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Tight-binding calculations of the band structure and total energies
of the various phases of magnesium
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~Received 16 October 2001; published 15 March 2002!

Tight-binding calculations for Mg in a variety of crystal structures are reported using the nonorthogonal
tight-binding model with parameters selected to fit accurately first-principles results. These parameters cor-
rectly predict hcp to be the stable crystal structure. We have calculated electronic properties~band structure and
density of states!, elastic constants, phonon frequencies at high-symmetry points, surface energies, surface
electronic structure, stacking fault energies, the energy of a small cubic cluster, and finally, dynamical prop-
erties. We find good agreement with previous calculations and experiment.
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I. INTRODUCTION

The electronic structure of hcp metals has been discu
previously by several authors.1–5 In particular, Mg is an im-
portant alkaline-earth element existing in many compoun
While most hcp materials do not have the ideal value of
ratio c/a5A8/3.1.633, magnesium has the ratioc/a
51.623, which is very close to ideal one and has, theref
attracted much interest. In addition to this, the bulk modul6

of 35.4 GPa caused Mg to be regarded as a ‘‘soft’’ metal a
thus elastic constant calculations pose a theoretical c
lenge.

The full-potential linear-augmented-plane-wave~FP-
LAPW! ~Refs. 7,8! method has been employed with ele
tronic structure calculations of all hcp metals up
cadmium.1 In particular, the density of states of Mg com
pares well with augmented-plane-wave2 and pseudopotentia
calculations,3 whereas difference electron densities show
most no deviation from spherical symmetry. Band structu
densities of states, and Fermi surfaces for Mg, Zn, and
have been calculated using the linear muffin-tin orbit
~LMTO! method.4 The large variation in thec/a ratio be-
tween the near ideal in Mg and the far from ideal in Zn a
Cd allows for interesting comparisons of their electron
structures and Fermi surfaces. In the case of Mg, the t
density of states below the Fermi level is a ‘‘free-electro
gas’’ parabola, in sharp contrast with the density of states
Zn and Cd, where there is a significant contribution from
d states. The electronic and structural properties of hcp
have been calculated at the Hartree-Fock level, the hy
Hartree-Fock–density-functional level and the dens
functional level within the local-density and generalized g
dient approximations.5 Comparison shows that various pro
erties of Mg, such as elastic constants, can be accounte
within the Kohn-Sham schemes, especially when nonlo
correlation and exchange potentials are used, provided thd
functions are included in the basis set.5

There is an approach completely different from the pre
ous ones, called the spherical cellular method, which
places the Wigner-Seitz polyhedron by a sphere.9 The main
goal was to investigate the numerical properties of the ce
lar method and validate its accuracy against established
0163-1829/2002/65~13!/134101~7!/$20.00 65 1341
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sults. It was found that the spherical cellular method wo
well for alkali metals, but for fcc Mg the agreement with th
calculations of Moruzzi, Janak, and Williams10 was only fair.
Phonon-dispersion curves have been calculated for hcp
using first-principles pseudopotentials.11,12 The calculated
curves are in fair agreement with experiment.

In another type of calculation, using force mod
methods,13 the calculated phonon dispersions are compa
with inelastic neutron-scattering data and good agreeme
found. The surface energy and the surface dipole barrie
simple metals have been calculated by application of
Kohn-Sham energy functional of the density with the inc
sion of an exchange and correlation correction to account
the inhomogeneity of the electron gas.14 The surface energy
is minimized with respect to two parameters, describing
decrease of the electron density at the surface and the re
ation of the top lattice plane. For the fcc Mg~111! surface the
calculated values are in good agreement with the experim
tal ones and are better than the jellium model values of R
15. Surface energies of simple metals have been comp
by application of the Rayleigh-Ritz variational principle
the Kohn-Sham energy functional of the density.16 For most
of the simple metals examined, the variational bounds
superior to perturbation-theory results,15 whereas for Mg
variational and perturbative results are approximately
same. The corrected effective medium method was applie
the calculation of the surface energy of a variety of me
surfaces.17 For the perfectly terminated hcp Mg~1000! sur-
face the agreement with experiment is very good. Che
sorption properties have been calculated for adsorbate M
Mg surfaces, using the effective medium theory.18 In addi-
tion, calculated values for the surface energy of the f
Mg~0001! and Mg(112̄0) surfaces are presented, all in fa
agreement with available experimental and other theoret
values.

