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ABSTRACT.— After the taxonomic status of the genus Eumeces Wiegmann, 1834 had been
neglected for more than half a century, a recent publication split Eumeces into four
genera. Based on a molecular data set, we provide evidence suggesting that the recently
named taxonomic units represent monophyletic radiations. Since some of the previously
proposed names for the genera violate the rules of the International Code of Zoological
Nomenclature (ICZN), the nomenclatural situation is clarified and new names are
proposed. The genus Neoseps Stejneger, 1910 is synonymised with Pariocela Fitzinger,

1843.
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INTRODUCTION

Until recently, the genus Eumeces Wiegmann,
1834 was one of the most speciose scincid gen-
era known, with about 50 species recognized
(Taylor, 1935; Eiselt, 1940; Mertens, 1946;
Lieb, 1985; Hikida and Motokawa, 1999), being
surpassed only by Sphenomorphus Fitzinger,
1843, Mabuya Fitzinger, 1826, Ctenotus Storr,
1964, Lerista, Bell, 1833 and Emoia, Gray,
1845. Many of the larger skink genera have been
regarded as repositories (e.g., Lygosoma
Hardwicke and Gray, 1827) or have been identi-
fied as non-monophyletic groups (e.g., Mabuya,
Sphenomorphus) with the consequence that
most large scincid genera have been subject to
attempts to split them into smaller taxonomic
groups. Only recently have attempts been
convincingly proposed (e.g., Mabuya; comp.
Mausfeld et al., 2002) or are currently being re-
viewed (e.g., Sphenomorphus).

The first comprehensive revision of the genus
Eumeces was carried out by Taylor (1935). On
the basis of shared colour patterns and scalation

features he differentiated no less than 50 species
(and 14 subspecies) in 15 species-groups within
Eumeces, which he assigned to three major
groups (group I consisting of the schneiderii-,
schwartzei- and taeniolatus species-groups; a
monotypic group 11 with only E. longirostris in-
cluded; and group III consisting of all other
eleven species-groups sensu Taylor, 1935). But
still he had “no intention in mind of considering
them of the status of genera or subgenera” (Tay-
lor, 1935: 36), even though the species of the ge-
nus Eumeces are not only widely distributed
(occurring throughout large parts of the
Holarctic region) thus indicating possible barri-
ers for a continuous gene flow, but they also dis-
play a considerable amount of morphological
and ecological diversity (e.g., Taylor, 1935;
Fitch, 1955; Bobrov, 1993; Kato and Ota, 1994;
Hosono and Hikida, 1999; Griffith et al., 2000;
Lazell and Ota, 2000).

Several generic names have been proposed
for various subgroups within Eumeces, but only
two serious attempts have been made to split the
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FIGURE 1: The log probability of the observed combined 16S and 12S DNA sequences through time for
both of the chains run in this study. Each chain started from a different random tree. The samples taken from
the first 100,000 generations were discarded as the burn-in for the chain, and inferences are based on

samples from the remaining parts of the chain.

genus. One was carried out just before the revi-
sion of Taylor (1935) by Dunn (1933), who
placed two Central American species (E.
managuae and E. schwartzei) and the Southwest
Asian species E. taeniolatus (as well as E.
scutatus, now considered a synonym of
taeniolatus) in a separate genus, Eurylepis Blyth,
1854. This view was subsequently rejected by
Taylor (1935) who regarded the genus Eumeces
as a natural, monophyletic group (“The likeli-
hood that further generic or subgeneric divisions
of the genus will ever be considered for species
now known is extremely remote. [....] I feel
quite certain that any breaking up of the present
group here treated as a generic entity is unwise,
since, if begun, it would necessitate the erection
and recognition of several genera, four of which
(including quadrilineatus, egregius, taeniolatus,
lynxe) would be monotypic and would in no
measure have the same generic significance as
even the genera (subgenera) formed from the ge-
nus “Lygosoma” as used by Boulenger”; Taylor,
1935: 37).

Taylor (1935) also placed the species of
Eumeces occurring in West Asia, Cyprus and
Africa (comp. Mertens, 1920, 1924, 1946;
Gogmen et al., 2002) in the schneideri-group,
then comprising six species and one subspecies.

