

Page 1

VML to SVG Migration Guide:
A Comparative Overview of Architecture and Implementation

By Seth McEvoy
March 16, 2010

Page 2

This is a preliminary document and may be changed substantially prior to final commercial release of the

software described herein.

The information contained in this document represents the current view of Microsoft Corporation on

the issues discussed as of the date of publication. Because Microsoft must respond to changing market

conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft

cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights

under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval

system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or

otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property

rights covering subject matter in this document. Except as expressly provided in any written license

agreement from Microsoft, the furnishing of this document does not give you any license to these

patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail

addresses, logos, people, places and events depicted herein are fictitious, and no association with any

real company, organization, product, domain name, e-mail address, logo, person, place or event is

intended or should be inferred.

© 2010 Microsoft Corporation. All rights reserved.

Microsoft, Bing, DirectX, Internet Explorer, MSDN, Windows, and Windows Live are either registered

trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their

respective owners.

Page 3

About this Document
This migration guide provides a comparative overview of the architecture and implementation of the

vector markup languages, VML (Vector Markup Language) and SVG (Scalable Vector Graphics). It

includes working code examples, line-by-line code annotations, screen shots, and discussion material

that demonstrates how SVG has been developed and expanded from its VML roots.

This material is presented in two parts. The first part compares the 12 key architectural concepts of both

languages, showing how SVG has expanded and changed from VML, and which aspects are the same.

The second part of this guide consists of an SVG conversion of a 50-line VML animation program. The

line-by-line code annotations explain some of the differences between the implementations of the two

languages.

Introduction to VML and SVG
The markup languages VML and SVG provide a fast light-weight technology for displaying vector

graphics in a webpage. These languages make it possible to create graphic webpages that load quickly

and take up very little space. This is because the graphics are defined by text descriptions instead of

cumbersome bitmaps. VML and SVG both use XML (eXtended Markup Language) markup to define web

vector graphic images that can be completely modified by scripting languages such as JavaScript,

Python, or Perl.

Microsoft Office invented the VML technology in 1998 for use in Office products as a way to include

vector-based art when saving and loading Office documents to webpages. Major corporations using VML

include Google and Amazon. SVG is an expansion of VML that includes additional features and

functionality, but the basic architectural principles are still very similar. Both use XML to define shapes,

colors, line-weight, and position, but SVG has expanded many features. Numerous software companies

have been involved in the development of SVG, most notably are IBM, Adobe, Macromedia, and Sun.

These companies created a committee in 1998 to define a common vector language standard for the

World Wide Web Consortium. SVG is currently supported in varying degrees by Apple Safari, Google

Chrome, Firefox, Opera, and Internet Explorer.

VML is still available in IE9 but Microsoft expects web sites to transition to SVG in the future.

For the official VML documentation, visit http://msdn.microsoft.com/en-

us/library/bb264280(VS.85).aspx.

For the W3C specification for SVG 1.1, visit http://www.w3.org/TR/SVG11/.

http://msdn.microsoft.com/en-us/library/bb264280(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb264280(VS.85).aspx
http://www.w3.org/TR/SVG11/

Page 4

PART ONE: ARCHITECTURAL OVERVIEW OF VML AND SVG
This part presents a basic introduction to the 12 key architectural concepts and their implementations of

both languages. Their differences and similarities are discussed and code examples and screen shots are

used to explain the details. Visual samples of SVG output are provided to demonstrate the capabilities of

the language.

Table of Contents
This material compares VML and SVG in the following 12 sections:

1. Placement in a Webpage

2. Coordinate Systems

3. Building Blocks

4. Grouping Objects

5. Text

6. Fills

7. Strokes

8. Clipping

9. Styles

10. Transformations

11. Programming and Events

12. Data Types

Section 1: Placement in a Webpage
Both VML and SVG can add vector graphics to a webpage, but each technology does so in a completely

different way.

VML Procedure: Placement in a Webpage
To put VML in a webpage, you must add two definitions to a standard HTML page.

1. Define the VML namespace as an attribute of the HTML element.

2. Define a VML behavior as a style.

These two definitions enable MSIE to recognize and render VML tags. With these two highlighted lines

entered, the core HTML code looks like the following.

<html xmlns:v="urn:schemas-microsoft-com:vml">

<head>

<style> v\:* { behavior: url(#default#VML); }</style >

</head>

<body>

Page 5

</body>

</html>

To add VML elements, preface them with “v:” to indicate the VML namespace. For example, to create a

rectangle, use this code.

