
Marvell® PXA3xx Processors and
Tavor P Processor
Boot ROM Reference Manual

Doc. No. MV-S301208-00, Rev. -
January 29, 2008
Document Classification: PUBLIC RELEASE

Cover

Document Conventions

Note

Provides related information or information of special importance.

Caution

Indicates potential damage to hardware or software, or loss of data.

Warning

Indicates a risk of personal injury.

Document Status
Doc Status: Preliminary Technical Publication: 2.3x

For more information, visit our website at: www.marvell.com
Disclaimer
No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any
purpose, without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no
warranty of any kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of
merchantability or fitness for any particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items
contained within this document.
Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use
Marvell products in these types of equipment or applications.
With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:
1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control
Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2;
2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof
are controlled for national security reasons by the EAR; and,
3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a
plant, not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security
reasons by the EAR, or is subject to controls under the U.S. Munitions List ("USML").
At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of
any such information.
Copyright © 2008. Marvell International Ltd. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, Fastwriter, Datacom Systems on Silicon,
Libertas, Link Street, NetGX, PHYAdvantage, Prestera, Raising The Technology Bar, The Technology Within, Virtual Cable Tester, and Yukon are registered trademarks
of Marvell. Ants, AnyVoltage, Discovery, DSP Switcher, Feroceon, GalNet, GalTis, Horizon, Marvell Makes It All Possible, RADLAN, UniMAC, and VCT are trademarks
of Marvell. All other trademarks are the property of their respective owners.

Intel XScale® is a trademark or registered trademark of Intel Corporation and its subsidiaries in the United States and other countries.

Marvell PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

http://www.marvell.com
http://www.marvell.com
dslevie
Rectangle

Table of Contents

1 Boot ROM Functional Overview... 11
1.1 General Description ...11
1.2 Purpose Of This Document ...11
1.3 ROM Location, Size, and Mapping ..11
1.4 Boot ROM Overview ..12

1.4.1 Boot Process for Programmed Device ..13

2 Boot ROM Differences .. 15
2.1 Non-Trusted vs Trusted ...17
2.2 TIM/NTIM/OBM Support ..17

2.2.1 Version 2.xx Platforms ..17
2.2.2 Version 3.xx Platforms ..18

2.3 Boot ROM Address Maps ..18
2.3.1 ISRAM Usage..18

2.3.2 OBM Usage...18

2.4 PXA31x and Tavor Processor Auto-Boot ..19
2.4.1 Auto-Boot on Non-Trusted Platforms ..20
2.4.2 Auto-Boot on Trusted Platforms ..20

3 Software Requirements .. 23
3.1 Size Restrictions for the Device Keying Binary..23
3.2 OEM Boot Module Requirements for NAND Platforms ...23

3.2.1 NAND OEM Boot Module Size Restrictions ..23

3.3 NAND Bad/Relocation Block Table Definition ...23
3.3.1 Bad Block Table Definition ..24
3.3.2 Bad Block Relocation Area..25

3.4 OEM Boot ROM Requirements for NOR Platforms ...26
3.4.1 Traditional Boot Platforms ...26

3.4.2 Trusted Boot Platforms..26

3.5 Marvell® Wireless Trusted Module Driver Requirements ..26

4 Methods for Platform Provisioning.. 27
4.1 Non-Trusted Provisioning ..27

4.1.1 Provisioning an Unprogrammed Non-Trusted Boot Platform Using a Device Keying Binary..........27

4.2 Trusted Provisioning ..28
4.2.1 Provisioning an Unprogrammed Trusted Boot Platform Using a Device Keying Binary29
4.2.2 Device Keying Process ...30

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 3

PXA3xx Processor Family and Tavor Processor
Boot ROM Reference Manual
5 Boot ROM Implementation Details... 35
5.1 Non-Trusted Boot Address Map.. 35

5.1.1 Trusted Boot Address Map... 36
5.1.2 NTIM/TIM Execution... 36
5.1.3 Requirements for the Wireless Trusted Module Save State... 37

5.1.4 Specific Requirements for NAND Platforms ... 38

5.2 Boot ROM NAND Device Support... 39
5.2.1 Boot ROM NAND Device Recognition.. 39

5.3 XIP Flash Support ... 41
5.3.1 NOR Flash One-Time Programmable Register Usage .. 42

5.4 Managed NAND Memory Support .. 42
5.5 OneNAND Support.. 43

5.5.1 Exiting Low Power Mode and Resets with OneNAND ... 44

5.6 mDOC Support.. 45
5.6.1 Exiting Low Power Mode and Resets with mDOC ... 45

5.7 Internal SRAM Usage ... 46
5.8 Handling Power Mode and Reset Transitions... 46

5.8.1 Platform Boot Process for Watchdog Reset, Power on Reset, Low Power Exit, and GPIO Reset 48

5.8.2 S2/D3/C4 Resume Requirements .. 48

5.9 Boot ROM: Processor-Specific Configurations ... 50
5.9.1 PXA32x Processor Register Settings ... 52
5.9.2 Other Registers .. 54

5.10 PXA31x Processor Register Settings.. 54
5.11 PXA30x Processor Register Settings.. 56
5.12 Tavor Processor Implementation Details .. 58
5.13 Error Conditions .. 60
5.14 Hints And Tips... 60

6 Non-Trusted Image Module .. 63
6.1 Non-Trusted Image Module Format .. 64

6.1.1 Version Information .. 64
6.1.2 Flash Information.. 65
6.1.3 NTIM Sizing Information ... 65

6.1.4 Image Information Array ... 65
6.1.5 Reserved[SizeOfReserved] .. 66

6.2 Reserved Area .. 66
6.2.1 Reserved Area Header... 66
6.2.2 Reserved Area Packages... 66

6.3 Predefined Packages for Reserved Area.. 67
6.3.1 GPIO Packages.. 67

6.3.2 UART/USB Protocol Packages .. 68
6.3.3 DDR Package... 68
6.3.4 Resume Package ... 68

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell
Page 4

6.3.5 USB Vendor Request Package ...68

6.4 Summary of Predefined Package IDs for the Non-Trusted Image Module................................69

7 Trusted Image Module .. 71
7.1 Trusted Image Module Format ..72

7.1.1 Version Information ...72
7.1.2 Flash Information...73

7.1.3 TIM Sizing Information ..73
7.1.4 Image Information Array..73
7.1.5 Key Information Array..74

7.1.6 Reserved[SizeOfReserved] ...74
7.1.7 Platform Digital Signature Information...74

7.2 Reserved Area...75
7.2.1 Reserved Area Header..75

7.2.2 Reserved Area Packages..75

7.3 Predefined Packages...75
7.3.1 GPIO Packages...76
7.3.2 UART/USB Protocol Packages ...76
7.3.3 DDR Package..77

7.3.4 Resume Package ..77
7.3.5 Autobind Package ...77
7.3.6 USB Vendor Request Package ...77

7.4 Hashing Methods...78
7.5 Summary of Predefined Package IDs for the Trusted Image Module78

8 Non-Trusted Operation ... 81
8.1 Operation with a Non-Trusted Image Module..81

8.1.1 NAND Flash ..81
8.1.2 XIP Flash on Chip Select 2 ...81

8.1.3 XIP Flash on Chip Select 0 ...82
8.1.4 Samsung OneNAND* Flash ..82
8.1.5 SanDisk* Flash ..83

8.1.6 Image Downloading...83
8.1.7 Preprogrammed Flash Requirements ...83

8.2 Operation Without a Non-Trusted Image Module ..84
8.2.1 NAND Flash ..84
8.2.2 XIP Flash on Chip Select 2 ...84

8.2.3 XIP Flash on Chip Select 0 ...84
8.2.4 OneNAND Flash..85
8.2.5 MSystems Flash..85

8.2.6 Preprogrammed Flash Requirements ...85

Copyright © 2010 Marvell PUBIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 5

PXA3xx Processor Family and Tavor Processor
Boot ROM Reference Manual
9 Trusted Boot Operation .. 87
9.1 Trusted Boot Usage Cases ... 87

9.1.1 Trusted Image Module Validation... 88
9.1.2 NAND Flash.. 89
9.1.3 XIP Flash on Chip Select 2... 89

9.1.4 XIP Flash on Chip Select 0... 89
9.1.5 Samsung OneNAND™ Flash ... 90
9.1.6 SanDisk* Flash ... 90

9.1.7 Image Downloading.. 91

9.2 Preprogrammed Flash Requirements ... 92
9.3 JTAG Re-enablement ... 92

10 TIM/NTIM Support For Memory Devices... 93
10.1 NAND Flash .. 93
10.2 XIP Flash on Chip Select 2 ... 93
10.3 OneNAND Flash ... 94
10.4 SanDisk Flash ... 94

11 Communication Protocol.. 95
11.1 Preamble... 98
11.2 Structure for Host Commands... 98
11.3 List of Commands ... 98
11.4 Structure of Status Responses ... 99
11.5 Responses .. 100
11.6 Messages.. 101
11.7 Disconnect .. 101
11.8 Status Codes... 101

12 Host Tools.. 103
12.1 Trusted Image Tools ... 103
12.2 Download Tools .. 103
12.3 JTAG Re-enable Tools.. 103

13 Other Boot ROM Features .. 105
13.1 Optional Settings in the TIM/NTIM Modules ... 105
13.2 Tamper Recovery Mechanisms .. 105
Return Code Definitions 107

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 6

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 7

Figure 1: PXA3xx Top Level Boot ROM Flow..13

Figure 2: Boot Process Flow Chart ..14

Figure 3: Block 0 Layout on a Samsung K9K1216Q0C* with 16-KB Block Sizes and
512-Byte Pages24

Figure 4: Example of Bad Block Table NAND Flash Mapping in Use —
Small Block NAND Flash Type: Samsung K9K1216Q0C* (Device ID = 0x46)25

Figure 5: Device Keying Binary Requirements Flow for an Unprogrammed System.......................................32

Figure 6: Device Keying Binary Requirements Flow for an Unprogrammed System (cont)33

Figure 7: Coprocessor Trusted Module Save State Implementation ...38

Figure 8: Electronic Signature Requirements ..41

Figure 9: JTAG Re-enable Flow Diagram..96

Figure 10: Download Flow Diagram...97

PXA3xx Processor Family and Tavor Processor
Boot ROM Reference Manual
List of Tables
Table 1: Version 2.xx and Version 3.xx High Level Differences .. 15
Table 2: Version 2.xx ISRAM usage .. 18
Table 3: Version 3.xx ISRAM Usage ... 18

Table 4: Version 2.xx OBM Usage... 19
Table 5: Version 3.xx OBM usage ... 19
Table 6: Relocation Table Addresses .. 24

Table 7: Non-Trusted Image Module Locations... 35
Table 8: OEM Boot Module (OBM) locations when No NTIM is used.. 35
Table 9: Trusted Image Module Locations for Trusted Boot .. 36

Table 10: OEM Boot Module Sizes Without Marvell Bad Block Management ... 38
Table 11: Small Block Devices .. 40

Table 12: NAND Flash Controller Initial Register Settings... 41
Table 13: NAND Command Set ... 41
Table 14: Flash Commands Supported by the Boot ROM... 42

Table 15: OneNAND Device ID Support .. 44
Table 16: Overview of Resets and Power Modes.. 46
Table 17: PXA32x Processor Implementation Settings ... 52

Table 18: Chip Select 2 Setup ... 53
Table 19: Additional PXA32x Processor Ball Values Set for NAND Platforms Only.. 53
Table 20: FFUART Pins... 53

Table 21: USB Single Ended Pins ... 53
Table 22: During Sleep (S3/D3/C4 mode) Resume... 54
Table 23: PXA31x Processor Implementation Settings ... 54

Table 24: Additional PXA31x Processor Ball Values Set for NAND Platforms Only.. 55
Table 25: USB Port ULPI Pins ... 55
Table 26: FFUART Pins... 55

Table 27: PXA30x Processor Implementation Settings ... 56
Table 28: Chip Select 2 Setup ... 57
Table 29: Additional PXA30x Processor Ball Values Set for NAND Platforms Only.. 57

Table 30: FFUART Pins... 57
Table 31: USB Single Ended Pins ... 57
Table 32: Tavor Processor Register Settings .. 58

Table 33: Additional Tavor Processor Ball Values Set for NAND Platforms Only.. 59
Table 34: FFUART Pins (Primary Location)... 59
Table 35: FFUART Pins (Secondary Location).. 59

Table 36: USB 2.0 Pins.. 59
Table 37: BootFlashSign Definitions.. 65
Table 38: Reserved Area Predefined Package ID’s .. 69

Table 39: BootFlashSign Definitions.. 73
Table 40: Reserved Area Predefined Package ID’s .. 78
Table 41: Preamble.. 98

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 8

Table 42: Host Commands ...99
Table 43: Target Responses ..100

Table 44: Status Codes ..101
Table 45: Return Codes and Definitions...107

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 9

PXA3xx Processor Family and Tavor Processor
Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
1 Boot ROM Functional Overview

1.1 General Description
The Boot ROM software is preloaded into the processors’ internal ROM. The Boot ROM is an
enabling component of the Marvell Trusted Boot solution. The Boot ROM provides support for the
implementation of processors with Intel XScale® technology for the usage cases described in the
following sections. When operating in a non-trusted mode, the Boot ROM supports loading software
from various devices as part of the boot process. When operating in a trusted mode, the Boot ROM
is considered the root of trust for the platform and it handles the initialization of the Marvell® Wireless
Trusted Module (Marvell® WTM) subsystem.

Because the Boot ROM is configured at manufacture, no changes can be made to the boot
configuration of the Boot ROM. The correct boot configuration must be ordered from Marvell for a
given platform architecture however some processors support an “auto-boot feature and are not
configured to one boot memory for the first boot. Refer to 2 "Boot ROM Differences" for details on
auto-boot support.

The list of supported boot configurations and how to configure the PXA31x auto-boot feature are
discussed in this document.The Boot ROM implements a common set of functionality across all
implementations of the PXA3xx processor family and Tavor processor. Refer to the specific
processor developers manual for details of the processor features.

1.2 Purpose Of This Document
This document covers the operational details of the Boot ROM for the PXA3xx processor family and
Tavor processors. System- level dependencies are also covered such as:

Booting the platform
Choice of NAND memory and how the Boot ROM supports NAND

Managed NAND support - This is NAND memory with a NOR-like bus interface such as
Samsung OneNAND and Sandisk mDOC.

Software requirements for both trusted and non-trusted platforms
Boot ROM versions and feature sets
Exiting low power modes

Host Tools
JTAG Re-enablement

1.3 ROM Location, Size, and Mapping
The processor family has 48 KB of internal ROM, which is used for the Boot ROM. Anytime the
processor goes through a power transition that causes a jump to the reset vector, the Boot ROM is
mapped to two different address spaces, via hardware mechanisms:

0x0000_0000 - 0x0000_BFFF

0x5E00_0000 - 0x5E01_FFFF

The physical ROM is mapped to the 0x5E00_0000 - 0x5E01_FFFF address space in the
processor memory map. The 0x0000_0000 - 0x0000_BFFF address space is a virtual memory
mapping implemented by the hardware to locate the vector table at the correct address for the
processor core. After any power transition which causes the processor core to jump to the reset
vector, the Boot ROM is the first code to execute on the processor.

Copyright © 1/29/08 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 11

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
While the Boot ROM is running and is mapped to 0x0000_0000 - 0x0000_BFFF, external flash
memory mapped to this region is not accessible. Before handing control to any image, the Boot
ROM remaps the 0x0000_0000 - 0x0000_BFFF address space to external flash memory on chip
select 0 to make access to this flash memory possible. Once this address space is remapped to the
external flash, higher layers of software must accommodate the vector table by setting up a vector
table in an appropriate location depending on the usage model chosen. Refer to the specific
processor developers manual for more details on the requirements for setting up the vector table.

1.4 Boot ROM Overview
After reset, the Boot ROM performs the essential initialization including programming the clocks,
GPIO settings, and the interrupt controller. The Boot ROM verifies whether the reset reason was a
return-from-hardware reset (HWR), Watchdog reset (WDR), or a resume-from-S3 power-state reset.

Note

Note After V3.20 Boot ROM, the Boot ROM does not perform verification to identify the last
reset transition. All Version 2.xx Boot ROMs perform this task. Therefore, for the
application processors, only the PXA320 and PXA30x A1 perform this procedure as
indicated in Figure 1.

If the reset is not attributable to any of these reasons listed above, the Boot ROM uses the platform
configuration data that is provided by the bootsource fuses to determine how to resume the platform
from an S2/D3/C4 state or GPIO reset.

For more details, refer to Chapter 2 and Chapter 3 of this document.

Figure 1 shows the execution flow of the Boot ROM from reset. All processor resets are directed to
the Boot ROM, from where the appropriate path to resume or boot is determined.

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

1.4.1 Boot Process for Programmed Device
The Boot ROM identifies the platform configuration fuses and transitions to the external flash. For
platforms using NAND flash, the OEM boot module (OBM) is copied from Block 0 of the NAND flash
to internal SRAM at and control is transferred to the OBM. For platforms using NOR flash, control is
transferred to the external flash on nCS2 of the DFI bus. See Figure 2 (Boot Process Flow Chart).

Figure 1: PXA3xx Top Level Boot ROM Flow

Read bootsource fuses to determine platform
configuration and perform necessary setup

Transfer control to OBM

Is this a S2
resume?

Is this an S3 resume, HW reset, or
watch dog reset?

Is this a GPIO
reset?

No

No

No

Perform platform
specific sleep

resume process

Yes

Yes

Yes

Programmed
Device Boot

Process

Power On / HW
Reset

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 13

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

There are many more details that are noted in later chapters. This section is the introduction and
there are differences between the Boot ROM revisions and the different processor silicon steppings;
however the main flow of execution is the same.

Figure 2: Boot Process Flow Chart

Internally fused to boot from NAND
FLASH?

Copy OEM boot code to internal SRAM

Yes

Hand control to OEM boot code

Boot CS2

Configure CS2

Yes

No

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 14

Boot ROM Differences

2

r

n

st

d
2 Boot ROM Differences
This section provides information on the differences between Boot ROM version 2.x and 3.x. The
Boot ROM is implemented in all of the PXA3xx family processors and the Tavor processor. Table 1
describes which processor is implemented with the different versions of the Boot ROM.

Table 1: Version 2.xx and Version 3.xx High Level Differences

Processor
Stepping

PXA32x B1/B2;
Tavor A0

PXA32x C0 PXA301 A1
and
PXA300 A1

PXA31x A1;
Tavor B0.a

PXA31x A2;
PXA302;
PXA312 PoP
Tavor B0.b

Boot ROM
Version

Version
2.22

Version
3.38

Version
3.19

Version
3.27

All Version 3.32
except PXA31x A
Version 3.33

Non-Trusted
Trusted and
Non-Trusted

JTAG
Re-enablement
(only for trusted
platforms)1

No No No No Yes

Download via
USB1.1
(dif ferential /SE)

No No No Not applicable for
PXA31x A1;
Yes (default) for
Tavor B0.a

Yes (default) except fo
PXA31x A2

Download via
USB2.0

No No No Yes (default) for
PXA31x;
Yes with (TIM)/
(NTIM) override
but only for Tavor
B0

Not applicable for
PXA302;
Yes with TIM/NTIM
override but only for
Tavor B0;
Yes (default) for
PXA310 A2

Download via
USB OTG

No No No No No

Download via
UART

No No No Yes Yes

TIM/NTIM
Support

No No NTIM NTIM TIM/NTIM

1. The BootFlashSig
field as defined in the
TIM/NTIM header mu
be included. Previous
Boot ROM versions di
not use this field.
2. ImageSizeToCRC
must be 0x00

V3.xx Boot ROM can also operate without a TIM/NTIM
header. Using the V2.xx IVM/OBM method will also work.

Copyright © 2010 Marvell CONFIDENTIAL Doc. No. MV-S301208-00 Rev. -
February 9, 2010, Preliminary Document Classification: Proprietary Information Page 15

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

t
e

.

2

2.1 Non-Trusted vs Trusted
Version 2.xx implements only the non-trusted boot process. A non-trusted platform is defined as a
platform that does not use the Wireless Trusted Module (WTM) to validate the integrity of the OS
image.

Version 3.xx supports both trusted and non-trusted boot process. A trusted platform does use the
WTM for security encryption and validation of an uncompromised OS image.

Tamper
Recovery

No No No No Yes done in WTPSP

Sandisk M-DOC
H3 and Samsung
OneNAND

Yes, using XIP
area

Yes, using XIP
area

Yes, using
XIP area

Yes, using XIP
area

Yes, with NTIM and
TIM support

The drivers are not integrated into the Boot ROM. The processor initially
sees these devices as NOR memory. The OBM boot module can be loaded
from XIP area, then the driver can be loaded after.

The drivers are
integrated into the Boo
ROM. At Boot time th
processor can fully
access the managed
NAND memory. Refer
to Section 5.5 and
Section 5.6 for details

NAND Interface
Timing
Configuration -
Programmed in
NDTR1CS0[tR]

39.23uS 39.23uS 38.76uS

Tavor - 39.23uS

PXA31x A1 -
38.76uS

52.4uS

MMC/SD Boot No No No No No
Auto-Boot No Yes2 No Yes Yes
Boot from nCS03

(Static CS)
No No No PXA31x only PXA31x only

ONFI4 Compliant
NAND Reset
Command 0xFF

No Yes No No Yes

1. The JTAG port is enabled on all non trusted platforms. Refer to JTAG re-enablement in Section 9.3, JTAG Re-enablement,
on page 100.

2. Version 3.xx Auto-Boot mode is not backward compatible with Version 2.xx. See Note in Auto-Boot in Non-Trusted Platforms.

3. XIP NOR only, not managed NAND (OneNand + mDOC)

4. ONFI is the Open NAND Flash Interface specification www.onfi.org

Table 1: Version 2.xx and Version 3.xx High Level Differences (Continued)

Processor
Stepping

PXA32x B1/B2;
Tavor A0

PXA32x C0 PXA301 A1
and
PXA300 A1

PXA31x A1;
Tavor B0.a

PXA31x A2;
PXA302;
PXA312 PoP
Tavor B0.b

Boot ROM
Version

Version
2.22

Version
3.38

Version
3.19

Version
3.27

All Version 3.32
except PXA31x A
Version 3.33

Non-Trusted
Trusted and
Non-Trusted

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell
Page 16

Boot ROM Differences
TIM/NTIM/OBM Support
2.2 TIM/NTIM/OBM Support
2.2.1 Version 2.xx Platforms

Version 2.xx platforms have-hard coded requirements for booting to the OEM boot module (OBM)
image. These requirements impose several restrictions on the platform for NAND boot, specifically:

A maximum size limit of two blocks can be used for OBM, restricting the size
Two words of offset must be pre-pended to the OBM before programming to the NAND Flash
For an OBM of one block in size:

1. Set NAND Flash address 0x0 to 0x0000_0008.
2. Set NAND Flash address 0x4 to 0x0000_0000.
3. Burn the OEM boot module image to NAND Flash address at 0x8.

For an OBM of two blocks in size, follow the same as the steps above for OBM of one block in
size; however, set NAND Flash address 0x4 to address of Block 2.
All unused pages within Block 0, after the OBM image, must be programmed with 0x0.
Runtime location is fixed in the ISRAM
Use of an NTIM is not supported

2.2.2 Version 3.xx Platforms
Version 3.xx trusted boot platforms use the TIM and NTIM. These headers store information about
the flash layout and runtime locations for the platform software. The header format is compatible
between trusted and non-trusted systems allowing reuse of images. The difference between a TIM
and an NTIM is the type of information within the header. The TIM holds security information in
addition to the flash layout and runtime information.

When a header (NTIM or TIM) is used, the requirement to program all unused pages as
specified for V2 Boot ROM is no longer necessary. The header contains the size of the OBM
image. If not using a header, Marvell recommends that the unused pages be programmed with
0x0.

V3.xx Boot ROM also has a backward compatibility mode such that the OBM/IVM from V2 may be
used as an option.

2.3 Boot ROM Address Maps
2.3.1 ISRAM Usage

This section shows the internal SRAM address usage. Approximately 4 KB of internal SRAM was
freed up in the data/stack area of the Boot ROM and made available for OBM downloading in V3.xx.

