whereas
crystals in Fig. 1d and e have more complex perimeter and
interior features. Though it may help to picture the crystals
from the viewpoint in Fig. 1, such a viewpoint is unnecessary
for the analyses that follow. Moreover, even though “feature”
is a crucial concept, a precise definition is not needed because
we focus on growth-induced feature changes. These changes
should be discernable in the following sense. If we resolve
lines in the image to resolutionres, then any change in a sec-
tion of line (including line splitting) by at leastres would
be a distinguishable change. Thus, if two crystals follow
paths that are identical, except that one experiences a change
in conditions that produces a distinguishable feature change,
then the two crystals would have distinguishable shapes.

2.3 Feature changes on single-crystal tabular forms

In this paper, we treat only the growth of single-crystal
tabular forms between∼−9 and−22◦C. In this tempera-
ture range, the prism-face growth rate is faster than that
of the basal. This fact permits a major simplification –
the assumption that most features arise from growth of the
outermost prism faces. That the growth of these faces

2This similarity could be developed two ways: as part of a shape
“thermodynamics” or by linking the diversity to the entropy of the
crystal and cloud environment. Neither idea is developed here.
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Fig. 2. Two examples of crystal feature changes from temperature
changes in a cloud at liquid-water saturation. Left column (top to
bottom) shows a feature change on a hollow plate due to growth
lateral to the prism axes.(a) is the initial crystal. Front view below
the sketch shows the pits in the three prism faces. In(b), growth
slows asT moves away from the growth-rate peak near−15◦C,
narrowing the lip of the pit (filled arrow). In(c), growth resumes at
the faster rate asT returns to its previous value, thus widening the
lip of the pit (filled arrow). Grey lines are feature changes due to
the growth-rate change, here boundaries of the pits and ribs (hollow
arrows). Right column shows a feature change on a stellar crystal
due to growth normal to the prism axes.(d) is the form from growth
under constant conditions. Side ribs and the longer main ribs are
ridges on the branch underside (Nelson, 2005). Growth slows in
(e), asT moves away from the growth-rate peak, widening the tip
(solid arrow), before resuming at the faster rate, at the previousT ,
and narrowing in(f) (solid arrow). Hollow arrows mark the feature
changes in both cases. If growth had not slowed, the features would
instead follow the dashed lines.

controls the perimeter of a simple, solid hexagonal plate (e.g.
Fig. 1a) needs no explanation. But the growth history of these
faces should determine other feature changes too. For exam-
ple, in the case of a hollow plate (Fig. 2a–c), when the prism-
face growth temporarily slows, the hollows can decrease in
size, producing a wiggle in an “interior” line and the split-
ting of the perimeter line shown in the figure. For the case of
a stellar crystal, a similar growth-rate change can produce a
‘band’ on each branch (Fig. 2d–f). A recent study of various

Fig. 3 
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Fig. 3. Prism-face growth rates (left axis) and fallspeeds (right
axis) for crystals grown at constant temperature. Curves are fits
to Takahashi et al.’s (1991) data for crystals grown for 10 min. At
later times,v increases, most rapidly at temperatures away from the
peak, andr decreases slightly, mainly at temperatures away from
the peak. (Functional forms are in Appendix C.) Marks on the
abscissa mark peaks inr ’ and r. The basal-face growth rate (not
shown) has a minimum where the prism-face has a maximum.

observations suggested how other common features likely
arise from prism-face growth-rate changes (Nelson, 2005).

2.4 Prism-face growth changes from temperature changes

The prism-face growth rater generally depends on crys-
tal size and shape, air pressure, vapor pressure, and tem-
perature. However, sufficiently extensive data are available
only for constant-temperature measurements of growth un-
der conditions of atmospheric pressure and a vapor pres-
sure equal to equilibrium over pure liquid water. Luck-
ily, these are typical conditions in snow-producing clouds.
Snow-producing clouds often contain significant liquid wa-
ter over much of their lifetime. In such mixed-phase con-
ditions, measurements (Korolev and Isaac, 2006; Siebert
et al., 2003)3 and theory (Shaw, 2000) suggest that the
vapor pressure stays near liquid-water saturation. Hence,
we will assume that the ambient vapor pressure is at the
temperature-dependent liquid-water saturation value. This
will greatly simplify the treatment, but we should remem-
ber that the results will only apply to such liquid-rich con-
ditions. Moreover, we will ignore crystal-crystal collisions
and effects from the close passage of, and collisions with,
droplets. Finally, as no measurements of polycrystal growth
rates are available, the model is restricted to single crystals.
With these assumptions, the air temperatureT controls r.
This rate has a peak near−14.8◦C (Fig. 3), which suggests

3In the former, measurements were averaged over 100 m. In the
latter, air temperature and liquid water content at 15-cm resolution
were correlated as if the droplets grew or evaporated to stay near
equilibrium.
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Fig. 4. Overview of growth-deviation model. In a trajec-
tory z(t), a crystal nucleates with diameterd0 at T0 in an up-
draft ū then falls at speedv−ū until reaching cloudbase at
temperatureTf (solid curve). Each resolvable variationδd0,
δT0, δū, and δTf results in a final diameterdf that changes
by ±2•res (dashed curves). Variable ranges are1d0, 1T0,
1ū, and 1Tf , making the number of distinct reference classes
N0•Nref=(1d0/δd0)•(1T0/δT01ū/δū1Tf /δTf ). Values are in
Table 1. DTT h andDTDu (from updraft deviationsDu – dotted
curve) are temperature deviations that further alter crystal shape.
For each trajectory, the numberNdev of deviation-caused shape
changes depends ondf /res, the final pathlengthLf , and the num-
ber of relevant deviations/meter (FT h+FDu).

that we must carefully track the temperature to estimate when
distinguishable changes to growth features can occur.