<v:rect

style="width:50;

 height:50"

 fillcolor="green"

 strokecolor="black"/>

This creates a 50-x-50–pixel green rectangle with a black stroke outline. The fill and stroke are attributes

and the width and height are style definitions.

The complete webpage would look like this.

<html xmlns:v="urn:schemas-microsoft-com:vml">

<head>

<style> v\:* { behavior: url(#default#VML); }</style >

</head>

<body>

<v:rect

style="width:50;

height:50"

fillcolor="green"

strokecolor="black"/>

</body>

</html>

A snapshot of this webpage would look like this.

Page 6

SVG Procedure: Placement in a Webpage
VML has only one way to place graphics in a webpage. SVG differs from VML in that it has several ways

to place graphics in a webpage, none of which are the same as VML. SVG uses these methods to put

graphics in a webpage:

 SVG stand-alone webpage

 SVG embedded in a webpage

 SVG merged with XHTML

 SVG inline with a standard HTML webpage.

SVG Stand-Alone Webpage

You can create a stand-alone SVG document with an.svg file extension. Use the following steps:

1. Create a text file with the .svg extension.

2. Add XML and DOCTYPE statements.

3. Add opening and closing SVG elements with namespace, width, and height.

The core SVG code would look like this.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns=”http://www.w3.org/2000/svg”

width=”200” height=”200”>

</svg>

Add SVG elements between the opening and closing SVG element tags to create graphics. For example,

to add a rectangle, insert this code.

 <rect

 x="100"

 y="100"

 width="50"

 height="50"

 fill="red"

 stroke="blue" />

http://www.w3.org/2000/svg

Page 7

This adds a standard rectangle, 50 x 50 pixels, with red fill and blue stroke outline. The position of the

rectangle will be at 100, 100 in the webpage coordinate system.

The complete code would look like this.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns=http://www.w3.org/2000/svg

width=200 height=200>

 <rect

 x="100"

 y="100"

 width="50"

 height="50"

 fill="red"

 stroke="blue" />

</svg>

A snapshot of the webpage would look like this.

SVG Embedded in a Webpage

After creating an SVG file with an .svg extension, you can embed the SVG file into a separate standard

HTML webpage using iframe, object, img, or embed elements.

The .svg file is pulled into the webpage by reference. For example, the following code would display the

previous SVG image on a webpage in four different ways.

http://www.w3.org/2000/svg

Page 8

<html>

<head>

</head>

<body>

<p>iframe</p>

<iframe src="rect.svg" height="200" width="200" frameborder=”0”>

</iframe>

<p>object</p>

<object data="rect.svg" type="image/svg+xml" height="200" width="200">

</object>

<p>embed</p>

<embed src="rect.svg" type="image/svg+xml" height="200" width="200">

</embed>

<p>image</p>

<image src="rect.svg" type="image/svg+xml" height="200" width="200">

</image>

</body>

</html>

SVG Merged with XHTML

Because SVG is written in XML, SVG elements can be added as an SVG document fragment to a standard

XHTML page.

First, you must create an XHTML page with the .xhtml file extension. Next, you must add the SVG

namespace. Use the following code to do this.

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:svg="http://www.w3.org/2000/svg">

<head>

Page 9

</head>

<body>

</body>

</html>

Then, as you add SVG elements in the XML code, prefix them with "svg:" to identify them as part of the

SVG namespace. For example, to add a circle, insert this code in the body of your page.

 <svg:svg width="200" height="200">

 <svg:circle cx="100" cy="100" r="50px"

 fill="lime" stroke="maroon" stroke-width="5"/>

 </svg:svg>

The complete XHTML page would contain this code.

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:svg="http://www.w3.org/2000/svg">

<head>

</head>

<body>

 <svg:svg width="200" height="200">

 <svg:circle cx="100" cy="100" r="50px"

 fill="lime" stroke="maroon" stroke-width="5"/>

 </svg:svg>

</body>

</html>

A snapshot of the page in a browser would look like this.

SVG Inline with a Standard HTML Webpage

The previous three techniques for displaying SVG have been in use for several years. A newer technique

has evolved in conjunction with HTML 5, allowing SVG elements to be treated as if they were HTML

elements.