Note

If the first two words are not written as 0x0 and the unused pages in Block 0 are also
not written as 0x0, then the system fails to boot. Not performing this action creates
inconsistent Error-Correcting Code (ECC) information so the Boot ROM aborts the boot
process.

Table 2: Version 2.xx ISRAM Usage

ISRAM Address Size Usage

0x5C00_0000 32 KB Caddo

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -
 Page 17

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

2.3.2 OBM Usage
Version 2.xx has fixed offsets for OBM images based on flash type used. The area in the Static Chip
Select 0 (nCS0) from 0x0 to 0xBFFF is dual-mapped to either Boot ROM or external flash, which can
make programming difficult. The Boot ROM also uses the first two words for its own operations so
the OEM system boot module (OSBM) images had to be manually shifted when programming.

Version 3.xx is backward compatible with version 2.xx. Certain requirements, such as the boot state
fuses, must be programmed and the offsets in Table 5 must be adhered to. For NAND Flash, the
OBM size is limited to one block.

2.4 PXA31x and Tavor Processor Auto-Boot
All PXA3xx processors and Tavor processors have been pre-programmed prior to customer
shipments, which requires customers to specify the required boot memory such as XIP NOR Flash
boot from nCS2 and x8 or x16 NAND boot devices.

However, the PXA31x A1 and Tavor B0 stepping do not operate in this way. These processors are
shipped without the boot type fuses configured, which allows flexibility in customer builds for using
the same device in multiple platforms with different boot-memory configurations.

0x5C00_8000 48 KB Boot ROM data/stack

0x5C01_4000 Rest of ISRAM Image download

Table 2: Version 2.xx ISRAM Usage (Continued)

ISRAM Address Size Usage

Table 3: Version 3.xx ISRAM Usage

ISRAM Address Size Usage

0x5C00_0000 32 KB Caddo

0x5C00_8000 44 KB Boot ROM data/stack

0x5C01_3000 Rest of ISRAM Image download

Table 4: Version 2.xx OBM Usage

Boot Device OBM location in device Runtime location of OBM

Chip Select 2 - nCS2 Block 0 offset 0x0 0x1000_0000

NAND device on ND_nCS0 Block 0 offset 0x8 0x5C01_4000

Table 5: Version 3.xx OBM Usage

Boot Device OBM location in device Runtime location of OBM

Chip Select 0 - nCS0 block 0 offset 0xC000 0x0000_C000

Chip Select 2 - nCS2 block 0 offset 0x0 0x1000_0000

NAND device on ND_nCS0 block 0 offset 0x0 0x5C01_3000

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell
Page 18

Boot ROM Differences
PXA31x and Tavor Processor Auto-Boot
Auto-boot is a process whereby the Boot ROM probes all the valid boot devices for a valid header
file (either a TIM or NTIM). Once this header is found, it is used to boot the system. The Boot ROM
does not search for multiple headers. The first valid header that is found is used to boot the system.

The boot memories are probed in the following order:

XIP on nCS2
XIP on nCS0 (XIP NOR only; not Managed NAND + mDOC)
x16 NAND on ND_nCS0
x8 NAND on ND_nCS0
Samsung OneNAND on nCS2
Sandisk mDOC on nCS2

If a valid TIM or NTIM is not found, then the Boot ROM waits for a download operation over USB or
UART. This operation would be downloading an image from a host over a USB or UART to the
platform. If the TIM or NTIM is not found, this would indicate that the flash memory is not
programmed.

2.4.1 Auto-Boot on Non-Trusted Platforms
The auto-boot process described in Section 2.4, PXA31x and Tavor Processor Auto-Boot occurs for
every boot or reset exit on non-trusted platforms. Below is the list of resets and mode exits:

SOD - start of day
Hardware reset
Watchdog reset
GPIO reset
S2/D3 exit**
S3/D4 exit

**Software may optionally configure a D3 resume to internal SRAM. If enabled, then the
“probing” is bypassed. This option is enabled in the NTIM/TIM package.

2.4.2 Auto-Boot on Trusted Platforms
The auto-boot process described in Section 2.4, PXA31x and Tavor Processor Auto-Boot occurs
only for the first boot if a valid TIM is found for a Trusted Boot. If the Boot ROM fails to find a valid
header, then the Boot ROM waits for an image download to occur.

Once a TIM is found and has been successfully validated, the platform is bound, which means that
the fuses have been configured permanently. All subsequent boots are fused boots and the probing
(auto-boot feature) of each memory device does not occur.

Note

If the Boot ROM does not find a valid header and the image download is successful, the
subsequent boot probes each boot memory (as described above) but now the Boot
ROM finds the valid TIM/NTIM and the boot process continues.

Note

For PXA32x C0 processor, Auto-Boot feature does not allow for backward compatibity
between Boot ROM version 2.xx and version 3.xx. In Auto-Boot mode, the PXA32x C0
processor requires the same memory addresses as the PXA31x processor. The
PXA32x C0 is fully backward compatible with PXA32x B2 in fused mode only.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev -

 Page 19

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

The auto-boot feature has certain platform requirements that must be enabled. For fuses to be
configured, VCC_MVT must be raised to 1.9V through a sequence of PWR I2C commands sent to
the PMIC over the PWR_I2C bus.

A trusted platform must be architected such that the Services Power Management Unit sends I2C
commands to the PMIC. The processor sends these command sequences automatically. There are
internal handshaking and acknowledgement tokens passed between Caddo, the Boot ROM, and the
Services unit to enable the correct sequencing of I2C commands and voltage changes to
VCC_MVT. This sequencing is isolated and cannot be reconfigured or changed in any way.

The basic steps of operation are as follows:
1. The Auto-Boot procedure selects the valid boot memory by the Boot ROM finding a valid TIM

header.
• VCC_MVT is currently at default value -> 1.8V

 2. MDTV2 is loaded with the value 0x08 -> for 1.9V.
• The higher voltage is required to allow the fuses to be configured correctly.
• VCC_MVT operating at 1.9V is only allowed while the fuses are been configured.

3. VCC1[MVS] and VCC1[MGO] are both set to 0b1.
4. Now VCC_MVT voltage is raised by the PMIC to 1.9V.

• Internal handshaking indicates the fuses have been configured.
• The Services Unit must now return VCC_MVT to default value.

 5. MDTV1 is loaded with 0x04 -> for 1.8V.
6. VCC1[MVS] is cleared 0b0 and VCC1[MGO] is set to 0b1.
7. Now VCC_MVT is lowered to 1.8V.

Refer to the “Clock Controllers and Power Management” chapter of the PXA3xx Processor Family
Developers Manual for more information on PWR_I2C commands.

Note

Not only must a PXA3xx-compliant PMIC be used in any PXA3xx-enabled platform but
also for trusted platforms, the system design must be connected in such a way to
enable the PMIC to raise VCC_MVT for fuse configuring. This design may require
detailed inspections of the PMIC datasheet to ensure that VCC_MVT is connected to a
dynamically programmable PMIC output regulator. This is known as “Boost Mode”.
Refer to the PXA3xx EMTS for more details.

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell
Page 20

Boot ROM Differences
PXA31x and Tavor Processor Auto-Boot

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -
 Page 21

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell
Page 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
3 Software Requirements
This chapter lists the requirements that must be performed by the OBM for the NAND and NOR
platforms.

3.1 Size Restrictions for the Device Keying Binary
The Device Keying Binary should be restricted in size, based on the available internal SRAM on the
processor used. Refer to the internal SRAM usage in Section 2.3.1, “ISRAM Usage”. Marvell
suggests that the Device Keying Binary size be restricted to less than 64 KB, based on the minimum
internal SRAM that is used (128 KB). Of that 128 KB of internal SRAM, the Marvell® WTM locks 32
KB, which leaves 96 KB for software usage in a minimum internal SRAM scenario.

3.2 OEM Boot Module Requirements for NAND
Platforms
The OEM boot module is responsible for performing all of the relevant tasks required for booting the
platform. OEMs can choose between using their proprietary mechanism for identifying and loading
the images from the NAND flash, or using the Marvell proposed bad block/relocation table located in
Block 0 of the NAND flash in identifying and loading images from the flash. An example of an OEM
boot module that uses the Marvell proposed bad block/relocation table is provided as a template.
The requirements that must be completed by the OEM boot module include the following:

Identifying the OS loader/image in the NAND flash
Loading the content of the OS loader/image from the NAND flash into either internal SRAM or
the DDR memory, as applicable
Integrity checking the OS loader/image for trusted platforms
Executing the loaded image.

The OEM boot loader must first initialize the DDR memory when loading to DDR memory. The OEM
boot module must also relocate the contents of a block that goes bad in the process of accessing the
block to a new block and update the bad block/relocation table of the platform.

The OEM boot module in Block 0 must also have all the basic OS startup capabilities, such as
identifying reset reason and knowing when/how to identify and load the OS loader/image. For
example, when returning from sleep resume, the OEM boot module simply performs the relevant
requirements or workarounds, and transitions to the OS image in the DDR; when returning from
hardware reset, the OEM boot module must perform a full DDR memory initialization and load the
OS contents from the NAND flash to the DDR memory before transitioning to the DDR memory to
continue execution.

3.2.1 NAND OEM Boot Module Size Restrictions
If the Marvell bad-block management table is used and the Trusted Image Module or image module
is used, then the OEM boot module is restricted by the size of the available internal SRAM. If the
Marvell bad-block management table or the image module is not present, then the OEM boot
module is restricted to Block 0 of the NAND.

3.3 NAND Bad/Relocation Block Table Definition
This section defines the bad-block relocation table that is used by the Boot ROM to load the OEM
boot module and by the OEM boot module to identify and load the OS loader/image from the NAND

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 23

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
flash to either the DDR memory or internal SRAM. The bad-block management scheme consists of
two components: the bad-block table and the pool of reserved relocatable blocks. The relocation
table always resides starting with the last page of Block 0. This offset in Block 0 for the initial table
depends on the number of bytes per page and number of pages per block, as shown in Table 6.

The bad-block table requires exactly one page per block. If the bad-block table has to change at run
time, each page is treated like a new slot for additional tables. Rather than erasing and creating a
new table over the initial page each time, a new table is simply written to the page directly below the
current table, which reduces wear and tear on the block by reducing the number of erase cycles.
The maximum number of pages reserved for bad-block tables is 24. When 24 pages have been filled
with bad-block tables, the next entity to create a new bad-block table then erases the block,
reprograms any non-bad-block table-related information, and creates a new bad-block table at the
initial page as defined in the addresses in Table 6.

Note

Note This implementation requires a binary search algorithm to search for and find the most
current table. Figure 3 is an example of a typical Block 0 layout at run time indicating
how the slot-based mechanism works.

Figure 3: Block 0 Layout on a Samsung K9K1216Q0C* with 16-KB Block Sizes and
512-Byte Pages

3.3.1 Bad Block Table Definition
Each bad-block table has a layout in flash, as defined with the following structure:

Table 6: Relocation Table Addresses

Block 0 Offset Of
Relocation Table
Base

Block Size Number of
Bytes/Page and
Pages/Block

Comments

0x0000_F800 64 KB 2048/32 —

0x0001_F800 128 KB 2048/64 Largest supported
block size.

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 24

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Typedef struct S_Reloc
{

USHORT Header;
USHORT NumReloc;
Rel_T Relo[NAND_RELOC_MAX];

}Reloc_T;

The header is a fixed value of 0x524E to identify the presence of a bad-block table; that is, if the
header is valid as defined above, the initial block scan has been completed. Otherwise, the block
scan has not been completed. The NumReloc parameter identifies the number of blocks that has
currently been relocated and is followed by up to 127 relocation pairs.

Typedef struct S_Rel
{

USHORT From;
USHORT To;

}Rel_T;

Const ULONG NAND_RELOC_MAX = 127;

Each “From” entry identifies the block that has been relocated and the entry “To” identifies the
relocated block number.

3.3.2 Bad Block Relocation Area
The last 127 blocks of the device are reserved for bad-block relocations. The first block that is
relocated goes to the very last block of the device; the second block relocated goes to the second to
the last block of the device, and so forth. This process effectively allows relocated blocks to grow
from the highest address down. A block in the relocation pool itself may be relocated, so use caution
when relocating to skip over these blocks. Figure 4 presents a typical flash part layout and a
relocation table layout to tie the concepts together.

Figure 4: Example of Bad Block Table NAND Flash Mapping in Use —
Small Block NAND Flash Type: Samsung K9K1216Q0C* (Device ID =
0x46)

Copyright © 2010 Marvell CONFIDENTIAL Doc. No. MV-S301208-00 Rev. -

 Page 25

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
3.4 OEM Boot ROM Requirements for NOR Platforms

3.4.1 Traditional Boot Platforms
The OEM boot module on a traditional boot platform is responsible for loading the next layer of
software and performing any platform initialization required to boot the operating system and/or
communication layer.

3.4.2 Trusted Boot Platforms
The following are the list of tasks that must be performed by the OEM boot module during normal
trusted platform boot-up and resume operations.

Use the OEM proprietary scheme to validate the security of all OEM supplementary binaries
(OS/Application/Data, and so on).
Use the OEM proprietary scheme to validate the security of the mobile operator’s service
provisioning module, if any.
For the Tavor processor, the OEM boot module must integrity-check the communications
content, initialize the DDR memory, copy the communications content to the DDR memory, and
trigger the execution of the communications subsystem.
Boot the platform.

3.5 Marvell® Wireless Trusted Module Driver
Requirements
The Marvell® WTM driver is responsible for completing the following as part of the virgin boot
requirements:

Generate a new Random Number Generator (RNG) seed using the Marvell® WTM from the
RNG seed programmed by the OEM boot module and program it to flash. This process must
occur on every reset.
Execute the CREATE_SUBKEY_PI to create a new subkey that is used for protecting the
Marvell® WTM state and write the resulting subkey into flash.
Execute the SAVE_WTM_STATE_PI and write the resulting state data into flash memory at the
designated address.
Program the platform configuration fuses, if not done at manufacturing.

The Marvell® WTM driver must generate a new RNG seed using the Marvell® WTM for seeding into
the Marvell® WTM on the next subsequent boot, and program the new seed to flash. The Marvell®
WTM state in flash must also be updated before the platform is put to sleep.

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 26

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
4 Methods for Platform Provisioning
The requirements for platform provisioning depend on the usage model selected. This chapter
provides some guidance on provisioning a platform for operation with the Boot ROM. “Provisioning a
platform” means performing the required steps to turn an uninitialized system into an initialized
system capable of booting to an operating system. Differences between a development system and
a manufacturing system are highlighted whenever possible.

4.1 Non-Trusted Provisioning
The first step toward provisioning a non-trusted system is to review the use cases in Section 8.1,
“Operation with a Non-Trusted Image Module” to determine the requirements. During this time,
consider the following:

1. How the flash device is programmed. Several options are available:

• Programmed via the JTAG port using the JTAG software package

• Preprogrammed by a flash programming vendor

• Programmed using a separate software image that is downloaded over one of the available
ports

2. The flash device that is used for booting the system. The options are:

• X16 NAND device on data flash controller Chip Select 0

• X8 NAND device on data flash controller Chip Select 0

• XIP device on the static memory controller Chip Select 2

3. The size of the first boot loader binary. Size implications must be reviewed when using a NAND
flash device. For larger boot loaders, the use of a non-trusted image module and the bad-block
management is required.

4. The level of verification that is required. The use of the Non-Trusted Image Module allows for a
cyclic redundancy check (CRC) to be performed on the image.

5. Whether the same OEM boot module is used for both trusted and non-trusted systems. If both
trusted and non-trusted platforms are supported, use the non-trusted image module. This
selection allows one OEM boot module binary to be used on both platforms.

4.1.1 Provisioning an Unprogrammed Non-Trusted Boot Platform
Using a Device Keying Binary
Complete these steps fully to provision an unprogrammed platform using a Device Keying Binary.
Troubleshooting a secure enabled processor is more complicated because the JTAG port is disabled
by default.

1. Decide on the usage model for booting the system. See Section 8.2, “Operation Without a
Non-Trusted Image Module”.

2. Prepare a non-trusted image module binary and Device Keying Binary using the Marvell®
Wireless Trusted Platform Tool Package or a custom tool created by the OEM.

3. Prepare the non-trusted image module binary, OEM boot module, and associated operating

system images using the Marvell® Wireless Trusted Platform Tool Package or a custom tool
created by the OEM.
a) Boot the target platform and first download the non-trusted image module and associated

Device Keying Binary created in Step 2 using the download tool available in the Marvell®

Wireless Trusted Platform Tool Package or a custom tool created by the OEM.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 27

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
b) The Device Keying Binary runs on the system and must perform all of the requirements
documented in Section 4.1.1.1.

c) The non-trusted image module, OEM boot module, and associated OS images created in
Step 3 are downloaded by the Device Keying Binary using the download tool available in the
Marvell® Wireless Trusted Platform Tool Package or a custom tool created by the OEM.

d) The Device Keying Binary must have the built-in capabilities to allow debug and testing of the
non-trusted image module, OEM boot module, and associated OS images created in Step 3

4. As a last step, the non-trusted boot operation should be verified from a power-on reset.

The non-trusted boot process occurs on the platform upon every reset of an initialized platform. The
non-trusted boot processes use the information stored in the non-trusted image module to load the
images from flash memory before transferring control, if required.

4.1.1.1 Device Keying Binary Requirements for an Unprogrammed
Non-Trusted System
The Device Keying Binary is responsible for provisioning and preparing an uninitialized system for
initial boot. It must determine the flash used to boot, program the proper images to the flash, and if
the platform is a NAND platform, validate or create the relocation table. In addition, an OEM may
want to create multiple versions of the Device Keying Binary, one for use in manufacturing and one
for use in development. The development Device Keying Binary could be used to aid in platform
debugging.

Marvell provides the Marvell® Wireless Trusted Platform Tool Package as an example for OEMs.
This package contains all of the host tools and middleware required for both trusted and traditional
boot. Contact your local Marvell field application engineer for more information.

The Device Keying Binary is responsible for completing the following on non-trusted boot platforms:

Provide an interface through the UART or USB port to print messages and download binary
images.

Set up the DDR memory and all necessary flashes to store the downloaded images. At a
minimum, this would include the OEM boot module.

Create the initial bad-block table, if the flash signature in the Non-Trusted Image Module
indicates a setup for NAND.

Perform a checksum on the images against the values stored in the non-trusted image module
to validate a correct download.

4.2 Trusted Provisioning
The first step towards provisioning a trusted system is to review the usage cases in Section 9.1,
“Trusted Boot Usage Cases” and determine the requirements. When doing so, consider the
following:

1. How the flash device is programmed. Several options are available:

a) A separate software image that is downloaded over one of the available ports.
b) A system that is preprogrammed by a flash programming vendor.

2. The flash device that is used for booting the system. The options are:
a) X16 NAND device on data flash controller Chip Select 0.
b) X8 NAND device on data flash controller Chip Select 0.
c) XIP device on the static memory controller Chip Select 2.

3. The Device Keying Binary that is used. Marvell provides a sample Device Keying Binary that
performs all of the necessary tasks required to provision a trusted system. If system-level
debug is also required, modification of the Device Keying Binary may be necessary or a new
Device Keying Binary can be developed by the OEM.

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 28

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
4. If the same OEM boot module is used for both trusted and non-trusted systems. If both trusted
and non-trusted platforms are supported, use the Non-Trusted Image Module for the
non-trusted system, which allows one OEM boot module binary to be used on both
platforms.Review the requirements for the trusted OEM boot module in Chapter 9, “Trusted
Boot Operation”.

5. The tools that are used to generate the Trusted Image Module. Marvell provides a sample tool
for generating the Trusted Image Module described in Chapter 7, “Trusted Image Module”. An
OEM may also generate a separate tool.

6. How the system is debugged and how errors are diagnosed. The JTAG port on a trusted boot
processor is disabled by default, which means different strategies must be deployed for
troubleshooting. Refer to Table 1, Version 2.xx and Version 3.xx High Level Differences, on
page 15 to identify processors enabled for trusted boot support.

4.2.1 Provisioning an Unprogrammed Trusted Boot Platform
Using a Device Keying Binary
Complete the following steps to provision an unprogrammed platform using a Device Keying Binary.
On a secure enabled processor, the JTAG port is disabled by default and makes troubleshooting
more complicated.

1. Decide on the usage model for booting the system, according to those documented in
Chapter 9, “Trusted Boot Operation”.

2. Prepare a trusted image module binary and Device Keying Binary using the Marvell® Wireless
Trusted Platform Tool Package or a custom tool created by the OEM.

3. Prepare the Trusted Image Module binary, the OEM boot module, and the associated operating

system images using the Marvell® Wireless Trusted Platform Tool Package or a custom tool
created by the OEM.

4. Boot the target platform and first download the trusted image module and associated Device

Keying Binary created in Step 2 using the download tool available in the Marvell® Wireless
Trusted Platform Tool Package or a custom tool created by the OEM.

5. The Device Keying Binary runs on the system and must perform all of the requirements
documented in Section 4.2.2, “Device Keying Process”.

6. The Trusted Image Module, OEM boot module, and associated operating system images
created in Step 3 are downloaded by the Device Keying Binary using the download tool

available in the Marvell® Wireless Trusted Platform Tool Package or a custom tool created by
the OEM.

7. The Device Keying Binary must have built-in capabilities to allow debug and testing of the
Trusted Image Module, OEM boot module, and associated operating system images created in
Step 3. This capability can be accomplished by allowing JTAG re-enabling or providing debug
and test functionality over the download port.

8. As a last step, the trusted boot operation should be verified from a power-on reset.

Warning

Warning Once the fuses are programmed on the processor, they cannot be changed. Verify
correct boot operation before programming all of the fuses to avoid incorrect
configuration.

The device keying process is initiated by the Boot ROM when the platform fuses indicate the
platform is in the uninitialized state. A Device Keying Binary is used to load images into the boot
flash and set other security-related information on the processor with XScale® technology. Once the
provision is successful and the fuses are programmed, the platform becomes an initialized platform.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 29

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
The trusted boot process occurs on the platform upon every reset of an initialized platform. The
trusted boot processes use the security information stored in the trusted image module and the
security information programmed by the Device Keying Binary to integrity check the images loaded
from the flash before transferring control. If the validation process fails, the boot operation is halted.

The validation process is a series of checks on the Marvell® WTM and the images loaded into the
flash. If the Marvell® WTM is successfully initialized, the Boot ROM starts the validation process on
the images in the flash. Validation uses the RSA digital signature and the SHA-1 based digital
signature verification of the trusted image module and OEM boot module in the validation process.
Computed hashes are compared with hashes stored in the flash, which allows the Boot ROM to
detect any changes that have occurred since the last boot attempt. If an error occurs at any point in
the process, the boot process halts.

4.2.2 Device Keying Process
The device keying process occurs on an uninitialized platform, as defined by the Boot ROM fuses.
Device keying is performed during platform manufacturing, when the platform configuration fuses
can be programmed through the Marvell® WTM. The fuses can also be programmed during the
manufacturing of the processors at the Marvell factory. The OEM must use the Marvell® Wireless
Trusted Platform Tool Package to generate a trusted image module with all of the necessary security
information for the trusted boot process. Optionally, an OEM could develop custom tools to generate
the trusted image module according to Chapter 7, “Trusted Image Module”.

1. During the device keying process, the Boot ROM listens for a download request on either the
UART, differential USB, or single-ended USB port to start the download process.

2. If a request has been initiated, the Boot ROM begins by downloading a trusted image module to
a reserved location in the internal SRAM. This trusted image module should cover the Device
Keying Binary that is downloaded next.

3. After examining the load address for the Device Keying Binary from the trusted image module,
the Boot ROM downloads the Device Keying Binary to this address and the Device Keying
Binary should have been linked to execute from this location. Depending on the setting of the
secure download enable fuse, the trusted image module and the Device Keying Binary may be
integrity checked or control is transferred to the Device Keying Binary directly.

4. Once the downloaded Device Keying Binary is given control, it is responsible for completing the
requirements listed in Section 4.2.2.1, “Device Keying Binary Requirements for an
Unprogrammed System”. The OEM should have its own proprietary secure scheme
implemented in the downloaded OEM boot image. Execution of this scheme allows further
download and future security checking of the OEM’s supplementary binaries for its
OS/application/data, as well as the mobile operator’s service provisioning modules.