3 Crystal trajectories and diversity sources

With r depending only onT , the initial crystal properties and
temperature history determine the final crystal form. We now
study these influences in detail.

3.1 Initial crystals and reference trajectories

Most snow crystals start as frozen droplets. Subsequent
growth may be affected by various crystalline imperfections
from the freezing process, but the effects are poorly under-
stood4. So, we characterize the initial crystal by its diameter
d0. The initial temperatureT0 is also an initial characteristic,
but we instead useT0 as a trajectory parameter.

Temperature changes along a crystal trajectory are due to
spatial air-temperature heterogeneityDTT h, which exists at a
fixed time, and the altitude-dependent air temperature in the
absence of temperature heterogeneity, which occurs during

4Under slow growth conditions, dislocation outcrops on the sur-
face influence growth. During freezing, chemical impurities may
lead to dislocations or produce other surface effects. Also, larger
drops are more likely to freeze with internal stresses and become
polycrystals, particularly at low temperatures.

Table 1. Trajectory results fordf , Lf , S0, andSref.

T0[
◦C] −11 −13 −15 −17 −19

da
f

[µm] 441 1843 7600 3919 2069

La
f

[m] 686 1227 1850 1866 2009

δda
0 [10−7m] 96 52 38 2.9 3.2

δT a
0 [10−3 ◦C] 9.1 1.4 1.5 1.2 4.4

δūa [10−5 m/s] 110 27 5 25 100
δT a

f
[10−2 ◦C] 4.3 2.8 2.2 5.1 10

Sb
0 0.7 1.0 1.2 1.5 1.5

Sb
ref 7.5 9.3 10.1 9.1 7.5

a Baseline case (1 below),res=1µm. (cloud is 2143-m thick).
b Average of cases 1–4:{d0 [µm], ū [m/s], Tf [◦C]}=1: {8, 0.12,
−8}; 2: {1, 0.12,−8}; 3: {1,0.01,T0+1}; 4: {40, 0.25,T0+11}.

the crystal’s up-down motion. The latter is the sum of that
from 1) slowly varying altitudes for a crystal in an updraft
of constant speed, and 2) heterogeneityDTDu from altitude
deviations due to updraft-speed deviationsDu. Horizontal
motion is ignored.

To account for these temperature deviations, we write
the crystal temperature at timet asT (t)=T (z(t))+DT (t),
whereT (z(t)) is the temperature for a crystal lofted in an up-
draft with the cloud-averaged speedū, in which the altitude is
z(t), andDT (t) is the total temperature deviation along a tra-
jectory (=DTT h+DTDu). A given trajectoryz(t), hereafter
a “reference” trajectory, changes asdz/dt=ū − v, wherev

is the crystal’s terminal fallspeed andT (z) decreases withz
asdT (z)/dz≡T ’=−7×10−3 ◦C/m, a typical environmental
lapse rate. An actual updraft has speedū+Du(t), butDu is
used only to estimateDTDu, not for calculating trajectories.
These and other model parameters are sketched in Fig. 4 and
a full listing of symbol definitions is in Appendix A.

The duration of a trajectory depends onT0, Tf , ū, and
how quickly v increases. The fallspeed depends on crystal
shape, and increases slowest for the crystals that grow the
fastest (Fig. 3). These crystals fall slowest because, as tab-
ular crystals fall broadside to the airflow, the broadest (and
thinnest) crystals expose the greatest area to the airflow, and
thus have the greatest drag force. Hence, the crystals that
grow the fastest also fall the slowest, and end up with the
longest growth times.

3.2 Three sources of diversity

A reference trajectory begins when a crystal nucleates at tem-
peratureT0 from a droplet of diameterd0. Here−11≥T0≥−

19◦C. Typically, ū exceeds the fallspeed of the micron-sized
frozen droplets, so the crystal initially rises and thus cools.

Atmos. Chem. Phys., 8, 5669–5682, 2008 www.atmos-chem-phys.net/8/5669/2008/
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Whenv reaches̄u, the crystal has its maximum altitude5 and
minimum T , and thereafter falls towards cloudbase at the
warmer temperatureTf where growth is assumed to stop.
(Growth below cloudbase is ignored, even though the vapor
pressure exceeds ice saturation for some distance.) The tem-
perature deviations then superimpose on the reference trajec-
tories. During such a history, the origin of crystal variety can
be divided into three sources: variations in the initial diame-
ter, variations in the reference trajectory, and temperature de-
viations due to cloud heterogeneities. From these varieties,
the corresponding diversities are calculated.

Each source is treated separately. LetN0 be the number
of possible forms due to variations of the initial crystal di-
ameter, a number that will generally depend on the reference
trajectory. Similarly,Nref is the corresponding number for
the reference trajectories, and may depend on the initial di-
ameter, whereasNdev is the corresponding number for devi-
ations.Ndev will generally depend on the initial crystal size
and trajectory parameters. The shape diversities from these
influences

S0 = log10[N0],

Sref = log10[Nref], and

Sdev = log10[Ndev], (1)

are evaluated next.

4 Variations of initial crystal and reference trajectories

To evaluateS0, Sref, andSdev, we use the numerical inte-
gration method in Appendix B to track the crystal diameter
d(t), temperatureT (t), and pathlengthL(t) (air depth the
crystal falls through) for timet along reference trajectories.
First, we use the reference trajectories to analyzeS0 andSref.
A trajectory is determined byd0, T0, Tf , ū, andv. But v

depends ond0 andT (t) through the crystal size and shape.
Thus, reference trajectories depend only ond0, T0, ū, and
Tf . Upon exiting cloudbase, the crystal has diameterdf and
total pathlengthLf .