For example, create a minimum HTML webpage, and include the standards-based DOCTYPE element:

Page 10

<!DOCTYPE HTML>

<html>

<head>

</head>

<body>

</body>

</html>

Then insert the SVG code in the body of the HTML document.

<svg>

 <circle cx="100" cy="100" r="50" fill="gold"></svg>

</svg>

The SVG elements and attributes are treated the same as any other HTML elements and attributes. This

makes it easy to author, script, test, and modify SVG because all of the normal HTML tools are available.

The complete code for this inline SVG example is as follows.

<!DOCTYPE HTML>

<html>

<head>

</head>

<body>

<svg>

 <circle cx="100" cy="100" r="50" fill="gold"></svg>

</svg>

</body>

</html>

The finished webpage looks like this.

Page 11

Section 2: Coordinate Systems
VML and SVG both use the same coordinate systems, where 0, 0 is in the upper-left corner, the x values

increase moving right across the page, and the y values increase moving down the page. The following

diagram shows the x, y values of the four corners of a 100 x 100 rectangle.

Section 3: Building Blocks
VML and SVG each have the same concept of using building blocks to create simple visual components,

but they implement these concepts in different ways.

The building blocks common to both are:

 Circle

 Square

 Polygon

 Line

 Curve

 Path

 Image

Page 12

VML Procedure: Building Blocks
The basic building block for VML is the Shape element. All VML elements use Shape as a basic template.

The Shape element has 75 attributes that define its characteristics, and 13 subelements that further

define them.

In addition, VML has the following defined shapes that have all the attributes of the Shape element, but

also have additional attributes.

 Rect (rectangle)

 RoundRect

 Line

 Polyline

 Oval

 Image

 Curve

One of the additional VML building blocks is the subelement Path, which defines a path using a

quoted series of commands and numbers.

SVG Procedure: Building Blocks
SVG provides several building blocks that are the same as VML but with different names. SVG building

blocks are independent of each other. Unlike VML, SVG has no master Shape element building block that

all others inherit from.

The standard building blocks for SVG are:

 Rect (rectangle)

 Line

 Polyline

 Polygon

 Ellipse (includes Circle)

 Path

 Image

VML and SVG Building Block Comparison
The following chart compares the VML and SVG building blocks.

VML SVG

Oval Circle

Oval Ellipse

Page 13

Rect,
RoundRect

Rect

Polyline Polyline,
Polygon

Line Line

Curve Path (Bezier)

Image Image

Path Path

Section 4: Grouping Objects
VML and SVG both allow a collection of shapes to be grouped so they can be modified as if they were

one object. The only real difference is in the name of the grouping element.

VML Procedure: Grouping
VML uses the group element to enclose a group. For example:

<v:group>

…

</v:group>

SVG Procedure: Grouping
SVG has a similar name for group objects. It uses the g element to enclose a group. For example:

<g>

…

</g>

Section 5: Text
VML and SVG treat text very differently. VML only has text as an attribute of an object, but SVG has a

text element which can be modified by attributes.

VML Procedure: Text
VML uses two elements to display text:

 TextBox

 TextPath

Page 14

TextBox

The TextBox element uses text as an attribute of a rectangle. This makes for fast creation of flow charts

and organizational charts. The text expands or contracts to fill the box. However, because this redrawing

does not use standard Windows fonts, the result may not be readable in extreme cases.

TextPath

Similarly, the TextPath element uses text as an attribute of a path. This lets you draw the text along any

path. The text, however, is expanded or contracted to fit the length of the path, again using redrawing

that does not use standard Windows fonts.

SVG Procedure: Text
Unlike VML, where text is just an attribute of a box or path, SVG has an actual text element. This allows

attributes to modify the text directly. For example, you can modify attributes like typeface, color, and

fill.

SVG text works only with single lines of text and does not have a provision for line breaks or line

wrapping.

The following shows a few examples of SVG text manipulation.

Stretched Text

Because SVG is based on scalable graphics, you can stretch text without any loss of fidelity.

Normal Text

Normal Text Stretched

Rotated Text

SVG can transform text. One of the most popular transformations is rotation. An example of rotated text

is as follows.

Page 15

Section 6: Fills
VML and SVG both provide similar ways to fill a closed shape with color and patterns, but SVG also

provides a way to fill a shape with repeated vector patterns.

VML Procedure: Fills
VML uses the fill element to define fills. There are three types of fill:

 Color

 Gradient (simple or polar)

 Bitmap (tile or stretched)

SVG Procedure: Fills
SVG uses the fill attribute to define fills. It uses the same three fills as VML, but adds a fourth fill.