To allow an OEM to debug images, hooks have been provided in the Boot ROM to allow commands
to be issued. Refer to the command protocol section in Chapter 11, “Communication Protocol” for
details about the commands. The debug commands are allowed only on an uninitialized platform.
Once the platform fuses are configured, debug commands are disabled. The Device Keying Binary
must allow for the debug capabilities to be used by having an option to skip programming the fuses,
which also implies that the Device Keying Binary should have a mode where it skips the download of
images and only programs the fuses. The way this process is implemented as defined by the OEM.
One suggestion is to support additional commands through the port protocol to allow for separating
the steps of the platform provisioning.

4.2.2.1 Device Keying Binary Requirements for an Unprogrammed System
The Device Keying Binary is responsible for provisioning and preparing an uninitialized system for
initial boot. It must determine the flash that is used to boot, program the proper images to the flash,
integrity check images if required (secure download enabled), program the platform configuration
fuses, program the one-time programmable registers on NOR platforms, and if the platform is a
NAND platform, validate or create the relocation table. In addition, an OEM may want to create

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 30

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
multiple versions of the Device Keying Binary, one for use in manufacturing and one for use in
development. The development Device Keying Binary could be used to aid in debugging the
platform.

Marvell provides the Marvell® Wireless Trusted Platform Tool Package as an example for OEMs.
This package contains all of the host tools and middleware required for both trusted and traditional
boot. Contact your local Marvell field applications engineer for more information.

The Device Keying Binary is responsible for completing the following on trusted boot platforms:

Provide an interface through the UART or USB port to print messages, when run-time progress
and error reporting are needed, and download binary images.

Set up the DDR memory and all necessary flashes to store the downloaded images. At a
minimum, this includes the OEM boot module.

If the flash signature in the trusted image module indicates a setup for NAND, create the initial
bad block table.

Integrity check the images against the trusted image module.
Find a good entropy source to generate/collect a five-word random number generator (RNG)
seed and program it into flash where the Marvell® WTM save state is newly created, according
to the trusted image module.

Program the encrypted hash value of the OEM platform verification key into the flash one-time
programmable Register 0 (64-bits) and the remaining 96 bits into the lower half of Register 1
(for platforms using XIP-based flashes only).
Program the hash value of the JTAG re-enabling key, also referred to as the corrupted OEM
boot module reverification key, into the upper half of Register 1 (32 bits) and the remaining 128
bits into Register 2 and lock Registers 0, 1, and 2 respectively (for platforms using XIP-based
flashes only).

Program the OEM wrapped verification keys (24 bits for A0, 48 bits for stepping B0 and
forwards) into the Marvell® WTM fuses using the OEM_Platform_Bind_PI via an ippCP call.

Program the platform configuration fuses in the Marvell® Wireless Trusted Module.

Copyright © 2010 Marvell PUBLIC REKEASE Doc. No. MV-S301208-00 Rev. -

 Page 31

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Figure 5: Device Keying Binary Requirements Flow for an Unprogrammed System

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 32

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Figure 6: Device Keying Binary Requirements Flow for an Unprogrammed System
(cont)

A

Generate a save state for Marvell®
Wireless Trusted Platform Service

A

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 33

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
4.2.2.2 Size Restrictions for the Device Keying Binary
The size of the Device Keying Binary should be restricted, based on the available internal SRAM on
the processor. Refer to the internal SRAM usage in Section 5.7, “Internal SRAM Usage”. Marvell
suggests restricting the Device Keying Binary size to less than 64 KB, because a minimum of 128
KB of internal SRAM is used.

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
5 Boot ROM Implementation Details
The following sections detail the Boot ROM address maps.

5.1 Non-Trusted Boot Address Map
For non-trusted platforms, control is handed to the OEM boot module without security validation. For
consistency with trusted platforms, the use of an image module is supported to provide image
information in the same manner as a trusted platform. A Non-Trusted Image Module also allows for
a CRC to be performed on an image before control is transferred. See Chapter 6, “Non-Trusted
Image Module” for more details.

If a Non-Trusted Image Module is used, it must be loaded at the location shown in Table 7,
“Non-Trusted Image Module Locations". NTIM headers are only supported in version 3.xx of the
Boot ROM.

If the Non-Trusted Image Module is not used, then the binary OEM boot module image must also be
loaded at the location also shown in Table 8 “OEM Boot Module (OBM) locations when No NTIM is
used”.

For NAND platforms, if the Non-Trusted Image Module is not used, the OEM boot module image is
restricted in size. See Section 6.1.2, “Flash Information” for more details.

*NOT Managed NAND (OneNand + mDOC), only NOR/XIP Flash

Table 7: Non-Trusted Image Module Locations

Boot Device Location in the Device Runtime Location of the OEM
Boot Module

Chip Select 0 (nCS0)* Block 0 offset 0xC000 Based on NTIM

Chip Select 2 (nCS2) Block 0 Offset 0x0 Based on NTIM

NAND Device on ND_nCS0 Block 0 offset 0x0 Based on NTIM

OneNAND Block 0 offset 0x0 Based on NTIM

MDOC MSys Partition 2 offset 0x0 Based on NTIM

Table 8: OEM Boot Module (OBM) locations when No NTIM is used

Boot Device Location in the Device Runtime Location of the OEM
Boot Module

Chip Select 0 (nCS0)* Block 0 offset 0xC000 0x0000__C000

Chip Select 2 (nCS2) Block 0 Offset 0x0 0x1000_0000

NAND Device on ND_nCS0 Block 0 offset 0x8 - version 2.xx
Block 0 offset 0x0 - version 3.xx

0x5C01_4000 - version 2.xx
0x5C01_3000 - version 3.xx

OneNAND XIP Area 0x1000_0000

MDOC MSys XIP Area 0x1000_0000

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 35

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
5.1.1 Trusted Boot Address Map
Trusted platforms require the use of the trusted image module. The trusted image module must be
loaded at the locations shown in Table 9, based on the flash device used. The trusted image module
must be created using the Marvell® Wireless Trusted Platform Tool Package image building tools, or
an OEM equivalent. See Chapter 7, “Trusted Image Module,” for details on the trusted image
module format. Contact your Field Application Engineer for information on the Marvell® Wireless
Trusted Platform Tool Package.

5.1.2 NTIM/TIM Execution
The NTIM/TIM headers are used by the processor and Boot ROM to coordinate the image boot
process. Each of the binary images that are specified in the headers is loaded and executed in turn.
The last image specified has the Next Image ID marker as: 0xFFF_FFFF which informs the Boot
ROM that there are no more images to load.

The header is first loaded to 0x5C00_8000 and contains all the image details. The next image to
load is the OBM followed by the OS boot image or OEM-specific image. If any images must be
loaded into DDR memory space, then the OBM image must provide the capability of configuring all
necessary GPIOs and interface controllers such as the Dynamic Memory Controller.

If the OBM does not configure the DDR, then the Boot ROM will fail the attempt to load the OS
image and the boot process will fail. The following is an example of an NTIM header, which is typical
for a Marvell Board Support Package (BSP). This example also has a GPIO package.

Version: 0x030101

Trusted: 0

Issue Date: 0x01252006

OEM UniqueID: 0xfedcba98

Boot Flash Signature: 0x4e414e04

Number of Images: 3

Size of Reserved in bytes: 0

Image ID: 0x54494D48

Next Image ID: 0x4F424D49

Flash Entry Address: 0x0

Load Address: 0x5c008000

Image Size To CRC in bytes: 0xff

Image Filename: NTIM_LV.bin

Table 9: Trusted Image Module Locations for Trusted Boot

Boot Device Location in the Device Runtime Locat ion

Chip Select 0 (nCS0) Block 0 offset 0xC000 Based on TIM

Chip Select 2 (nCS2) Block 0 Offset 0x0 Based on TIM

NAND Device on ND_nCS0 Block 0 offset 0x0 Based on TIM

OneNAND Block 0 offset 0x0 Based on TIM

MDOC MSys Partition 2 offset 0x0 Based on TIM

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 36

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Image ID: 0x4F424D49

Next Image ID: 0x4F534c4F

Flash Entry Address: 0x20000

Load Address: 0x5c013000

Image Size To CRC in bytes: 0

Image Filename: MHLV_wince_NTOBM.bin

Image ID: 0x4F534c4F

Next Image ID: 0xFFFFFFFF

Flash Entry Address: 0x40000

Load Address: 0x83C00000

Image Size To CRC in bytes: 0

Image Filename: eboot.nb0

Reserved Data:

0x4F505448 // Package structure identifier

0x00000002 // number of packages, note must include termination package

0x4750494f // GPIO package

0x00000024 // package size

0x00000003 // number of pairs

0x40e104d0 // MFPR reg address

0x00000840 // data

0x40e00014 // GPDR2 reg address

0x00001000 // set GPIO 76 as output

0x40e00020 // GPSR2 reg address

0x00001000 // set GPIO 76 high

0x5465726D // Termination package

0x00000008

5.1.3 Requirements for the Wireless Trusted Module Save State
The Marvell® Wireless Trusted Module (Marvell® WTM) save state is implemented with a slot-based
mechanism to provide wear leveling on the flash device. Figure 7 shows the layout for the Marvell®
WTM save state implementation. Two blocks of flash are currently allocated for the Marvell® WTM
save state: a primary Marvell® WTM save state, and a backup Marvell® WTM save state. The
location of the Marvell® WTM state files is part of the information located in the trusted image
module and covered by the digital signature to prevent attacks on the system.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 37

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
5.1.4 Specific Requirements for NAND Platforms
A NAND platform requires support for bad-block management, as well as error detection and
correction. ECC_EN and SPARE_EN are enabled when programming NAND blocks using the NAND
Flash Controller. The Boot ROM makes use of the Marvell bad-block management scheme if the
bad-block table is present. If the Marvell bad-block table is not present, the OEM boot module is
limited in size as defined in Table 10.

The trusted size allows for the trusted image module size to be a maximum of 4 KB. If the image
module is also used for a non-trusted platform, one page is reserved for the image module.

If the Marvell bad-block scheme is implemented and the image module or trusted image module is
implemented, the OEM boot module size restriction does not exist and the OEM boot module can be
any size. The size of the OEM boot module is determined from the image module or trusted image
module as well as the starting location. The OEM boot module likely consumes contiguous blocks in
the NAND device, (Blocks 1 through 3, for example). The image cannot be broken into
non-contiguous blocks unless a block is relocated through the bad-block table. Refer to Section 3
"Software Requirements" for more details on NAND bad-block management.

Figure 7: Coprocessor Trusted Module Save State Implementation

Table 10: OEM Boot Module Sizes Without Marvell Bad Block Management

Platform Configurat ion Small Block NAND Large Block NAND

Non-Trusted Block 0 – 1 page (15.5 KB) Block 0 -1 page (127 KB)

Non-Trusted Block 0 – image module - 1 page
(approximately 15 KB)

Block 0 – image module -1 page
(approximately 126 KB)

Trusted Block 0 – Trusted Image Module size
– 1 page (11.5 KB)

Block 0 – Trusted Image Module size
– 1 page (123 KB)

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 38

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Note

Note The Marvell bad-block scheme is code used for NAND bad-block management. This
code is available as example code in the OBM source files. Contact your local FAE for
BSP availability.

5.2 Boot ROM NAND Device Support
The Boot ROM for the PXA3xx Processor Family and Tavor Processor supports many different SLC
NAND devices such as:

Large Block NAND x8 and x16

Small Block NAND x16

5.2.1 Boot ROM NAND Device Recognition
An algorithm has been implemented to enable booting from different types of NAND devices. The
algorithm works as follows:

1. Boot ROM issues the reset command 0xFF

Note

Note This reset command is required as part of the ONFI specification. NAND devices that
require the reset command are only supported natively by V3.32 Boot ROM and later.
See Table 1, Version 2.xx and Version 3.xx High Level Differences, on page 15 for
overview of processors that support this feature.

2. The Boot ROM issues a read_id command to the device retrieving two bytes of data.
3. The two bytes (manufacturer ID and device ID) are compared against the small block codes in

Table 11. All Boot ROM versions support these devices.

• If the device is a small block device then the Boot ROM configures the NAND controller for
small block operation with a 512-Byte page size and 16 KB block size.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 39

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Table 11: Small Block Devices

4. For unknown small-block devices, the Boot ROM issues another read_id retrieving the 4th byte
of data from the device.

• The Boot ROM uses the information returned in the 4th byte to determine the page and block
size of the NAND device. Bits 1 and 0 for the page size and bits 5 and 4 for the block size.
Refer to Table 5, Version 3.xx OBM usage, on page 19.

• The Boot ROM does NOT use the manufacturer and device codes for Large Block NAND
configuration. The NFC is configured for large block based on the device parameters.

• The NFC has a limit of 2048Byte page size.

5. The Boot ROM then configures the command set for the appropriate NAND device (based on
the above steps) and continues with normal read operation.

Note

Note This was originally documented as the Boot ROM expecting 0x15 for x8 large block
NAND and 0x55 for x16 large block NAND devices. Although the entire 4th byte is read
from the NAND device, the Boot ROM uses only bits 0, 1, 4, and 5, not the entire byte
(all 8 bits) to configure the appropriate memory device.

Manufacturer
Manufacturer

Code Device Codes

Samsung 0xEC

0x71, 0x78, 0x79, 0x72, 0x74,
0x36, 0x76, 0x46, 0x56, 0x35,
0x75, 0x45, 0x55, 0x33, 0x73,
0x43, 0x53, 0x39, 0xE6, 0x49,
0x59

Toshiba 0x98
0x46, 0x79, 0x75, 0x73, 0x72,
0xE6

Hynix 0xAD
0x76, 0x56, 0x36, 0x46, 0x75,
0x55, 0x35, 0x45,
0x73, 0x53, 0x49

ST Micro 0x20

0x73, 0x35, 0x75, 0x45,
0x55, 0x76, 0x36, 0x46,
0x56, 0x79, 0x39, 0x49,
0x59

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 40

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

The NAND Flash Controller (NFC) is set up for the appropriate NAND configuration as noted in
Table 12, “NAND Flash Controller Initial Register Settings". NDCR[DWIDTH_C] and
NDCR[DWIDTH_M] are configured by the Boot ROM depending on the boot configuration SKU of
the processor.

Note

Note Some NAND devices power up with the blocks in a locked state. To ensure the blocks
can be unlocked with software, refer to the NFC chapter of the PXA3xx Processor
Family Vol. II: Memory Controller Configuration Developers Manual.

5.3 XIP Flash Support
The processor Boot ROM supports NOR Flash memory on the data flash interface (DFI) bus. Flash
is supported via a command set, not through a particular JEDEC ID. See Table 14 for supported
commands.

Figure 8: Electronic Signature Requirements

Electronic Signature Requirements
Block Size
Decoded

Page Size
Decoder

IO7 IO6 IO5 IO4 IO3 IO2 IO1 IO0
0 0 64K 0 0 Not Supported
0 1 128K 0 1 2K
1 0 Not Supported 1 0 Not Supported
1 1 Not Supported 1 1 Not Supported

Page SizeBlock Size

Table 12: NAND Flash Controller Initial Register Settings

Register Value for Small Block
Operat ion

Value for Large Block
Operat ion

NDCR[DWIDTH_C] and
NDCR[DWIDTH_M] (bits27:26) initial
settings are determined by the boot
state fuses

0xCC02_1FFF 0xCD04_1FFF

Timing register 0 0x003F_3F3F 0x003F_3F3F

Timing register 1 0x1FF0_C0FF 0x1FF0_C0FF

Table 13: NAND Command Set

Command Small Block Command Code Large Block Command Code

Read 0x0000_ 0x3000

Read Status 0x0070 0x0070

Read ID 0x0090 0x0090

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 41

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Any device is supported provided that the device is compliant with the commands as described in
Table 14.

The processor can natively support AA/D muxed memories. Other memories may be connected and
booted from but external latches are required. Refer to the PXA3xx Processor Family Developers
Manual for more details on the AA/D muxed bus.

NOR like NAND devices such as M-Systems mDOC and Samsung One NAND are also supported
via the DFI bus. Later versions of Boot ROM have integrated the driver to these managed NAND
devices while other versions of Boot ROM supports these devices using the XIP area. Refer to
Chapter 5, “OneNAND Support” and Chapter 5, “mDOC Support” for more details.

5.3.1 NOR Flash One-Time Programmable Register Usage
The NOR Flash memories have one time programmable (OTP) register bits that may be used with
the PXA3xx processor.

The OEM public key hash that protects the OEM boot module is stored in one-time programmable
Registers 0 and 1. The JTAG key hash is stored in Registers 1 and 2. There are 16 registers in the
one-time programmable section, each is 128 bits. Register 0 comes with a flash ID preprogrammed
in the bottom 64 bits; the upper 64 bits are available for general usage.

The 64 bits of the OEM public key hash must be stored in the upper half of Register 0, with the
remaining 96 bits in Register 1.

The 32 bits of the OEM JTAG key hash must be stored in the upper half of Register 1, with the
remaining 128 bits in Register 2. Registers 0, 1, and 2 must be locked after they are programmed.

5.4 Managed NAND Memory Support
When the Boot ROM is defined to have support for OneNAND and mDOC memory devices (refer to
Table 1, Version 2.xx and Version 3.xx High Level Differences, on page 15), this basically means

Table 14: Flash Commands Supported by the Boot ROM

Flash Command Name Flash Command Data Flash Type

Read Array 0xFF Intel StrataFlash® Wireless Memory
(XIPA), Intel StrataFlash® Cellular
Memory (M18) (XIPB)

Read Device Identifier 0x90 Intel StrataFlash® Wireless Memory
(XIPA), Intel StrataFlash® Cellular
Memory (M18) (XIPB)

Clear Status Register 0x50 Intel StrataFlash® Wireless Memory
(XIPA), Intel StrataFlash® Cellular
Memory (M18) (XIPB)

Word Program 0x40 Intel StrataFlash® Wireless Memory
(XIPA)

Word Program
(Intel StrataFlash® Cellular Memory
(M18))

0x41 Intel StrataFlash® Cellular Memory
(M18) (XIPB)

Unlock Block 0x60/0xD0 Intel StrataFlash® Wireless Memory
(XIPA), Intel StrataFlash® Cellular
Memory (M18) (XIPB)

NOTE: The command set supported by the Boot ROM is not specific to Intel StrataFlash®. Any NOR flash device is
supported if that device supports the same command sets as described in this table.

NOTE: XIPA and XIPB are used for reference in other Boot ROM chapters.

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 42

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
that the Boot ROM has knowledge of the memory system. There are specific requirements for
accessing these memories and also the location of certain boot images.

The Boot ROM can program the static memory controller and can directly access the correct
memory locations to execute the OBM images and NTIM/TIM headers.

Any Boot ROM that does not natively support mDOC and OneNAND can still use these memories;
however, the XIP areas of these devices are the only memory locations that the Boot ROM
accesses.

Even though the Boot ROM may have integrated drivers for these memories, it does not replace the
necessity for OS-level flash drivers. These drivers must be implemented in the OS.

The following two sections discuss some detail regarding support of OneNAND and mDOC.

The appropriate BootFlashSign definition must be used to define what memory is to be booted from.
These definitions are defined in Table 37, BootFlashSign Definitions, on page 65 for non-trusted
boot and Section 5.4, “Managed NAND Memory Support” on page 42 for trusted boot.

5.5 OneNAND Support
The Samsung OneNAND memory is interfaced to the processor using the DFI bus with nCS2 as the
boot chip select.

The location of the NTIM or TIM header is address 0x0, which applies to Boot ROM versions 3.32
and later. This address should be specified in the header itself and the header binary must reside at
this location. The OBM location is also defined in the header and must be loaded at that location.

Note

Note When connecting the OneNAND memory to a processor with a Boot ROM version 3.27
or earlier, the NTIM/TIM must be loaded to the XIP area at address 0x1000_0000. The
OBM image also resides in the XIP space and must contain a OneNAND driver. The
Boot ROM cannot directly access the OneNAND memory until the driver has been
loaded from the OBM boot code.

Table 1, Version 2.xx and Version 3.xx High Level Differences, on page 15 states which version of
Boot ROM natively supports this memory device.

Table 8, OEM Boot Module (OBM) locations when No NTIM is used, on page 35 states which
version of Boot ROM natively supports this memory device; therefore, this list is only applicable to
those processors. This list specifies the device IDs and accompanying stepping generation codes
that are supported natively by those processors/Boot ROMs.

Not only must the Manufacturing ID of 0xEC be read for these versions of Boot ROM, but also the
Device and Generation IDs must be matched with the details in Table 10.

For all subsequent Boot ROM versions, only the Manufacturer ID of 0xEC must be read. The Boot
ROM then reads the Device and Generation IDs to calculate the density of the OneNAND without
having them predefined as with previous generations.

To summarize the requirements:

Boot ROM versions 3.32 only work with the devices listed in Table 10
All subsequent Boot ROM versions 3.33 and future require only the Manufacturer ID of 0xEC.
This is a mandatory requirement due to accessing the OneNAND register definitions and layout.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 43

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Note

Note Version 3.xx Boot ROMs have the backwards compatibility mode where the header is
optional; however, if using OneNAND in the system, a header (NTIM or TIM) MUST be
implemented (applicable to all versions of Boot ROM).

5.5.1 Exiting Low Power Mode and Resets with OneNAND
Resuming from low power modes and reset exits are different depending on whether the Boot ROM
has the integrated driver. For example, the PXA320 B2 does not have the integrated driver for
OneNAND memory. The Boot ROM can access only the XIP area. The PXA310 A2 does have the
driver embedded so the Boot ROM enables direct accesses to the OneNAND memory device at
boot time, reset, and low-power mode exits as described in Table 9, Trusted Image Module
Locations for Trusted Boot, on page 36.

Table 15: OneNAND Device ID Support

Processor
Stepping and
Boot ROM
Version

Samsung OneNAND Device Information

Device ID Generat ion ID Descript ion

All Devices;
PXA302 &
PXA312 (PoP)
Tavor B0.b
Version 3.32

PXA31x A2
Version 3.33

0x30 0 1G Mux

0x31 0 1G Mux

0x30 1 1G Mux A-die

0x31 1 1G Mux A-die

0x20 0 512M Mux

0x21 0 512M Mux

0x20 2 512M Mux B-die

0x21 2 512M Mux B-die

0x38 0 1G DDP Mux

0x39 0 1G DDP Mux

0x48 0 2G DDP Mux

0x49 0 2G DDP Mux

0x10 0 256M Mux

0x10 1 256M Mux

0x11 0 256M Mux

0x11 1 256M Mux

0x00 0 128M Mux

0x01 0 128M Mux

0x40 0 2G Mux M-die

0x41 0 2G Mux M-die

PXA31x A2
Version 3.33

0x58 0 4G Mux M-die

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 44

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
5.6 mDOC Support
The Sandisk mDOC memory is interfaced to the processor using the DFI bus with nCS2 as the boot
chip select, much the same as OneNAND.

Table 1, Version 2.xx and Version 3.xx High Level Differences, on page 15 states which version of
Boot ROM natively supports this memory device.

The mDOC device acts as a NAND disk; however, no file system is mounted during the processor
boot operation. Instead, the mDOC driver code resident in the processor Boot ROM allows accesses
to the mDOC device via formatted partitions and sector offsets within the partitions.

The TIM/NTIM must reside in Partition 2, Sector Offset 0. Any other images (OBM) must reside in
Partition 2 or greater (applicable to Boot ROM versions 3.32 and later).

Note

Note When connecting the mDOC memory to a processor with a Boot ROM version 3.27 or
earlier, the NTIM/TIM must be loaded to the XIP area at address 0x1000_0000. The
OBM image also resides in the XIP space and must contain an mDOC driver. The Boot
ROM cannot directly access the mDOC memory until the driver has been loaded from
the OBM boot code.

Partition 1 is an OTP partition that stores keys for trusted boot operations, but otherwise is not
usable. mDOC sectors are 512 bytes.

The 32-bit flash address for mDOC images are calculated as follows:

Here are examples of how to calculate Flash positions within the mDOC device for use with input
files for the TBB tool:

 mDOC address

 NTIM (must be in Partition 2, Sector Offset 0) = 0x2

 OBM in Partition 5 starting at Sector Offset 32 = 0x205

 OBM in Partition 3 starting at Sector Offset 506 = 0x1FA3

Note

Note Version 3.xx Boot ROMs have the backwards compatibility mode where the header is
optional; however, if using mDOC in the system, a header (NTIM or TIM) MUST be
implemented (applies to ALL versions of Boot ROM).

