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Abstract

This article, written in honor of Eleftherios N. Economou, contains a short summary of work one of us carried out
some 20 years ago in collaboration with Lefteris and reports on recent developments on the use of tight-binding
Hamiltonians to perform accurate and e$cient electronic structure calculations. More speci"cally, in this work we use
the newly developed NRL tight-binding method to explore the existence of metastable phases in transition metals,
present new Slater}Koster parametrizations of cubic perovskite materials and provide an extension of the Slater}Koster
approach that includes the spin}orbit interaction. � 2001 Elsevier Science B.V. All rights reserved.

Keywords: Electronic structure; Tight binding

1. Background 8 reminiscences

Since this volume is written in honor of Professor
Economou, we shall preface our contribution with
a short account of work one of us (DAP) did with
him utilizing a tight-binding (TB) formalism. We
"rst developed an accurate TB parametrization of
Si [1]. This involved an orthogonal sp Hamiltonian
that included 20 three-center Slater}Koster (SK)
parameters which extended to third nearest-neigh-
bor distances. The SK parameters were "tted to

accurately reproduce local pseudopotential results
provided by Pickett. We obtained an excellent "t to
the valence bands as well as the "rst two conduc-
tion bands and a band gap of 1 eV. We then ap-
plied this Hamiltonian to the problem of the ideal
vacancy in Si. An important issue at that time was
to determine the position of the bound state within
the energy gap. Using the Green's function G that
corresponds to the TB Hamiltonian we found that
the real part of G as a function of energy goes to
zero at a value of 0.75 eV above the top of the
valence band in agreement with more elaborate
self-consistent calculations. In subsequent work
[2,3] we used the same Hamiltonian for Si with the
addition of Si}H and H}H matrix elements to
generate a model for hydrogenated amorphous Si.
In this work we employed the coherent potential
approximation (CPA) and demonstrated the
appearance of states in the gap due to dangling
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bonds and the restoration and widening of the
band gap with increasing hydrogen content. In
further work [4] with Warren Pickett we used
a Kubo}Greenwood formula to calculate the op-
tical absorption. We found that the optical gap is
larger than the calculated density of states gap and
agrees well with experimental data. These results
suggested that the optical absorption is determined
primarily by the local H}Si con"guration and
short-range order, but that it is insensitive to the
long-range order.

In Section 2 of this paper we present a summary
of the tight-binding work performed at NRL and
an application to the problem of metastable struc-
tures. In Section 3 we concentrate in examining the
Slater}Koster methodology for multi-atom sys-
tems of the perovskite structure and in Section 4 we
present an extension of the SK approach that in-
corporates spin}orbit interactions. A summary is
given in Section 5.

2. Further developments on tight-binding
Hamiltonians

The work for Si described in the previous section
is based on a SK parametrization in an orthogonal
three-center TB formulation. In later years DAP
produced SK parameters for most elements in the
periodic system and extended the work to include
two center integrals as well as non-orthogonal basis
[5]. This work provides a very good description of
the energy bands and the densities of states of many
materials. In recent work Mehl and DAP [6] have
succeeded in "tting not only the band structure but
the total energy as well. This has been accomp-
lished by writing the SK parameters in polynomial
form, providing a bond length dependence to the
hopping integrals and a local density dependence
to the on-site terms. This scheme, called the
NRL}TB method, has also been programmed to do
molecular dynamics simulations for systems close
to 1000 atoms and for a few thousand steps. This
task is beyond the means of "rst-principles
methods such as the full potential linearized
augmented plane wave (LAPW) or linearized muf-
"n-tin orbital (LMTO) [7]. This method ensures
transferability of the SK parameters from one

structure to another and provides the means to
calculate elastic constants, phonon spectra,
vacancy formation, surface energies and stacking
fault energies very e$ciently (i.e. at least 1000 faster
than LAPW calculations). This approach is based
on an original database of energy bands and total
energies generated by "rst-principles calculations
(in our case LAPW) as a function of volume for
a few high symmetry structures, such as FCC and
BCC. This method is suitable to handle accurately
both metals and non-metals as well as ferromag-
nets. For details of the NRL}TB method the reader
is referred to Ref. [6]. An extension of this method
to spin-polarized calculations is presented in this
volume in the article by Bacalis et al. [8].

