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Around the sixth century BC, the ancient Greeks discovered a seemingly mystical
correspondence between musical intervals with a pleasing sound and ratios of whole
numbers: the principal tones of a musical scale are produced by fretting a string at points
that divide its length into simple ratios. Although it would take more than two millenia for
this phenomenon to be fully explained, an association between musical harmony and
proportions was firmly established in Western thought. The ancients believed musical
harmony to be a compelling demonstration of mathematical order in the universe—indeed,
through medieval times, the study of proportions was closely linked to the study of music.

The fact that scholars in ancient India made significant mathematical discoveries while
analyzing the rhythms, or meters, of poetry has been largely overlooked in the West. In
English, a meter is a pattern of stressed and unstressed syllables. For example,
Shakespeare’s plays are written in a meter called iambic pentameter, five pairs of
alternating unstressed and stressed syllables to a line. In Sanskrit, the classical language of
India, a meter is a pattern of short and long syllables that dictates the rhythm of a poem.
While there are only about a dozen English meters, there are hundreds of meters in
Sanskrit. Many meters are associated with specific religious rituals.

What would a catalog of all possible meters look like? Of course, it would be infinitely
large; the challenge is to come up with a finite set of instructions—an algorithm—that
generates all viable patterns. How can we check that every meter belongs somewhere in
this catalog? Is there a shorthand we can use to remember a metrical pattern? Indian
scholars answered these questions in ingenious ways.

The search for ways to list and classify meters led to important mathematical discoveries:
Pascal’s triangle, the Fibonacci numbers, and even the rudiments of the binary number
system. The discoveries of these structures in India predated those in the West, sometimes
by several centuries. They used recursion and iteration—essential computer programming
techniques—to generate lists of rhythms. The fact that several authors solved the same
problems in different ways reveals the depth of Indian mathematical development at the
time. Their discoveries also apply to rhythm patterns in traditional and popular music.

The binary representation of meter

Several features of Sanskrit poetry are particularly mathematical. Sanskrit meters are
patterns of long (guru) and short (laghu) syllables, with a long syllable having twice the
length of a short one (in English, syllables have no numerical value). Sanskrit meters fall
into two categories: meters in which the number of syllables in a line are fixed, and meters
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in which the duration of a line is fixed, but not the number of syllables. This distinction
naturally raises several mathematical questions.

Pingala is credited with the first work on prosody, the systematic study of meter. We know
very little about him. Some modern scholars think he lived around 500 BC and was the
nephew of the great Sanskrit grammarian Panini; others claim he lived around 200 BC.
The earliest definitive reference to his writing comes in the third century AD [11].
Moreover, it is not clear whether the works attributed to him were written by the same
person, or whether, as in the case of Pythagoras, some were written by his followers.
Pingala’s writings took the form of short, cryptic verses, or sūtras, which served as memory
aids for a larger set of concepts passed on orally.

We rely on medieval commentators for much of the interpretation of Pingala’s work. They
include Halāyudha (13th century) and Kedāra Bhatt (8th century). Bhatt solves the same
problems Pingala does, but uses such different methods that modern scholars disagree on
whether or not his works are commentaries on Pingala [11, 5].

Pingala studied meters with a fixed number of syllables. It is easy to discover by
experimentation that there are two meters of one syllable, four meters of two syllables, and
eight meters of three syllables (Western prosodists stopped here). Listing meters for any
number of syllables is more of a challenge.

Pingala’s sūtras address four problems:

Problem 1. How can we systematically list all the patterns of n syllables for
any n?
Problem 2. Suppose a pattern is erased from this list. How can we recover the
missing pattern?
Problem 3. Given any pattern, how can we find its position on the list
without recreating the entire list?
Problem 4. What is the total number of patterns of n syllables?

Problem 1: listing the patterns of n syllables.