5.6.1 Exiting Low Power Mode and Resets with mDOC
Resuming from low power modes and reset exits are different depending on whether the Boot ROM
has the integrated driver. For example, the PXA320 B2 does not have the integrated driver for
mDOC memory. The Boot ROM can access only the XIP area. The PXA310 A2 does have the driver
embedded so the Boot ROM enables direct accesses to the mDOC memory device at boot time,
reset and low power mode exits as described in Table 9, Trusted Image Module Locations for
Trusted Boot, on page 36.

28 bit sector offset 4 bit partition #

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 45

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
5.7 Internal SRAM Usage
The internal SRAM is used as a data area and to download images from the download ports or the
NAND flash. The internal SRAM starts at 0x5c00_0000 and the end is implementation defined (up
to 768KBytes max for PXA32x).

By default, the lower 32KB of internal SRAM is locked by the Wireless Trusted Module (WTM). The
Boot ROM unlocks 31KB of SRAM from 0x5c00_0400 to 0x5c00_8000 and uses the space to set up
stack usage.

Note

Note Software must NOT disable the D0CKEN_B[17] bit prior to entering low power modes.
Although this bit allows software to enable and disable the Mini-LCD clock, this clock is
also used internally during this sequence. Refer to the PXA3xx Processor Family
Developers Manual for details on clock gating.

The Boot ROM uses 44 KB (ver 3.xx) or 48 KB (ver 2.xx) above the 32KB for the data area. All
image downloads are to the addresses, depending on the version of Boot ROM. Refer to Table 3,
“Version 3.xx ISRAM Usage" and Table 4, “Version 2.xx OBM Usage" for details.

5.8 Handling Power Mode and Reset Transitions
The Boot ROM manages the task of booting up the system which is not only at power-on-reset but
also reset exits. There are differences that must be managed, depending on the mode or reset state
that is being entered or exited and the version of Boot ROM. This section establishes those
differences so that implementation into a system design is better understood for both hardware and
software perspectives.

The Boot ROM performs the basic checks to determine the last reset exit or power mode exit.

The OBM image must be able to successfully transition the processor through the entire low power
or reset, entry, and exit sequence.

Any exit from the various resets or low power mode exits, including booting the processor, requires
steps that must be followed. These requirements are documented in more detail in the processor-
specific developer manuals. Marvell recommends that these chapters be consulted to ensure proper
system reset procedures and low power modes resumes.

The Boot ROM follows basic tasks as described in Table 15, OneNAND Device ID Support, on
page 44.

Table 16: Overview of Resets and Power Modes

Power Mode or
Reset Exit

V2.xx Boot ROM V3.xx Boot ROM

POR (power on
reset), Hardware
and Watchdog reset
NAND boot

1) ARSR[HWR] and [WDG] is read to ensure that POR/HWR
reset has occurred. NOTE: This step only occurs for the
PXA32x and PXA30x A1

2) Boot ROM checks boot state fuses to see if NAND or NOR
boot
3) Full Boot process. ReadID issued from NFC to NAND device.
OBM in Block 0 copied to iSRAM.

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 46

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
POR (power on
reset), Hardware
and Watchdog reset
NOR/XIP boot and
OneNAND and
mDOC

1) Boot ROM checks boot state fuses to see if NAND or NOR
boot
2) Full Boot process. Control is transferred to external XIP Flash
on nCS2 address 0x1000_0000.

GPIO Reset - NAND
boot

1) ARSR[GPR] is read to ensure GPIO reset occurred. NOTE:
This step occurs only for the PXA32x and PXA30x A1

2) Boot ROM checks boot
state fuses to see if NAND or
NOR boot
3) PSPR must contain the
location of OBM
(0x5C01_4000)
NOTE: If PSPR does not

contain OBM address
the system does not
boot

2) Boot ROM checks boot
state fuses to see if NAND or
NOR boot
3) Full Boot process. ReadID
issued from NFC to NAND
device. OBM in Block 0
copied to iSRAM.

GPIO Reset -
NOR/XIP boot and
OneNAND and
mDOC

1) Boot ROM checks boot state fuses to see if NAND or NOR
boot
2) Code resume to 0x1000_0000 nCS2 XIP NOR Flash

S2/D3/C4 - NAND
boot

1) ASCR[D3S] is read to ensure D3 mode exit has occurred.
NOTE: This step occurs only for the PXA32x and PXA30x A1

2) PSPR must contain the
location of OBM
(0x5C01_4000)
NOTE: If PSPR does not

contain OBM address
the system does not
boot

2) AD3R[AD3_R0] register is
checked to determine if the
iSRAM retains state in
S2/D3/C4
3) Boot ROM reads struct() at
0x5C00_8000

NOTE: Refer to Section 5.8.2 for more details

S2/D3/C4 -
NOR/XIP boot and
OneNAND and
mDOC

1) Code resume to 0x1000_0000 nCS2 XIP NOR Flash

After S2/D3/C4 exit ONLY; the MFPR[SLEEP_SEL] & ASCR[RDH] are cleared by Boot
ROM

S3/D4/C4 - NAND
boot

1) ARSR[LPMR] is read to ensure D4 mode has occurred.
NOTE: This step occurs only for the PXA32x and PXA30x A1

2) Boot ROM checks boot state fuses to see if NAND or NOR
boot
3) Full Boot process. ReadID issued from NFC to NAND device.
OBM in Block 0 copied to iSRAM.

Table 16: Overview of Resets and Power Modes (Continued)

Power Mode or
Reset Exit

V2.xx Boot ROM V3.xx Boot ROM

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 47

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
5.8.1 Platform Boot Process for Watchdog Reset, Power on
Reset, Low Power Exit, and GPIO Reset
The power events for watchdog reset, power-on reset, and hardware reset are all handled the same
way in the Boot ROM. A full boot is performed; however, a GPIO reset is a special case and the V2
and V3 Boot ROM address this reset differently.

See Table 9, Trusted Image Module Locations for Trusted Boot, on page 36 for details.

5.8.2 S2/D3/C4 Resume Requirements
The resume-from-sleep (S2/D3/C4) process is handled by the Boot ROM differently than other
low-power events.

Several requirements need to be implemented to successfully resume a platform from S2/D3/C4
mode. Refer to the appropriate sections of this document, as well as the processor-specific
development manuals to verify proper resume procedures. At a minimum:

Verify any required step for S2/D3/C4 resume as described in the processor documentation.

Review the settings of the ball functions in Section 5.9, “Boot ROM: Processor-Specific
Configurations” and make any necessary changes before entering the sleep state to allow for a
successful resume.
Refer to the specific processor reference manuals to ensure that DDR memory, internal SRAM,
and all clocks are handled correctly during S2/D3/C4 and resume.

Refer to the Clocks Controller and Power Management chapter in the PXA3xx Family Processor
Vol. I: System and Timer Configuration Developers Manual for specific details for PXA3xx processor.

5.8.2.1 S2/D3/C4 with NAND Boot Version 2.xx Boot ROM
Version 2.xx NAND boot platforms resume only from S2/D3/C4 mode to ISRAM.

NAND platforms must prepare the platform for a successful resume process. Software must write
the resume address to the PMU Scratch pad register (PSPR) before entering S2/D3/C4 mode. The
address written to the PSPR must be the starting address of the OBM boot code in the ISRAM
(0x5C01_4000). This code must successfully resume the platform from S2/D3/C4. Upon S2/D3/C4
exit, the Boot ROM reads the address stored in the PSPR and transfers control of the platform to this
address.

The following requirements must be implemented in software to successfully resume from
S2/D3/C4.

S3/D4/C4 -
NOR/XIP boot and
OneNAND and
mDOC

1) Boot ROM checks boot state fuses to see if NAND or NOR
boot
2) Full Boot process. Control is transferred to external XIP Flash
on nCS2 address 0x1000_0000

NOTE: The GPIOs and register configurations as described in Section 5.9 are reloaded
depending on the boot type for all the events listed in this table EXCEPT for
S2/D3/C4 exit

NOTE: OneNAND and mDOC power mode and reset exits differ between Boot ROM
versions. Chapter 5, “Boot ROM Implementation Details,” and Section 5
"Managed NAND Memory Support" .

Table 16: Overview of Resets and Power Modes (Continued)

Power Mode or
Reset Exit

V2.xx Boot ROM V3.xx Boot ROM

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 48

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Prior to entry into S2/D3/C4:
1. Copy the OBM from block 0 of the NAND Flash to ISRAM at 0x5C01_4000

2. Store the address 0x5C01_4000 into the PSPR register
3. Configure the internal SRAM to retain state during S2 mode using AD3R[AD3_R0]

4. Enter S2/D3/D4 mode

Resuming from S2/D3/C4:

The OBM code must implement all necessary requirements for resuming the system as described in
the processor specific development manuals.

5.8.2.2 S2/D3/C4 with NAND Boot Version 3.xx
Version 3.xx NAND boot platforms may resume to either ISRAM or load the OBM from
NAND Block 0. Refer to Section 6, “Non-Trusted Image Module” and Section 7, “Trusted Image
Module” for details on how to configure Resume packages.

5.8.2.3 S2/D3/C4 iSRAM resuming
The Boot ROM resumes from S2/D3/C4 mode and immediately reads iSRAM address
0x5C00_8000 for a structure. AD3R[AD3_R0] must be set to ensure state retention during S2 mode.

The structure is defined as follows:

struct{
Intversion;
Intidentifier;
Intstarting address;
Intsize;
}

Where:

Version – Hex version number with the format 0xaabb

• aa – Major number

• bb – Minor number

For example, 0x112 for version 1.12

Identifier – String “slpr”

Starting address – Starting internal SRAM address of the resume code

Size – Size of the resume code

The following requirements must be implemented in software to successfully resume from
S2/D3/C4.

Prior to entry into S2/D3/C4:

1. Copy the resume struct() to ISRAM at 0x5C00_8000
2. Configure the internal SRAM to retain state during S2 mode using AD3R[AD3_R0]

3. Enter S2/D3/D4 mode

Resuming from S2/D3/C4:

The OBM code must implement all necessary requirements for resuming the system as described in
the processor-specific developers manual.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 49

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Note

Note If the Boot ROM fails to find the sleep-resume structure, then the OBM code from
NAND Block 0 is copied back into iSRAM at address 0x5C01_3000.

Using the sleep struct() to manage the resume process eliminates the Boot ROM from reloading the
OBM code from NAND Block 0 thus providing a shorter exit latency. As noted above, if the struct() is
not found, then the resume period is extended by the time necessary to reload OBM.

5.9 Boot ROM: Processor-Specific Configurations
The following tables provide implementation settings for the PXA3xx Processor Family and Tavor
processor.

Note

Note The Boot ROM configures the USB and UART ports as defined in this section. If
another UART port is required, then the default port must be unconfigured. This
unconfiguration can be managed using predefined packages in the NTIM/TIM header.
Refer to Section 6.3, “Predefined Packages for Reserved Area”. Both ports (USB and
FFUART) cannot be disabled.

PXA32x Boot ROM Register configurations:

Table 17, “PXA32x Processor Implementation Settings"
Table 18, “Chip Select 2 Setup"
Table 19, “Additional PXA32x Processor Ball Values Set for NAND Platforms Only"

Table 20, “FFUART Pins"

Table 21, “USB Single Ended Pins"
Table 22, “During Sleep (S3/D3/C4 mode) Resume"

PXA31x Boot ROM Register configurations:

Table 23, “PXA31x Processor Implementation Settings"

Table 24, “Additional PXA31x Processor Ball Values Set for NAND Platforms Only"
Table 25, “USB Port ULPI Pins"
Table 26, “FFUART Pins"

PXA30x Boot ROM Register configurations:

Table 27, “PXA30x Processor Implementation Settings"
Table 28, “Chip Select 2 Setup"
Table 29, “Additional PXA30x Processor Ball Values Set for NAND Platforms Only"

Table 30, “FFUART Pins"

Tavor Boot ROM Register configurations:

Table 32, “Tavor Processor Register Settings"
Table 33, “Additional Tavor Processor Ball Values Set for NAND Platforms Only"
Table 34, “FFUART Pins (Primary Location)"

Table 35, “FFUART Pins (Secondary Location)"

Table 36, “USB 2.0 Pins"

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 50

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 51

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
5.9.1 PXA32x Processor Register Settings

Table 17: PXA32x Processor Implementation Settings

Ball Name Address Value

GPIO2 0x40E1_012C 0x0000_0001

GPIO3 0x40E1_0130 0x0000_0001

GPIO4 0x40E1_0134 0x0000_0001

nXCVREN 0x40E1_0138 0x0000_1900

nBE0 0x40E1_0214 0x0000_1800

nBE1 0x40E1_0218 0x0000_1800

nLUA 0x40E1_0234 0x0000_1900

nLLA 0x40E1_0238 0x0000_1900

DF_ADDR0 0x40E1_023C 0x0000_1800

DF_ADDR1 0x40E1_0240 0x0000_1800

DF_ADDR2 0x40E1_0244 0x0000_1800

DF_ADDR3 0x40E1_0248 0x0000_1800

DF_CLE_NOE 0x40E1_0204 0x0000_1800

DF_ALE_nWE1 0x40E1_0208 0x0000_1801

DF_IO0 0x40E1_024C 0x0000_1401

DF_IO1 0x40E1_0254 0x0000_1401

DF_IO2 0x40E1_025C 0x0000_1401

DF_IO3 0x40E1_0264 0x0000_1401

DF_IO4 0x40E1_026C 0x0000_1401

DF_IO5 0x40E1_0274 0x0000_1401

DF_IO6 0x40E1_027C 0x0000_1401

DF_IO7 0x40E1_0284 0x0000_1401

DF_IO8 0x40E1_0250 0x0000_1401

DF_IO9 0x40E1_0258 0x0000_1401

DF_IO10 0x40E1_0260 0x0000_1401

DF_IO11 0x40E1_0268 0x0000_1401

DF_IO12 0x40E1_0270 0x0000_1401

DF_IO13 0x40E1_0278 0x0000_1401

DF_IO14 0x40E1_0280 0x0000_1401

DF_IO15 0x40E1_0288 0x0000_1401

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 52

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
The ball values in Table 19 are in addition to the ball values in Table 17 and are only configured if the
processor is configured for NAND boot support.

Values in Table 20 are used for configuring the UART port for image download over UART.

Values in Table 21 are used for configuring the USB Client single-ended port for image download
over USB.

Table 18: Chip Select 2 Setup

Register Address Value Function

SMEMC CSADRCFG2 0x4A00_0088 0x0032_0919 ––

SMEMC MSC1 0x4A00_000C Bits [15:0] = 0x7FF8
All others = Default

––

Table 19: Additional PXA32x Processor Ball Values Set for NAND Platforms Only

Ball Name Address Value

DF_ALE_nWE2 0x40E1_021C [31:3] = Default; [2:0] = 1

DF_nCS0 0x40E1_0224 [31:3] = Default; [2:0] = 1

DF_nCS1 0x40E1_0228 [31:3] = Default; [2:0] = 1

DF_nWE 0x40E1_022C [31:3] = Default; [2:0] = 1

DF_nRE 0x40E1_0230 [31:3] = Default; [2:0] = 1

Table 20: FFUART Pins

Ball Name Address Value Function

GPIO41 0x40E1_0438 0x0000_1042 FFRXD

GPIO42 0x40E1_043C 0x0000_1042 FFTXD

GPIO43 0x40E1_0440 0x0000_1042 FFCTS

GPIO44 0x40E1_0444 0x0000_1042 FFDCD

GPIO45 0x40E1_0448 0x0000_1042 FFDSR

GPIO46 0x40E1_044C 0x0000_1042 FFRI

GPIO47 0x40E1_0450 0x0000_1042 FFDTR

GPIO48 0x40E1_0454 0x0000_1042 FFRTS

Table 21: USB Single Ended Pins

Ball Name Address Value Function

GPIO97 0x40E1_054C 0x0000_1402 nOE2

GPIO98 0x40E1_0550 0x0000_1402 VPO2

GPIO99 0x40E1_0600 0x0000_1402 RCV2

GPIO100 0x40E1_0604 0x0000_1402 VMO2

GPIO102 0x40E1_060C 0x0000_1402 VM2

GPIO103 0x40E1_0610 0x0000_1402 VP2

GPIO104 0x40E1_0614 0x0000_1402 SPEED

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 53

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
5.9.2 Other Registers

5.10 PXA31x Processor Register Settings
Table 23 and Table 24 provide implementation settings for the PXA31x processor.

Table 22: During Sleep (S3/D3/C4 mode) Resume

Ball Name Address Value Function

D0CKEN_A 0x4134_000C 0xC078_0F10 ––

D0CKEN_B 0x4134_0010 0x0000_00C0 ––

Table 23: PXA31x Processor Implementation Settings

Ball Name Address Value

GPIO0 0x40E1_00B4 0x0000_1401

GPIO1 0x40E1_00B8 0x0000_1501

GPIO2 0x40E1_00BC 0x0000_1501

nBE0 0x40E1_0204 0x0000_1400

nBE1 0x40E1_0208 0x0000_1400

nLUA 0x40E1_0244 0x0000_1500

nLLA 0x40E1_0254 0x0000_1500

DF_ADDR0 0x40E1_0210 0x0000_1400

DF_ADDR1 0x40E1_0214 0x0000_1400

DF_ADDR2 0x40E1_0218 0x0000_1400

DF_ADDR3 0x40E1_021C 0x0000_1400

DF_CLE_NOE 0x40E1_0240 0x0000_1500

DF_ALE_nWE 0x40E1_020C 0x0000_1501

DF_IO0 0x40E1_0220 0x0000_1801

DF_IO1 0x40E1_0228 0x0000_1801

DF_IO2 0x40E1_0230 0x0000_1801

DF_IO3 0x40E1_0238 0x0000_1801

DF_IO4 0x40E1_0258 0x0000_1801

DF_IO5 0x40E1_0260 0x0000_1801

DF_IO6 0x40E1_0268 0x0000_1801

DF_IO7 0x40E1_0270 0x0000_1801

DF_IO8 0x40E1_0224 0x0000_1801

DF_IO9 0x40E1_022C 0x0000_1801

DF_IO10 0x40E1_0234 0x0000_1801

DF_IO11 0x40E1_023C 0x0000_1801

DF_IO12 0x40E1_025C 0x0000_1801

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 54

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
The configurations in Table 24 are in addition to those in Table 24 and are only configured if the
processor is configured for NAND boot support.

The values in Table 25 are used for configuring the USB 2.0 Client ULPI port for image download
over USB.

Values in Table 26 are used for configuring the UART port for image download over UART.

DF_IO13 0x40E1_0264 0x0000_1801

DF_IO14 0x40E1_026C 0x0000_1801

DF_IO15 0x40E1_0274 0x0000_1801

Table 23: PXA31x Processor Implementation Settings (Continued)

Bal l Name Address Value

Table 24: Additional PXA31x Processor Ball Values Set for NAND Platforms Only

Ball Name Address Value

DF_nCS0 0x40E1_0248 [31:3] = Default; [2:0] = 1

DF_nCS1 0x40E1_0278 [31:3] = Default; [2:0] = 1

DF_nWE 0x40E1_00CC [31:3] = Default; [2:0] = 1

DF_nRE 0x40E1_0200 [31:3] = Default; [2:0] = 1

Ball_DF_INT_RnB 0x40E1_00C8 0x0000_1500

Table 25: USB Port ULPI Pins

Ball Name Address Value Function

GPIO30 0x40E1_0418 0x0000_55C3 ULPI Data 0

GPIO31 0x40E1_041C 0x0000_55C3 ULPI Data 1

GPIO32 0x40E1_0420 0x0000_55C3 ULPI Data 2

GPIO33 0x40E1_0424 0x0000_55C3 ULPI Data 3

GPIO34 0x40E1_0428 0x0000_55C3 ULPI Data 4

GPIO35 0x40E1_042C 0x0000_55C3 ULPI Data 5

GPIO36 0x40E1_0430 0x0000_55C3 ULPI Data 6

GPIO37 0x40E1_0434 0x0000_55C3 ULPI Data 7

GPIO38 0x40E1_0438 0x0000_55C1 ULPI Clk

Table 26: FFUART Pins

Ball Name Address Value Function

GPIO99 0x40E1_0600 [31:1] = Default;
[0] = 0b1

FFRXD

GPIO100 0x40E1_0604 31:1] = Default;
[0] = 0b1

FFTXD

GPIO101 0x40E1_0608 31:1] = Default;
[0] = 0b1

FFCTS

GPIO106 0x40E1_061C 31:1] = Default;
[0] = 0b1

FFRTS

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 55

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
5.11 PXA30x Processor Register Settings
Table 27 and Table 28 provide implementation settings for the PXA30x processor.

Table 27: PXA30x Processor Implementation Settings

Ball Name Address Value

GPIO0 0x40E1_00B4 0x0000_1401

GPIO1 0x40E1_00B8 0x0000_1501

GPIO2 0x40E1_00BC 0x0000_1501

nBE0 0x40E1_0204 0x0000_1400

nBE1 0x40E1_0208 0x0000_1400

nLUA 0x40E1_0244 0x0000_1500

nLLA 0x40E1_0254 0x0000_1500

DF_ADDR0 0x40E1_0210 0x0000_1400

DF_ADDR1 0x40E1_0214 0x0000_1400

DF_ADDR2 0x40E1_0218 0x0000_1400

DF_ADDR3 0x40E1_021C 0x0000_1400

DF_CLE_NOE 0x40E1_0240 0x0000_1500

DF_ALE_nWE 0x40E1_020C 0x0000_1501

DF_IO0 0x40E1_0220 0x0000_1801

DF_IO1 0x40E1_0228 0x0000_1801

DF_IO2 0x40E1_0230 0x0000_1801

DF_IO3 0x40E1_0238 0x0000_1801

DF_IO4 0x40E1_0258 0x0000_1801

DF_IO5 0x40E1_0260 0x0000_1801

DF_IO6 0x40E1_0268 0x0000_1801

DF_IO7 0x40E1_0270 0x0000_1801

DF_IO8 0x40E1_0224 0x0000_1801

DF_IO9 0x40E1_022C 0x0000_1801

DF_IO10 0x40E1_0234 0x0000_1801

DF_IO11 0x40E1_023C 0x0000_1801

DF_IO12 0x40E1_025C 0x0000_1801

DF_IO13 0x40E1_0264 0x0000_1801

DF_IO14 0x40E1_026C 0x0000_1801

DF_IO15 0x40E1_0274 0x0000_1801

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 56

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
These configurations are in addition to the ones described in Table 29 and are only configured if the
processor is configured for NAND boot support.

Values in Table 30 are used for configuring the UART port for image download over UART.

Values in Table 31 are used for configuring the USB client single-ended port for image download
over USB.

Table 28: Chip Select 2 Setup

Register Address Value Function

SMEMC_CSADRCFG_2 0x4A00_0088 0x00320919 ––

SMEMC_MSC1 0x4A00_000C Bits [15:0] = 0x7FF8
All others = Default

––

Table 29: Additional PXA30x Processor Ball Values Set for NAND Platforms Only

Ball Name Address Value

DF_nCS0 0x40E1_0248 [31:3] = Default; [2:0] = 1

DF_nCS1 0x40E1_0278 [31:3] = Default; [2:0] = 1

DF_nWE 0x40E1_00CC [31:3] = Default; [2:0] = 1

DF_nRE 0x40E1_0200 [31:3] = Default; [2:0] = 1

DF_nCS0 0x40E1_0248 [31:3] = Default; [2:0] = 1

Ball_DF_INT_RnB 0x40E1_00C8 0x0000_1500

Table 30: FFUART Pins

Ball Name Address Value Function

GPIO30 0x40E1_040C 0x0000_1402 FFRXD

GPIO31 0x40E1_0410 0x0000_1402 FFTXD

GPIO32 0x40E1_0414 0x0000_1502 FFCTS

GPIO33 0x40E1_0418 0x0000_1502 FFDCD

GPIO34 0x40E1_041C 0x0000_1502 FFDSR

GPIO35 0x40E1_0420 0x0000_1502 FFRI

GPIO36 0x40E1_0424 0x0000_1502 FFDTR

GPIO37 0x40E1_0428 0x0000_1502 FFRTS

Table 31: USB Single Ended Pins

Ball Name Address Value Function

GPIO99 0x40E1_0600 0x0000_1402 nOE2

GPIO100 0x40E1_0604 0x0000_1402 VPO2

GPIO101 0x40E1_0608 0x0000_1402 RCV2

GPIO102 0x40E1_060C 0x0000_1402 VMO2

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 57

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
5.12 Tavor Processor Implementation Details
The following tables provide implementation settings for the Tavor processor.