The surface electronic structure of Mg~0001! has been
calculated using a self-consistent pseudopoten
approach.19 The surface states were determined for a t
layer Mg film and are in good agreement with angle-resolv
photoemission experiments.20,21 Finnis-Sinclair-type many-
body potentials have been constructed for eight hcp me
which reproduce the observedc/a ratio and the elastic con
©2002 The American Physical Society01-1
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GOTSIS, PAPACONSTANTOPOULOS, AND MEHL PHYSICAL REVIEW B65 134101
stants for each metal considered.22 Using the constructed po
tentials, the stacking fault energies on the basal plane h
been calculated. For some elements the stacking fault en
is high, whereas for others it is unphysically low. However
is in the experimentally expected range for Mg. The modifi
embedded-atom method, an empirical extension
embedded-atom method that includes angular forces,
been applied to hcp metals.23 Calculated stacking fault ener
gies and surface energies were found to be in reason
agreement with experiment. The energetics of various sta
ing defects in hcp Mg were determined from first-principl
local-density-approximation calculations.24 The energies of
these defects suggest that Mg is likely to form stacking fa
with the two kinds of intrinsic faultI 1 andI 2 , being the most
probable defects. Based on the first-principles results, a l
bond orientation model is proposed that is able to predict
energies of arbitrary stacking sequences. Stacking fault
surface energies have been calculated for ten hcp metal
ing the embedded-atom methodology.25 The calculated sur-
face energies for the basal and prism planes of Mg are a
equal and both are less than the experiment. The two kind
intrinsic faultsI 1 and I 2 , and the extrinsic faultE have en-
ergies that are much lower than those reported by oth
However, reasonable stacking fault energies have been
tained for Mg.

In this paper we use the NRL-TB method,26 a nonor-
thogonal tight-binding method, in the two-center represen
tion that uses environmentally dependent parameters
tained from fitting ab initio calculations of a few high-
symmetry structures, to compute the electronic structure
the various phases of magnesium. The method produ
good structural energy differences, elastic constants, pho
frequencies, vacancy formation energies, and surface e
gies for the alkaline-earth, transition, and noble metals.26 We
find that the results predict hcp Mg as the stable crystal st
ture, consistent with experiment. This increases our co
dence that the reason for the correct results in the te
configurations is that the underlying physics of the mode
sound.

The paper is organized as follows: In Sec. II, we descr
the functional form of our TB parametrization and the fittin
data set. In Sec. III, we discuss applications of the TB mo
to a range of properties such as the ground-state electr
structure of the various phases of Mg, band structure
density of states, elastic constants, phonon frequencies,
face energies, surface electronic structure, stacking fault
ergies, and the energy of an eight-atom Mg cluster. In ad
tion, we performed molecular-dynamics~MD! simulations at
various temperatures to obtain the temperature depend
of the atomic mean-square displacement and of the pres
In Sec. IV, we summarize the results.

II. FUNCTIONAL FORM AND FITTING

In this paper we present results for a tight-binding para
etrization using ansp3d5 basis. This set of parameters allow
all interactions betweenp andd orbitals, in order to accoun
for the p-d hybridized bands above the Fermi level (EF).
Since the functional forms of the parameters used in the N
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scheme have already been presented,26 we will only give a
brief summary here. The total energy of the system is writ
as the sum of the energies of the occupied electronic eig
states. The onsite Hamiltonian matrix elements vary with
local density associated with each atom, allowing t
NRL-TB method to use in the fit LAPW eigenvalues th
have been shifted so that the LAPW total energy is equa
the eigenvalue sum. Therefore, all of the contributions to
total energy are accounted for in the eigenvalue sum and
addition of a sum of pair potentials, a feature common
most TB models, is not needed.