At present, however, most authorities consider
the schneideri-group to be composed of only two
species with five subspecies [E. s. schneideri
(Daudin, 1802); E. s. pavimentatus
(Geoffroy-Saint-Hillaire, 1827); E. s. princeps
(Eichwald, 1839); E. s. zarudnyi Nikolsky, 1899;
E. s. blythianus (Anderson, 1871); E. a.
algeriensis (Peters, 1864); E. a. meridionalis
Domergue, 1901]. The type species of the genus
Eumeces (E. (s.) pavimentatus) is included in the
schneideri-group.

Two closely related genera, Scincopus, Pe-
ters, 1864 and Scincus, Laurenti, 1768, are
known to be partly sympatric with the species of
the schneideri-group. Arnold and Leviton (1977)
thought of them to be descendants of E.
schneideri, but their exact phylogenetic relation-
ships with respect to each other and to Eumeces
remain unresolved.

The three proposed subgroups of Taylor
(1935) have undergone rather different subse-
quent treatments (e.g., Eiselt, 1940; Mertens,
1920, 1924; Lieb, 1985; Kato et al., 1994; Hikida
and Motokawa, 1999; Richmond and Reeder,
2002) and are now regarded as representing four
different groups with taxonomic hierarchies that
differ substantially from those of the groups pro-
posed by Taylor. While groups II and III (sensu
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FIGURE 2: Cladogram of the maximum-likelihood tree based on 928 bp of the combined
mitochondrial 16S and 12S ribosomal RNA gene sequences. Values (bold) at the nodes are Bayesian
posterior probabilities (values below 0.5 not shown).



76

HAMADRYAD [Vol. 28, Nos. 1 & 2,

Psammodromus algirus

Lacertaspis rohdei

60
B

99

11

Cryptoblepharus boutonii voeltzkowi
Eumeces managuae

Scincopus fasciatus

Eumeces algeriensis (11)

Eumeces algeriensis (1)

Eumeces algeriensis (111)

Eumeces schneideri (11)

BOULY

Eumeces schneideri (1)

Eumeces schneiden (Il1)

Scincus mitranus

Scincus scincus

Eumeces anthracinus

Eumeces egregius

Neoseps reynoldsi

Eumeces laticeps

Eumeces obsoletus

Eumeces septentrionalis obtusirostris

Eumeces septentrionalis

o

-
1.

\ N

Eumeces fasciatus (1)

~J
-
- ®
w

Eumeces fasciatus (ll)
100 [ Eumeces jnexpectatus (I)

Eumeces sp.

EoUaWY

Eumeces gilberti gilberti

Eumeces skiltonianus skiltonianus

Eumeces gilberti rubricaudatus

57|~ Eumeces gilberti cancellosus

Eumeces skiltonianus

I'— Eumeces brevirostns

Eumeces lynxe (1)

100 - Eumeces lynxe (Il)
13

100

Eumeces lynxe (lll)

10

eisy

[T Eumeces |atiscutatus (1) ||

L Eumeces latiscutatus (1)

FIGURE 3: Cladogram of the maximum-parsimony tree based on 928 bp of the combined
mitochondrial 16S and 128 ribosomal RNA gene sequences. Upper (bold) values at the nodes are
bootstrap values in percent (2000 replicates with 100 random additions; values below 50 % not
shown); lower values are Bremer decay indices.
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Taylor, 1935) have been pooled to form the
so-called Pariocela section (sensu Fitzinger,
1843), group I has been split into three independ-
ent sections, which are considered to be of equal
taxonomic rank as the Pariocela section.

The Eumeces taeniolatus-group consists of
only two species (E. poonaensis Sharma, 1970
and E. taeniolatus, [Blyth, 1854]), which have a
rather limited distribution area in Pakistan, Af-
ghanistan and the bordering countries
(Boulenger, 1890; Taylor, 1935; Haas, 1957;
Sharma, 1970; Szcherbak, 1990; Leviton et al.,
1992; Griffith et al., 2000).

The Eumeces schwartzei-group is now con-
sidered to comprise three species (E. altamirani
Duggs, 1891; E. managuae Dunn, 1933; and E.
schwartzei Fischer, 1884), and is only known
from Central America (Duges, 1891; Taylor,
1935, 1936, 1956; Smith and Taylor, 1950; Cruz
et al., 1979; McCoy et al., 1986).