These values are in addition to those inTable 32.

GPIO104 0x40E1_0614 0x0000_1402 VM2

GPIO105 0x40E1_0618 0x0000_1402 VP2

GPIO106 0x40E1_061C 0x0000_1402 SPEED

Table 31: USB Single Ended Pins (Continued)

Bal l Name Address Value Function

Table 32: Tavor Processor Register Settings

Ball Name Address Value

DF_nCS0 0x40E1_022C 0x0000_1001

DF_nWE 0x40E1_0234 0x0000_1001

DF_nRE_nOE 0x40E1_0238 0x0000_1001

DF_SCLK_E 0x40E1_0238 0x0000_1001

nLUA 0x40E1_0254 0x0000_1001

ND_CLE 0x40E1_020C 0x0000_1001

DF_nADV1_ALE 0x40E1_0218 0x0000_1001

DF_IO0 0x40E1_023C 0x0000_1001

DF_IO1 0x40E1_0240 0x0000_1001

DF_IO2 0x40E1_0244 0x0000_1001

DF_IO3 0x40E1_0248 0x0000_1001

DF_IO4 0x40E1_0264 0x0000_1001

DF_IO5 0x40E1_0268 0x0000_1001

DF_IO6 0x40E1_026C 0x0000_1001

DF_IO7 0x40E1_0270 0x0000_1001

DF_IO8 0x40E1_0274 0x0000_1041

DF_IO9 0x40E1_0278 0x0000_1041

DF_IO10 0x40E1_027C 0x0000_1041

DF_IO11 0x40E1_0280 0x0000_1041

DF_IO12 0x40E1_0284 0x0000_1041

DF_IO13 0x40E1_0288 0x0000_1041

DF_IO14 0x40E1_028C 0x0000_1041

DF_IO15 0x40E1_0290 0x0000_1041

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Table 33: Additional Tavor Processor Ball Values Set for NAND Platforms Only

Ball Name Address Value

DF_NADV2_ALE 0x40E1_0224 0x0000_1003

ND_INT_RnB 0x40E1_0228 0x0000_1C41

DF_ADDR2 0x40E1_025C 0x0000_1C40

Table 34: FFUART Pins (Primary Location)

Bal l Name Address Value Function

GPIO53 0x40E1_02D0 0x0000_0441 FFRXD

GPIO54 0x40E1_02CC 0x0000_0441 FFTXD

GPSRy 0x40E0_0018 0x0040_0000

GPDRy 0x40E0_0010 0x0040_0000

Table 35: FFUART Pins (Secondary Location)

Bal l Name Address Value Function

GPIO64 0x40E1_065C 0x0000_0442 FFRXD

GPIO63 0x40E1_0640 0x0000_0442 FFTXD

GPSRy 0x40E0_0018 0x8000_0000

GPDRy 0x40E0_0010 0x8000_0000

Table 36: USB 2.0 Pins

Ball Name Address Value Function

Ball Name Address Value Function

GPIO30 0x40E1_0618 0x0000_1C47 USB_ULPI_D1

GPIO31 0x40E1_0610 0x0000_1C44 USB_ULPI_D0

GPIO33 0x40E1_061C 0x0000_1C45 USB_ULPI_D2

GPIO34 0x40E1_0620 0x0000_1C55 USB_ULPI_D3

GPIO35 0x40E1_0628 0x0000_1C55 USB_ULPI_D4

GPIO36 0x40E1_062C 0x0000_1C55 USB_ULPI_D5

GPIO41 0x40E1_0614 0x0000_1C55 USB_ULPI_D6

GPIO38 0x40E1_0634 0x0000_1C54 USB_ULPI_CLK

GPIO39 0x40E1_0638 0x0000_1C54 USB_ULPI_STP

GPIO42 0x40E1_0624 0x0000_1C55 USB_ULPI_D7

GPIO37 0x40E1_0630 0x0000_1C54 USB_ULPI_DIR

GPIO40 0x40E1_063C 0x0000_1C54 USB_ULPI_NXT

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 59

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
5.13 Error Conditions
The Boot ROM reports error conditions by either writing the error code to address 0x5C00_8000 or
via messaging using the WTPTP utility. Refer to Appendix A, Return Error Code Definitions.

5.14 Hints And Tips
Below is a short list of key information that must be understood and implemented in the system for a
successful boot. Use these as a guide to start debugging a boot problem.

Some of these requirements may not be apparent when using the Marvell BSP. For example, the
BSP would automatically configure the system to ensure a successful boot such as pre-pending the
OBM image.

If using the processor without an OS BSP provided by Marvell or bringing up a proprietary OS,
system developers must be aware of these high level but key points.

Version 2.xx processors:

Require two words of offset to be pre-pended by the OBM image

The OBM may occupy up to 2 blocks of NAND memory

Version 3.xx processors:

Removed requirement for first 2 words

Both versions; Unused pages within the first block MUST be programmed (0b0) by padding the
OBM image to equal 1 block size

Required to make the ECC information consistent
If the "unused" pages in Block 0 are not padded, the Boot ROM returns a failure and the system
does not boot

The Boot ROM returns an error code in the event of a failed operation such as failure to boot,
download an image or a memory read/write operation

These error codes are written to ISRAM location 0x5C00_8000
Error messages are also sent using the WTPTP utility

Error Codes are listed in Appendix A of this document

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 61

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 62

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
6 Non-Trusted Image Module
The non-trusted boot solution uses the non-trusted image module (NTIM) format, which is shown in
Section 6.1. This structure is dynamic because it is a packed structure of variable size, based on the
information it contains. The maximum size of the structure for version 3.x of the Boot ROM is 4 KB.

The non-trusted image structure can be created by using the Marvell® Wireless Trusted Platform
Tool Package or a custom tool created by the Original Equipment Manufacturer (OEM). The OEM
can use the reserved area for value-added features; see Section 6.2, Reserved Area. The fields of
the non-trusted image module structure define version, flash, and image information as shown
below in Section 6.1 and described in:

Section 6.1.1, Version Information

Section 6.1.2, Flash Information
Section 6.1.3, NTIM Sizing Information
Section 6.1.4, Image Information Array

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 63

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
6.1 Non-Trusted Image Module Format
The non-trusted image module format for non-trusted boot operations is described below. All values
are 32-bit unsigned integers.

6.1.1 Version Information
The Version Information defines the following variables that provide version information about the
non-trusted image module and platform:

Version – Current version of the non-trusted image module.
Identifier – TIMH identifier used to identify the structure.
Trusted – Identifier that defines a trusted or a non-trusted platform.

IssueDate – Date on which this module was created.
OEMUniqueID – OEM-specific identifier.

VERSION INFORMATION:

unsigned int Version;

unsigned int Identifier;

unsigned int Trusted;

unsigned int IssueDate;

unsigned int OEMUniqueID;

FLASH INFORMATION:

unsigned int Reserved;

unsigned int Reserved;

unsigned int Reserved;

unsigned int Reserved;

unsigned int Reserved;

unsigned int BootFlashSign;

NTIM SIZING INFORMATION:

unsigned int NumImages;

unsigned int Reserved;

unsigned int SizeOfReserved;

IMAGE INFORMATION ARRAY IMAGE[NumImages];

unsigned int ImageID;

unsigned int NextImageID;

unsigned int FlashEntryAddr;

unsigned int LoadAddr;

unsigned int ImageSize;

unsigned int Reserved; // must be set to 0x0

unsigned int Reserved[9]

unsigned int Reserved[SizeOfReserved];

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
6.1.2 Flash Information
The Flash Information defines the following variables and data structures that identify certain
properties of the boot flash and the location of the Marvell Wireless Trusted Module (Marvell WTM)
save state:

Reserved[5] – Data structure that reserves five words to maintain compatibility with the
trusted image module.

BootFlashSign – A signature that indicates the flash from which the platform boots. The
upper three bytes contain ASCII-encoded hexidecimal values of XIP for XIP or NAN for NAND,
Samsung OneNAND™, and SanDisk® (formerly MSystems®) flash. The lower byte is the
platform fuse encoding that determines the flash device being used. The BootFlashSign values
are noted in Table 37

6.1.3 NTIM Sizing Information
NumImages – Number of “IMAGE INFORMATION” substructures in the trusted image module.
Reserved – Reserved.

SizeOfReserved – Size of the reserved area; values can range from 0 to 4 KB - (size of other
trusted image module information).

6.1.4 Image Information Array
The Image Information array contains information about each image loaded into the boot flash. The
number of substructures is determined by the NumImages field described in the previous section.

ImageID – Unique identifier of the image. The "OBMI" identifier must be present in the array
for the Boot ROM to correctly boot the platform. Other identifiers can be determined by the
OEM, but are limited to 32 bits in size.

NextImageID – Next image that should be loaded from flash.
FlashEntryAddr – Offset from the start of the boot flash pointed to by the BootFlashSign
field.
LoadAddr – Load address for the image; this can be DDR memory or internal SRAM.
ImageSize – Size of the image in bytes.

Reserved – Must be set to 0x0.

Table 37: BootFlashSign Definitions

BootFlashSign value Platform Boot Device Encoded HEX Value

0x4E41_4E06 x8 NAND device on DF_nCS0 NAN’06

0x4E41_4E04 x16 NAND device on DF_nCS0 NAN’04

0x4E41_4E01 x16 SanDisk mDOC on SMEMC
nCS2

NAN’01

0x4E41_4E02 x16 OneNAND on SMEMC on
nCS2

NAN’02

0x5849_5005 x16 XIP NOR XIPB Flash on nCS2 XIP’05

0x5849_5007 x16 XIP NOR XIPA Flash on nCS2 XIP’07

NOTE: XIPB and XIPA support different command sets. Refer to Table 14 for further information. Other NOR
flash memories may be used.

NOTE: Refer to Table 14, Flash Commands Supported by the Boot ROM, on page 42 for descriptions of
XIPA and XIPB flash memory

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 65

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Reserved[9] – Nine reserved words of data.
When creating the non-trusted image module, no padding should be used. This is a packed
structure that should contain only the necessary information. For a successful operation with the
Boot ROM, the structure must contain complete version and flash information, and at least one
image information structure for the OEM boot module.

6.1.5 Reserved[SizeOfReserved]
Reserved[SizeOfReserved] – Array of integers to be used by the OEM for value-added
features.

6.2 Reserved Area
The Reserved Area is a dedicated space in the non-trusted image module that allows an OEM to
add data that is targeted for specific use without altering the predefined layout of the non-trusted
image module. The reserved area may be of variable size, which is tabulated in the
SizeOfReserved field.

The content of the Reserved Area may be formatted as the OEM chooses; however, to be
compatible with the Wireless Trusted Platform Tool Package set of tools, a predefined format has
been established. This format consists of the Reserved Area Header and the Reserved Area
Packages, described below.

6.2.1 Reserved Area Header
The Reserved Area Header spans eight bytes; its primary purpose is to indicate to the interpreter of
the non-trusted image module that this portion of the reserved area complies with the format defined
by the
Wireless Trusted Platform Tool Package-defined format. It also indicates the number of packages to
follow. The structure for the Reserved Area Header is:

WTP_RESERVED_AREA:
unsigned int WTPTP_Reserved_Area_ID;
unsigned int NumReservedPackages;

WTPTP_Reserved_Area_ID – This indicates to the interpreting software that the reserved
area complies with the format defined by the Wireless Trusted Platform Tool Package. This
value should be 0x4F505448, which represents OPTH in ASCII.

NumReservedPackages – The number of packages to follow.

6.2.2 Reserved Area Packages
The Reserved Area Packages are the building blocks of the reserved area. Each package consists
of a header that identifies the content, size, and payload data.

WTP_RESERVED_AREA_HEADER:
unsigned int Identifier;
unsigned int Size;

Identifier – The identifier that defines the type of the package.

Size – The total size of the package: four bytes for the identifier, four bytes for the size, and
the number of bytes of information in the payload that follows.

There may be an unlimited number of Reserved Area Packages as long as the size of the
non-trusted image module does not exceed 4 KB.

Doc. No. MV-S301208-00 Rev.- PUBLIC RELEASE Copyright © 2010 Marvell

Page 66

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
6.3 Predefined Packages for Reserved Area
A number of packages have already been defined for use with the Wireless Trusted Platform Tool
Package tools as shown in Table . These predefined packages and their associated predefined
header identifiers are described below. The Boot ROM executes these packages whenever the Boot
ROM controls system resources, this includes all modes except for S2/D3/C4 mode.

There are further optional packages described in 13.1 "Optional Settings in the TIM/NTIM Modules" .

Refer to the Wireless Trusted Platform documentation for more detail on packages.

6.3.1 GPIO Packages
The GPIO Packages allow users to set any memory space or address space to a preferred value.
This means that GPIOs can be configured by the Boot ROM.The header ID for this package is
0x4750494F, which represents GPIO in ASCII. The number of pairs to set is defined by NumGpios,
as shown in the code below.

OPT_GPIO_SET:
WTP_RESERVED_AREA_HEADER WRAH;

 unsigned int NumGpios;

GPIO_DEF:
volatile int *Addr;
unsigned int Value;

This means that GPIOs can be configured by the Boot ROM. For example, a GPIO must be set high
in a platform design using the PXA31x processor. The appropriate GPIO is selected - GPIO<76> - in
this example. The GPIO package layout is shown below. This is added to the end of the NTIM
header after the image details.

Reserved Data:

0x4F505448 // Package structure identifier

0x00000002 // number of packages, note must include termination package

0x4750494f // GPIO package

0x00000024// size of GPIO package (a package has address and data, known as a pair.
Each Pair is 8 bytes - 4 bytes address and 4 bytes data)

0x00000003// number of pairs (in this example there are 3 data pairs below)

0x40e104d0// register address (MFPR for GPIO<76>)

0x00000840// data

0x40e00014// register address (GPDR2)

0x00001000// data (set GPIO<76> as output)

0x40e00020// register address (GPSR)

0x00001000// data (set GPIO<76> as high)

0x5465726D // Termination package

0x00000008

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 67

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
6.3.2 UART/USB Protocol Packages
The UART/USB Protocol packages allow users to override the default USB and UART connection
settings. The identifier for this package can be 0x55415254 (for UART) or 0x00555342 (for
USB). The port may also select as appropriate one of the following IDs:

OPT_PROTOCOL_SET:
WTP_RESERVED_AREA_HEADER WRAH;
 unsigned int Port;

unsigned int Enabled;

6.3.3 DDR Package
The optional DDR package queues the Boot ROM to set up DDR based on the supplied timing
parameters. Only the timing parameters based on the targeted hardware apply. The ID for this
package is 0x44447248, which represents DDRH in ASCII.

OPT_DDR_SET:
WTP_RESERVED_AREA_HEADER WRAH;

 unsigned int ACCR_VALUE;
unsigned int MDCNFG_VALUE;
unsigned int DDR_HCAL_VALUE;
unsigned int MDREFR_VALUE;

6.3.4 Resume Package
The Resume Package provides instructions to the Boot ROM for loading and resuming an image
after a wake-up from sleep. The image address, size, and checksum are specified in this package.
The ID for this package is 0x5265736D, which represents RESM in ASCII.

OPT_RESM_LOC:
WTP_RESERVED_AREA_HEADER WRAH;
unsigned int ImageAddr;
unsigned int ImageSize;
unsigned int ImageCRC;

6.3.5 USB Vendor Request Package
The USB Vendor Request package is included in the reserved data when a special package
requested by the vendor is required. This structure is the first word of the any trailing data. There is
no restriction that the data has to be 32-bit aligned.

The ID for this package is 0X56524551, which represents VREQ in ASCII.

USB_VENDOR_REQ:
WTP_RESERVED_AREA_HEADER WRAH;

unsigned int bmRequestType;
unsigned int bRequest;
unsigned int wValue;

FFIDENTIFIER: 0x00004646

ALTIDENTIFIER: 0x00414C54

DIFFIDENTIFIER: 0x44696666

SEIDENTIFIER: 0x00005345

U2DIDENTIFIER: 0x55534232

CI2IDENTIFIER 0x00434932

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 68

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
unsigned int wIndex;
unsigned int wLength;
unsigned int wData;

6.4 Summary of Predefined Package IDs for the
Non-Trusted Image Module
The following list summarizes the predefined package IDs for the non-trusted image module, as
indicated in the header of each package.

Table 38: Reserved Area Predefined Package ID’s

Name Hex Word Value

DDRID 0x44447248

TERMINATORID 0x5465726D

GPIOID 0x4750494F

UARTID 0x55415254

USBID 0x00555342

RESUMEID 0x5265736D

USBVENDORREQ 0x56524551

USB_DEVICE_DESCRIPTOR 0x55534200

USB_CONFIG_DESCRIPTOR 0x55534201

USB_INTERFACE_DESCRIPTOR 0x55534202

USB_LANGUAGE_STRING_DESCRIPTOR 0x55534203

USB_MANUFACTURER_STRING_DESCRIPTOR 0x55534204

USB_PRODUCT_STRING_DESCRIPTOR 0x55534205

USB_SERIAL_STRING_DESCRIPTOR 0x55534206

USB_INTERFACE_STRING_DESCRIPTOR 0x55534207

USB_DEFAULT_STRING_DESCRIPTOR 0x55534208

USB_ENDPOINT_DESCRIPTOR 0x55534209

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 69

PXA3xx Processor and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 70

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
7 Trusted Image Module
The trusted boot solution uses the trusted image module format, which is shown in Section 7.1. This
structure is dynamic because it is a packed structure of variable size, based on the information it
contains. The maximum size of the structure for version 3.x of the Marvell® Trusted Boot ROM is
4 KB.

The trusted image structure can be created by using the Wireless Trusted Platform Tool Package or
a custom tool created by the Original Equipment Manufacturer (OEM). The OEM can use the
reserved area for value-added features; see Section 7.2, Reserved Area. The fields of the trusted
image structure define version, flash, TIM sizing, and image information as shown in Section 7.1.1,
Version Information, on page 72, through Section 7.1.7, Platform Digital Signature Information,
on page 74.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 71

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
7.1 Trusted Image Module Format
For the trusted image module format for the boot operation, all values are 32-bit unsigned integers.

7.1.1 Version Information
The Version Information field provides information about the trusted image module and platform.

Version – Current version of the trusted image module.
Identifier – TIMH identifier used to locate the trusted image module.

Trusted – Identifier to distinguish between trusted and non-trusted platforms.

VERSION INFORMATION:
unsigned int Version;
unsigned int Identifier;
unsigned int Trusted;
unsigned int IssueDate;
unsigned int OEMUniqueID;
FLASH INFORMATION:
unsigned int WTMFlashSign;
unsigned int WTMEntryAddr;
unsigned int WTMEntryAddrBack;
unsigned int Reserved[2];
unsigned int BootFlashSign;
TIM SIZING INFORMATION:
unsigned int NumImages;
unsigned int NumKeys;
unsigned int SizeOfReserved;
IMAGE INFORMATION ARRAY IMAGE[NumImages];
unsigned int ImageID;
unsigned int NextImage;
unsigned int FlashEntryAddr;
unsigned int LoadAddr;
unsigned int ImageSize;
unsigned int ImageSizeToHash;
unsigned int HashAlgorithmID;
unsigned int Hash[8];
KEY INFORMATION ARRAY KEY[NumKeys];
unsigned int KeyID;
unsigned int HashAlgorithmID;
unsigned int ModulusSize;
unsigned int PublicKeySize;
unsigned int RSAPublicExponent[64];
unsigned int RSAModulus[64];
unsigned int KeyHash[8];
unsigned int Reserved[SizeOfReserved];
PLATFORM DIGITAL SIGNATURE INFORMATION:
unsigned int DSAlgorithmID;
unsigned int HashAlgorithmID;
unsigned int ModulusSize;
unsigned int Hash[8];
unsigned int RSAPublicExponent[64];
unsigned int RSAModulus[64];
unsigned int RSADigS[64];

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 72

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
IssueDate – Date this module was created.
OEMUniqueID – OEM-specific identifier.

7.1.2 Flash Information
The Flash Information substructure identifies boot flash properties and the location of the Wireless
Trusted Module (Marvell WTM) save state, as follows.

WTMFlashSign – Signature that provides the Marvell WTM save state location. The upper
three bytes contain an ASCII-encoded hexadecimal value of XIP for XIP or NAN for NAND,
Samsung OneNAND™, and SanDisk® (formerly MSystems) flash. The lower byte is the
platform fuse encoding that determines the flash device being used.
WTMEntryAddr – Address offset from the base of the flash device to the location of the primary
Marvell WTM save state block.
WTMEntryAddrBack – Address offset from the base of the flash device to the location of the
backup Marvell WTM save state block.
Reserved[2] – Reserved for future use.

BootFlashSign – Signature that determines from which flash the platform boots. The upper
three bytes contains an ASCII-encoded hexadecimal value of XIP for XIP or NAN for NAND,
OneNAND, and SanDisk flash. The lower byte contains the platform fuse encoding that
determines the flash device being used. The BootFlashSign values are noted in Table 39.

7.1.3 TIM Sizing Information
NumImages – Number of “IMAGE INFORMATION” substructures in the trusted image module.
NumKeys – Number of “KEY INFORMATION” substructures in the trusted image module.
SizeOfReserved – Size of the reserved area; values can range from 0 to 4 KB – (size of other
trusted image module information).

7.1.4 Image Information Array
The Image Information Array is a substructure that contains information about each image loaded
into the boot flash. The number of substructures is determined by the NumImages field above.

ImageID – A unique identifier for the image. The "OBMI" identifier must be present in the
array for the Boot ROM to correctly boot the platform. Other identifiers can be determined by
the OEM, but are limited to 32 bits in size.
NextImageID – Next image that should be loaded from flash memory.

Table 39: BootFlashSign Definitions

BootFlashSign value Platform Boot Device Encoded HEX Value

0x4E41_4E06 x8 NAND device on DF_nCS0 NAN’06

0x4E41_4E04 x16 NAND device on DF_nCS0 NAN’04

0x4E41_4E01 x16 SanDisk mDOC on SMEMC
nCS2

NAN’01

0x4E41_4E02 x16 OneNAND on SMEMC on
nCS2

NAN’02

0x5849_5005 x16 XIP NOR XIPB Flash on nCS2 XIP’05

0x5849_5007 x16 XIP NOR XIPA Flash on nCS2 XIP’07

NOTE: XIPB and XIPA support different command sets. Refer to Table 14 for further information. Other NOR
flash memories may be used.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 73

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
FlashEntryAddr – Offset from the start of the boot flash pointed to by the BootFlashSign
field.
LoadAddr – Absolute address for the image, which can be a DDR memory, internal SRAM, or
XIP flash address.
ImageSize – Size of the image in bytes.
ImageSizeToHash – Number of bytes of the image that are included in the hash below.

HashAlgorithmID – Hashing algorithm that is used; values are 160 for SHA-1 and 256 for
SHA-2.

Hash[8] – Array that holds the hash of the image.

7.1.5 Key Information Array
The Key Information Array is an array of “KEY INFORMATION” substructures. The number of
substructures is determined by the NumKeys field.

KeyID – Identifier for this key.

HashAlgorithmID – Hashing algorithm that is used; values are 160 for SHA-1 and 256 for
SHA-2.

ModulusSize – Size of the RSA modulus; maximum of 2048 bits.
PublicKeySize – Size of the RSA public key; maximum of 2048 bits.
RSAPublicExponent[64] – RSA public exponent.

RSAModulus[64] – RSA modulus.
KeyHash[8] – SHA-1 or SHA-2 hash value.

7.1.6 Reserved[SizeOfReserved]
Reserved[SizeOfReserved] – Array of integers to be used by the OEM for value-added
features.

7.1.7 Platform Digital Signature Information
The Platform Digital Signature Information substructure holds the security information for this trusted
image module.

DSAlgorithmID – Digital Signature algorithm identifier.
HashAlgorithmID – Hashing algorithm identifier; values are 160 for SHA-1 and 256 for
SHA-2.
ModulusSize – Size of the RSA modulus.

Hash[8] – Hash value of the digital signature key.
RSAPublicExponent[64] – Public exponent.
RSAModulus[64] – RSA modulus.