The four SVG types of fill are:

 Color

 Gradient (simple or polar)

 Bitmap (tile or stretched)

 Vector pattern (tile or stretched)

The following shows a simple vector pattern fill:

Page 16

Section 7: Strokes
VML and SVG both have similar ways to define the width, color, and other attributes of the strokes that

outline a shape. However, the two languages differ in how they treat the ends of a stroked line, such as

arrowheads or endcaps.

VML Procedure: Strokes
VML uses attributes to define the width, color, and other attributes of a stroke. It can also define

arrowheads and endcaps.

SVG Procedure: Strokes
Like VML, SVG uses the same attributes to define width, color, and other attributes of a stroke. Unlike

VML, it uses a separate marker element to define arrowheads.

Section 8: Clipping
VML and SVG both provide ways to clip shapes.

VML Procedure: Clipping
VML provides a VMLFrame element for clipping as well as a primitive form of clipping using objects.

SVG Procedure: Clipping
Unlike the primitive single clipping technique of VML, SVG supports clipping paths, masking, and simple
alpha blending compositing.

Section 9: STYLES
Both VML and SVG support CSS and DOM styles in the same way.

Section 10: Transformations
VML provides limited support for transformations, but SVG provides ways to transform an object’s

position, sizing, and orientation in complex mathematical ways.

VML Transformations
VML has the following transformations:

 Shadow

 Skew

 Extrusion

Page 17

SVG Transformations
VML has only three transformations, but SVG has six. SVG does not have an equivalent of VML’s pseudo-

3D Shadow and Extrusion transformations.

SVG provides a rich set of mathematical transformation using the transform attribute.

 Matrix (a,b,c,d,e,f)

 Translate (x,y)

 Scale(x,y)

 Rotate(angle,x,y)

 SkewX (angle)

 SkewY(angle)

SVG transformations can be combined or nested.

The code example in Part 2 shows an SVG transformation using the rotate transform attribute.

Section 11: Programming and Events
VML and SVG provide the same programming access through scripting and both use standard DOM and

CSS events.

Section 12: Data Types
VML and SVG have different sets of data types.

VML Data Types
VML has the following basic data types:

 Double

 Fixed

 Integer

 String

 Length

 Measure

 Angle

 Color

VML also has data type objects that have attributes and methods using the standard data types. They

are prefixed by “IVg”. For example, IVgGradientColor array has value and length attributes that are

String and Integer, and the methods of AddColor and RemoveColor.

VML uses standard CSS units such as em and px, but also uses the emu, which is the English Metrical

Unit.

Page 18

SVG Data Types
SVG uses many of the same data types as VML. Four are the same, two are the same but with a different

name, and two are completely new.

SVG has the following data types:

 Integer

 Number

 String

 Length

 Angle

 Color

 Coordinate

 Paint

 List

 Percentage

Data Type Comparison
The following table compares the data types of VML and SVG.

VML SVG

Integer, Double Integer

Fixed Number

String String

Length, Measure Length

Angle Angle

Color Color

n/a Paint

n/a List

n/a Percentage

PART TWO: VML TO SVG CONVERSION CODE EXAMPLE
This part provides a working SVG code example that has been converted from a 50-line VML program

that demonstrates the creation and rotation of a rectangle in a webpage. This code example shows how

the SVG rotation concept has expanded from VML. Both the VML and SVG programs include a discussion

of how the code works and line-by-line code annotations that detail the architectural concepts and their

implementation for each language. DOM (Document Object Model) scripting is used in these examples

to demonstrate advanced JavaScript techniques that manipulate vector graphic images in real time.

Page 19

VML Rotate Rectangle Program
This program creates a rectangle in a webpage using VML. After the rectangle is created, it spins the

rectangle until you stop it. Buttons are provided to create, spin, and stop the rectangle.

Introduction
The discussion and code for this program is divided into the following tasks:

 Setting up VML in an HTML webpage.

 Creating a VML rectangle.

 Rotating the rectangle.

 Stopping the rotation.

Task 1: Setting up the VML in an HTML webpage

First, you must set up the HTML and JavaScript framework for the program. VML requires specific code

to define namespace and behavior. The scripting is in the head and three buttons are in the body. Also, a

div element is set up in the body that is used to anchor the newly created rectangle.