The most recent attempt to split Eumeces has
been in the framework of a morphological
re-analysis of the genus by Griffith et al. (2000).
On the basis of a rather small morphological
character matrix (which includes several charac-
ters with an underlying ecological basis or which
are based on highly labile features like colour)
they proposed the most radical taxonomic
changes for the genus yet. They recognized the
four groups mentioned above, and raised them
all to a generic status. As these authors intended
to keep the name Eumeces for the North Ameri-
can Pariocela section of the genus, they have
filed a petition with the ICZN to designate
Lacerta fasciata Linnaeus 1758 as type species
of Eumeces, which would preserve the genus
name Eumeces for the Pariocela section
(Murphy et al., submitted). They argue that this
way the majority of species (which is correct)
and the “vast majority of literature” (which is far
from being correct) could be kept connected to
the name Eumeces. Following their line of
thought, they propose a new generic name
“Novoeumeces” for the schneideri spe-
cies-group, revalidate the name Eurylepis,
Blyth, 1854 for the faeniolatus species-group,
and propose the new generic name Mesoscincus
for the schwartzei species-group. This last step
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was necessary, since the generic name
Platypholis proposed by Duges (1891), is preoc-
cupied by Platypholis Boulenger 1890 (a
gekkonid genus), and is therefore unavailable.
Additionally, based on only two skull characters,
they regarded the Pariocela species-group as the
most basal group of all skinks worldwide, and
thus they described a new subfamily, Eumecinae,
for this assemblage.

The present analysis uses molecular sequence
data to reanalyze the phylogenetic relationships,
to answer questions regarding the monophyly of
the proposed genera and the proposed new
subfamily Fumecinae, and to extend our
knowledge of the placement of the different gen-
era with respect to the closely related genera
Scincopus and Scincus.

MATERIAL AND METHODS
Thirty-five combined, 16S and 1285, sequences
(Table 1) comprised 1016 bp (lengths referring to
the aligned sequences including gaps) were ob-
tained. Five short sections (together 88 bp) (71
bp from the original 16S data set and 17 bp from
the 128 data set) were too variable to be reliably
aligned, and were excluded from the analyses, re-
sulting in a total of 928 bp which were used in the
analyses. For the likelihood calculations, an ad-
ditional 32 sites (positions containing gaps) were
excluded. Psammodromus algirus (Lacertidae),
Lacertaspis rohdei and Cryptoblepharus
boutonii voeltzkowi (Scincidae: Lygosominae)
were used as outgroup taxa.

DNA was extracted from the tissue samples
using QuiAmp tissue extraction kits (Quiagen).
The primers 16sar-L (light chain; 5* - CGC CTG
TTT ATC AAA AAC AT - 3’) and 16sbr-H
(heavy chain; 5” - CCG GTC TGA ACT CAG
ATC ACGT - 3’) of Palumbi et al. (1991) were
used to amplify a section of the mitochondrial
16S ribosomal RNA gene. PCR cycling proce-
dure was as follows; an initial denaturation step
0f 90 s at 94°C followed by 33 cycles of denatur-
ation for 45 s at 94°C, primer annealing for 45 s at
55°C and extension for 90 s at 72°C. Addition-
ally, a section of the mitochondrial 12S ribo-
somal RNA gene was amplified using the
primers 12SA-L (light chain; 5° - AAA CTG
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GGA TTA GAT ACC CCA CTA T - 3’) and 12SB-H (heavy
chain; 5° - GAG GGT GAC GGG CGG TGT GT - 3”) of Kocher
et al. (1989). Cycling procedure was as follows: 35 cycles of de-
naturation 45 s at 94°C, primer annealing for 60 s at 50°C and ex-
tension for 120 s at 74°C (12S). PCR products were purified
using Qiaquick purification kits (Qiagen). Sequences were ob-
tained using an automatic sequencer (ABI 377). Sequences have
been submitted to Genbank; for accession numbers compare Ta-
ble 1.

Sequences were aligned using ClustalX (Thompson et al.,
1997; default parameters). The alignment was subsequently ad-
justed manually using the program BioEdit (Hall, 1999). To de-
termine the statistical validity of combining the 16S and 128 data
sets for phylogenetic analyses, we performed the partition homo-
geneity (PH) test. We used PAUP*4.0b10 (Swofford, 2002) to
generate a null-distribution of length differences using 1000
same-sized, randomly generated partitions from the original data
with replacement.