Pingala gave instructions on how to list the patterns of n syllables in a table he called
prastāra, or expansion. Pingala’s first sūtra states that the expansion of one syllable has
two elements (a long syllable and a short syllable, represented by the letters and ,
respectively). His second sūtra observes that the expansion of two syllables is the
one-syllable expansion “mixed with itself.” That is, “mix” and with to get and ;
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1 1 1 1 9
2 2 2 2 10

3 3 3 11
4 4 4 12

5 5 13
6 6 14
7 7 15
8 8 16

Figure 1: Expansions of one-, two-, three-, and four-syllable meters, with indices

mix and with to get and . To get the three-syllable expansion, append to the end of
the two-syllable expansion, then do the same for . The final sūtra states that there are
eight patterns of three syllables. Presumably, we are to again combine the three-syllable
patterns separately with and to get the expansion of four-syllable patterns. These
instructions generalize to any length of pattern. Prastāras of one through four syllables are
shown in Figure 1.

Kedāra Bhatt gives an completely different algorithm that nonetheless generates the list of
n-syllable patterns in the same order Pingala uses [11, 5]. The first pattern on the list
consists of n long syllables. Suppose you are given any pattern on the list (for example,

). To get the next pattern, start from the left by writing long syllables:

When you reach the position of the first long syllable in the previous pattern, write a short
syllable:

- - - - -

Then recopy the rest of the previous pattern:

The list ends with the pattern of all short syllables (without this stipulation, the list
repeats in an infinite loop, since applying the algorithm to the pattern of n short syllables
produces the pattern of n long syllables).

Pingala’s algorithm follows naturally from the observation that the list of (n − 1)-syllable
patterns is nested (twice) within the list of n-syllable patterns. Bhatt’s algorithm is less
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obvious; it is perhaps easiest to derive from the routine described in his solution to
Problem 3 (discussed below).

Combinatorial sequence generation is the process of systematically listing structures with a
given property. Computer-science guru Donald E. Knuth credits Sanskrit prosodists with
“the first-ever explicit algorithm for combinatorial sequence generation” [4]. A significant
difference between the two writers is that Bhatt’s algorithm is iterative—that is, it gives
instructions to get from one pattern on the list to the next—while Pingala’s algorithm is
recursive—it generates the entire list of n-syllable patterns from the list of (n − 1)-syllable
patterns, so that the list of patterns of any given length may be generated by repeatedly
invoking the same routine. Both iteration and recursion are fundamental computer
programming techniques. A fascination with recursion appears in Indian art and religion
from ancient times. For example, the medieval Kandariya Mahadeva temple (figure 2)
contains several miniature copies of itself.

Problem 2: recovering a lost pattern.

Suppose a pattern is erased from the list. How can we recover it without having to
regenerate the entire list? Bhatt does not address this problem, as his algorithm generates
the missing row from the previous pattern. However, this is a serious problem for Pingala.

Pingala’s pattern recovery algorithm assumes that we know the position of the missing
pattern, which we will call its index (see Figure 1). He gives the following instructions: if
the index can be halved, halve it and write ; otherwise, write , add one, and halve the
result. Repeat the process, writing from left to right, until the pattern has the correct
number of syllables.

To understand why Pingala’s algorithm works, let w represent a string of n characters
drawn from the set { , } and let ind w denote its index. Observe that the index of w is
odd if w starts with and even if w starts with . If we remove the first syllable of pattern
w to get a new pattern, w′, then

ind w′ =

{

(ind w + 1)/2 if ind w is odd
(ind w)/2 if ind w is even

Suppose we know the index of pattern p (but not the pattern itself), and wish to recover
the pattern. Since we use a repeated routine, it is convenient to rename p as pn. We
recover the syllables of pn one at a time; at each point the string of unknown syllables is
one shorter, and we call these successively shorter strings pn−1, pn−2, . . . , p1. If ind pn is
odd, pn begins with ; therefore, pn = pn−1, where ind pn−1 = (ind pn + 1)/2. If ind pn is
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Figure 2: Recursion in Indian architecture: the Kandariya Mahadeva temple
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even, pn begins with ; therefore, pn = pn−1, where ind pn−1 = ind pn/2. We now know the
index of pn−1 in the list of patterns of length n − 1. Repeat the algorithm until all the
characters of pn have been generated.