4.1 Distinguishable reference classes for trajectories with-
out deviations

Consider a reference trajectory with some values ofd0, T0,
ū, andTf , but one variable, saȳu, is varied bydū. For
all |dū| less than some value, defined asδū, the final crys-
tal forms will be indistinguishable. (Ignore cloud hetero-
geneities for now.) When|dū|>δū, the resulting crystal will
have some feature displaced by at leastres from that on the
original (|dū|=0) crystal. To determineδd0, δT0, δū, and
δTf , we consider changes todf , a common feature that is
relatively sensitive to the temperature history. Thus, if vari-
ableX with valuex results indf , then valuex+δX results

5For updrafts considered here, the altitude increase is typically
less than 100 m.

in df ±2•res. So, ifdf is sensitive toX, thenδX will be rel-
atively small. Crystals withind0±δd0/2, T0±δT0/2, ū±δū/2,
andTf ±δTf /2 are said to be in the same “reference” class;
they can have complex features, yet would be observed as
indistinguishable.

4.2 Number of reference classes

To estimateS0 and Sref, we need a typical range of each
variable. Call these1d0, 1T0, 1ū, and 1Tf . The re-
sulting number of possible distinguishable crystals due to
changes ind0 is N0=1d0/δd0, though this number will de-
pend somewhat on the values ofd0, T0, ū, and Tf used
to calculateδd0. The corresponding numbers for the other
variables are1T0/δT0, 1ū/δū, and 1Tf /δTf . We as-
sume thatd0 varies between 1 and 40µm, T0 varies be-
tween−10 and−20◦C, ū varies between 0.01 and 0.25 m/s,
andTf (always>T0) varies between−9 and−17◦C. Thus
{1d0, 1T0, 1ū, 1Tf }={39µm, 10◦C, 0.24 m/s, 8◦C}.

Use of the calculated trajectories showed that the diver-
sitiesS0 andSref depended ond0, T0, ū, andTf , with the
greatest dependence being onT0. Averaging over the results
from fiveT0 (Table 1) givesS0=1.2 andSref=8.7.S0 is small
becaused0 has a significant influence only at the start; for ex-
ample, a crystal that begins 2-µm larger will end about 2-µm
larger. This suggests thatS0≈ log10 [1d0/2•res]=1.3. The
value is instead 1.2 becaused also affectsv. Sref is much
larger, mainly becausedf is sensitive toT0 and ū, both of
which affectT (and hencer) throughout the trajectory. In
contrast,Tf only affectsLf , thus adding relatively little to
Sref.

5 Temperature deviations due to cloud heterogeneities

A given reference class represents a certain shape. We do
not know this shape, but we nevertheless can consider pos-
sible variations to the shape, variations that arise from air-
temperature and updraft-speed heterogeneities along the fall-
path. As a crystal falls, the heterogeneities produce a contin-
uously varyingDT that alter the crystal’s growth features.
But there will be some average duration between relevant
DT changes, that is, betweenDT changes that can produce
distinguishable changes to the crystal features. As there can
be many possible sequences of relevant changes, each refer-
ence class can contain many possible crystal forms.

After a relevant change, the feature may change further.
For example, if a sidebranch sprouts and no furtherDT de-
viations occur, subsequent growth is determined by the rest
of the trajectory. Otherwise, subsequent relevantDT devia-
tions will affect the shape according to when they occur. To
proceed, we first estimate the number of relevant deviations
and then consider when each one may occur.

www.atmos-chem-phys.net/8/5669/2008/ Atmos. Chem. Phys., 8, 5669–5682, 2008
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5.1 Number of relevant deviations

We set a growth-amount criterion for the relevant devia-
tions, then estimate how often the criterion is satisfied for a
given crystal path. In timedt , a crystal falls through path-
length dL=v dt as its outermost prism faces advance by
dR=r dt , where r is the prism-face growth rate (Fig. 3).
(dL6=dz unlessū=0.) A temperature differing byDTi pro-
duces a growth-rate changedri=r ’DTi , wherer ’≡dr/dT is
the growth-rate sensitivity and “i”=“ T h” or “ Du”. The size
of the surface perturbation thus produced isd2Ri=dridt .
(For a lateral deviation (e.g. Fig. 2a–c), the growth rate is un-
known, so we user as an approximation.) Integratingd2Ri

between depthLt at time t andLt+L at time t+L/v gives
δRi :

δRi(Lt , L)=

∫ Lt+L

Lt

r ′(x)DTi(x)v−1(x)dx

≡r ′v−16i(Lt , L), (2)

where theT changes are small enough to remover ’and v

from the integrand. The number of relevant deviations in6ι

is nearly independent ofLt , so we will ignore this depen-
dence. For a surface perturbation to enlarge, it must receive
more vapor flux than adjacent regions. To do so,δR must ex-
ceed the vapor mean-free pathλ, which we fix at 0.08µm (λ
varies only slightly withT andz). Assuming that the pertur-
bation continues to grow, eventually exceedingres, the per-
turbation from Eq. (2) can change a feature when

6i(L)≥
λv

r ′
≡p. (3)

The parameterp greatly influencesSdev due to the sensi-
tivity of v andr ’ to T . During growth,p generally increases
due to the increase ofv. For crystals withT0=−15◦C,
p increases slowly, and much of the growth occurs with
p∼0.018◦C m. In contrast, crystals withT0 near−11 and
−19◦C have faster-rising values ofp that average about 10
and 20 times larger.

5.2 Distribution functions from stratus clouds

The number of times that Eq. (3) is satisfied depends onp

and L. To handle this dependence, we define peak distri-
bution functionsFi(p) as the number of peaks exceeding
p in unit L. To estimateFi(p), I used data from horizon-
tal flight paths in stratus clouds withT <0◦C. The values of
DTT h were direct measurements, butDTDu required inte-
gration ofDu to get the altitude deviationDz, from which
DTDu=T ’Dz. (The integration introduced factorv−1 into
δRDu, and thusFDu also depends onv.) Then I integrated
DTi to obtain6i , from which theFi were derived. Details
are in Appendix D.