The energies of the electronic states and the corresp
ing eigenvectors are the solutions of a generalized eig
value equation with Hamiltonian and overlap matrix e
ments parametrized as follows: the basis used to describe
Hamiltonian and overlap matrices is a set of ones, threep,
and five d orbitals around each atom, with all interaction
between atoms assumed to be in the two-cen
approximation.27 A local atomic density at atomi is defined
as

r i5(
j

e2l2uRj 2Ri u f ~ uRj2Ri u!, ~1!

whereRi is the position of atomi andl is a fitting parameter.
The cutoff functionf (R) is given by

f ~R!5H F11expS R2Rc15l

l D G21

, R<Rc

0, R.Rc ,

~2!

where Rc is 16.5 a.u. andl is 0.5 a.u.. The onsite matrix
elements are given in terms of the local atomic densityr i as

hil 5a l1b lr i
2/31g lr i

4/31x lr i
2, ~3!

wherel is the orbital-type index~s, p or d!, anda l , b l , g l ,
andx l are fitting parameters. The distance dependence of
two-center hopping matrix elements is given by

Hll 8m~R!5~all 8m1bll 8mR1cll 8mR2!exp~2gll 8m
2 R! f ~R!,

~4!

wherel and l 8 are orbital-type indices,m is an index for the
type of interaction between orbitals~s, p or d!, and the pa-
rametersall 8m , bll 8m , cll 8m , andgll 8m are fitting parameters
The overlap matrix elements have the same functional fo
as the Hamiltonian matrix elements. The angular depende
of the Hamiltonian and overlap matrix elements is the st
dard two-center Slater-Koster form.27

The 97 parameters used by the functional form for
sp3d5 basis parametrization are fit to four high-symme
crystal structures.28 The fitting data set includes both the tot
energy and band structure for the simple cubic~sc!, face-
centered cubic~fcc!, body-centered cubic lattice~bcc!, and
only energy bands for the hexagonal close-packed~hcp!
structure, for a wide range of volumes around the ene
minimum. The total energy and eigenvalues of each cry
were computed by linear augmented-plane-wave,7,8 ab initio
density-functional theory calculations in the generalized g
1-2
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TIGHT-BINDING CALCULATIONS OF THE BAND . . . PHYSICAL REVIEW B65 134101
dient approximation~DFT/GGA!.29 The sc lattice data in-
cluded the widest range of volumes, from 125.0 to 21
Å3/atom. The fcc lattice structures ranged from 118.6
170.4 Å3/atom, the bcc lattice from 119.2 to 171.5 Å3/atom,
and the hcp lattice from 135.0 to 156.9 Å3/atom.

III. APPLICATIONS

A. Static calculations

We started total-energy calculations using parameters
tained by fitting to muffin-tin~MT! augmented-plane-wav
results. The MT approximation led to sizable errors, for e
ample, the calculated elastic constants were up to 100%
large. Therefore, we decided to fit FP-LAPW results for
total-energy calculations presented in this paper. Sev
band-structure calculations of Mg exist in the literature,1,4,5

in comparison to these calculations we found some dif
ences at pointsM andK of the Brillouin zone. A treatment o
symmetry in the fitting procedure gave the correct feature
the Mg band structure at these points.

The ground-state total energies as a function of volu
for a range of structures are shown in Fig. 1. The TB mo
reproduces the LAPW results very well for the fcc, bcc, a
sc structures to which it was fit, and predicts the corr
ground state to be the hcp structure, the total energy of wh
was not included in the fit. The root-mean-square~rms! error
of the bands for all the structures is 19.0 mRy for the low
four bands and the rms error for the total energies is 1.4 m
The TB calculations predict equilibrium lattice paramete
a53.22 Å andc55.26 Å, in excellent agreement with th
experimental ones of 3.21 and 5.21 Å, respectively.