The following steps show that the fifth pattern of five syllables is :

pattern ind pi parity
p5 5 odd
p4 (5 + 1)/2 = 3 odd
p3 (3 + 1)/2 = 2 even
p2 2/2 = 1 odd
p1 (1 + 1)/2 = 1 odd

Problem 3: finding the index of a pattern.

Now, suppose you are given a pattern. Where does it belong on the list? Pingala’s
indexing process reverses the algorithm he developed for Problem 2. The index of the
pattern of all long syllables is one. For any other pattern, start with the first short syllable
from the right. The instruction is simply “multiply by two” (in order for the algorithm to
work, the starting number must be one). If the next syllable on the left is , again multiply
the resulting number by two; otherwise, multiply it by two and subtract one. Repeat this
process until the leftmost character is reached.

This procedure stems from the observation that if w is a pattern,

ind w = 2 ind w − 1

ind w = 2 ind w

Since adding any number of ’s to the end of a word does not change its index, Pingala’s
process begins with the first short syllable from the right. While the original pattern is
recreated by adding one syllable at a time on the left, the algorithm keeps track of the
index of the current pattern.

The following steps show that the index of is five.
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pattern index
1
2 · 1 = 2
2 · 2 − 1 = 3
2 · 3 − 1 = 5

Bhatt’s algorithm for finding the index of a given pattern is again strikingly different from
Pingala’s. It stems from the observation that if w is a meter of n syllables,

ind w = ind w

ind w = ind w + 2n.

Accordingly, Bhatt assigned a place value to each syllable. Reading from the left, the first
place has value one, the second has value two, the third has value four, and so on, so that
the value of the ith place is 2i−1. Bhatt observed that the index of a pattern is one more
than the sum of the place values of its short syllables.

For example, the index of is six, because short syllables fall in the first and third
columns:

1 + 1 + 0 · 2 + 4 + 0 · 8 = 6

Perhaps Bhatt was predisposed to use a positional indexing system, as the positional
decimal numbers are thought to have been adopted in India close to the century of his
birth [3].

We may now return to Bhatt’s somewhat opaque solution to Problem 1. Suppose we know
the kth pattern of n syllables, and wish to write the (k + 1)st pattern. We define
k1, k2, . . . , kn by

ki =

{

0 if the ith syllable is
1 if the ith syllable is

Then the index of the kth pattern is

1 + k1 + 2k2 + 4k3 + . . . + 2n−1kn,

If k1, k2, . . . , kn begins with a string of 1s, to get the (k + 1)st pattern, change all of these
to 0s, replace the first 0 with 1, and leave the rest of the sequence alone.
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Problem 4: counting patterns of n syllables.

The fourth problem both Pingala and Bhatt tackled involves counting the possible poetic
meters of a fixed number of syllables [1]. In other words, they wrote procedures to evaluate
2n. Bhatt gives two algorithms [5]. The first is based on his solution to the index-finding
problem. He observes that the index of the pattern of n short syllables is 2n. Using his
algorithm, this equals one plus the sum of the positional value of each syllable; in other
words,

2n = 1 +
n

∑

i=1

2i−1.

Bhatt’s second algorithm involves summing the binomial coefficients nCr; we will discuss
these in the next section.

Pingala, on the other hand, again gives a recursive algorithm based on the observation that

2n =

{

(2n/2)2 (used if n even)
2n−1 · 2 (used if n odd)

(of course, both statements are equivalent, but Pingala would not have been able to
evaluate 2n/2 for n odd) [5]. For example, we calculate 29:

29 = 28 · 2 = (24)2 · 2 = ((22)2)2 · 2.

The binary number system

In some ways, Pingala and Bhatt anticipated the development of the binary number
system, which was not fully described until Gottfried Leibniz did so in the seventeenth
century.1 The normal decimal-to-binary conversion procedure is quite similar to Pingala’s
process for finding an unknown pattern given its index. In this case, the decimal number
serves as the “index.” Let b be a string of ones and zeros, and let dec b be the decimal
value of the binary number b represents. We may concatenate b with either 0 or 1; note
that dec b0 = 2 dec b and dec b1 = 2 dec b + 1. Therefore, to find b if its decimal value is
known, divide the decimal by two, write the remainder, and continue this process, writing
the successive remainders on the left.