The FT h functions from two cloud datasets decayed as
p−0.66 and agreed within a factor of two, even though the
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Fig. 5. Temperature deviation distribution functionsFT h andFDu.
All functions are from measurements at 15-cm intervals except the
lowerFT h one, which instead had 8-mm intervals. Also shown are
fits FT h=0.0287p−0.66 andFDu=0.0262p−0.50v−0.5.

clouds had different temperature averages and the measure-
ments were done differently (Fig. 5). In contrast, only one
cloud dataset was available forFDu, and the values decayed
asp−0.50. The reasonFi decay with increasingp is because
larger temperature deviations are rarer, but the reason for ex-
ponents−2/3 and−1/2 is unclear.

The reciprocal of the sum of the distribution functions is
the fallpath needed for a feature to form. This distance is
analogous to the layer thickness mentioned by Bentley (even
though “layer” suggests homogenous, horizontally extended
regions, neither of which may occur). To acknowledge his
insight, let us call this the Bentley lengthLB :

LB(p, v)≡
1

FT h(p)+FDu(p, v)
. (4)

Using the estimated minimump of 0.018 withv=0.1 m/s,
which applies to a small crystal growing near−14.8◦C, the
total value ofF is ∼1.2 m−1, makingLB∼0.8 m. In con-
trast, a maximump of 0.36 withv=0.4 m/s (appropriate for
a large crystal near−19◦C) givesLB∼8 m. Most values of
LB should lie in between these extremes.

5.3 Number and positions of feature changes

For constantp andv, the number of timesn that a temper-
ature deviation can change a feature is the ratio of the total
pathlength with the Bentley length. But only some fraction
χ of the deviations will grow into a distinguishable feature
change, so

n=
χLf

LB(p, v)
. (5)

Each of these feature changes could have been born when
the outermost prism faces were at any one ofm distinct ra-
dial positions on the crystal. As these will be separated by
intervals ofres, we have

m=
df

2·res
. (6)
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Table 2. Combinatorial parametersn andm for Sdev.

T0 [
◦C] −11 −13 −15 −17 −19

na 48.8 229.9 467.5 213.0 88.6
mb 220.6 921.3 3799.9 1959.7 1034.3
log10 [2me/n] 1.4 1.3 1.6 1.7 1.8

a Based onLf from Table 1, and the averageFT h+FDu for the
coldest and warmest parts of the trajectory.
b m=df /2res, with df from Table 1.

That is, there arem resolvable growth intervals.m andn are
used below to calculateSdev. Althoughm depends on both
the resolution and trajectory (throughdf ), n depends only on
the trajectory.

5.4 Estimates ofLf , df , m, andn

The reference trajectories were used to estimateLf anddf

(Table 1), and thenm andn. The values ofLf increased
asT0 decreased because the distance to cloudbase increased,
but the increase is most rapid asT0 approaches−15◦C from
lower heights due to the decrease inv (Fig. 3). The value
of Lf could greatly exceed the cloud thickness whenū was
large (≥0.25 m/s) andT0 was near−15◦C (wherev was
small), but even at other values ofū andT0, the value greatly
exceededLB . Like Lf , the diameterdf initially increases
asT0 decreases, but in contrast,df decreases above−15◦C.
This peak is due to both the maximum inr and the minimum
in v. From Eq. 6,m has an analogous peak. Then maxi-
mum near−15◦C (Table 2) also has two causes: the trend
in Lf and the peaks inr ’ at −14.0 and−15.4◦C (Fig. 3)
that greatly decreaseLB . In Sect. 6.2 below, we integrate
dn=dLχ/LB(p, v) for more precise analysis and show that
a double-peak exists.

5.5 Combinatorial method forSdev

Within a reference class, a crystal hasn feature changes that
can arise inm growth intervals, each of which may be born
during either a growth spurt or lull, meaning that each inter-
val can develop one of two possible feature changes6. The
resulting number of feature-change combinations is an ap-
plication of a common calculation (Feller, 1968):

Ndev=

(
m

n

)
2n

=
m!

n!(m−n)!
2n. (7)

6Only m≥n makes sense, son must be limited tom. If resex-
ceeds about 5µm, n>m for some conditions and the analysis be-
comes more involved, though one could argue that the RHS of Eq. 7
becomes 2n.
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Fig. 6. Shape diversitySdev. The upper black curve, the baseline
case (bold values in legend), is derived from the grey curves ofm

(reduced 30-fold) andn (reduced 3-fold). Solid triangles, stars,
squares, and diamonds mark peak positions for other values ofū,
Tf , χ , or res. Full curves show casesχ=1/8 andTf =T0+1. Verti-
cal lines on the abscissa are peak positions and relative magnitudes
for the baseline case (black lines), the value ofm (long grey line),
and the value ofn (short grey lines).

As m�1, n�1, andm−n�1 (Table 2), Stirling’s factorial
approximation can be used:

Ndev≈
2n√

2πn(1−
n
m

)

(m
n
−1)n

(1−
n
m

)m
. (8)

Whenm�n, Ndevapproaches (2πn)−1/2(2me/n)n, showing
thatNdev increases rapidly when eitherm or n increase. In
this case

Sdev≈n· log10[
2m·e

n
]−

1

2
log10[2πn]. (9)

Whenres<4µm, Eq. (9) is accurate to within 1–3% of the
value derived from Eq. (7).