When you load the completed code example into Internet Explorer, you may have to give permission to

run the program. If you are using the Internet Explorer Platform Preview, you may have to set the Debug

option to an earlier version of IE.

Once loaded, press the first button to create the rectangle, the second to spin it, and the third to stop it.

This type of programming uses the Document Object Model (DOM) and is commonly called DOM

scripting. This advanced JavaScript technique allows for fast and flexible manipulation of vector images

in a webpage. Unlike static webpages, DOM scripting allows for the creation of dynamic applications

that can interact with the user.

The body of the HTML document doesn’t contain any VML code; instead, VML objects are created in

memory through programming and attached to a <div> in the document. You can then manipulate the

objects very easily through code.

<html xmlns:v="urn:schemas-microsoft-com:vml">

<head>

<!-- VML requires VML namespace and behavior. -->

<style>

v\:* { behavior: url(#default#VML);}

</style>

<script type="text/javascript">

Page 20

// Your JavaScript code will go here.

</script>

</head>

<body>

<!-- Button to create rectangle. -->

<input type="BUTTON" value="Make Rectangle" onclick="makeRect()">

<!-- Button to rotate rectangle. -->

<input type="BUTTON" value="Rotate Rectangle" onclick="rotateRect()">

<!-- Button to close webpage. -->

<input type="BUTTON" value="Stop!" onclick=”clearInterval(spin)”>

<!-- Node where new rectangle will be attached. -->

<div id="anchorDiv"></div>

</body>

</html>

Task 2: Creating the Rectangle

The Document Object Model allows you to create objects in memory using JavaScript and then attach

them to the document so they can be displayed.

The following code creates a rectangle using the VML namespace template for a rectangle. The

createElement method is used to create the rectangle, and CSS styles are used to define the height,

Page 21

width, color, and ID of the rectangle. Finally, the appendChild method is used to attach the rectangle to

the document at the “anchorDiv” div element.

Also a global variable, “spin” is created that will be used later to stop the spinning rectangle.

The makeRect function is called when the Make Rectangle button is pushed.

//Flag to stop rectangle from spinning.

var spin;

// Make rectangle.

function makeRect() {

 // Create element in memory.

 var r = document.createElement("v:rect");

 // Define width, height, color, and unique ID.

 r.style.width = 100;

 r.style.height = 100;

 r.fillcolor = "purple";

 r.id = "myRect";

 // Attach rectangle to the document at the the specified Div.

 anchorDiv.appendChild(r);

 }

Task 3: Spin the Rectangle

After the rectangle is created, two functions are used to spin the object.

The first function, rotateRect, is called by the Rotate Rectangle button. This function uses the

setInterval command to call the function that actually rotates the rectangle every ten milliseconds. The

global variable “spin” is used as a pointer to the timer making the call.

The second function, spinRect, is called by the setInterval method which was triggered in the rotateRect

function. It uses the VML method Rotate to rotate the object 11 degrees every time it is called.

// Set up the rotation.

Page 22

function rotateRect() {

 // Call spinRect function every 10 milliseconds.

 // The spin variable allows us to clear the call to setInterval.

 spin = setInterval("spinRect()", 10);

 }

// Spin the rectangle by specified increment every time function called.

function spinRect() {

 // Increment rectangle rotation by 11 degrees.

 myRect.rotation += 11;

 }

Task 4: Stop the Rectangle Spinning

The Stop button calls the clearInterval method using the spin variable that was set in the rotateRect

function. This simply stops the specified setInterval method from calling rotateRect again.

Complete Program Listing
Copy and paste this into a text document with the .html extension.

<html xmlns:v="urn:schemas-microsoft-com:vml">

<head>

<!-- VML requires VML namespace and behavior. -->

<style>

v\:* { behavior: url(#default#VML);}

</style>

<script type="text/javascript">

//Flag to stop rectangle from spinning.

var spin;

Page 23

// Make rectangle.

function makeRect() {

 // Create element in memory.

 var r = document.createElement("v:rect");

 // Define width, height, color, and unique ID.

 r.style.width = 100;

 r.style.height = 100;

 r.fillcolor = "purple";

 r.id = "myRect";

 // Attach rectangle to the document at the the specified Div.

 anchorDiv.appendChild(r);

 }

// Set up the rotation.

function rotateRect() {

 // Call spinRect function every 10 milliseconds.