RSADigS[64] – Encrypted digital signature.

When creating the trusted image module, no padding is used. This is a packed structure that should
contain only the necessary information. For a successful operation with the Boot ROM, the minimum
requirements are:

Complete version information.

Complete flash memory information.
At least one image information structure for the OEM boot module.
At least one key information structure for the JTAG reenablement key.

Correct RSA digital signature using the PKCS 1 method.

Doc. No. MV-S301208-00 Rev. - CONFIDENTIAL Copyright © 2010 Marvell

Page 74

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
7.2 Reserved Area
The Reserved Area is a dedicated space in the trusted image module (TIM) that allows an OEM to
add data that is targeted for specific use without altering the predefined layout of the trusted image
module. The reserved area may be of variable size, which is tabulated in the SizeOfReserved
field under the “FlashInformation” structure.

The content of the Reserved Area may be formatted as the OEM chooses, but to be compatible with
the Wireless Trusted Platform Tool Package set of tools, a predefined format has been established.
This predefined format consists of the Reserved Area Header and the Reserved Area Packages,
described below.

7.2.1 Reserved Area Header
The Reserved Area Header component spans eight bytes; its primary purpose is to indicate to the
interpreter of the non-trusted image module that this portion of the reserved area complies with the
format defined by the Wireless Trusted Platform Tool Package. It also indicates the number of
packages to follow. The structure for the Reserved Area Header is as follows:

WTP_RESERVED_AREA:
unsigned int WTPTP_Reserved_Area_ID;
unsigned int NumReservedPackages;

WTPTP_Reserved_Area_ID – This indicates to the interpreting software that the reserved
area complies with the format defined by the Wireless Trusted Platform Tool Package. This
value should be 0x4F505448, which represents OPTH in ASCII.
NumReservedPackages – The number of packages to follow.

7.2.2 Reserved Area Packages
The Reserved Area Packages are the building blocks of the reserved area. Each package consists
of a header to identify the content, size, and payload data.

WTP_RESERVED_AREA_HEADER:
unsigned int Identifier;
unsigned int Size;

Identifier – The identifier that defines the type of the package.
Size – The total size of the package: four bytes for the identifier, four bytes for the size, and
the number of bytes of information in the payload that follows.

There may be an unlimited number of Reserved Area Packages as long as the size of the
non-trusted image module does not exceed 4 KB.

7.3 Predefined Packages
A number of packages have already been defined for use with the Wireless Trusted Platform Tool
Package tools as shown on the following page. These predefined packages and their associated
predefined header identifiers are described below.

There are additional optional packages described in 13.1 "Optional Settings in the TIM/NTIM
Modules" .

Refer to the Wireless Trusted Platform documentation for more detail on packages.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 75

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
7.3.1 GPIO Packages
The GPIO packages allow users to set any memory space or address space to a preferred value,
thereby allowing GPIOs to be configured by the Boot ROM.The header ID for this package is
0x4750494F, which represents GPIO in ASCII. The number of pairs to set is defined by NumGpios,
as shown in the code below.

OPT_GPIO_SET:
WTP_RESERVED_AREA_HEADER WRAH;

 unsigned int NumGpios;

GPIO_DEF:
volatile int *Addr;
unsigned int Value;

GPIOs can now be configured by the Boot ROM. For example, a GPIO is required to be set high in a
platform design using the PXA31x processor. The appropriate GPIO is selected - GPIO<76>, in this
example. The GPIO package layout is shown below. This information is added to the end of the
NTIM header after the image details.

Reserved Data:

0x4F505448 // Package structure identifier

0x00000002 // number of packages, note must include termination package

0x4750494f // GPIO package

0x00000024// size of GPIO package (a package has address and data, known as a pair.
Each Pair is 8 bytes - 4 bytes address and 4 bytes data)

0x00000003// number of pairs (in this example there are 3 data pairs below)

0x40e104d0// register address (MFPR for GPIO<76>)

0x00000840// data

0x40e00014// register address (GPDR2)

0x00001000// data (set GPIO<76> as output)

0x40e00020// register address (GPSR)

0x00001000// data (set GPIO<76> as high)

0x5465726D // Termination package

0x00000008

7.3.2 UART/USB Protocol Packages
The UART/USB Protocol Packages allow overriding default USB and UART connection settings.
The identifier for this package is 0x55415254 (for UART) or 0x00555342 (for USB). The port
may also select as appropriate one of the following IDs:

FFIDENTIFIER: 0x00004646

ALTIDENTIFIER: 0x00414C54

DIFFIDENTIFIER: 0x44696666

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 76

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
OPT_PROTOCOL_SET:
WTP_RESERVED_AREA_HEADER WRAH;
 unsigned int Port;

unsigned int Enabled;

7.3.3 DDR Package
The optional DDR package queues the Boot ROM to set up DDR based on the supplied timing
parameters. Only the timing parameters based on the targeted hardware apply. The ID for this
package is 0x44447248 which represents DDRH in ASCII.

OPT_DDR_SET:
WTP_RESERVED_AREA_HEADER WRAH;

 unsigned int ACCR_VALUE;
unsigned int MDCNFG_VALUE;
unsigned int DDR_HCAL_VALUE;
unsigned int MDREFR_VALUE;

7.3.4 Resume Package
The Resume package provides instructions to the Boot ROM for loading and resuming an image
after a wake-up from sleep. The image address, size, and checksum are specified in this package.
The ID for this package is 0x5265736D, which represents RESM in ASCII.

OPT_RESM_LOC:
WTP_RESERVED_AREA_HEADER WRAH;
unsigned int ImageAddr;
unsigned int ImageSize;
unsigned int ImageCRC;

7.3.5 Autobind Package
The Autobind package has to be included in the reserved area for the Boot ROM to allow the OEM
Boot Module to run on the XScale® core during provisioning. The ID for this package is
0X42494e44, which represents BIND in ASCII.

OPT_AUTOBIND:
WTP_RESERVED_AREA_HEADER WRAH;

unsigned int AutoBind;

7.3.6 USB Vendor Request Package
The USB Vendor Request package is included in the reserved data when a special package
requested by the vendor is required. This structure is the first word of the any trailing data. There is
no restriction that the data has to be 32-bit aligned.

The ID for this package is 0X56524551, which represents VREQ in ASCII.

USB_VENDOR_REQ:
WTP_RESERVED_AREA_HEADER WRAH;

unsigned int bmRequestType;
unsigned int bRequest;
unsigned int wValue;
unsigned int wIndex;

SEIDENTIFIER: 0x00005345

U2DIDENTIFIER: 0x55534232

CI2IDENTIFIER 0x00434932

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 77

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
unsigned int wLength;
unsigned int wData;

7.4 Hashing Methods
The following provides the fields used to create each hash located in the trusted image module.

Hash Value of the Trusted Image Module – The hash value of the trusted image module covers
all information up to the platform digital signature substructure. The size is determined
dynamically as follows:
Trusted image module size to hash = size of version information + size
of flash information +
(size of image information * NumImages) +
(size of key information * NumKeys)+ size of reserved + 3 Hash_value =
SHA-1 (start of trusted image module through trusted image module size
to hash)

Hash Value of the Image – The hash value of the image is taken from the start of the binary over
the size indicated by the field ImageSizeToHash.
Hash value = SHA-1(start of image thru (ImageSize - ImageSizeToHash))

Hash Value of the Keys – The hash value of the keys is taken over the RSAPublicExponent
array and the RSA modulus array. There are two hashing methods used, depending on the key
being hashed. This is a requirement based on the trusted platform module implementation.

• JTAG Re-enabling, OEM Platform Bind, and Trusted Certificate Authority keys

• Hash value = SHA1 (RSAPublicExponent[64]/RSAModulus[64]/SHA padding)

7.5 Summary of Predefined Package IDs for the Trusted
Image Module
The following list summarizes the predefined package IDs as indicated in the header of each
package.

Table 40: Reserved Area Predefined Package ID’s

Name Hex Word Value

DDRID 0x44447248

AUTOBIND 0X42494e44

TERMINATORID 0x5465726D

GPIOID 0x4750494F

UARTID 0x55415254

USBID 0x00555342

RESUMEID 0x5265736D

USBVENDORREQ 0x56524551

USB_DEVICE_DESCRIPTOR 0x55534200

USB_CONFIG_DESCRIPTOR 0x55534201

USB_INTERFACE_DESCRIPTOR 0x55534202

USB_LANGUAGE_STRING_DESCRIPTOR 0x55534203

USB_MANUFACTURER_STRING_DESCRIPTOR 0x55534204

USB_PRODUCT_STRING_DESCRIPTOR 0x55534205

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 78

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
USB_SERIAL_STRING_DESCRIPTOR 0x55534206

USB_INTERFACE_STRING_DESCRIPTOR 0x55534207

USB_DEFAULT_STRING_DESCRIPTOR 0x55534208

USB_ENDPOINT_DESCRIPTOR 0x55534209

Table 40: Reserved Area Predefined Package ID’s (Continued)

Name Hex Word Value

DDRID 0x44447248

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 79

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 80

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
8 Non-Trusted Operation
This section provides usage models for non-trusted boot operation.

8.1 Operation with a Non-Trusted Image Module
Operation with a non-trusted image module (NTIM) provides flexibility in a platform design. The
image module allows an OEM to reuse the same binary images on both non-trusted and trusted
platforms, which greatly reduces the engineering effort required to support a family of products.

The non-trusted image module contains image information that provides some level of checks
before the image is booted. An image size and Cyclic Redundancy Check (CRC) enable some level
of error detection at boot time. Information about the image size and location enables the OEM boot
module to grow and change as development continues.

If a non-trusted image module is not used, certain restrictions are imposed on the image size by the
Marvell® Trusted Boot ROM. When developing a platform, these restrictions should be considered
carefully due to differences in compatibility between trusted and non-trusted image modules.

8.1.1 NAND Flash
The Trusted Boot ROM supports booting from x8 or x16 NAND devices attached to Chip Select 0 of
the data flash controller of the processor. Both large- and small-block devices are supported; contact
your Marvell Applications Engineer for information about specific devices.

The non-trusted image module is expected to be located in Block 0 at offset 0x0 of the NAND
device. The Trusted Boot ROM loads the first page of Block 0 and searches for the "TIMH" identifier
embedded in the version information of the non-trusted image module. If the structure is found, it is
loaded into the internal SRAM of the system. From this point forward, the Trusted Boot ROM uses
the non-trusted image module to load the OEM boot module.

The OEM boot module is described by the image information contained in the image information
array; it is identified by the "OBMI" image identifier. This is the only required identifier for proper use
with the Trusted Boot ROM. Using the information that describes the OEM boot module, the image is
loaded from the flash offset pointed to by FlashEntryAddr to the location pointed to by
LoadAddr. The number of bytes loaded is determined by the ImageSize entry.

After the image has been loaded to the correct address, the CRC must be verified. The image CRC
is calculated based on the ImageSize, LoadAddr, and ImageSizeToCRC entries. The calculated
CRC is then compared to the CRC stored in the non-trusted image module, in the CRC field. Upon a
successful check, control is transferred to the image at the load address.

8.1.2 XIP Flash on Chip Select 2
The Trusted Boot ROM supports booting from an XIP device attached to Chip Select 2 of the
processor static memory controller. There is support for several XIP devices; contact your Marvell
Applications Engineer for information about specific devices.

The non-trusted image module is expected to be located at offset 0x0 of the XIP device. For Chip
Select 2, the XIP device is memory-mapped to 0x1000_0000. This is the address where the
non-trusted image module must reside. The Trusted Boot ROM searches for the "TIMH" identifier
embedded in the version information of the non-trusted image module. If the structure is found, it is
loaded into the internal SRAM of the system. From this point forward, the Trusted Boot ROM uses
the non-trusted image module to load the OEM boot module.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 81

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
The OEM boot module is described by the image information contained in the image information
array. It is identified by the "OBMI" image identifier. This is the only required identifier for proper use
with the Trusted Boot ROM. Using the information that describes the OEM boot module, the image is
loaded from the flash offset pointed to by FlashEntryAddr to the location pointed to by
LoadAddr. The number of bytes loaded is determined by the ImageSize entry.

After the image has been loaded to the correct address, the CRC’s ImageSizeToCRC must be
verified. The image CRC is calculated based on the ImageSize and LoadAddr entries. The
calculated CRC is then compared to the CRC stored in the non-trusted image module, in the CRC
field. Upon a successful check, control is transferred to the image at the load address.

8.1.3 XIP Flash on Chip Select 0
The Trusted Boot ROM supports booting from an XIP device attached to Chip Select 0 of the
processor static memory controller. There is support for several XIP devices; contact your Marvell
Applications Engineer for information about specific devices.

The non-trusted image module is expected to be located at offset 0xC000 of the XIP device. For
Chip Select 0, the XIP device is memory-mapped to 0x0000_0000, so the non-trusted image
module must reside in 0x0000_C000. The Trusted Boot ROM searches for the "TIMH" identifier
embedded in the version information of the non-trusted image module. If the structure is found, it is
loaded into the internal SRAM of the system. From this point forward, the Trusted Boot ROM uses
the non-trusted image module to load the OEM boot module.

The OEM boot module is described by the image information contained in the “IMAGE
INFORMATION ARRAY”. It is identified by the "OBMI" image identifier. This is the only required
identifier for proper use with the Trusted Boot ROM. Using the information that describes the OEM
boot module, the image is loaded from the flash offset pointed to by FlashEntryAddr to the
location pointed to by LoadAddr. The number of bytes loaded is determined by the ImageSize
entry.

After the image has been loaded to the correct address, the CRC must be verified. The image CRC
is calculated based on the ImageSize and LoadAddr entries. The calculated CRC is then
compared to the CRC stored in the non-trusted image module, in the CRC field. Upon a successful
check, control is transferred to the image at the load address.

8.1.4 Samsung OneNAND* Flash
The Trusted Boot ROM supports booting from a x16 OneNAND device attached to Chip Select 2 of
the processor static memory controller. There is support for large-block devices; contact your
Marvell Applications Engineer for information about specific devices.

The non-trusted image module is expected to be located in Block 0 at offset 0x0 of the OneNAND
device. The OneNAND device is memory-mapped to 0x1000_0000. The Trusted Boot ROM loads
the first page of Block 0 and searches for the "TIMH" identifier embedded in the version information
of the non-trusted image module. If the structure is found, it is loaded into the internal SRAM of the
system. From this point forward, the Trusted Boot ROM uses the non-trusted image module to load
the OEM boot module.

The OEM boot module is described by the image information contained in the image information
array, and is identified by the "OBMI" image identifier. This is the only required identifier for proper
use with the Trusted Boot ROM. Using the information that describes the OEM boot module, the
image is loaded from the flash offset pointed to by FlashEntryAddr to the location pointed to by
LoadAddr. The number of loaded bytes is determined by the ImageSize entry.

After the image has been loaded to the correct address, the CRC must be verified. The image CRC
is calculated based on the ImageSize, LoadAddr, and ImageSizeToCRC entries. The calculated
CRC is then compared to the CRC stored in the non-trusted image module, in the CRC field. Upon a
successful check, control is transferred to the image at the load address.

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 82

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Table 5.5, OneNAND Support, on page 43 specifies the Device ID’s and accompanying stepping
generation codes that are supported.

8.1.5 SanDisk* Flash
The Trusted Boot ROM supports booting from the x16 SanDisk device attached to Chip Select 2 of
the processor static memory controller. There is support for large block devices. Contact your
Marvell Applications Engineer for information about specific devices.

The non-trusted image module is expected to be located in Partition 2, Sector 0 of the SanDisk
mDOC device. The MSystems device is memory-mapped to 0x1000_0000. The Trusted Boot ROM
loads the first page of Block 0 and searches for the "TIMH" identifier embedded in the version
information of the non-trusted image module. If the structure is found, it is loaded into the internal
SRAM of the system. From this point forward, the Trusted Boot ROM uses the non-trusted image
module to load the OEM boot module.

The OEM boot module is described by the image information contained in the image information
array, and is identified by the "OBMI" image identifier. This is the only required identifier for proper
use with the Trusted Boot ROM. Using the information that describes the OEM boot module, the
image is loaded from the flash offset pointed to by FlashEntryAddr to the location pointed to by
LoadAddr. The number of bytes loaded is determined by the ImageSize entry.

After the image has been loaded to the correct address, the CRC must be verified. The image CRC
is calculated based on the ImageSize, LoadAddr, and ImageSizeToCRC entries. Then, the
calculated CRC is compared to the CRC stored in the non-trusted image module, in the CRC field.

8.1.6 Image Downloading
The Trusted Boot ROM enables the differential USB 1.1 client and the full-featured universal
asynchronous receiver-transmitter (FFUART) port shortly after a power-on reset. An image can be
downloaded over one of these ports by using the WTPTP.exe utility as described in 12 "Host Tools" .

The use of the non-trusted image module is required for non-trusted downloading. Multiple images
can be downloaded during one session, which is determined by the number of images described in
the non-trusted image module as well as support from the target software.

8.1.6.1 USB Port
The default USB configuration is the differential USB 1.1 client. (The USB 2.0 client is available only
for the Tavor P and the PXA300/PXA310 processor platforms.) This port is configured after a
power-on reset and is run in interrupt mode. Contact your Marvell Applications Engineer for more
information about the communication protocol used by the target and host.

8.1.6.2 UART Port
The default UART configuration is the FFUART. This port is configured after a power-on reset and is
run in interrupt mode. Contact your Marvell Applications Engineer for more information about the
communication protocol used by the target and host.

8.1.7 Preprogrammed Flash Requirements
For large-volume manufacturing, preprogramming of flash is supported; when using the non-trusted
image module, you must:

Program the non-trusted image module to the correct offset as described in Section 8.1.1,
NAND Flash, on page 81, Section 8.1.2, XIP Flash on Chip Select 2, on page 81, and
Section 8.1.3, XIP Flash on Chip Select 0, on page 82.
Program the OEM boot module and any other image described in the non-trusted image
module, to the address indicated by the FlashEntryAddr field of the non-trusted image
module.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 83

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Programming of the fuses is optional when the non-trusted image module is used. The Trusted Boot
ROM probes the flash memory, searching for the non-trusted image module. After it is found, the
image is loaded, the CRC is verified, and then control is transferred.

8.2 Operation Without a Non-Trusted Image Module
The platform can operate without the use of a non-trusted image module. Certain restrictions apply
to the image size and execution address, which may also affect the reuse of images on a trusted
platform. The fuses on the platform must also be programmed to boot correctly. Contact your Marvell
Applications Engineer for more information about fuse programming, which may create the need for
multiple part numbers for addressing different flash devices.

8.2.1 NAND Flash
The Trusted Boot ROM supports booting from x8 or x16 NAND devices attached to Chip Select 0 of
the processor data flash controller. There is support for both large- and small-block devices; contact
your Marvell Applications Engineer for information about specific devices.

The OEM boot image is expected to be loaded to Block 0 starting at offset 0x0. The Trusted Boot
ROM reserves the last 24 pages of Block 0 for the relocation table, setting a maximum non-trusted
image module size of: (NAND block size - 24 x NAND page size). For example, on a small-block
device with a page size of 512 bytes and a block size of 16 KB:

16 KB - (512 bytes x 24) = 4 KB for the maximum size of the non-trusted image module

The platform must also have the platform state fuses programmed correctly for NAND operation. To
program the fuses, perform a provisioning step during the manufacturing of the device or use
multiple part numbers with the fuses preprogrammed at Marvell.

The Trusted Boot ROM loads the entire contents of Block 0 (minus the last page, which is reserved
for the relocation table) into the internal SRAM at location 5C01_3000, if the non-trusted image
module has not been found. Because the Trusted Boot ROM enables error-correcting code on the
data flash controller, the image must be padded before programming to the NAND device. If the
image is not padded, errors may occur on unprogrammed pages and cause the boot operation to
halt.

8.2.2 XIP Flash on Chip Select 2
The Trusted Boot ROM supports booting from an XIP device attached to Chip Select 2 of the
processor static memory controller. There is support for several XIP devices; contact your Marvell
Applications Engineer for information about specific devices.

The non-trusted image must be loaded to offset 0x0 in the XIP flash device. The XIP device
attached to Chip Select 2 is memory-mapped to 0x1000_0000; this is where the image must be
programmed in the flash.

The Trusted Boot ROM jumps to 0x1000_0000 in the XIP device when the platform fuses have
been programmed and the non-trusted image module has not been found. To program the fuses,
perform a provisioning step during manufacturing of the device or use multiple part numbers with the
fuses preprogrammed by Marvell.

8.2.3 XIP Flash on Chip Select 0
The Trusted Boot ROM supports booting from an XIP device attached to Chip Select 0 of the
processor static memory controller. There is support for several XIP devices; contact your Marvell
Applications Engineer for information about specific devices.

The non-trusted image must be loaded to offset 0xC000 in the XIP flash device. The XIP device
attached to Chip Select 0 is memory-mapped to 0x0000_0000. Therefore, the image must be
programmed to 0x0000_C000.

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 84

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
The Trusted Boot ROM jumps to 0x0000_C000 in the XIP device when the platform fuses have
been programmed and the non-trusted image module has not been found. To program the fuses,
perform a provisioning step during manufacturing of the device or use multiple part numbers with the
fuses preprogrammed by Marvell.

8.2.4 OneNAND Flash
The Trusted Boot ROM supports booting from a OneNAND device attached to Chip Select 2 of the
processor static memory controller. There is support for large block devices; contact your Marvell
Applications Engineer for information about specific devices.

The OEM boot image is expected to be loaded to Block 0 starting at offset 0x0. The Trusted Boot
ROM reserves the last 24 pages of block 0 for the relocation table; this sets a maximum non-trusted
image module size of: (OneNAND block size - 24 x NAND page size).

The platform must also have the platform state fuses programmed correctly for OneNAND operation.
To program the fuses, perform a provisioning step during the manufacturing of the device or use
multiple part numbers with the fuses preprogrammed by Marvell.

The non-trusted image must be loaded to offset 0x0 in the OneNAND flash device. The OneNAND
device attached to Chip Select 0 is memory-mapped to 0x1000_0000; this is where the image must
be programmed in the flash.

The Trusted Boot ROM jumps to 0x1000_0000 in the OneNAND device when the platform fuses
have been programmed and the non-trusted image module has not been found. To program the
fuses, perform a provisioning step during the manufacturing of the device or use multiple part
numbers with the fuses preprogrammed by Marvell.

8.2.5 MSystems Flash
The Trusted Boot ROM supports booting from an MSystems device attached to Chip Select 2 of the
processor static memory controller. There is support for large-block devices; contact your Marvell
Applications Engineer for information about specific devices.

The non-trusted image must be loaded to offset 0x0 in the MSystems flash device. The MSystems
device attached to Chip Select 0 is memory-mapped to 0x1000_0000. This is where the image
must be programmed in the flash.

The Trusted Boot ROM jumps to 0x1000_0000 in the MSystems device when the platform fuses
have been programmed and the non-trusted image module has not been found. To program the
fuses, perform a provisioning step during the manufacturing of the device or use multiple part
numbers with the fuses preprogrammed by Marvell.

8.2.6 Preprogrammed Flash Requirements
The following requirements must be met for preprogrammed devices to boot properly in non-trusted
mode:

The platform fuses must be programmed prior to normal operation by downloading a special
provisioning image during the manufacturing process, or by ordering preprogrammed parts from
Marvell. Contact your Marvell Applications Engineer for more information about the provisioning
steps required to program fuses or for ordering information about preprogrammed parts.
The image must be programmed at the address offset in flash memory, based on the
descriptions provided in:

• Section 8.1.1, NAND Flash, on page 81

• Section 8.1.2, XIP Flash on Chip Select 2, on page 81

• Section 8.1.3, XIP Flash on Chip Select 0, on page 82

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 85

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
• Section 8.1.4, Samsung OneNAND* Flash, on page 82

• Section 8.1.5, SanDisk* Flash, on page 83

Note any restrictions or requirements for each flash device. Verification of the image in flash is the
responsibility of the OEM; no image check or verification is performed when the image is
programmed.

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 86

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
9 Trusted Boot Operation
The following sections provide information about trusted boot operations, including using a trusted
image module, trusted image module validation, flash support, image downloading, preprogrammed
flash requirements, and JTAG reenablement.