6 Discussion

6.1 Cloud heterogeneities as the main source of diversity

As log10[2me/n]>1 andn�1/2 (Table 2), Eq. (9) suggests
thatSdev exceedsn, which exceedsS0+Sref for all T0. Fur-
ther analysis of the dependence ofS0, Sref, andSdev on res
showed that this finding is independent of viewing resolu-
tion, provided thatreswas not so large thatm<n. Hence, of
the three sources, air-temperature and updraft heterogeneities
dominate the diversity. So, we examine this source further.
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6.2 Further examination ofSdev: the “mitten” curve

A plot of Sdev versusT0 reveals a curve in a mitten-like
shape (Fig. 6). Specifically, for most cases considered, the
curve has a larger, broader peak near−15.4◦C and a smaller,
narrower peak near−14.4◦C. The two peaks come from
n, which is double-peaked becauser ’ has maxima on both
sides of the growth-rate peak near−14.8◦C. The lower-
temperature peak ofSdev is larger partly because only lower-
temperature crystals experience bothr ’ maxima during their
descent. In addition, crystals that start at lower temperatures
have greaterSdev due to their largerdf , which is partly due
to their longerLf . These asymmetries are greatly reduced
when the cloudbase is only 1◦C warmer thanT0, making the
curve more nearly symmetric about the growth rate peak.

To better understand theT0 dependence, consider how the
crystal-growth propertiesr, r ’, andv affectSdev. In the base-
line case,Sdev changes from 41.3 at−11.0◦C to 479.9 near
−15.4◦C, an increase of 438.6. But when theT0= − 11◦C
case was run withr(T ) evaluated 4.4◦C lower (to equal that
of a −15.4◦C crystal), the resultingSdev was 64.0, an in-
crease of 22.7. If insteadv was evaluated 4.4◦C lower, the
value ofSdev increased by 33.4. However, whenr ’ was eval-
uated 4.4◦C lower, Sdev increased by 60.2, the largest in-
crease7. Therefore,v had a larger effect onSdev thanr, but
r ’ had the largest effect.

In nature, the biggest crystals are usually observed to be
the most elaborate. This observation can be explained as a
combination of two factors. One,Sdev increases with the fac-
tor m, which is largest for the largest crystals (Eq. 9). Two,
the peaks inSdev are mainly due to the nearby peaks inr ’
and the minimum inv, both of which are either close to or
at the maximum inr, and these conditions (larger, smallv)
are exactly the conditions that produce the largest crystals.
Therefore, large crystals form under nearly the same condi-
tions that are needed for maximum diversity.

6.3 Sensitivity and uncertainty inSdev

Sdev was relatively insensitive toTf but sensitive toū. A
decrease inTf decreasedSdev for all crystals, particularly
those that started near cloudbase. But the decrease is rela-
tively small, and peak temperatures shifted only slightly to
higherT0 (Fig. 6, stars). The latter occurred because a rais-
ing of cloudbase decreasesLf . A greater decrease inSdev
occurred when̄u decreased to 0.03 m/s. In this case, the peak
temperatures shifted to lowerT0. The lower values are due to
the shorterLf , and the decrease in peak temperatures occur
becauseT0 must decrease to have the same minimum tem-
perature, where much of the growth occurs.

7The sum of the individual effects is 116.3, much less than the
curve’s 438.6. This difference is becauseSdev depends nonlinearly
on r, r ’, and v. When all three parameters were 4.4◦C lower,
Sdev increased by 366.1. The remaining difference is because the
−11.0◦C case is closer to cloudbase.

In contrast,Sdev was sensitive toresandχ . If the resolu-
tion is coarser, thenres is larger and the diversity is less. For
example, Fig. 6 shows that the peak diversity decreases by
about 170 whenres increases from 1 to 4µm. This decrease
is due to a decrease inm. Even greater sensitivity comes
from χ due to the proportionality ofn to χ . For example,
when χ decreased from 1/2 to 1/8, the peak diversity de-
creased from 486 to 160. The valueχ=0.5 used in the base-
line case is uncertain and likely depends on crystal form, fea-
ture type, and the size and rate of the deviation. Qualitatively,
χ should be relatively large near peak growth rates, due to
the step-clumping that leads to various feature changes (Nel-
son, 2005), yet may be nearly zero for small, slow-growing
crystals that have not yet hollowed (e.g. Fig. 1a). So,χ=0.5
may overestimateSdev, at least at slow growth rates, though
its functional form and numerical value remain highly uncer-
tain. Whenχ becomes better known, it can be inserted into
the present model.

6.4 Neglected influences on diversity

The vapor pressure in a cloud cannot always be exactly at
liquid-water saturation. For example, in a updraft, a re-
gion devoid of droplets will be slightly supersaturated (Shaw,
2000), whereas a similar region in a downdraft will be under-
saturated. Also, entrainment of subsaturated air can create
subsaturated regions. Moreover, if nearly all of the droplets
freeze, the vapor pressure can decrease to near ice saturation.
Unfortunately, we have no fine-scale data on vapor-pressure
deviations from liquid-water saturation. When such data be-
come available, we could use the same method as that used
here forT . In particular, Eqs. (2) and (3) would apply, with
the necessary substitutions, giving rise to a third distribution
function that would appear as a third term in the denomina-
tor of Eq. (4). As a result,LB would decrease andn would
increase, thus increasingSdev. However, unlikeT , vapor-
pressure has no altitude term, which is large in the tempera-
ture case:FDu>FT h for a range ofv (see Fig. 5). The lack
of an altitude term would reduce their contribution, though
vapor-pressure heterogeneities may still add much diversity.

Other potentially major sources of variety are the initial
crystal’s structure and close passages/collisions of droplets.
When the growth rate is low, step-producing defects can
greatly affect the growth rate of a prism face (Wood et al.,
2001). Moreover, crystals nucleated under different condi-
tions can end up with different shapes (Yamashita, 1973).
But we have little knowledge of either influence. Also,
droplets may pass close to, and land on, a crystal, thus lo-
cally changing the humidity and temperature. For example,
the droplet density can affect the growth rate (Takahashi and
Endoh, 2000; Castellano et al., 2007) and cause clear feature
changes in some cases (Hallett and Knight, 1994), though
quantitative treatment is not presently possible.