The band structure of hcp Mg along directions of hi
crystal symmetry is shown in Fig. 2. A striking feature of t
Mg band structure is that it can be well described by
parabolic dependence of a free-electron gas. This simila
to the free-electron gas is characteristic of simple me
such as Mg. The TB band structure is very similar to pre
ous ones.1,4,5 The FP-LAPW,1 the LMTO ~Ref. 4! and the
DFT/GGA ~Ref. 5! band structures are all reminiscent of t
free-electron one.

FIG. 1. Total energy vs volume for a number of crystal stru
tures as well as the hcp structure for Mg~not included in the fit!,
computed using the TB model.
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The relationship between the TB band structure and
corresponding density of states~DOS! is demonstrated in
Fig. 3. One cannot fail to notice the distinct similarity to th
free-electron-gas parabolic density of states. The partial D
functions show that the strongest contribution to the to
DOS comes from thep bands.

The elastic constantsCi j contain some of the most impor
tant information that can be obtained from ground-state to
energy calculations. A given crystal structure cannot exis
a stable or metastable phase unless its elastic constants
certain relationships. TheCi j also determine the response
the crystal to external forces and so play an important par
determining the strength of a material. The procedure
calculating elastic constants from first-principles calculatio
is described by Mehl, Klein, and Papaconstantopoulos.30 The
same procedure is used in our TB calculations. Briefly, o
imposes an external strain on the crystal and calculates
energy as a function of strain. Our method predicts corre
the bulk modulus, whereas it gives reasonable elastic c
stants, as shown in Table I. The agreement between our
culated values and the experimental data is satisfac
~within 26% for C11, 29% forC12, 36% forC33, and 24%
for C44!. As a general rule, the off-diagonal elastic consta

-
FIG. 2. Band structure along high-symmetry directions in t

Brillouin zone for hcp Mg.

FIG. 3. Total and partial densities of states for hcp Mg.
1-3
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GOTSIS, PAPACONSTANTOPOULOS, AND MEHL PHYSICAL REVIEW B65 134101
such asC13 are affected by larger errors and poor agreem
for the C13 value ~within 76%! is expected. Since Mg is a
soft metal, we calculated elastic constants using differ
k-point meshes, and found that they are very sensitive to
number of k points. Comparison of our results with th
Kohn-Sham models of Ref. 5, shows that the Becke-Per
scheme with the inclusion ofd functions leads to values ver
close to experimental ones. However, our GGA functiona29

are different from the Becke-Perdew exchange-correla
functionals.

Phonon frequencies at high-symmetry points in the B
louin zone ~BZ! computed with the TB model using th
frozen-phonon approximation are compared with experim
tally measured values in Table II. For some phonons
agreement is quite good~within 17% forG5

1 , 32% forM3
1 ,

23% for M3
2 , 34% forM2

1 , and 26% forM2
2!, whereas for

other modes the agreement is poor.
Magnesium surfaces are modeled using a slab geom

and converged with respect to the number of atoms in
slab. Surface energies are calculated by deriving a bulk
ergy by subtracting energies of two slabs withn and m at-
oms. The difference between the energy of the slab and
energy of the bulk is the surface energy

Esurface5
1

2
@Eslab~n!2Ebulkn#, ~5!

TABLE I. Elastic constants and bulk modulus in GPa for ma
nesium in the hcp structure, computed with thesp3d5 TB model;
comparison with experimental data.

TB Expt.a

c11 79.98 63.48
c12 18.33 25.94
c13 5.23 21.70
c33 90.48 66.45
c44 22.77 18.42
Bb 34.46 35.4

aFrom Ref. 31.
bExperimental value from Ref. 6.

TABLE II. Phonon frequencies~in THz! at high-symmetry
points of the BZ computed with the TB model and measured
perimentally.