Prior to phylogenetic reconstruction, we tested for homogene-
ity of base frequencies among taxa using the 3> test as imple-
mented in PAUP*4.0b10 (which ignores correlation due to
phylogenetic structure): (1) over all sites, (2) over parsimony-in-
formative sites only, (3) without constant sites (parsimony-unin-
formative and constant sites will mislead the y? test; Misof et al.,
2001). All phylogenetic reconstructions were conducted with the
combined data set of the 16S and 12S gene fragments.

We performed maximum parsimony (MP), maximum likeli-
hood (ML) and Bayesian reconstructions. For ML and Bayesian
analysis parameters of the model were estimated from the data set
using Modeltest 3.0 (Posada and Crandall, 1998) and
MrModeltest 1.1b (Nylander, 2002), respectively.

As ML bootstrap calculations are extremely time-consuming
and arecent simulation study suggested Bayesian posterior prob-
abilities represent much closer estimates of true clade probabili-
ties, we used Bayesian analysis to estimate posterior probabilities
for the phylogenetic relationships inferred in the ML analyses.
Clades with PP > 95% were considered strongly (significantly)
supported.

Additionally, we used bootstrap analyses with 2000
pseudoreplicates for MP and Bremer Decay Indices (BDI) to
evaluate the relative branch support in phylogenetic analysis. For
the MP analysis, we used the “heuristic search” with the “random
addition” option of PAUP* (Swofford, 2002) with 10 replicates,
using the TBR (tree bisection-reconnection) branch swapping
option.

All Bayesian (Rannala and Yang, 1996; Larget and Simon,
1999; Mau et al., 1999; Li et al., 2000; Huelsenbeck et al., 2001)
analyses were performed with MrBayes, version 3.0b4
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(Huelsenbeck and Ronquist, 2001), which ap-
proximates the posterior probabilities (PP) of
trees. We ran two MCMC analyses for 10° gen-
erations each. The initial 100,000 (10%) trees
were disregarded as “burn-in” (Fig. 1). We con-
sider probabilities of 95% or greater to be signifi-
cantly supported. The exact parameters used for
the Bayesian analyses followed those described
in detail by Reeder (2003) and Table 2.

RESULTS
Of the 1016 characters from the combined 16S
and 12S rRNA genes 449 sites were variable and
241 were parsimony-informative. The matrix for

TABLE 2: Combined 16S + 12S. Parameter estimates
of the substitution model (GTR + 1+ G), sampled after
the burn-in phase of the chain. The columns indicate
the parameter, mean and 95% credible interval for the
parameter. The parameters are TL, the tree length; rj;,
rate of substitution between nucleotides 7 and j mea-
sured relative to the rate between G and T (pGT =1);
i, base frequencies; o, gamma shape parameter for
among-site variation; and Pinvar., proportion of in-
variable sites. Upper values in each pair correspond to
the 1. run; lower values correspond to the 2. run.

Parameter ~ Mean 95% Credity Interval
TL 2.144995 (1.831000, 2.520000)
2.155316 (1.816000, 2.575000)
IGT 1.000000 1.000000, 1.000000
1.000000 1.000000, 1.000000
rcT 28.056685 (13.532508, 63.873212)
28.219089 (12.689248, 59.780160)
ICG 1.126511 (0.288083, 2.815524)
1.132002 (0.363334, 2.875285)
TAT 2.695892 (1.167896, 6.388330)
2.694440 (1.060047, 5.957160)
TAG 13.601788 (6.285310, 29.632246)
13.652822 (6.100779, 28.483158)
TAC 4.278407 (1.873923,9.979367)
4.291890 (1.846635,9.467517)
A 0.331984 (0.305361, 0.358863)
0.332206 (0.305480, 0.359952)
nc 0.255699 (0.231757, 0.279378)
0.255511 (0.232286, 0.280094)
nG 0.188326 (0.165085, 0.211881)
0.188072 (0.165570, 0.212244)
T 0.223991 (0.201785, 0.247360)
0.224210 (0.202472, 0.247175)
o 0.637758 (0.363735, 1.000408)
0.631050 (0.353439, 0.982877)
Pinvar. 0.406778 (0.250790, 0.507954)
0.404888 (0.239500, 0.506734)
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the uncorrected p-distances for all nucleotide
sites is presented in Table 3.