Finally, we consider the role of basal-face growth on fea-
ture changes. According to our analysis of the mitten curve,
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diversity is most sensitive to the growth-rate sensitivityr ’.
But for the temperature range considered here, the basal
face growth rate is relatively insensitive to temperature. For
example, between about−11 and−15◦C, the basal-face
growth rate changes by only about 0.025µm/s, much less
than the corresponding 0.9µm/s of the prism-face (Taka-
hashi et al., 1991). The sensitivities of the two faces are
more nearly the same near the tabular-columnar transition
temperatures (near−9 and−23◦C), but feature changes are
relatively rare at such temperatures. At other temperatures,
the basal face might have relatively little direct influence on
the diversity.

6.5 Errors from using non-ideal datasets

Model results are based on the available data, which, unfortu-
nately, are not perfectly suited for applications to real crystal
trajectories in snow clouds. Three problems are mentioned
here. One, although crystals fall vertically through the air
currents, the only available data on temperature and updraft
heterogeneity are from measurements along near-horizontal
flight paths. If, for example, the temperature deviations along
a vertical path are more spread out than they are along the
horizontal and the distribution function has the same power-
law scaling, then one can show that the distribution functions
would be smaller. Two, snow clouds can have regions with
values ofū much larger than the values here (Wolde and Vali,
2001). However, larger values ofū would produce unrealis-
tically large crystals, so the baseline-caseū here may be a
reasonable average. Three, data onr andv cover only ide-
alized, constant conditions, and even in these conditions are
imprecisely known. For example, more recent, yet limited,
data suggest that the growth-rate peak is flatter on top than
that shown in Fig. 3 (Takahashi et al., 2008). However, such
a change would not alter the main findings here. Finally,
in an actual cloud, side-to-side (leaf-like) falling motion and
changing temperatures may alterr andv. These considera-
tions show that new measurements of cloud and snow-crystal
growth properties are needed to advance our modelling of
snow-crystal diversity.

6.6 The total diversity

Because all three sources of diversity, particularlySdev, vary
with the crystal-cloud variables, the total diversityStot is not
a simple sum ofS0, Sref, andSdev. Rather, an accurate es-
timate ofStot would involve calculating the logarithm of a
sum ofNdev over the reference classes. Instead of attempt-
ing such a sum, we estimate an upper limit toS as the sum
of the maximum values ofS0, Sref, andSdev. For χ=1/2 and
res=1µm (a relatively high optical-microscope resolution),
this upper limit is 1.5+10.1+475≈487. Given the various un-
certainties involved and neglected influences on diversity, the
actual number may be larger by several orders of magnitude.

Nevertheless, unlessχ exceeds1/2 near−15◦C, then an up-
per limit to the total diversityStot should be about 500.

6.7 Comparison to previous estimates

The upper limitStot∼500 is large, yet much less than pre-
vious estimates. Knight and Knight (1973) estimated the
number of molecules in a typical snow crystal and then
considered, but did not evaluate, the number of ways these
molecules could be arranged. A lower bound of this num-
ber is derived from Eq. (6) by substituting form a crys-
tal radius divided by the water-molecule diameter and sum-
ming over alln (0 to m). The result is 3m, which, for a ra-
dius of 3 mm, givesStot∼3×106. In contrast, Hallett (1984)
assumed a resolution 3×104 times larger (10µm), yet cal-
culatedStot∼5×106. His estimate involved consideration
of 104 “points” on the crystal, apparently each of which
could have grown in one of 20 humidity classes and one of
50 temperature classes. (S0 was ignored.) Based on these as-
sumptions, the number of possible crystals should instead be
(20×50)10 000, which givesStot=3×104. Regardless of their
differences, these previous estimates are vastly larger than
the Stot found here, and this is mainly because limitations
from the growth process were not included. This huge differ-
ence in numbers has implications for the following question.

6.8 Comparison to observations: should every snow crystal
look unique?

An observational test of the mitten curve is impractical unless
res is very large. So instead, we check to see if the numbers
are reasonable by estimating the likelihood that all crystals
in a collection appear unique.

Consider a large, heavy snowstorm that deposits a liquid-
water-equivalent snow depth of 3 cm (∼50 cm of snow) over
a land area of 104 km2. In total, this equals∼3×1011 kg of
water, which, if each crystal is 10−9 kg, amounts to∼3×1020

crystals, of whichNc∼3×1018 may have been reasonably
symmetric at cloudbase8. This number could be compared
to the total variety∼10Stot; however, the variety of one ref-
erence class can be many orders of magnitude different from
another. So we instead consider each reference class sepa-
rately.

8Highly symmetric crystals (at typical viewing resolution) are
unlikely. For example, Korolev et al. (1999) found that only∼3%
of the sampled crystals were “pristine”. But we could average the
features over the twelve 30◦ sectors, one bisector along the center
of each branch. Or, we could consider each sector independently,
and find the probability that any two, out of all 12Nc of the sectors,
are the same.
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Fig. 7. Analysis of deviations.(a) Segment ofTT h data. (b) Seg-
ment ofū+Du data. (c) Integrated temperature6T h from section
(a). Maximum peakp1 is marked. (d) 6T h after the peak in(c)
was removed by breaking the segment into pre-peak and post-peak
segments as described in Appendix D. New maximum peakp2 is
marked.