1The binary number system is a base-two positional number system. It has two digits, 0 and 1, and its
place values are powers of two. Thus, the decimal numbers 1, 2, 8, and 11 have binary representation 1, 10,
1000, and 1011, respectively.
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In contrast, Bhatt’s algorithm, which assigns a positional value to each syllable, recalls the
binary-to-decimal conversion formula

dec bnbn−1 . . . b1b0 =
n

∑

i=1

bi2
i.

Although these relationships are intriguing, there are substantial differences between
Pingala and Bhatt’s indexing system and the binary numbers. There is no evidence that
either author considered his indexing procedure to be a number system; it was not used to
perform computations, or indeed to count anything other than poetic meters. The
convention of assigning the index one, rather than zero, to the first pattern makes
computations problematic (giving . . . the index zero was not an option at the time—in
fact, we have no record that the Indians considered zero a number before the fifth century
AD). The correspondence between metrical patterns and their indices is one-to-one only if
the number of syllables is fixed (this is like considering 1, 01, and 001 to be distinct
numbers). The other dissimilarity—which arises from the ordering of poetic meters—is
that the highest-valued columns are on the right. The positional decimal number system
developed in India places the highest-valued columns on the left.

Pingala developed a completely different way of cataloging meters that is much more
common—in fact, it is used by poets and drummers today. This is considered in the last
section of this chapter.

Pascal’s Triangle and the Expanding Mountain of

Jewels

Pingala is also credited with the discovery of “Pascal’s” Triangle in India, which he called
the meruprastāra, or “the expanding mountain of jewels” (meru is a mythical mountain
made of gold and precious stones, and prastāra is the word for expansion). However,
precisely which problem in prosody led him to this discovery is uncertain. Some medieval
commentators interpret the numbers in the meruprastāra as being the number of
combinations of n syllables, taken one at a time, taken two at a time, and so on (each
syllable is considered different, rather than just long or short). When each list counting
combinations of r syllables drawn from sets of n syllables is arranged horizontally, and
successive lists are stacked, the numbers form a triangular array that one can extend
indefinitely:
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1 1
1 2 1

1 3 3 1
1 4 6 4 1

Pingala recognized that each interior number is the sum of the two numbers above it. This
array is known as Pascal’s triangle—though, of course, it wasn’t yet named for Pascal (who
was born in France in 1623).

The roof of the Kandariya Mahadeva temple (figure 2) depicts Mount Meru surrounded by
smaller copies of itself. Note that the meruprastāra is also made up of smaller copies of
itself!

1 –
1 1 –

1 2 1 –
1 3 3 1 –

+

– 1
– 1 1

– 1 2 1
– 1 3 3 1

Bhatt discovered the same triangle, but in a different context: he found the number of
meters of n syllables having r short syllables. The fact that the two problems produce the
same triangle is, of course, no coincidence. The number of ways of choosing r syllables
from a collection of n different syllables (nCr in modern notation) equals the number of
ways of choosing the r locations for the short syllables within a meter of n short or long
syllables. For example, the choice of {2, 5, 7} from the collection {1, 2, . . . , 8} corresponds
to the eight-syllable meter that has short syllables in positions 2, 5, and 7 ( ).

Returning to Problem 4, Bhatt’s interpretation of the triangle shows that the sum of the
entries in the nth row of the triangle gives the total number of meters of n syllables. In
modern notation, Bhatt’s second solution to Problem 4 is the formula

2n =
n

∑

r=0

nCr.

None of the Indian authors explain the relationship between the addition rule for obtaining
successive rows of the meruprastāra and the structure of the meters they represent.
However, given Pingala’s fondness for recursive rules, he may have observed a one-to-one
correspondence between the ways of choosing r objects from a collection of n objects and
the ways of choosing either r − 1 objects out of n − 1 objects or r objects out of n − 1
objects. For example, there are ten three-element combinations of {1, 2, 3, 4, 5}. Partition
these into combinations that contain 5 and combinations that do not. If a combination is
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to contain the element 5, you choose the other two elements from the set {1, 2, 3, 4} in 4C2

ways; add to this the 4C3 three-element combinations that do not contain 5 to arrive at the
equation 5C3 = 4C2 + 4C3. We can make a similar argument for meters; in this case,
partition the five-syllable meters into those with the fifth syllable short and those with the
fifth syllable long.