 // The spin variable allows us to clear the call to setInterval.

 spin = setInterval("spinRect()", 10);

 }

// Spin the rectangle by specified increment every time function called.

function spinRect() {

 // Increment rectangle rotation by 11 degrees.

 myRect.rotation += 11;

Page 24

 }

</script>

</head>

<body>

<!-- Button to create rectangle. -->

<input type="BUTTON" value="Make Rectangle" onclick="makeRect()">

<!-- Button to rotate rectangle. -->

<input type="BUTTON" value="Rotate Rectangle" onclick="rotateRect()">

<!-- Button to close webpage. -->

<input type="BUTTON" value="Stop!" onclick="clearInterval(spin)">

<!-- Node where new rectangle will be attached. -->

<div id="anchorDiv"></div>

</body>

</html>

SVG Rotate Rectangle Program
This program creates a rectangle in a webpage using SVG. After the rectangle is created, the program

spins the rectangle until you stop it. Buttons are provided to create, spin, and stop the rectangle.

Page 25

Introduction
The discussion and code for this program is divided into the following tasks:

 Setting up SVG in an HTML webpage.

 Creating an SVG rectangle.

 Rotating the rectangle.

 Stopping the rotation.

Task 1: Setting up SVG in an HTML webpage

First, you must set up the HTML and JavaScript framework for the program. The scripting is in the head

and three buttons are in the body. Also, a div element is set up in the body that is used to anchor the

newly created rectangle. Be sure to use the DOCTYPE instructions as the first line to conform to web

standards.

If you are using the IE9 Platform Preview, you may have to set the Debug option to IE9 and you must

load the program from the Open menu.

After the program loads, press the first button to create the rectangle, the second to spin it, and the

third to stop it.

This type of programming uses the Document Object Model (DOM) and is commonly called DOM

scripting. Like the VML program, the SVG code example uses this advanced JavaScript technique to allow

fast and flexible manipulation of vector images in a webpage. Unlike static webpages, DOM scripting

allows for the creation of dynamic applications that can interact with the user.

The body of the HTML document doesn’t contain any SVG code; instead, SVG objects are created in

memory through programming and attached to a <div> in the document. You can then manipulate the

objects very easily through code.

<!DOCTYPE HTML>

<html>

<head>

<script type="text/ecmascript">

// Scripts go here.

</script>

</head>

Page 26

<body>

<!-- Button to create rectangle. -->

<input type="BUTTON" value="Make Rectangle" onclick="makeRect()">

<!-- Button to rotate rectangle. -->

<input type="BUTTON" value="Rotate Rectangle" onclick="rotateRect()">

<!-- Button to close webpage with spin variable. -->

<input type="BUTTON" value="Stop!" onclick=clearInterval(spin)>

<!-- The rectangle will be attached to the document here. -->

<div id="myAnchor"></div>

</body>

</html>

Task 2: Creating the Rectangle

The Document Object Model allows you to create objects in memory using JavaScript and then attach

them to the document so they can be displayed.

Every SVG document must have a parent SVG element that all SVG elements will be added to. The

following code will create the parent SVG element and then create a rectangle using the SVG namespace

template.

The createElementNS method creates the parent SVG element mySVG and defines the width and

height. Then the createElementNS method is used again to create the rectangle by calling the SVG

namespace. The setAttributeNS method is used to define the height, width, x, y, color, fill, and stroke of

the rectangle.

Once the rectangle is created, it is attached to the SVG parent with with appendChild. Next the SVG

parent is attached to the “anchorDiv” div element, using getElementById and appendChild.

Page 27

Global variables are also added:

 “svgNS” is used to define the path to the SVG namespace.

 “mySVG” is used to define the parent SVG element.

 “myRect” is used as a place holder for the rectangle.

 “spin” is created that will be used later to stop the spinning rectangle.

 “myAngle” is the initial value of the angle to rotate.

 “myX” and “myY” will be used to define the center of rotation.

The makeRect function is called when the Make Rectangle button is pushed.

// Global variables.