To estimate crystal uniqueness, we assume the crystals are
equally likely to be in each class. As a result, the number of
crystals per classNccl is Nc divided by the number of classes,
or Nc/10S0+Sref. Using the averageS0 andSref from Table 1,
Nccl=4×108. (As this exceeds unity, there would be many
identical crystals if heterogeneities did not exist.) The prob-
ability pd(i) that all crystals in classi are distinct can be
estimated by counting the number of ways that this class can
have only distinct crystals. This problem is equivalent to the
“birthday paradox” problem, which is the surprisingly low
probability that all people in a group have birthdays on dif-
ferent days of the year. AsNccl�1 andNdev(i)�1, we can
use Feller’s (1968, end of Sect. 2.3) approximation:

pd(i)≈e
−

N2
ccl

2Ndev(i) . (10)

For all crystals to be distinct, each class can have only dis-
tinct crystals. Thus,pdall, the probability that all crystals
are distinct, should be the product of allpd(i). Hence,
pdall<pd(i), for all i. Now consideri=0, the class defined
as that with the smallest probability. As this class must,
according to Eq. (10), have the smallestNdev, it requires a
warmT0, a low ū, and a coldTf ; for example,T0=−11◦C,
ū=0.02 m/s, andTf =−10.5◦C. Calculation with these num-
bers givesNdev≈5×1016, from whichpd(0)=0.2, suggesting

Table 3. Coefficients for fits tor andv.

valuei ai bi ci

1 4.84×10−2 2.04×10−3 0.835
2 0.845 8.00×10−3 2.06×10−2

3 9.88×10−2 0.973 0.866
4 0.613 2.96 1.48×10−2

5 4.56×10−2 2.24×10−2 0.683
6 2.70×10−2 0.788 10.2

that large snowstorms have enough crystals for some of the
smaller crystals to appear as copies.

Use of a largerres or larger sample size would reduce
pd(0) even further. As an example of the latter, if we in-
clude all snow crystals that have ever fallen on Earth,Nccl
increases by many orders of magnitude because 10S0+Sref

hardly changes yetNc increases about 1015-fold (to ∼1033;
Knight and Knight, 1973). With such a large negative ex-
ponent in Eq. (10),pd(0) is negligibly small, meaning that
two indistinguishable crystals almost certainly existed. In
contrast, for a classi 6=0 of crystals withT0∼ −15.4◦C,
then pd(i)≈1 even if we consider all such crystals that
have ever fallen. (Here the exponent is∼−10−433, making
pd(i)=1−10−433.) So, in this and nearby classes, the crys-
tals should never be the same. Finally, some crystal trajec-
tories are probably more common than others, in which case
pd could decrease. Moreover, some crystals may stay close
together as they fall and thus experience similar conditions.
This too would increase the likelihood of indistinguishable
crystals.

The above result is consistent with our experience, but un-
fortunately is effectively impossible to disprove. For exam-
ple, even in the first case above whereNccl∼109, the num-
ber of crystal comparisons is∼N2

ccl/2, which, if each took
1 s, would take a total of∼2×1010 years. So, even though
we may observe all crystals as unique, some of the smaller,
relatively compact crystals that were not observed probably
include some apparent copies.

6.9 Perceived diversity versus shape diversity

The small crystals that grow near−11 and−19◦C contribute
little to the total shape diversity, yet seem to add much to
the perceived diversity. Specifically, the number of pos-
sible forms near−15.4◦C is over 400 orders of magnitude
greater than that near−11◦C. Nevertheless, the small com-
pact crystals, such as those that form near−11 and−19◦C,
comprise a major portion of snow crystal image collections
such as Bentley’s (Bentley and Humphrey, 1962), and thus
add significantly to our perception of crystal diversity. Why?
This is likely because larger differences in form appear more
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striking than smaller differences, and the shape diversity does
not account for such effects. Nevertheless, the shape diver-
sity is related to the size of the crystal differences in the
following sense. Large differences in size are due in part
to the growth-rate sensitivity, integrated over a temperature
change of a few degrees, and this sensitivity is an important
factor in the shape diversity. However, including the degree
of crystal-form differences into the analysis would involve
adding numerous crystal parameters and subjective factors
that may confuse more than clarify the issue.

7 Conclusions

This work presented a systematic way to examine the origin
of snow-crystal shape diversity. Some diversity arose from
variations in initial crystal size and fall trajectory parame-
ters, though the amounts added relatively little to the total
diversity. The main findings involved an analysis of mea-
sured in-cloud heterogeneities in updraft speed and air tem-
perature. The number per meter of heterogeneities of sizep

was found to decay with a power-law exponent of−1/2 for

updraft speeds and−2/3 for temperature. The corresponding
Bentley length, the air depth through which a falling crys-
tal can change its features, ranged from 0.8 to 8.0 m. Be-
cause such distances are much smaller than typical crystal
fallpaths, the heterogeneities can contribute a relatively large
amount to the diversity.

Ultimately, the great diversity in snow crystals is due to the
extreme temperature sensitivity of the crystal-growth proper-
ties that affect the fallpath and Bentley length. For example,
one property, the prism-face growth rate, peaks near−15◦C,
and the effect of this maximum is amplified by the corre-
sponding minimum in fallspeed, resulting in a huge range
of crystal sizes. Moreover, shape diversity is strongly in-
fluenced by the temperature sensitivity of the growth rate.
For crystals originating near – 11◦C, the shape diversity is
predicted to be low enough that nature produces some ap-
parent copies. But for crystals originating near−15◦C, the
resulting shape diversity is so high that initially featureless,
frozen spheres of ice, falling through updrafts that are hetero-
geneous yet uniform in appearance, can nevertheless develop
into intricate, symmetric crystals that are never the same.
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Appendix A