The 12th-century writer Bhaskara gives yet another algorithm in his Lilavati [2]. To find
the nth row in the meruprastāra, start by writing the numbers 1, 2, . . ., n, and above them
write the numbers n, n − 1, . . ., 2, 1, like so (shown for n = 5):

5 4 3 2 1
1 2 3 4 5

The first number in the row is 1 (this is true for every n). Obtain the other numbers in the
row by succesively multiplying and dividing by the numbers you have written:

1 · 5/1 = 5; 5 · 4/2 = 10; 10 · 3/3 = 10; 10 · 2/4 = 5; 5 · 1/5 = 1.

This algorithm is iterative; you do not have to generate any previous rows in order to find
row n.

Although he does not make a connection to the recursive addition rule found by Pingala,
Bhaskara comments that the nthe row of the meruprastāra counts both the number of
ways of choosing r of n different objects and the number of ways of arranging r objects of
one kind and n − r of another. He also notes that prosody is only one of the possible
applications of the meruprastāra.

The Hemachandra-Fibonacci numbers

The 12th-century writer Ācārya Hemachandra also studied poetic meter [9]. Instead of
counting meters with a fixed number of syllables, Hemachandra counted meters having a
fixed duration, counting short syllables as one beat and long syllables as two beats, as
shown in figure 3. The numbers of patterns form the sequence 1, 2, 3, 5, 8, . . ..
Hemachandra discovered that each entry is found by adding the two previous. In other
words, he found the “Fibonacci” numbers—half a century before Fibonacci! Indian poets
and drummers know these numbers as “Hemachandra numbers.”

Hemachandra explained why the sequence counts the succesive numbers of patterns of
length n. Each pattern ending with a short syllable is a pattern of duration n − 1 followed
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1 beat 2 beats 3 beats 4 beats 5 beats

Figure 3: Meters listed by duration

by a short syllable; the number of strings of duration n − 1 is Hn−1, and therefore the
number of patterns of duration n that end with a short syllable is Hn−1. Each pattern
ending with a long syllable begins with a string of syllables of total duration n− 2, followed
by a long syllable. Therefore, there are Hn−2 of these. Finally, Hn, the total number of
patterns of duration n, equals Hn−1 + Hn−2. Since H1 = 1 and H2 = 2, we obtain the
Hemachandra sequence. This derivation of the Hemachandra-Fibonacci numbers is
identical to the “domino-square problem”: in how many ways can you tile a 1× n rectangle
with 1 × 2 dominoes and 1 × 1 squares? Figure 4 shows a visual solution to this problem.

ending

length n in one big pile

in a long

those

in a short

You are left with the patterns

patterns of length n − 1.
of length n − 2 plus the

Remove the last syllables.

those
Separate them into two

smaller piles: ending

Start with the patterns of

Figure 4: Visual solution to the domino/square problem

It is possible that Pingala was aware of this sequence, as well. The tenth-century
commentator Yādava interprets Pingala’s rule “and the two mixed” to mean that the
patterns of duration n are built up of shorter patterns (in this case, patterns of duration
n − 1 and n − 2).

The Prākrta Paiṅgala, dating from the the early 14th century AD, makes an explicit
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1
D1

1
1

3 3 1
1

12
1D2

D3

D2

D3

D4

Figure 5: The Hemachandra numbers are sums along diagonals in the meruprastāra

connection between the Hemachandra numbers and Pingala’s meruprastāra. The author
demonstrated that the Hemachandra numbers are, in fact, sums of numbers on certain
diagonals in the meruprastāra. Figure 5 provides a visual explanation of this property: the
five four-beat rhythms lie on the diagonal labeled D4. The process of combining rhythms
to form entries in the triangle also ensures that the patterns on D4 are formed from the
patterns on D3 and D2.