9.1 Trusted Boot Usage Cases
The trusted boot solution is based on the principle of the “chain of trust”, also referred to as layered
trust (see Figure 8, “Trusted Boot Operation Using the Trusted Image Module). The Marvell®
Trusted Boot ROM is responsible only for securely transferring control to the next layer of software,
which is the OEM boot module. The Boot ROM authenticates and checks the integrity of the image
with the OEM’s platform public verification key. The OEM boot module establishes an OEM’s
proprietary layered trust model to securely validate all of the OEM’s supplementary binaries (the OS,
applications, data, and so on), as well as the mobile operator’s service provisioning and downloads.

The layered solution is implemented using the trusted image module defined in Section 7 "Trusted
Image Module" on page 71. The trusted image module holds the security information for some or all
of the images loaded into the boot flash device. The trusted image module provides a flexible
mechanism for trusted boot operations using industry-standard RSA and SHA-1 operations.

Each layer of software, starting with the Boot ROM, uses the information located in the trusted image
module to validate one or more images. The implementation defines the number of images to
include in the trusted image module for validation, and which layer of software does the validation.
Unauthorized modifications to the system software are identified and prevented from running on the
system.

The trusted image module is located in the flash memory, according to the usage models defined in
the following sections. All other image locations are defined in the trusted image module.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 87

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Figure 8: Trusted Boot Operation Using the Trusted Image Module

9.1.1 Trusted Image Module Validation
The trusted image module is a required component for the Marvell® Wireless Trusted Platform
(Marvell WTP). The Boot ROM uses the trusted image module to locate and validate all other
images in the flash memory that require validation. It also locates state information needed for
initializing the Wireless Trusted Module (WTM) after a power state change.

When the Boot ROM runs, it locates the trusted image module based on the usage cases described
below. After it is found, it is validated as follows:
1. The SHA-1 hash is calculated using all information up to but excluding the digital signature

located in the RSADigS[64]field.

2. The digital signature is decrypted using the WTM to get the encrypted hash value.
3. The calculated hash is compared to the encrypted hash.

After the validation of the trusted image module, the Trusted Boot ROM uses the information in the
trusted image module to complete the platform validation and setup. The Boot ROM uses the WTM
to compare the OEM computed hash of the OEM binding key to the hash stored in the Marvell WTM
fuses, during the provisioning stage. If the hashes match, the trusted keys for the platform are
loaded from the trusted image module to the WTM. The following platform keys are required:

JTAG Re-enable Key – Re-enables the JTAG port on the processor. If the flash device has a
one-time programmable register, the hash of this key is stored in this register and in the trusted
image module.

Platform Binding Key – Binds the platform to the processor. The hash of this key is programmed
into the WTM fuses at the provisioning stage.

Trusted Certificate Authority Key – Performs as an OEM authorization key to enable certain
secure functions on the platform.

Flash Layout

Trusted Image Module
- Version information
- Flash information
- Image information

- OEM boot module
- OS loader
- OS

- Key information
- Digital signature

OS Loader

Operating System

OEM Boot Module

Boot ROM runs first when the core jumps to the reset vector:
1 Loads the trusted image module.
2 Uses the digital signature to validate the trusted
 image module.
3 Uses the image information to locate and validate the
 OEM boot module image.
4 Transfers control to the OEM boot module.

Step 1

OEM boot module runs next after successful
validation:
1 Loads the trusted image module.
2 Validates the OS loader using image
 information in the trusted image module.
3 Transfers control to the OS loader.

Step 2

OS loader runs after the OEM boot module:
1 Loads the trusted image module.
2 Validates OS images using image information
 in the trusted image module.
3 Transfers control to the OS.

Validate
and Transfer

Validate
and Transfer Step 3

Final step: Operating system runs
and the system is fully functional.

Validate
and Transfer

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 88

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
9.1.2 NAND Flash
The Trusted Boot ROM supports booting from x8 or x16 NAND devices attached to Chip Select 0 of
the processor data flash controller. Large- and small-block devices are supported; contact a Marvell
Applications Engineer for information about specific devices.

The trusted image module is expected to be located in Block 0 at offset 0x0 of the NAND device.
The Trusted Boot ROM loads the first page of Block 0 and searches for the "TIMH" identifier
embedded in the version information of the trusted image module. If the structure is found, it is
loaded into the internal SRAM of the system. From this point on, the Trusted Boot ROM uses the
trusted image module to load and validate the OEM boot module. If the trusted image module is not
found, an error condition is reported and the boot operation halts.

The OEM boot module is described by the image information contained in the “IMAGE
INFORMATION” array. It is identified by the "OBMI" image identifier, which is a required identifier for
proper use with the Trusted Boot ROM. Using the information that describes the OEM boot module,
the image is loaded from the flash offset pointed to by FlashEntryAddr to the location pointed to
by LoadAddr. The number of bytes loaded is determined by the ImageSize entry.

After the image has been loaded to the correct address, the image must be validated. The hash of
the OEM boot module is calculated using the WTM. The ImageSizeToHash field determines how
much of the image was used in the SHA-1 hash calculation. The hash calculated by the WTM is then
compared to the hash stored in the Hash[8] array field. If the hashes match, control is transferred
to the OEM boot module.

9.1.3 XIP Flash on Chip Select 2
The Trusted Boot ROM supports booting from an XIP device attached to Chip Select 2 of the
processor static memory controller. Several XIP devices are supported; contact your Marvell
Applications Engineer for questions about specific devices.

The trusted image module is expected to be located at offset 0x0 of the XIP device. For Chip Select
2, the XIP device is memory-mapped to 0x1000_0000; this is the address where the trusted image
module must reside. The Trusted Boot ROM searches for the "TIMH" identifier embedded in the
version information of the trusted image module. If the structure is found, it is loaded into the internal
SRAM of the system. From this point, the Trusted Boot ROM uses the trusted image module to load
the OEM boot module. If the trusted image module is not found, an error condition is reported and
the boot operation halts.

The OEM boot module is described by the image information contained in the image information
array. It is identified by the "OBMI" image identifier, which is a required identifier for proper use with
the Trusted Boot ROM. Using the information that describes the OEM boot module, the image is
loaded from the flash offset pointed to by FlashEntryAddr to the location pointed to by
LoadAddr. The ImageSize entry determines the number of bytes that are loaded.

After the image has been loaded to the correct address, the image must be validated. The hash of
the OEM boot module is calculated using the WTM. The ImageSizeToHash field determines how
much of the image was used in the SHA-1 hash calculation. The hash calculated by the WTM is then
compared to the hash stored in the Hash[8]array field. Upon a successful compare operation,
control is transferred to the OEM boot module.

9.1.4 XIP Flash on Chip Select 0
The Trusted Boot ROM supports booting from an XIP device attached to Chip Select 0 of the
processor static memory controller. Several XIP devices are supported; contact your Marvell
Applications Engineer for questions about specific devices.

The trusted image module is expected to be located at offset 0x0 of the XIP device. For Chip Select
0, the XIP device is memory-mapped to 0x0000_0000; the address where the trusted image
module must reside is 0x0000_C000. The Trusted Boot ROM searches for the "TIMH" identifier

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 89

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
embedded in the version information of the trusted image module. If the structure is found, it is
loaded into the internal SRAM of the system. From this point, the Trusted Boot ROM uses the
Trusted Image Module to load the OEM boot module. If the Trusted Image module is not found, an
error condition is reported and the boot operation halts.

The OEM boot module is described by the image information contained in the “IMAGE
INFORMATION” array. It is identified by the "OBMI" image identifier, which is a required identifier for
proper use with the Trusted Boot ROM. Using the information that describes the OEM boot module,
the image is loaded from the offset pointed to by FlashEntryAddr to the location pointed to by
LoadAddr. The ImageSize entry determines the number of bytes that are loaded.

After the image has been loaded to the correct address, the image must be validated. The hash of
the OEM boot module is calculated using the WTM. The ImageSizeToHash field determines how
much of the image was used in the SHA-1 hash calculation. The hash calculated by the WTM is then
compared to the hash stored in the Hash[8]array field. Upon a successful compare operation,
control is transferred to the OEM boot module.

9.1.5 Samsung OneNAND™ Flash
The Trusted Boot ROM supports booting from an x16 OneNAND device attached to Chip Select 2 of
the processor static memory controller. Large-block devices are supported; contact your Marvell
Applications Engineer for questions about specific devices.

The trusted image module is expected to be located in Block 0 at offset 0x0 of the OneNAND
device. The OneNAND device is memory-mapped to 0x1000_0000. The Trusted Boot ROM loads
the first page of Block 0 and searches for the "TIMH" identifier embedded in the version information
of the trusted image module. If the structure is found, it is loaded into the internal SRAM of the
system. From this point on, the Trusted Boot ROM uses the trusted image module to load and
validate the OEM boot module. If the trusted image module is not found, an error condition is
reported and the boot operation halts.

The OEM boot module is described by the image information contained in the “IMAGE
INFORMATION” array. It is identified by the "OBMI" image identifier, which is a required identifier for
proper use with the Trusted Boot ROM. Using the information that describes the OEM boot module,
the image is loaded from the flash offset pointed to by FlashEntryAddr to the location pointed to
by LoadAddr. The number of bytes loaded is determined by the ImageSize entry.

After the image has been loaded to the correct address, the image must be validated. The hash of
the OEM boot module is calculated using the WTM. The ImageSizeToHash field determines how
much of the image was used in the SHA-1 hash calculation. The hash calculated by the WTM is then
compared to the hash stored in the Hash[8] array field. If the hashes match, control is transferred
to the OEM boot module.

Section 5.5 "OneNAND Support" on page 43 specifies the Device ID’s and accompanying stepping
generation codes that are supported.

9.1.6 SanDisk* Flash
The Trusted Boot ROM supports booting from the x16 SanDisk device attached to Chip Select 2 of
the processor static memory controller. Large-block devices are supported; contact your Marvell
Applications Engineer for information about specific devices.

The trusted image module is expected to be located in Block 0 at offset 0x0 of the device. The
device is memory-mapped to 0x1000_0000. The Trusted Boot ROM loads the first page of Block 0
and searches for the "TIMH" identifier embedded in the version information of the trusted image
module. If the structure is found, it is loaded into the internal SRAM of the system. From this point
on, the Trusted Boot ROM uses the trusted image module to load and validate the OEM boot
module. If the trusted image module is not found, an error condition is reported and the boot
operation halts.

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 90

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
The OEM boot module is described by the image information contained in the “IMAGE
INFORMATION” array. It is identified by the "OBMI" image identifier, which is a required identifier for
proper use with the Trusted Boot ROM. Using the information that describes the OEM boot module,
the image is loaded from the flash offset pointed to by FlashEntryAddr to the location pointed to
by LoadAddr. The number of bytes loaded is determined by the ImageSize entry.

After the image has been loaded to the correct address, the image must be validated. The hash of
the OEM boot module is calculated using the WTM. The ImageSizeToHash field determines how
much of the image was used in the SHA-1 hash calculation. The hash calculated by the WTM is then
compared to the hash stored in the Hash[8] array field. If the hashes match, control is transferred
to the OEM boot module.

The mDOC device acts as a NAND disk; however, no file system is mounted during the boot
operation for PXA300/PXA310 processors or the Tavor P processor. Instead, the mDOC driver code
in the Boot ROM accesses the mDOC device via formatted partitions and sector offsets within the
partitions. The trusted and non-trusted image modules must reside in Partition 2, Sector Offset 0.
Any other images such as the OEM boot module must reside in Partition 2 or greater. Partition 1 is
an one-time programmable (OTP) partition that stores keys for trusted boot operations, but is not
otherwise usable. mDOC sectors are 512 bytes.

The 32-bit flash address for mDOC images are calculated as follows:

Flash positions within the mDOC H3 flash device for use with input files for the Trusted Boot Builder
tool are calculated as follows:

mDOC address:

 TIM (must be in Partition 2, Sector Offset 0) = 0x2

 OEM boot module in Partition 5 starting at Sector Offset 32 = 0x205

 OEM boot module in Partition 3 starting at Sector Offset 506 = 0x1FA3

9.1.7 Image Downloading
The Trusted Boot ROM enables the differential USB 1.1 client and the FFUART port shortly after a
power-on reset. An image can be downloaded over one of these ports using the Marvell WTPTP.exe
utility described in Section 12.2 "Download Tools" on page 103. The use of a trusted image module
is required for trusted downloading. Multiple images can be downloaded during one session; this is
determined by the number of images described in the trusted image module, as well as support from
the target software.

Contact your Marvell Applications Engineer for more information about using the Marvell-supplied
tools for creating the trusted image module and downloading images to the target.

9.1.7.1 USB Port
The default USB configuration is the differential USB 1.1 client. This port is configured after a
power-on reset and is run in interrupt mode. Contact your Marvell Applications Engineer for more
information about the communication protocol used by the target and host.

9.1.7.2 UART Port
The default UART configuration is FFUART. This port is configured after a power-on reset and is run
in interrupt mode. Contact your Marvell Applications Engineer for more information about the
communication protocol used by the target and host.

28-bit sector offset 4-bit partition #

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 91

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
9.2 Preprogrammed Flash Requirements
For large-volume manufacturing, the preprogramming of flash memory is supported. When using a
trusted image module, the requirements are as follows:

Program the trusted image module to the correct offset; contact your Marvell Applications
Engineer for more information.

Program the OEM boot module and any other image described in the non-trusted image
module, to the address indicated by FlashEntryAddr of the trusted image module.

Perform device provisioning using a Device Keying Binary.

Programming of the fuses is required when a trusted image module is used. The Trusted Boot ROM
examines flash memory and searches for the non-trusted image module. After it is found, the image
is loaded, the CRC verified, and control is transferred.

9.3 JTAG Re-enablement
To troubleshoot failed parts returned from the field, it is necessary to gain access to the device
through the JTAG port. However, access to this port is disabled by non-volatile fuses in devices with
the security module enabled. This feature protects the security module and the device from
compromise, but also prevents the primary debug interface. However, there is a challenge/response
mechanism for re-enabling the JTAG port.

After the JTAG port is re-enabled, it remains accessible until the next power-on reset. After a
power-on reset, the JTAG challenge/response must occur again before the JTAG port can be used.
The Boot ROM enables the JTAG challenge/response mechanism during initialization of the WTM,
using the OEM’s JTAG re-enabling key hash stored in the trusted image module and in the one-time
programmable registers (if available) during the device keying process.

After the WTM is enabled for the JTAG challenge/response, one attempt per power-on reset is
allowed. After a failed attempt, the WTM locks out the JTAG port until a power-on reset has
occurred. If the validation of the trusted image module fails during the platform initialization, a new
trusted image module must first be downloaded and validated using the OEM platform bind key
burned into the WTM fuses.

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 92

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
10 TIM/NTIM Support For Memory Devices
This section provides details on memory device support for trusted and non-trusted boot.

TIM - Trusted Image Module

NTIM - Non-Trusted Image Module

10.1 NAND Flash
The Marvell® Trusted Boot ROM supports booting from x8 or x16 NAND devices attached to Chip
Select 0 of the processor data flash controller. Both large and small block devices are supported.
Contact your Marvell FAE with questions about specific devices.

The TIM/NTIM is located in Block 0 at offset 0x0 of the NAND device. The Trusted Boot ROM loads
the first page of Block 0 and searches for the “TIMH” identifier embedded in the version information
of the Non-Trusted Image Module. If the structure is found, it is loaded into the internal SRAM of the
system. From this point forward, the Trusted Boot ROM uses the Non-Trusted Image Module to load
the OEM boot module.

The OEM boot module is described by the image information contained in the image information
array and is identified by the “OBMI” image identifier. This required identifier is necessary for proper
use with the Trusted Boot ROM. Using the information that describes the OEM boot module, the
image is loaded from the flash offset pointed to by the FlashEntryAddr to the location pointed to
by the LoadAddr. The number of bytes loaded is determined by the ImageSize entry.

Once the image has been loaded to the correct address, the CRC must be verified. The image CRC
is calculated based on the ImageSize, LoadAddr, and ImageSizeToCRC entries. Then, the
calculated CRC is compared to the CRC stored in the Non-Trusted Image Module in the CRC field.
Upon a successful check, control is transferred to the image at the load address.

10.2 XIP Flash on Chip Select 2
The Trusted Boot ROM supports booting from an XIP device attached to Chip Select 2 of the
processor static memory controller. Several XIP devices are supported so contact your Marvell FAE
with questions about specific devices.

The TIM/NTIM is located at offset 0x0 of the XIP device. For Chip Select 2, the XIP device is
memory mapped to 0x1000_0000, and is the address where the Non-Trusted Image Module must
reside. The Trusted Boot ROM searches for the “TIMH” identifier embedded in the version
information of the TIM/NTIM. If the structure is found, it is loaded into the internal SRAM of the
system. From this point on, the Trusted Boot ROM uses the TIM/NTIM to load the OEM boot
module.

The OEM boot module is described by the image information contained in the image information
array. It is identified by the “OBMI” image identifier. This required identifier is necessary for proper
use with the Trusted Boot ROM. Using the information that describes the OEM boot module, the
image is loaded from the flash offset pointed to by the FlashEntryAddr to the location pointed to
by the LoadAddr. The number of bytes loaded is determined by the ImageSize entry.

Once the image has been loaded to the correct address, the CRC ImageSizeToCRC must be
verified. The image CRC is calculated based on the ImageSize and LoadAddr entries. Then, the
calculated CRC is compared to the CRC stored in the Non-Trusted Image Module in the CRC field.
Upon a successful check, control is transferred to the image at the load address.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 93

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
10.3 OneNAND Flash
The Trusted Boot ROM supports booting from a x16 OneNAND device attached to Chip Select 2 of
the processor static memory controller. Refer to Section 5.2, “Boot ROM NAND Device Support” for
supported NAND devices.

The Non-Trusted Image Module is located in Block 0 at offset 0x0 of the OneNAND device. The
OneNAND device is memory mapped to 0x1000_0000. The Trusted Boot ROM loads the first page
of Block 0 and searches for the “TIMH” identifier embedded in the version information of the
Non-Trusted Image Module. If the structure is found, it is loaded into the internal SRAM of the
system. From this point forward, the Trusted Boot ROM uses the Non-Trusted Image Module to load
the OEM boot module.

The OEM boot module is described by the image information contained in the image information
array, and is identified by the “OBMI” image identifier. This required identifier is necessary for proper
use with the Trusted Boot ROM. Using the information that describes the OEM boot module, the
image is loaded from the flash offset pointed to by the FlashEntryAddr to the location pointed to
by the LoadAddr. The number of bytes loaded is determined by the ImageSize entry.

Once the image has been loaded to the correct address, the CRC must be verified. The image CRC
is calculated based on the ImageSize, LoadAddr, and ImageSizeToCRC entries. Then, the
calculated CRC is compared to the CRC stored in the Non-Trusted Image Module in the CRC field.
Upon a successful check, control is transferred to the image at the load address.

Refer to Section 5.5, “OneNAND Support” for more details.

10.4 SanDisk Flash
The Trusted Boot ROM supports booting from a x16 SanDisk device attached to Chip Select 2 of the
processor static memory controller. Large block devices are supported so contact your Marvell FAE
with questions about specific devices.

The Non-Trusted Image Module is located in Block 0 at offset 0x0 of the SanDisk device, which is
memory mapped to 0x1000_0000. The Trusted Boot ROM loads the first page of Block 0 and
searches for the “TIMH” identifier embedded in the version information of the Non-Trusted Image
Module. If the structure is found, it is loaded into the internal SRAM of the system. From this point
on, the Trusted Boot ROM uses the Non-Trusted Image Module to load the OEM boot module.

The OEM boot module is described by the image information contained in the image information
array, and is identified by the “OBMI” image identifier. This required identifier is necessary for proper
use with the Trusted Boot ROM. Using the information that describes the OEM boot module, the
image is loaded from the flash offset pointed to by the FlashEntryAddr to the location pointed to
by the LoadAddr. The number of bytes loaded is determined by the ImageSize entry.

Once the image has been loaded to the correct address, the CRC must be verified. The image CRC
is calculated based on the ImageSize, LoadAddr, and ImageSizeToCRC entries. Then, the
calculated CRC is compared to the CRC stored in the Non-Trusted Image Module in the CRC fie.

Refer to Section 5.6, “mDOC Support” for more details.

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 94

Communication Protocol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
11 Communication Protocol
The chapter describes the relevant details of the USB/UART communication protocol to allow OEMs
to port their existing proprietary USB/UART applications to support communication with the Boot
ROM.

The communication protocol is used to download images during the device keying process, as well
as for the JTAG re-enabling process.

Refer to Table 1, Version 2.xx and Version 3.xx High Level Differences, on page 15 for specific
processor support of this feature.

In this section, the "Host" refers to the WTPTool.exe application and "Target" refers to the Boot
ROM.

The communication protocol follows a strict handshaking methodology, which is always initiated by
the host. The host sends a command packet and the target responds with a status packet (response
packet).

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 95

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Figure 9 shows the process flow for the JTAG re-enablement sequence. Figure 10 shows the
process flow for the download sequence.

Figure 9: JTAG Re-enable Flow Diagram

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 96

Communication Protocol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Figure 10: Download Flow Diagram

NOTE: 1. The disconnect command is only issued after the target has transmitted all
of the files.
2. The data header and data command/response packets are sent continually
until all data has been transmitted.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 97

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
11.1 Preamble
The preamble data stream is a four-byte data packet containing 0x00, 0xD3, 0x02, and 0x2B.
Table 41 represents a 32-bit word: 0x2B02D300. The preamble data stream requires that the bytes
are in network byte ordering.

The target responds to the preamble from the host with the same preamble.

11.2 Structure for Host Commands
The structure of all commands sent by the host follows this format:

struct Command
{

Byte CMD
Byte SEQ
Byte CID
Byte Flags
Unsigned intLEN
Byte [LEN]Data

}

CMD (Command) – Contains the opcode that indicates the type of command being sent. The size is
one byte.

SEQ (Sequence) – Used during data transmission (when the data command is used) to ensure that
the block of data that the host sends matches the block of data that the target is expecting. The
sequence number is 0 for all other commands. The sequence number is 1 for the first data
transmission, 2 for the second, and so on. Since the size of the sequence field is 1 byte, the
sequence number rolls over after 255 data transmissions.

CID (Command ID) – Specific number that relates all of the commands (and responses) of a single
flow. A flow is the communication from the preamble to the done acknowledgement. The host
defines the CID when it sends the first command after the preamble. The same CID is used until the
done command after a download or a JTAG reenablement. If another download follows, the host
must generate a new CID for the next download flow (after the next preamble).

Flags – Bits [7:1] reserved.

Bit 0 – Endian format of the data. Once set, this flag must remain the same throughout the flow.

• 1: big endian

• 0: little endian

LEN (Data Length in Bytes) – Number of bytes of the data field in the current command. This length
does not include the CMD, SEQ, CID, Flags, or LEN fields. It is the total length (in bytes) of the data
in the data field only. The LEN field itself is 4 bytes long, and is in little endian format.

Data – Data field associated with the current command. The number of bytes of this field must equal
the LEN value above. If LEN is zero, then this field does not exist. On a word (32-bit) basis, the
default configuration is to send the data in little endian format.

11.3 List of Commands
Table 42 lists all commands sent by the host.

Table 41: Preamble
Byte-3 Byte-2 Byte-1 Byte-0

0x2B 0x02 0xD3 0x00

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 98

Communication Protocol
Structure of Status Responses

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
x: LEN value is variable: SEQ number is incremental

Note

Note The CID is not listed because it is unique to each flow.

11.4 Structure of Status Responses
The structure of all status responses sent by the target follows this format:

struct Status
{

ByteCMD
ByteSEQ
ByteCID
ByteStatus
ByteFlags
ByteLEN
Byte[Len]Data

}

CMD – Same opcode as the command this response packet is acknowledging.

Table 42: Host Commands

Commands CMD SEQ LEN Data Comment

Public Key 0x24 0 0 None Indicates that the next command is a data
command containing the public key

Password 0x28 0 0 None Tells the target to send a 64-bit password

Signed Password 0x25 0 0 None Indicates that the next command is a data
command containing the signed password

Get Version 0x20 0 0 None Tells the target to send the version
information

Select Image 0x26 0 0 None Tells the target to respond with the image
type to be downloaded

Verify Image 0x27 0 1 0 = ACK
1 = NACK

Tells the target whether the image type
asked for in Select Image is available

Data Header 0x2a y 4 Size Tells the target how much data is left to be
downloaded

Data 0x22 y x Data Sends the target the next block of data

Message 0x2b 0 0 None Tells the target to send its message

Done 0x30 0 0 None Tells the target that the current flow is
complete, yet more images are available for
download

Disconnect 0x31 0 0 None Tells the target that the current flow is
complete and there are no more images left
to download

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 99

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
SEQ (Sequence) – Used during data transmission in response to a data command to keep the host
and target in synchronization. The sequence number is 1 for the first data transmission, 2 for the
second, and so on. Since the size of the sequence field is 1 byte, the sequence number rolls over
after 255 data transmissions.