In the data set, a phylogenetic signal is clearly
present (g1 =-0.7194,p=0.01; 12S:-0.6033,p=
0.01; 16S: -0.7928, p = 0.01). When all charac-
ters were included, we found no significant devi-
ation from the homogeneity of base frequencies
among taxa (x> = 22.8058, p = 1.0000, df = 102).
The same was true without constant sites (x> =
57.8606, p =0.9999, df = 102) and for the parsi-
mony-informative sites only (x> = 77.3902, p =
0.9669, df = 102).

The heuristic search of the MP analysis pro-
duced 20 equally most-parsimonious trees (tree
length = 905; CI = 0.434; RI = 0.692; RC =
0.301). The MP strict consensus tree with boot-
strap support is shown in Fig. 3, the optimal ML
tree and the MrBayes tree are shown in Fig. 2.
The comparison between the different likelihood
scores for each model showed that the GTR + 1+
I model (Yang, 1994) was determined to be the
optimal model for the combined data set. This
model incorporates unequal base frequencies
[r(A)=0.32720, (T)=0.22170, n(C)=0.25520,
(G) = 0.19590], a proportion of invariable sites
(1=0.4916), and a gamma distribution shape pa-
rameter (o = 0.6688). The optimal ML tree had a
log-likelihood of -InL = 5708.25.

The partition homogeneity test failed to detect
significant incongruence between the two data
sets (P=1-(869/1000) =0.131), suggesting that
the two mtDNA fragments could be combined.

All phylogenetic methodologies used agree in
the resulting general topology. In the trees result-
ing from the combined data sets, two major
monophyletic groups can be detected, which are
both strongly supported. The first clade (called
the African clade from here onwards) includes all
African Eumeces species as well as the genera
Scincopus and Scincus (MP: 95/ PP: 1.0 / BDI:
7). In the MP analysis Scincopus fasciatus is
placed as the most basal taxon, although with low
bootstrap support (MP: 61 / BDI: 1). In the
Bayesian analyses this species is found as sister
species to the Fumeces algeriensis cluster, with
rather strong support (PP: .92|.93). The two in-
cluded Scincus species are sister species in all
analyses with very strong support (MP: 98 / PP:
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1.0/BDI: 8) and are placed either basal to a clade
containing all included vouchers of Eumeces
algeriensis and E. schneideri (MP: 61 / BDI: 1)
or basal to the remaining species of the African
clade (PP: .89|.88) each with low bootstrap sup-
port. The several included voucher specimens
for each of the latter two species are grouped to-
gether and both are strongly supported [(MP:
100/ PP: 1.0/ BDI: 22) and (MP: 100/ PP: 1.0/
BDI: 24), respectively].

Eumeces managuae is the sister-group to the
African clade in both the MP and the ML analy-
ses, though with very low bootstrap support
(MP: 58 / PP: .66].64 / BDI: 4).

The second major clade contains the Asian
and all American members of Eumeces and
Neoseps reynoldsi. Eumeces latiscutatus is the
sister-group to the American subclade in all trees
with strong bootstrap support (MP: 87 /PP: .99/
BDI: 6). The American subclade is further
subdived into several smaller monophyletic ter-
minal groups. Nonetheless, all analyses show at
least three strongly supported clades within this
polytomy: the first consists of all included
(sub-)species of E. skiltonianus and E. gilberti
(MP:100/PP: 1.0/BDI: 7); the second includes
E. laticeps, E. obsoletus, E. septentrionalis, E.
fasciatus, E. inexspectatus and Eumeces sp.
(MP: 74 /PP: 1.0/BDI: 3); and the third contains
just two species (E. egregius and Neoseps
reynoldsi), and surprisingly, shows strong sup-
port for a close relationship of these two taxa
(MP: 81 / PP: .97 / BDIL: 2). Additionally, the
Bayesian analysis gives very strong evidence for
a fourth clade, which contains the Mexican
Eumeces species, E. brevirostris and E. lynxe
(PP:.99].98), though none of the other search al-
gorithms give any bootstrap support for this
grouping.

DISCUSSION
The systematic relationships of the species of the
genus Eumeces have been mostly neglected
since the major revision of Taylor (1935). Per-
haps the apparent stability implied by such a
comprehensive work and the self-confidence
with which Taylor (1935) argued in his monu-
mental review, tempted subsequent researchers
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to only examine the group structure within this
large genus, since the general integrity of
Eumeces seemed to be out of question for most
researchers.