To demonstrate one of the capabilities of the
NRL}TB method we present here some new results
on the question of the metastability of the BCC and
HCP phases. It is well known that the FCC
transition metals have signi"cantly lower melting
temperatures than both the BCC and HCP metals.
On the other hand the FCC metals are ductile while
the BCC metals are brittle. It is, therefore, of tech-
nological interest to investigate the possibility that
the BCC or the HCP metals have a metastable
FCC phase. In Fig. 1 we show the energy}strain
relationships of the BCC metals from which one
derives the elastic constants C

��
}C

��
and C

��
cal-

culated in the FCC lattice. We note that with the
exception of Fe, which is known to have a meta-
stable FCC phase, these metals show energy}strain
graphs with a negative slope which will result in
negative elastic constants, indicating the instability
of the FCC phase for V, Nb, Ta, Mo and W. It
should be stressed here that the results for Fe
shown in Fig. 1 correspond to paramagnetic calcu-
lations which have the FCC as the ground state [6].
A similar plot in Fig. 2 summarizes our calculations
for the metals whose ground state is HCP. We note
that all of these metals have positive elastic con-
stants suggesting that a metastable FCC phase is
expected. This is con"rmed experimentally at least
for Sc and Y [9].

We have also calculated the Bain path for all
transition metals. Our general conclusion is that for
those metals that have an FCC ground state the
BCC lattice is unstable. The reverse is true for the
BCC metals as stated above.
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Fig. 1. Energy versus strain relationship for the BCC transition metals computed in an assumed FCC lattice. Only FCC Fe appears to
be metastable.

Fig. 2. Energy versus strain relationship for the HCP transition metals computed in an assumed FCC lattice. They all show potentially
metastable FCC structures.
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Table 1
Slater}Koster parameters in Ry (A"K, Ca, La, Pb; B"Bi, Mn, Ti)

KBiO
�

PbTiO
�

CaMnO
�

LaMnO
�

a
�

(a.u) 8.11 7.35 7.35 7.35

On-site energies
A}A s 0.8825 0.1854 1.2946 1.3066
A}A p !0.2815 0.9210 } }

A}A t
��

} } 0.9112 0.8176
A}A e

�
} } 0.9005 0.7899

B}B s 0.1474 } 1.1459 1.1873
B}B p 3.1387 } } }

B}B t
��

} 0.7851 0.4534 0.4695
B}B e

�
} 0.8412 0.5563 0.5728

O}O p
�

0.3352 0.4554 0.2645 0.1998
O}O p

�
,p

�
0.2928 0.3946 0.3654 0.2966

First-neighbor hopping integrals
A}A ss� !0.0066 !0.0013 0.0247 0.0108
A}A sp� !0.0363 0.0044 } }

A}A pp� 0.0024 0.0433 } }

A}A pp� 0.0023 !0.0019 } }

A}A sd� } } !0.0020 0.0196
A}A dd� } } !0.0271 !0.0569
A}A dd� } } 0.0034 0.0075
A}A dd� } } !0.0016 !0.0024
B}B ss� !0.0113 } !0.0249 !0.0197
B}B sp� !0.0489 } } }

B}B pp� 0.3707 } } }

B}B pp� !0.1032 } } }

B}B sd� } } 0.0229 0.0141
B}B dd� } 0.0153 !0.0095 !0.0112
B}B dd� } !0.0022 !0.0030 !0.0062
B}B dd� } !0.0155 !0.0001 !0.0014
O}O pp� 0.0307 0.0443 0.0429 0.0350
O}O pp� !0.0016 !0.0024 !0.0075 !0.0046
A}B ss� !0.0017 } !0.0350 !0.0403
A}B sp� !0.0076 } } }

A}B pp� !0.0523 } } }

A}B pp� !0.0186 } } }

A}B sd� } !0.0067 !0.0069 0.0204
A}B pd� } !0.0637 } }

A}B pd� } 0.0138 } }

A}B dd� } } 0.0204 0.0190
A}B dd� } } !0.0021 !0.0010
A}B dd� } } 0.0039 0.0043
A}B ps� !0.0001 } } }

A}B ds� } } !0.0176 !0.0194
A}O sp� !0.0603 0.0605 } }

A}O pp� !0.0064 0.0934 } }

A}O pp� !0.0111 !0.0089 } }

A}O dp� } } !0.0850 !0.1219
A}O dp� } } 0.0312 0.0352
B}O sp� !0.1559 } !0.0227 !0.0785
B}O pp� 0.3389 } } }

B}O pp� !0.0455 } } }

B}O dp� } 0.1568 0.1321 0.1309
B}O dp� } !0.0627 !0.0670 !0.0677

Second-neighbor hopping integrals
O}O pp� !0.0085 !0.0017 0.0072 0.0040
O}O pp� 0.0041 0.0009 !0.0028 !0.0025