TB Expt.a

G5
1 4.34 3.70

G3
1 12.11 7.30

M4
1 9.99 3.70

M3
1 5.46 4.15

M3
2 6.73 5.45

M2
1 4.35 6.58

M2
2 8.66 6.88

A1 7.11 2.94
A3 3.19 5.20

aFrom Ref. 12.
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whereEsurfaceis the energy associated with one unit cell
the surface of the slab. In Table III, we display surface en
gies of unrelaxed and unreconstructed Mg surfaces.
~0001! surface is perpendicular to thez direction and is the
close-packed surface of the hcp structure. The~1000! surface
is perpendicular to thex direction and is not as close packe
as the~0001!. From Table III we observe that the surfac
energy in the~0001! surface is lower than in~1000!, as gen-
erally the most close-packed surface has the lowest sur
energy. The (1̄100) surface is perpendicular to they direc-
tion and has two possible truncations. The (11̄00a) repre-
sents atoms withz coordinate1c/4, whereas (1̄100b) repre-
sents atoms withz coordinate2c/4. Due to unavailability of
experimental data on isolated surfaces, comparison with
periment is only semiquantitative. The experimental value
an average over various Mg faces extrapolated to z
temperature32 and the agreement with our calculated valu
can be regarded as satisfactory.

The surface electronic structure of Mg~0001! is calculated
using a bulk terminated~0001! surface hcp slab with 30 at
oms. We define surface states as states whose wave fun
is concentrated up to 10% on the surface layer. This defi
tion is not a rigorous one and introduces an ambiguity in
identification of surface states. Figure 4 shows the ba
structure of the~0001! surface hcp slab. One surface band
located in the upper part of the valence band atM in agree-
ment with previous theoretical19 and experimental works.20,21

-

-

TABLE III. Surface energies of Mg~0001!, ~1000!, (1̄100a),

and (1̄100b) surfaces, in units ofJ/m2.

TB Expt.a

~0001! 0.95 0.785
~1000! 1.20

(1̄100a) 1.06

(1̄100b) 1.36

aAverage of a polycrystalline surface, Ref. 32.

FIG. 4. Surface band structure of Mg~0001!. Surface states are
represented by filled circles, whereas bulk bands are represente
curves.
1-4
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TIGHT-BINDING CALCULATIONS OF THE BAND . . . PHYSICAL REVIEW B65 134101
Furthermore, analysis of our results shows that there is
other surface state atG with energy21.65 eV relative to the
Fermi level. This surface state is in excellent agreement w
the experimental value21.6 eV~Ref. 21! and the theoretica
value 21.56 eV.19 In Fig. 5 we compare the total slab an
bulk densities of states. The bulk density of states is
partial DOS from a middle atom scaled by a factor of 3
The deviation between slab and bulk densities of state
due to the surface states bands.

In close-packed metals, such as Mg, planar defects
formed with relative ease, contributing to the ductile natu
of these materials. It is well known that crystals glide on t
densest atomic planes; for Mg the basal plane is the den
and the primary slip system is basal. We calculate stack
fault energies as a function of the displacement in the@2010#
direction along the~0001! plane. We assume that relaxatio
are negligible and the atoms in the faulted region mainta
close-packed coordination.33 In Fig. 6 we show the stacking
fault energy as a function of the stacking fault variableq.
The unstable stacking fault energygus is the peak of the
curve, whereas the intrinsic stacking fault energyg is is the

FIG. 5. Total slab and bulk densities of states for Mg~0001!.

FIG. 6. Stacking fault energy as a function of the stacking d
placementq for hcp Mg, determined by the NRL-TB method. A
q50 there is no stacking fault, atq51 we reach the intrinsic stack
ing fault energy~a local fcc-like crystal structure!.
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local minimum on the right of the curve. Using the formatio
energy for the~0001! surface and the unstable stacking fa
energy, we calculate the Rice ductility parameterD.34 The
results are shown in Table IV. We observe that the ducti
parameter is greater than one, consistent with the intrin
ductility of Mg.