Summary of symbols and terms used in the text

Symbol or term Definition 1st appears

d(t); d0; df crystal diameter at timet ; initial value; final value Sects. 3.1 and 4
DTT h; DTDu temperature deviation by heterogeneity inT ; Du Sect. 3.1
Du updraft speed deviation Sect. 3.1
FT h(p); FDu(p) peaks (m−1) in δR exceedingp due toDTT h; DTDu Sect. 5.2
L; Lf pathlength crystal falls through air, final value Sect. 4
LB Bentley length scale Eq. (4)
m number of distinguishable positions for a feature change Sect. 5.3
n number of feature changes in fall path Sect. 5.3
N0, Nref, Ndev number of possible forms from three sources Sect. 3.2
Nc; Nccl number of crystals; crystals/reference class Sect. 6.8
p peak parameter Eq. (3)
pd(i); pdall probability crystals in classi are distinct; for all classes Sect. 6.8
r prism-face growth rate Sect. 5.1
r ’ growth rate sensitivity=dr/dT Sect. 5.1
R position of outermost prism face Sect. 5.1
reference trajectory crystal path fromT0 to Tf at constant̄u Sect. 3.1
reference class range ofd0, T0, ū, Tf , within which all crystals in an ideal Sect. 4.1

trajectory are indistinguishable tores
relevant produces a distinguishable feature change Sect. 5
res resolution for distinguishing crystal features Sect. 2.2
S0, Sref, Sdev; Stot diversity from threesources; total diversity Sects. 3.2 and 6.6
T (t); T0; Tf crystal temperature at timet ; initial value; final value Sects. 3.1 and 3.2
T ’ environmental lapse rate:−7×10−3 ◦C/m Sect. 3.1
ū cloud-averaged updraft speed Sect. 3.1
v crystal terminal fallspeed Sect. 3.1
z(t) crystal altitude at timet Sect. 3.1
δx range of variablex (=d0, T0, ū, Tf ) in a reference class Sect. 4.1
δR surface perturbation Eq. (2)
1x environmental range of variablex (=d0, T0, ū, Tf ) Sect. 4.2
λ vapor mean-free path: 0.08µm Sect. 5.1
6T h; 6Du integrated temperature deviation fromDTT h; DTDu Eqs. (2) and (3)
χ fraction of growth perturbations that change a feature Sect. 5.3

Appendix B

Numerical integration method for reference trajectories

Height z(t) was calculated by summingdz=(ū−v)dt for
timestepsdt , updatingv at each timestep. Atz=0, T =0◦C
so T =T ’z at each step. Ifz reached cloudtop (where
T =−23◦C), thendz=0 until v>ū. Only theT dependence
of r was considered becauser varies little with d and air
pressure. The calculation ended when the crystal reached
cloudbase atT =Tf . The resulting values ofLf , df , andn

fluctuated with decreasing amplitude asdt decreased from 4
to 0.1 s, so the final values were weighted averages from the
various values ofdt with greater weight given to smallerdt .

Values ofv are unknown for crystals growing with vary-
ing temperature, so I used fits to measured values ofv(T , t)

as follows. I assumed thatv primarily depended ond and
the crystal’sT0. Thus,t in v(T , t) was replaced by the time
it would have taken the crystal to reach diameterd if it had
remained atT0; that is, (d−d0)/r(T0). Also, the temperature
was set toT0. Thus,v(T , t)→v(T0, (d(t)−d0)/r(T0)).
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Appendix C

Equations for r, v

Takahashi et al.’s (1991) data onr and v were
fit to the following functions. In units ofµm/s,
r(T )=a1+(a2−a3(T −Tm)+a4(T −Tm)2

−a5(T −Tm)3
+a6(T −Tm)4)−1,

whereTm=−14.8◦C and values ofai are in Table 3. In units
of m/s,
v(T , t)=V1(T , t)•V2(T ),
wheret is time in minutes and
V1(T , t)=b1+b2V3(T )t (b3+t (V 4(T )−b3)/(t+20)),
V2(T )=1+0.3e−0.6(T +22)

−0.21e−0.25(T +18)∧2,
V3(T )=b4−b5T +b6 cos

[
c1(T +19)−c2(T +19)2

]
,

V4(T )=c3+c4T +0.06 cos[c5(T +c6)],
andbi andci are in Table 3. The sole consideration for the
above functional forms was to obtain as good a fit to the data
as possible.

Appendix D

Determination of the distribution functions

Temperature valuesTT h−i , with i labelling the data point,
represented measurements at equally spaced points 8-mm
apart in a 9.60-km-long dataset and 15-cm apart in a 4.05-km
dataset. Figure 7a is a data sample. In a given data interval,
values ofDTT h−i were obtained by subtracting the average
value fromTT h−i . To obtain the growth-perturbation curve
6T h, the values ofDTT h−i were linearly interpolated and in-
tegrated. Foru, the same method was used to obtainDūi and
then integrated to obtainDzi . UsingDTDu−i=T ’Dzi (e.g.
Fig. 7b), theDTDu data were integrated to obtain6Du.

To extract all relevant peaks from the jagged curves of6T h

(e.g. Fig. 7c and d), I did the following. If the largest peak
(positive or negative) occurred at pointx1 with valuep1, then
the originalTT h−i data were re-averaged over the two seg-
ments ofi from 1 tox1 andx1 to the last valueX. The new
values ofDTT h−i were used to make a new6T h’. As the
pointx1 is now an endpoint of both sets,6T h’ equals 0 atx1
(e.g. Fig. 7d), eliminating peakp1. But 6T h’ will contain a
new peak. Calling this peak pointx2 with peak valuep2, I
again divided the set at this point. Assume thatx2>x1. The
original setTT h−i was then averaged over three segments:
1 to x1, x1 to x2, andx2 to X. This process continued, re-
sulting in peak valuesp1, p2, p3,. . . , with the values ofp
steadily decreasing. The iteration stopped whenp was so
low that no subsequent peak value could produce a feature
(p∼0.01◦C m). The values ofp were then used to make the
peak distribution. By comparing peak distributions for seg-
ments of various lengthsX, I found that the peak distribution
at a given pointp’ was proportional toX. Thus, the function

was scaled by the distance to give the peak distribution per
meterFT h. The same method was used forFDu.
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