3. Cubic perovskite structure

We report on the application of the SK scheme
[10] to oxides having the simple cubic perovskite
structure ABO

�
. In this work our emphasis is on

"tting the augmented plane wave (APW) band
structure very well. Fitting of the total energies is
not included here. In oxide materials the oxygen
2s-states are usually found to lie deep in the
semicore states. These states are important for the
accurate determination of the total energy of the
system in "rst-principles calculations but they are
not essential in a tight-binding description of the
band structure. Therefore, the Hamiltonian size is
in general 27�27 resulting from the s, p and d or-
bitals of the A and B atoms and the nine 2p orbitals
of oxygen. The size of the Hamiltonian is reduced
further depending upon the particular atoms A
and B. In this section we present results for
KBiO

�
, PbTiO

�
, CaMnO

�
and LaMnO

�
. In pre-

vious work [11] we have discussed other perovskite
TB parametrizations including spin-polarized sys-
tems [12,13].

3.1. KBiO
�

In Ref. [14] APW calculations for a lattice para-
meter a"8.11 a.u. were reported together with
TB}CPA results. In this work we have improved
the quality of our TB "t. We have included in our
TB Hamiltonian the 3p and 4s K orbitals, the s and
p outer orbitals of Bi and the O 2p orbitals. Our
secular equation is a 17�17 matrix and contains 29
parameters, two of which are oxygen second near-
est-neighbor interactions as shown in Table 1. The
"t was done with 35 k-points in the irreducible
simple cubic Brillouin zone and has an rms devi-
ation from the APW results of 11 mRy for the "rst
14 bands. The TB energy bands of KBiO

�
are

shown in Fig. 3. The Fermi level, E
�

, is denoted at
zero energy with a broken line. The approximately
0.3 Ry wide manifold of bands below E

�
is due to

the O-2p states. Below the oxygen states there is
a parabolic band that has predominantly Bi
s-character. The narrow band at the bottom is due
to the K-3p states. Above, but near, E

�
we identify

strong O p-character while in the top band (14th
band) there is a mixture of K and Bi sp states. In the
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Fig. 3. Energy bands of the simple cubic perovskite material KBiO
�

showing metallic character.

late 1980s a Ba
���

K
�

BiO
�

compound (with
x"0.4) was found to display superconductivity
with ¹

�
"40 K. Calculations by Mattheiss et al.

[15] and by Papaconstantopoulos et al. [14] for
this material and for the BaPb

���
Bi

�
O

�
system

suggested an electron}phonon mechanism to ex-
plain superconductivity. A more detailed discus-
sion on non-cuprate superconductors can be found
in Pickett's article in this volume [16].

3.2. Pb¹iO
�

We "rst performed APW calculations at the
LDA equilibrium value of 7.35 a.u reported in the
pseudopotential calculations of King}Smith and
Vanderbilt [17]. We then constructed our TB
Hamiltonian, including the 6s and 6p Pb orbitals,
the 3d-Ti orbitals, and the 2p O orbitals, resulting
in an 18�18 secular equation containing 25 para-
meters, as shown in Table 1. The "tting error was
13 mRy for 16 bands. The energy bands are shown
in Fig. 4. This band structure is very close to that
given by Singh [18] using the full potential LAPW
method. The valence and conduction bands are
separated by a gap of approximately 0.19 Ry. The
lowest band is due to the Pb 5s states and the
remaining group of nine valence bands is derived
from the O 2p states, with smaller contributions

from the Ti 3d states. The above observations from
the bands are better clari"ed by inspection of Fig. 5
which shows the total and decomposed densities of
states. This "gure shows that the Ti d states have
their strongest contribution in the conduction
band, where the oxygen participation is very small,
while there is a signi"cant Pb p-like component.
Note also a signi"cant Ti e

�
contribution in the

valence band and the prominent Pb s-like peak at
the bottom of the valence band.