CID (Command ID) – Specific number that relates all of the commands (and responses) of a single
flow. A flow is the communication from the preamble to the “done” acknowledgement. The host
defines the CID when it sends the first command after the preamble. The same CID is used until the
done command after a download or a JTAG re-enablement. If another download follows, the host
must generate a new CID for the next download flow (after the next preamble).

Status – Status code of the target in response to the last command sent by the host.

Flags – Bits [7:2] reserved.

Bit 0 – Message Flag. Tells the host that the target wants to send a message. The next
command the host should send is a message command. The target lowers this flag when no
messages remain in the queue.

• 1: message waiting to be sent

• 0: no messages

Bit 1 – Message Type. This flag is applicable only when sent in a message response packet (the
response packet CMD is 0x2B). This flag tells the target whether data in the data field is an
ASCII string or an integer value representing an error code.

• 1: integer error code

• 0: ASCII string

For additional information about messaging, see Section 11.6, “Messages”.

LEN (Data Length in Bytes) – Size of the data field of the current response. It is the total length (in
bytes) of the data in the data field only. The maximum value of LEN is 255 bytes.

Data – Data field associated with the current response. The number of bytes of this field must equal
the LEN value above. If LEN is zero, then this field does not exist. On a word (32-bit) basis, this data
is in little endian format. The maximum size of the data field is 255 bytes.

11.5 Responses
Every command sent by the host requires the target to respond with a status packet. Some of the
responses require data in the data field while others do not. Table 43 describes the contents of the
data field for each response packet.

Table 43: Target Responses

Commands CMD LEN Data

Public Key 0x24 0 No data needed

Password 0x28 8 A 64-bit password

Signed Password 0x25 0 No data needed

Get Version 0x20 12 The version information. First 4 bytes are
ASCII characters and represent the target
stepping version. The second 4 bytes is an
integer capturing the date. The last 4 bytes
are ASCII characters and represent the type
of processor.

Select Image 0x26 4 Image Identifier

Verify Image 0x27 0 No data needed

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 100

Communication Protocol
Messages

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
11.6 Messages
At any time during the communication process, the target may send a text message to the host by
the target raising Bit 0 of the flag field. The host should then send the message command as the
following command.

Note

Note The host is not required to send the message command as soon as the message flag
has been raised. The target keeps the message in the queue and message flag bit
raised until the message command is sent and the message is handled.

11.7 Disconnect
After the target has finished downloading all of the images, the host issues the disconnect
command. The target does not respond to the command until it has finished its operations, which
allows the target to fill up the message queue with any messages needed to be sent to users.

Once the target issues the response packet to the disconnect command, the host must check the
message flag. If the flag is not set, the host shuts down and the target transfers control. However, if
the flag is set, the host must continue issuing message commands until the message flag is lowered.
The host should ignore the status field during this sequence.

11.8 Status Codes
Table 44 describes the current status codes communicated back to the host application.

Data Header 0x2a 4 A 32-bit integer that tells the host how much
data to send in the next Data command

Data 0x22 0 No data needed

Message 0x2b x ASCII string. This is a message that the
target wants printed for the user.

Done 0x30 0 No data needed

Disconnect 0x31 0 No data needed

Table 43: Target Responses (Continued)

Commands CMD LEN Data

Table 44: Status Codes

Error Code Descript ion

0x00 ACK

0x01 NACK

0x02 Sequence error

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 101

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 102

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
12 Host Tools
Marvell provides a sample tool package that can be used as a starting base to create OEM-specific
tools. Contact a Marvell field representative for information on the Marvell® Wireless Trusted
Platform Tool Package.

Note

Note Marvell also provides additional documentation on the Wireless Trusted Platform Tool
Package. The Porting Guide and the Users Guide offer more detail on the software
components and build information.

12.1 Trusted Image Tools
The step in enabling trusted boot capability is the generation of trusted images, which requires the
generation of the integrated verification module using the OEM keys. The integrated verification
module and binary are then packaged together. Once the image is packaged with the integrated
verification module, a digital signature must be created and stored in the integrated verification
module. This creates a binary image ready to be downloaded or burnt to flash.

12.2 Download Tools
The Boot ROM supports downloading via USB or FFUART. See Table 1, Version 2.xx and Version
3.xx High Level Differences, on page 15 for platform specific requirements. The protocol for
downloading is described in Chapter 7, “Trusted Image Module.” The Intel* Intelligent Cellular
Analysis Tool utility can also be used to download images, but not for JTAG re-enabling.

12.3 JTAG Re-enable Tools
Tools for JTAG re-enabling are required to perform the challenge/response mechanism. These tools
must have access to the OEM signing keys used to device key the platform. These keys are used to
encrypt a random password and return it for verification.

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 103

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 104

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
13 Other Boot ROM Features
This chapter provides details about the functionality between the Boot ROM and other system
components.

13.1 Optional Settings in the TIM/NTIM Modules
The reserved areas of the trusted image module and non-trusted image module are provided for use
by the OEM. A few optional settings are available to modify certain functionality of the Boot ROM,
specifically, settings for an optional download port and custom GPIO settings. The structure below is
interpreted by the Boot ROM and the settings are used at boot time or any other time the Boot ROM
owns system resources. Refer to 5.8 "Handling Power Mode and Reset Transitions" to see the list of
resets and power modes.

typedef struct
{
UINT_T Addr;
UINT_T Value;
}GPIO_DEF, *pGPIO_DEF;

typedef struct
{
UINT_T Identifier;
UINT_T PortType;
UINT_T Port;
UINT_T GPIOPresent;
UINT_T NumGpios;
pGPIO_DEFGPIO;
}OPT_SET, *pOPT_SET

//Option Identifiers
#define OPTIONALHEADER 0x4F505448 // "OPTH"
#define FFIDENTIFIER 0x00004646 // "FF"
#define ALTIDENTIFIER 0x00414C54 // "ALT"
#define DIFFIDENTIFIER 0x44696666 // "Diff"
#define SEIDENTIFIER 0x00005345 // "SE"
#define UARTID 0x55415254 // "UART"
#define USBID 0x00555342 // "USB"
#define PINSIDENTIFIER 0x50696E73 // "Pins"
#define TERMINATOR 0x5465726D // "Term"

13.2 Tamper Recovery Mechanisms
A tamper recover mechanism was implemented in the Boot ROM for trusted platforms. Refer to
Table 1, Version 2.xx and Version 3.xx High Level Differences, on page 15 for specific processor
support of this feature.

The tamper recover mechanism works with the Device Keying Binary and Wireless Trusted Platform
Service Package (WTPSP) security device driver. An install status word has been added to the
Wireless Trusted Module (WTM) save state data that allows the Boot ROM, the Device Keying
Binary, and WTPSP to keep track of the status of the last boot attempt.

Three states are defined: successful boot, backup boot, and corrupted save state. If the state is
anything but a successful boot or backup state, the Boot ROM performs a WTM initialization to an

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 105

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
uninitialized state. This step allows the WTPSP driver to notify the OS and correct the problem by
creating a new save state file. Two boots are required to correct the tamper state if both the primary
and backup copies of the save state are corrupted.

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 106

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
A Return Code Definitions

The following list contains the return codes and definitions.

Table 45: Return Codes and Definitions

/*** General Error Code Defin i t ions **/ 0x0 - 0x1F

#define NoError 0x0

#define NotFoundError 0x1

#define GeneralError 0x2

#define WriteError 0x3

#define ReadError 0x4

#define NotSupportedError 0x5

#define InvalidPlatformConfigError 0x6

#define PlatformBusy 0x7

#define PlatformReady 0x8

#define InvalidSizeError 0x9

/ / F lash Related Errors 0x20 - 0x3F

#define EraseError 0x20

#define ProgramError 0x21

#define InvalidBootTypeError 0x22

#define ProtectionRegProgramError 0x23

#define NoOTPFound 0x24

#define BBTReadError 0x25

#define MDOCInitFailed 0x26

#define OneNandInitFailed 0x27

#define MDOCFormatFailed 0x28

#define BBTExhaustedError 0x29

#define FlashDriverInitError 0x30

#define FlashFuncNotDefined 0x31

#define OTPError 0x32

#define InvalidAddressRangeError 0x33

/ / DFC Related Errors 0x40 - 0x5F

#define DFCDoubleBitError 0x40

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 107

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#define DFCSingleBitError 0x41

#define DFCCS0BadBlockDetected 0x42

#define DFCCS1BadBlockDetected 0x43

#defineDFCInitFailed 0x44

/ / Security Related Errors 0x60 - 0x8F

#define InvalidOEMVerifyKeyError 0x60

#define InvalidOBMImageError 0x61

#define SecureBootFailureError 0x62

#define InvalidSecureBootMethodError 0x63

#define UnsupportedFlashError 0x64

#define InvalidCaddoFIFOEntryError 0x65

#define InvalidCaddoKeyNumberError 0x66

#define InvalidCaddoKeyTypeError 0x67

#define RSADigitalSignatureDecryptError 0x68

#define InvalidHashValueLengthError 0x69

#define InvalidTIMImageError 0x6A

#define HashSizeMismatch 0x6B

#define InvalidKeyHashError 0x6C

#define TIMNotFound 0x6D

#define WTMStateError 0x6E

#define FuseRWError 0x6F

#define InvalidOTPHashError 0x70

#define CRCFailedError 0x71

#define SaveStateNotFound 0x72

#define WTMInitializationError 0x73

#define ImageNotFound 0x74

#define InvalidImageHash 0x75

#define MicroCodePatchingError 0x76

#define SetJtagKeyError 0x77

#define WTMDisabled 0x78

/ / Download Protocols 0x90 - 0xAF

#define DownloadPortError 0x90

#define DownloadError 0x91

#define FlashNotErasedError 0x92

Table 45: Return Codes and Definitions (Continued)

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 108

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#define InvalidKeyLengthError 0x93

#define DownloadImageTooBigError 0x94

#define UsbPreambleError 0x95

#define TimeOutError 0x96

#define UartReadWriteTimeOutError 0x97

#define UnknownImageError 0x98

#define MessageBufferFullError 0x99

#define NoEnumerationResponseTimeOutError 0x9A

#define UnknownProtocolCmd 0x9B

/ /JTAG ReEnable Error Codes 0xB0 - 0xCF

#define JtagReEnableError 0xB0

#define JtagReEnableOEMPubKeyError 0xB1

#define JtagReEnableOEMSignedPassWdError 0xB2

#define JtagReEnableTimeOutError 0xB3

#define JtagReEnableOEMKeyLengthError 0xB4

/ /SD/MMC Error Codes 0xD0 - 0xE2

#define SDMMC_SWITCH_ERROR 0xD0

#define SDMMC_ERASE_RESET_ERROR 0xD1

#define SDMMC_CIDCSD_OVERWRITE_ERROR 0xD2

#define SDMMC_OVERRUN_ERROR 0xD3

#define SDMMC_UNDERUN_ERROR 0xD4

#define SDMMC_GENERAL_ERROR 0xD5

#define SDMMC_CC_ERROR 0xD6

#define SDMMC_ECC_ERROR 0xD7

#define SDMMC_ILL_CMD_ERROR 0xD8

#define SDMMC_COM_CRC_ERROR 0xD9

#define SDMMC_LOCK_ULOCK_ERROR 0xDA

#define SDMMC_LOCK_ERROR 0xDB

#define SDMMC_WP_ERROR 0xDC

#define SDMMC_ERASE_PARAM_ERROR 0xDD

#define SDMMC_ERASE_SEQ_ERROR 0xDE

#define SDMMC_BLK_LEN_ERROR 0xDF

#define SDMMC_ADDR_MISALIGN_ERROR 0xE0

#define SDMMC_ADDR_RANGE_ERROR 0xE1

Table 45: Return Codes and Definitions (Continued)

Copyright © 2010 Marvell PUBLIC RELEASE Doc. No. MV-S301208-00 Rev. -

 Page 109

PXA3xx Processors and Tavor Processor
Boot ROM Reference Manual

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#define SDMMCDeviceNotReadyError 0xE2

#define SDMMCInitializationError 0xE3

#define SDMMCDeviceVoltageNotSupported 0xE4

Other DFC Errors

Double Bit Error on Read 0xFFFFFFF6 or 0xF6

DFC Timeout on Read Command 0xFFFFFFF9 or 0xF9

DFC Timeout on Page Read 0xFFFFFFF8 or 0xF8

DFC Timeout on Read ID Command 0xFFFFFFFF or 0XFF

Table 45: Return Codes and Definitions (Continued)

Doc. No. MV-S301208-00 Rev. - PUBLIC RELEASE Copyright © 2010 Marvell

Page 110

THIS PAGE INTENTIONALLY LEFT BLANK

Marvell Semiconductor, Inc.

700 First Avenue
Sunnyvale, CA 94089, USA

Tel: 1.408.222.2500
Fax: 1.408.752.9028

www.marvell.com

For more information, visit our website at:
www.marvell.com

Worldwide Corporate Offices
Marvell Semiconductor, Inc.

700 First Avenue

Sunnyvale, CA 94089, USA

Tel: 1.408.222.2500

Fax: 1.408.752.9028

Marvell Semiconductor, Inc.

5400 Bayfront Plaza

Santa Clara, CA 95054, USA

Tel: 1.408.222.2500

Marvell Asia Pte, Ltd.

151 Lorong Chuan, #02-05

New Tech Park, Singapore 556741

Tel: 65.6756.1600

Fax: 65.6756.7600

Marvell Japan K.K.

Shinjuku Center Bldg. 44F

1-25-1, Nishi-Shinjuku, Shinjuku-ku

Tokyo 163-0644, Japan

Tel: 81.(0).3.5324.0355

Fax: 81.(0).3.5324.0354

Marvell Semiconductor Israel, Ltd.

6 Hamada Street

Mordot HaCarmel Industrial Park

Yokneam 20692, Israel

Tel: 972.(0).4.909.1500

Fax: 972.(0).4.909.1501

Marvell Semiconductor Korea, Ltd.

Rm. 603, Trade Center

159-2 Samsung-Dong, Kangnam-Ku

Seoul 135-731, Korea

Tel: 82.(0).2.551-6070/6079

Fax: 82.(0).2.551.6080

Radlan Computer Communications, Ltd.
Atidim Technological Park, Bldg. #4

Tel Aviv 61131, Israel

Tel: 972.(0).3.645.8555

Fax: 972.(0).3.645.8544

Worldwide Sales Offices
Western US

Marvell
700 First Avenue

Sunnyvale, CA 94089, USA

Tel: 1.408.222.2500

Fax: 1.408.752.9028

Sales Fax: 1.408.752.9029

Marvell

5400 Bayfront Plaza

Santa Clara, CA 95054, USA

Tel: 1.408.222.2500

Central US
Marvell

9600 North MoPac Drive, Suite #215

Austin, TX 78759, USA

Tel: 1.512.343.0593

Fax: 1.512.340.9970

Eastern US/Canada

Marvell

Parlee Office Park

1 Meeting House Road, Suite 1

Chelmsford, MA 01824 , USA

Tel: 1.978.250.0588

Fax: 1.978.250.0589

Europe

Marvell
5 Marchmont Gate

Boundary Way

Hemel Hempstead

Hertfordshire, HP2 7BF

United Kingdom

Tel: 44.(0).1442.211668

Fax: 44.(0).1442.211543

Israel

Marvell
6 Hamada Street

Mordot HaCarmel Industrial Park

Yokneam 20692, Israel

Tel: 972.(0).4.909.1500

Fax: 972.(0).4.909.1501

China

Marvell

5J1, 1800 Zhongshan West Road

Shanghai, PRC 200233

Tel: 86.21.6440.1350

Fax: 86.21.6440.0799

Marvell

Rm. 1102/1103, Jintian Fudi Mansion

#9 An Ning Zhuang West Rd.

Qing He, Haidian District

Beijing, PRC 100085

Tel: 86.10.8274.3831

Fax: 86.10.8274.3830

Japan
Marvell

Shinjuku Center Bldg. 44F

1-25-1, Nishi-Shinjuku, Shinjuku-ku

Tokyo 163-0644, Japan

Tel: 81.(0).3.5324.0355

Fax: 81.(0).3.5324.0354

Taiwan

Marvell
2Fl., No.1, Alley 20, Lane 407, Sec. 2

Ti-Ding Blvd., Nei Hu District

Taipei, Taiwan, 114, R.O.C

Tel: 886.(0).2.8177.7071

Fax: 886.(0).2.8752.5707

Korea

Marvell

Rm. 603, Trade Center

159-2 Samsung-Dong, Kangnam-Ku

Seoul 135-731, Korea

Tel: 82.(0).2.551-6070/6079

Fax: 82.(0).2.551.6080

	1 Boot ROM Functional Overview
	1.1 General Description
	1.2 Purpose Of This Document
	1.3 ROM Location, Size, and Mapping
	1.4 Boot ROM Overview
	1.4.1 Boot Process for Programmed Device

	2 Boot ROM Differences
	2.1 Non-Trusted vs Trusted
	2.2 TIM/NTIM/OBM Support
	2.2.1 Version 2.xx Platforms
	2.2.2 Version 3.xx Platforms

	2.3 Boot ROM Address Maps
	2.3.1 ISRAM Usage
	2.3.2 OBM Usage

	2.4 PXA31x and Tavor Processor Auto-Boot
	2.4.1 Auto-Boot on Non-Trusted Platforms
	2.4.2 Auto-Boot on Trusted Platforms

	3 Software Requirements
	3.1 Size Restrictions for the Device Keying Binary
	3.2 OEM Boot Module Requirements for NAND Platforms
	3.2.1 NAND OEM Boot Module Size Restrictions

	3.3 NAND Bad/Relocation Block Table Definition
	3.3.1 Bad Block Table Definition
	3.3.2 Bad Block Relocation Area

	3.4 OEM Boot ROM Requirements for NOR Platforms
	3.4.1 Traditional Boot Platforms
	3.4.2 Trusted Boot Platforms

	3.5 Marvell® Wireless Trusted Module Driver Requirements

	4 Methods for Platform Provisioning
	4.1 Non-Trusted Provisioning
	4.1.1 Provisioning an Unprogrammed Non-Trusted Boot Platform Using a Device Keying Binary
	4.1.1.1 Device Keying Binary Requirements for an Unprogrammed Non-Trusted System

	4.2 Trusted Provisioning
	4.2.1 Provisioning an Unprogrammed Trusted Boot Platform Using a Device Keying Binary
	4.2.2 Device Keying Process
	4.2.2.1 Device Keying Binary Requirements for an Unprogrammed System
	4.2.2.2 Size Restrictions for the Device Keying Binary

	5 Boot ROM Implementation Details
	5.1 Non-Trusted Boot Address Map
	5.1.1 Trusted Boot Address Map
	5.1.2 NTIM/TIM Execution
	5.1.3 Requirements for the Wireless Trusted Module Save State
	5.1.4 Specific Requirements for NAND Platforms

	5.2 Boot ROM NAND Device Support
	5.2.1 Boot ROM NAND Device Recognition

	5.3 XIP Flash Support
	5.3.1 NOR Flash One-Time Programmable Register Usage

	5.4 Managed NAND Memory Support
	5.5 OneNAND Support
	5.5.1 Exiting Low Power Mode and Resets with OneNAND

	5.6 mDOC Support
	5.6.1 Exiting Low Power Mode and Resets with mDOC

	5.7 Internal SRAM Usage
	5.8 Handling Power Mode and Reset Transitions
	5.8.1 Platform Boot Process for Watchdog Reset, Power on Reset, Low Power Exit, and GPIO Reset
	5.8.2 S2/D3/C4 Resume Requirements
	5.8.2.1 S2/D3/C4 with NAND Boot Version 2.xx Boot ROM
	5.8.2.2 S2/D3/C4 with NAND Boot Version 3.xx and 3.1.x Boot ROM
	5.8.2.3 S2/D3/C4 iSRAM resuming

	5.9 Boot ROM: Processor-Specific Configurations
	5.9.1 PXA32x Processor Register Settings
	5.9.2 Other Registers

	5.10 PXA31x Processor Register Settings
	5.11 PXA30x Processor Register Settings
	5.12 Tavor Processor Implementation Details
	5.13 Error Conditions
	5.14 Hints And Tips

	6 Non-Trusted Image Module
	6.1 Non-Trusted Image Module Format
	6.1.1 Version Information
	6.1.2 Flash Information
	6.1.3 NTIM Sizing Information
	6.1.4 Image Information Array
	6.1.5 Reserved[SizeOfReserved]

	6.2 Reserved Area
	6.2.1 Reserved Area Header
	6.2.2 Reserved Area Packages

	6.3 Predefined Packages for Reserved Area
	6.3.1 GPIO Packages
	6.3.2 UART/USB Protocol Packages
	6.3.3 DDR Package
	6.3.4 Resume Package
	6.3.5 USB Vendor Request Package

	6.4 Summary of Predefined Package IDs for the Non-Trusted Image Module

	7 Trusted Image Module
	7.1 Trusted Image Module Format
	7.1.1 Version Information
	7.1.2 Flash Information
	7.1.3 TIM Sizing Information
	7.1.4 Image Information Array
	7.1.5 Key Information Array
	7.1.6 Reserved[SizeOfReserved]
	7.1.7 Platform Digital Signature Information

	7.2 Reserved Area
	7.2.1 Reserved Area Header
	7.2.2 Reserved Area Packages

	7.3 Predefined Packages
	7.3.1 GPIO Packages
	7.3.2 UART/USB Protocol Packages
	7.3.3 DDR Package
	7.3.4 Resume Package
	7.3.5 Autobind Package
	7.3.6 USB Vendor Request Package

	7.4 Hashing Methods
	7.5 Summary of Predefined Package IDs for the Trusted Image Module

	8 Non-Trusted Operation
	8.1 Operation with a Non-Trusted Image Module
	8.1.1 NAND Flash
	8.1.2 XIP Flash on Chip Select 2
	8.1.3 XIP Flash on Chip Select 0
	8.1.4 Samsung OneNAND* Flash
	8.1.5 SanDisk* Flash
	8.1.6 Image Downloading
	8.1.6.1 USB Port
	8.1.6.2 UART Port

	8.1.7 Preprogrammed Flash Requirements

	8.2 Operation Without a Non-Trusted Image Module
	8.2.1 NAND Flash
	8.2.2 XIP Flash on Chip Select 2
	8.2.3 XIP Flash on Chip Select 0
	8.2.4 OneNAND Flash
	8.2.5 MSystems Flash
	8.2.6 Preprogrammed Flash Requirements

	9 Trusted Boot Operation
	9.1 Trusted Boot Usage Cases
	9.1.1 Trusted Image Module Validation
	9.1.2 NAND Flash
	9.1.3 XIP Flash on Chip Select 2
	9.1.4 XIP Flash on Chip Select 0
	9.1.5 Samsung OneNAND™ Flash
	9.1.6 SanDisk* Flash
	9.1.7 Image Downloading
	9.1.7.1 USB Port
	9.1.7.2 UART Port

	9.2 Preprogrammed Flash Requirements
	9.3 JTAG Re-enablement

	10 TIM/NTIM Support For Memory Devices
	10.1 NAND Flash
	10.2 XIP Flash on Chip Select 2
	10.3 OneNAND Flash
	10.4 SanDisk Flash

	11 Communication Protocol
	11.1 Preamble
	11.2 Structure for Host Commands
	11.3 List of Commands
	11.4 Structure of Status Responses
	11.5 Responses
	11.6 Messages
	11.7 Disconnect
	11.8 Status Codes

	12 Host Tools
	12.1 Trusted Image Tools
	12.2 Download Tools
	12.3 JTAG Re-enable Tools

	13 Other Boot ROM Features
	13.1 Optional Settings in the TIM/NTIM Modules
	13.2 Tamper Recovery Mechanisms

	A Return Code Definitions