// Define SVG namespace.

var svgNS = "http://www.w3.org/2000/svg";

Page 28

// Placeholder for parent SVG element to be created.

var mySvg;

// Placeholder for rectangle object to be created.

var myRect;

// Flag to stop rectangle spinning.

var spin;

// Initial angle to start rotation from.

var myAngle = 0;

// Values of center of rotation.

var myX = 150;

var myY = 150;

// Make Rectangle.

function makeRect() {

 // Create parent SVG element with width and height.

mySvg = document.createElementNS(svgNS,"svg");

 mySvg.setAttributeNS(null,"width",600);

 mySvg.setAttributeNS(null,"height",600);

 // Create rectangle element from SVG namespace.

 myRect = document.createElementNS(svgNS,"rect");

 // Set rectangle's attributes.

 myRect.setAttributeNS(null,"width",100);

 myRect.setAttributeNS(null,"height",100);

Page 29

 myRect.setAttributeNS(null,"x",100);

 myRect.setAttributeNS(null,"y",100);

 myRect.setAttributeNS(null,"fill","lightcoral");

 myRect.setAttributeNS(null,"stroke","deepskyblue");

 myRect.setAttributeNS(null,"stroke-width","5");

 // Append rectangle to the parent SVG element.

 // Append parent SVG element to the div node.

 mySvg.appendChild(myRect);

 document.getElementById("myAnchor").appendChild(mySvg);

 }

Task 3: Spin the Rectangle

After the rectangle is created, two functions are used to spin the object.

The first function, rotateRect, is called by the Rotate Rectangle button. This function uses the

setInterval command to call the function that actually rotates the rectangle every ten milliseconds. The

global variable “spin” is used as a pointer to the timer making the call.

The second function, spinRect, is called by the setInterval method which was triggered in the rotateRect

function. It uses the SVG translate attribute with the definition to rotate the object 11 degrees every

time it is called. Note that the rotate definition has three parameters: the rotation angle, the x center of

rotation, and the y center of rotation. Because a translation has to use SVG, the DOM, and JavaScript,

the parameters must use quotes and plus signs to convert the floating-point number of JavaScript to

SVG degrees.

Page 30

// Do the rotation every 10 milliseconds until cancelled.

function rotateRect() {

 spin = setInterval("spinRect()", 10);

 }

// Spin rectangle by 11 degrees.

function spinRect() {

 // Rotation is a subset of the transform attribute.

 // Note the use of quotes and plus signs with variables in SVG attribute call.

 myRect.setAttributeNS(null,"transform","rotate(" + myAngle + "," + myX + "," +

myY + ")");

 myAngle = myAngle + 11;

 }

Task 4: Stop the Rectangle Spinning

The Stop button calls the clearInterval method using the spin variable that was set in the rotateRect

function. This stops the specified setInterval method from calling rotateRect again.

Complete Program Listing
Copy and paste this into a text document with the .html extension.

<!DOCTYPE HTML>

<html>

<head>

<script type="text/ecmascript">

var svgNS = "http://www.w3.org/2000/svg";

var mySvg;

var myRect;

var spin;

var myAngle = 0;

var myX = 150;

Page 31

var myY = 150;

// Create a rectangle.

function makeRect() {

 // Create SVG parent element.

mySvg = document.createElementNS(svgNS,"svg");

 mySvg.setAttributeNS(null,"width",600);

 mySvg.setAttributeNS(null,"height",600);

 // Create rectangle.

myRect = document.createElementNS(svgNS,"rect");

 myRect.setAttributeNS(null,"width",100);

 myRect.setAttributeNS(null,"height",100);

 myRect.setAttributeNS(null,"x",100);

 myRect.setAttributeNS(null,"y",100);

 myRect.setAttributeNS(null,"fill","lightcoral");

 myRect.setAttributeNS(null,"stroke","deepskyblue");

 myRect.setAttributeNS(null,"stroke-width","5");

 // Append rectangle to SVG parent element.

mySvg.appendChild(myRect);

 // Append SVG parent to document.

document.getElementById("myAnchor").appendChild(mySvg);

 }

// Spin the rectangle 11 degrees when called.

function spinRect() {

 myRect.setAttributeNS(null,"transform","rotate(" + myAngle + "," + myX +

"," + myY + ")");

Page 32

 myAngle = myAngle + 11;

 }

// Call spinRect every 10 milliseconds.

function rotateRect() {

 spin = setInterval("spinRect()", 10);

 }

</script>

</head>

<body>

<!-- Button to create rectangle. -->

<input type="BUTTON" value="Make Rectangle" onclick="makeRect()">

<!-- Button to rotate rectangle. -->

<input type="BUTTON" value="Rotate Rectangle" onclick="rotateRect()">

<!-- Button to close web page. -->

<input type="BUTTON" value="Stop!" onclick="clearInterval(spin)">

<div id="myAnchor"></div>

</body>

Page 33

</html>