Fibonacci’s thirteenth-century “discovery” of the sequence that bears his name about fifty
years after Hemachandra’s discovery of the same sequence was probably no coincidence.
Fibonacci, who was educated in North Africa, was quite familiar with Eastern mathematics
(in particular, he introduced the Indian positional number system to the West) [9]. He may
have first encountered the “Fibonacci” sequence in the East. However, his explanation of
the sequence as the sizes of successive generations of rabbits is not found in India.

Musical rhythm patterns and the Padovan numbers

The poetic meters that Pingala and Hemachandra studied have an analogue in music, and,
indeed, many of the rhythms used in classical Indian music have been deeply influenced by
the meters of Sanskrit poetry.

In music, rhythm patterns are formed by grouping beats into notes, which play the role of
syllables in poetry. A drum is hit on the first beat of each note and silent on the following
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beats; the length of a note is the number of beats between successive hits. Some types of
music, especially dance music, are identified with specific rhythm patterns. Many of these
patterns are formed of notes of two or three different durations. For example, in salsa
music, which has origins in Cuba, one can hear the pattern called the clave. The 12-beat
clave rhythm and many other characteristic rhythm patterns from around the world are
composed of notes of lengths two or three beats; one also finds many patterns consisting of
notes of lengths one or two beats. Figure 6 shows a few examples. To hear some of these
patterns, I suggest SongTrellis [6], where you can hear the merengue and cumbia bell parts
both separately and in context. The guajira may be familiar as the rhythm of Leonard
Bernstein’s “America,” from West Side Story. I encourage the reader to experiment with
creating and listening to rhythm patterns; a good place to start is the web applet Jas’s
MIDI Hand Drum Rhythm Generator [8].

also bembe shango (Afro-Cuban)

lesnoto (Bulgaria)

bomba (Puerto Rico)

merengue bell part (Dominican Rep.)

cumbia bell part (Columbia)

mambo bell part (Cuba)

Rhythms of two- and three-beat notes

Rhythms of one- and two-beat notes

12-beat clave (Cuba)

guajira (Spain)

bintin bell pattern (Ghana)

Figure 6: Dance rhythms

Hemachandra discovered the sequence that counts patterns of one- and two-beat notes.
What sequence counts patterns consisting of two- and three-beat notes? Here are the first
twelve entries of this sequence:

length (n) 1 2 3 4 5 6 7 8 9 10 11 12
number of patterns (Pn) 0 1 1 1 2 2 3 4 5 7 9 12

If Pn is the number of such patterns, then Pn = Pn−2 + Pn−3. The proof of this statement is
similar to the argument for notes of length one and two. In this case, break the patterns of
length n into patterns of length n − 2 followed by a two-beat note and patterns of length
n − 3 followed by a three-beat note.
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Though not nearly as famous as the Hemachandra-Fibonacci numbers, this sequence,
named the Padovan numbers, has some interesting properties. It is well known that the
limit of the ratios of successive Fibonacci numbers is the golden number φ = 1.618 . . .; the
limit of the ratios of successive Padovan numbers is the so-called “plastic number.” To find
this number, observe that

Pn

Pn−1

=
Pn−2

Pn−1

+
Pn−3

Pn−1

=
Pn−2

Pn−1

+
Pn−3

Pn−3 + Pn−4

.

Take the limit as n → ∞ of both sides and let p = limn→∞ Pn/Pn−1. Then

p =
1

p
+

1

1 + 1/p

so p is a solution to the cubic equation p3 − p − 1 = 0. The only real root of this equation
is the irrational number p = 1.324 . . . (the plastic number). There are several interesting
applications of the Padovan numbers—for example, they are related to a spiral of
equilateral triangles in the way the Hemachandra-Fibonacci numbers are related to a spiral
of squares (see [10] for more applications).

Naming rhythms

Since there are hundreds of Sanskrit meters, remembering the pattern for any particular
meter requires some effort. Although Pingala’s indexing procedure is mathematically
impressive, being able to identify the pattern as “number forty-one in the catalog of
six-beat rhythms” is not of much practical use.