PbTiO
�

is one end of the technologically impor-
tant alloy system PZT, i.e. Pb(Zr, Ti)O

�
. The cubic

perovskite PbTiO
�

undergoes a transition to a
tetragonal phase below 4933C. While we cannot
study the energetics of this transition with this TB
Hamiltonian it should be possible to examine the
band structure of the tetragonal phase. In Table
1 we have also included the SK parameters for
CaMnO

�
and LaMnO

�
. These parameters have

been derived from APW calculations at a lattice
constant of 7.35 a.u. in the hypothetical paramag-
netic phase and produce an equally good "t as in
the other compounds mentioned above. To de-
scribe the real materials, which are antiferromag-
netic insulators [19], an adjustment to the on-site
terms could be made to invoke the necessary di!er-
ence between up and down bands as described in
Ref. [19].
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Fig. 4. Energy bands of PbTiO
�

in the simple cubic perovskite structure found to be an insulator.

Fig. 5. Valence and conduction band densities of states of PbTiO
�

showing the total and various site and angular momentum
decompositions.

4. Tight-binding calculations including spin}orbit
coupling

The SK parametrizations presented in Ref. [5]
do not include the spin}orbit coupling. For the
heavier elements of the 5d series the addition of the

spin}orbit interaction can cause signi"cant changes
in the band structure. We have recently [20] fol-
lowed a procedure proposed by Hass et al. [21]
which incorporates the spin}orbit e!ects within the
tight-binding formalism. This approach results in
a TB matrix that is dimensioned 18�18 in a typical
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Fig. 6. Comparison of the energy bands of BCC Ta with and without spin}orbit interaction.

transition metal and has the form

HI #HI
��

"�
H#H

��
(��) H

��
(��)

H
��

(��) H#H
��

(��)�, (4.1)

where H is the usual 9�9 SK matrix and H
��

is
a matrix which contains the spin}orbit parameter
�. In our calculations the matrix H has the three-
center non-orthogonal parameters given in Ref.
[5]. For the parameter � we have used the atomic
values derived by Herman and Skillman [22] using
perturbation theory. In general, we can consider
two parameters corresponding to p and d orbitals.
In practice, for the 5d metals we only need to
consider the d spin}orbit parameter while for
semiconductors or sp-metals we only include the
p spin}orbit parameter. In Fig. 6 we show the band
structure of Ta for two directions in the BCC Bril-
louin zone for which the e!ects of the spin}orbit
interaction are important. The value of the d
spin}orbit parameter from Ref. [22] is �"

0.0116 Ry. At the � point the spin}orbit interaction
splits the triply degenerate (in the single group)
d-like �

��	
state into ��



(fourfold degenerate) and

��
�

(twofold degenerate) in the double group nota-
tion. The width of the splitting at � is 36 mRy. At
the H point the state H

��	
splits in a similar way as

at � with a width of 40 mRy. At the P point the
triply degenerate P

�
state splits into P



(fourfold

degenerate) and P
�

(twofold degenerate). The width
of the splitting at P is 19 mRy. Similar splittings
occur along the � and � directions for the doubly
degenerate �

�
and �

�
states. There is no splitting

due to spin orbit in the �N-(1 1 0) direction.
In Fig. 7 we give another example of the e!ects of

spin orbit on the band structure of the FCC metal
Pb. Again we use here the three-center non-ortho-
gonal parameters of Ref. [5]. In the case of Pb the
relevant spin}orbit parameter a!ects the p-like
states and has, according to Ref. [22], the value
0.03119 Ry. We note from Fig. 7 that the triply
degenerate p-like �

��
state splits into ��



(fourfold

degenerate) and ��
�

(twofold degenerate) with
a width of 208 mRy. At the L point the doubly
degenerate L

�	
state splits into L�

�
(twofold degen-

erate) and L�
�
}L�

�
(twofold degenerate) with

a width of 117 mRy. At the symmetry point X the
doubly degenerate state X

�	
splits into the twofold

degenerate states X
��

and X
��

with a width of
67 mRy. Finally, at the W point the doubly degen-
erate W

�
state splits into W

�
and W

�
, both of

which are twofold degenerate in the double group
notation and have a width of 54 mRy. It is clear
from Figs. 6 and 7 that for both Ta and Pb the
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Fig. 7. Comparison of the energy bands of FCC Pb with and without spin}orbit interaction.

introduction of the spin}orbit interaction results in
signi"cant changes of the Fermi surface. In our
future work we will provide a quantitative account
of these changes.

5. Summary

In this article we "rst recollect the earlier work of
Economou with DAP on Si and Si}H, and sum-
marize the applications of the NRL}TB method
presenting new results on possible FCC metastable
phases of the BCC and HCP metals. In addition
two new applications of the SK scheme are given.
The "rst one is on a detailed and accurate "t of the
band structure of cubic perovskites, and the second
one describes examples of the inclusion of the
spin}orbit interaction in tight-binding calculations.
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