To test the transferability of our parameters we comp
the total energy of a small cluster. In our approach, we t
the cluster as a finite part of the infinite crystalline solid a
determine the equilibrium size for this fixed structure. T
structure we consider is an eight-atom Mg cube in a la
simple cubic unit cell. We construct a huge unit cell, a cu
100 bohr on a side, and keep the atoms near the origin so
they do not interact with their periodic replicas. The on
neighbors are the atoms in the immediate cluster. In Fig
we present the cluster energy as a function of interato
distance, starting from 7.9 down to 7.1 bohr. The minimu
separation is 7.397 bohr, substantially greater than the b
separation of 6.047 bohr.6

B. MD simulations

Our MD simulations use the tight-binding molecula
dynamics~TBMD! code,35 which is based on a quantum
mechanical description of the interatomic interactions. In
MD simulations, the system consists of an hcp supercel
288 atoms. The equations of motion were integrated usin
time step of 2 fs for 2000 steps. We performed MD simu
tions for several temperatures at the experimental lattice c
stants,a53.21 Å and c55.21 Å, to compute the atomic
mean-square displacement and then the Debye-Waller fa
In Fig. 8 we compare the temperature dependence of

-

TABLE IV. The unstable stacking fault energygus, the intrinsic
stacking fault energyg is , and the ductility parameterD of Mg. The
values ofgus and g is were obtained from a polynomial fit to th
points in Fig. 6.gus andg is are in units ofJ/m2.

gus g is D

0.116 0.016 2.46

FIG. 7. TB parametrization for an eight-atom Mg cube.
1-5
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GOTSIS, PAPACONSTANTOPOULOS, AND MEHL PHYSICAL REVIEW B65 134101
computed Debye-Waller factor with experimental data.36 The
overall agreement with experiment is good, given that
calculated values are well within 19% of experiment in t
temperature range we simulated. The melting temperatur
Mg was calculated from Lindemann’s criterion.37 According
to this criterion, at the melting temperature the average
plitude of vibration is about 15% of the nearest-neighb
distance. A linear extrapolation of our atomic mean-squ
displacement results gives a melting temperature of 824
consistent with the experimental value of 922 K.6

To determine the theoretical thermal-expansion coeffic
a we use the following definition fora:

a5
1

3B S ]P

]T D
V

. ~6!

This definition requires the calculation of the pressure a
function of temperature for a fixed volume. We perform M
simulations at 150, 200, 250, 300, 325, and 350 K, keep
the volume fixed at the experimental value. Thec/a ratio is
taken to be the experimental one. For each temperature
select ten configurations from the trajectories generated
the MD simulations and compute the pressure. In Fig. 9
show pressure as a function of temperature as derived f
the simulations. From Fig. 9 we can see that it is reason
to assume that the pressure varies linearly as a functio
temperature. In Eq. 6, if for the bulk modulusB we use the
theoretical and the experimental values~taken from Table I!,
we get a57.1231026 and 6.9331026 K21, respectively.
These values underestimate the experimental value oa
52531026 K21 at 300 K.38

FIG. 8. Debye-Waller factor of Mg as a function of temperatu
The filled circles are the results of the molecular-dynamics sim
tions using our TB model, filled squares are the experimental po
~Ref. 36!.
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IV. SUMMARY

We have applied the NRL-TB method to generate a
model for Mg that was fit to LAPW results of a small num
ber of high-symmetry crystal structures. We found that
resulting Hamiltonian is transferable to a wider range of g
ometries. This model with a nonorthogonalsp3d5 basis re-
produces experimental measurements for a range of mat
properties, such as elastic constants and phonon frequen
It correctly describes slabs as approximate systems for
faces. This TB model also describes the energy of a sm
isolated cluster for different interatomic distances. In ad
tion, we performed molecular-dynamics simulations at va
ous temperatures to compute the Debye-Waller factor and
thermal-expansion coefficient. Both quantities were found
be in good agreement with experimental data. The ability
the model to accurately describe such diverse properties
systems, despite having been fitted to only a small numbe
high-symmetry crystal structures, increases our confide
that it captures the essential physics of bonding in mag
sium systems.
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