Pingala’s best and most well-known solution to this problem involves the following
mapping of groups of three syllables to letters:

m r t bh

y s j n

Begin by breaking the meter into groups of threes ( - ). These groups
correspond to the letters mj. At this point, you’ve essentially converted a binary number
(base 2) into an octal number (base 8), which doesn’t seem like much progress. However,
Pingala had a very clever plan. The letters mj can be embedded in a word—say,
“mojo”—that is more memorable that “number forty-one.” For good measure, you write a
poem in the “mojo” meter than describes the essential characteristics of the meter and
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includes the word “mojo.” Musicians also use this method for remembering rhythm
patterns.

This is perhaps the earliest example of an error-correcting code. Typically, an
error-correcting code is a sequence that contains encoded information designed to flag
errors in transmission (for example, typographical errors). Credit-card numbers and bar
codes both have this feature. Each important aspect of a Sanskrit meter is encoded in the
poem. In this case, the rhythm of the poem and the name of its meter provide a check on
each other.

The history of the Sanskrit system of naming meters doesn’t end with Pingala. Either in
his time or later, the nonsense word yamātārājabhānasalagā came to be used as a way to
remember the mapping of triplets of syllables to letters [7]. The word contains long and
short syllables (in the English transliteration of Sanskrit, a is a short vowel and ā is a long
vowel):

ya-mā-tā-rā-ja-bhā-na-sa-la-gām = .

The pattern has the curious property that each string of three syllables occurs
exactly once. For example, the first three syllables form the pattern , the second
through fourth syllables form , and so on. These patterns are named, using Pingala’s
table, by their starting syllable (so that ya represents ). However, the number of
syllables in a meter doesn’t have to be a multiple of three (you may have noticed this flaw
in Pingala’s method). The last two syllables, la and gām are used for the leftovers. It is
not known whether Pingala knew this mnemonic for the triplets, or if it was discovered by
poets and drummers that came after him.

The pattern is very close to being what mathematicians call a de Bruijn

sequence. A de Bruijn sequence is a sequence of letters drawn from some alphabet such
that every combination of n letters occurs exactly once, if we are allowed to “wrap around”
from the end of the sequence to the beginning. The string is a de Bruijn sequence
(we get the combination by wrapping around from the end to the beginning). Although

is also a de Bruijn sequence, we don’t think of these two as fundamentally
different; they each produce the three-letter combinations in the same order, but start at a
different point in the cycle. If we use this notion of sameness, there are only two possible
de Bruijn sequences for three-letter patterns using the alphabet { , }. Figure 7 shows the
pattern on a circle, alongside a de Bruijn cycle for four-letter patterns.

How can we find the other de Bruijn sequence for combinations of three letters? The other
sequences of four letters? To investigate this question, it helps to start with an easier case:
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Figure 7: De Bruijn cycles for patterns of three and four letters

two letters. I’ll leave it to you to show that there is only one de Bruijn sequence. One way
to start is to write down the eight three-letter combinations. The de Bruijn sequence can
be thought of as an ordering of these sequences: start with the first three letters in the
sequence, then the second through fourth letters, etc. You probably notice that there are
some rules about which of these can follow each other. For example, can be followed by
either or . In other words, either the string or the string must appear in your
sequence. To find all the possibilities, we can use a powerful representation called a directed

graph. The vertices of the graph represent states (in this case, three-letter combinations).
If we can legally move from one state to another, connect them with an arrow. The graph
is shown in figure 8. Any path that visits each vertex exactly once with give you a de
Bruijn sequence.

The four-letter problem is more complex; you now have twice as many vertices. It is
difficult to avoid drawing a graph that looks like a mound of spaghetti! There is an clever
solution to this problem, however: represent each four-letter combination as an edge in the
graph, as in Figure 9. In this case, you now need to find a path that visits each edge
exactly once. I’ll leave that to you.
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sa

mā

na

rā

ja

ya tā

bhā

Figure 8: A graph representing the de Bruijn sequence problem, and a solution.

Figure 9: A graph representing the de Bruijn sequence problem for combinations of four
letters.
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