This arrangement was long kept despite sev-
eral compelling findings, which reveal clear dif-
ferences between zoogeographically
independent groupings (especially between Afri-
can and American species-groups). These differ-
ences were primarily based on analyses of
chromosomes numbers in the different groups.
While a large number of studies showed that all
species of the American Pariocela section have
2n = 26 chromosomes (e.g., Deweese and
Wright, 1970; Wu, 1983; Capriglione, 1987
Guo and Dong, 1988; Kato et al., 1998), several
papers showed that all African species of the ge-
nus Eumeces are unique in having a constant 2n =
32 chromosomes (Gorman, 1973; Kupriyanova,
1973; DeSmet, 1981; Kupriyanova, 1986;
Eremtschenko et al., 1992; Caputo et al., 1993,
1994; Hassan, 1996). The E. taeniolatus group
also could be differentiated from either group,
being unique in having 2n = 28 chromosomes
(Ivanov and Bogdanov, 1975; Kupriyanova,
1986; Eremtschenko et al., 1992).

Taxonomic nomenclature should reflect ge-
nealogical associations, and given the
non-monophyletic position of the different sub-
groups of FEumeces revealed by previous analy-
ses, a revision of the genus Eumeces is long
overdue. As all molecular analyses clearly sup-
port the independent origin of several groups
(see below), a taxonomic recognition of these
groups as full valid genera is recommended.

Despite the comparatively low number of the
characters used in the morphological analyses of
Griffith et al. (2000), the phylogenetic independ-
ency of three of their proposed four groups (no
member of the E. taeniolatus species-group
could be included in the present analysis) is sup-
ported in all molecular analyses. This is some-
what surprising since a close examination of the
characters used to discriminate the spe-
cies-groups in the Griffith et al. (2000) paper re-
veals several characters that are ecologically
labile (e.g., the general colour pattern, the num-
ber and shape of the ear lobules, the scale thick-
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ness and the general shape of the head are all dif-
ferent in the E. schneideri-group). These charac-
ters could therefore easily be of convergent
origin (and in case they have no heritable
components, they would be phylogenetically un-
informative). Nonetheless, even if the character
matrix of Griffith et al. (2000) should be re-
garded with utmost caution, its general results
regarding the different major species-groups are
proven valid by our molecular data, and there-
fore making taxonomic consequences highly
warranted.

Of the four independent genera proposed
Griffith et al. (2000), only the revived genus
Eurylepis could not be confirmed in our molecu-
lar analyses. Still, regarding its unique number of
chromosomes and the many morphological dif-
ferences (e.g., Taylor, 1935), a preliminary as-
signment of this species-group to a distinct genus
seems justified. Future molecular studies, which
include sequence data of its members, should
corroborate this arrangement.

The newly erected genus Mesoscincus Grif-
fith, Ngo and Murphy, 2000 (schwartzei,
altamirani, managuae) was only represented by
an individual of the last species in our analysis.
As this species is not grouped with the American
subgroup (as one might have expected from a
zoogeographical perspective) and it appears as
sister taxon to the African clade (with only low
bootstrap support) in the cladograms this is a
clear indication of its generic distinction. While
Taylor (1935) thought this species-group to be
closely related to the Asiatic forms, the results of
the molecular analyses indicate a closer relation-
ship to the African species. An analysis with a
more comprehensive taxon sampling may reveal
differing affinities, and we presently cannot
judge the validity of such a relationship.

Although the type species of Fumeces, E.
pavimentatus, is part of the African radiation of
the genus, Griffith et al. (2000) ignored this fact
and installed the subfamily Eumecinae (which
incorporated all species of the Pariocela sec-
tion), which they thought to be the most basal of
all Scincinae. Implying a dispersalist hypothesis,
this would imply that all known species of skinks
originated in North America. Regarding the low
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number of synapomorphies for this subfamily,
and the fact that one of the two used characters is
the general shape of the head (which is, of course,
strongly ecologically influenced; but compare
discussion below), this is a rather daring ap-
proach.

They additionally tried to suppress the correct
nomenclatural situation by applying to the I[CZN
to designate Lacerta fasciata Linnaeus, 1758 as
the type species of Eumeces (Murphy et al., sub-
mitted). That way, they would be able to keep the
name Eumeces for the species of the Pariocela
section, while giving a new generic name,
Novoeumeces, to the former E. schneideri spe-
cies-group. Because a polarity decision of the
used molecular data cannot be made unambigu-
ously, the recovered topologies can neither con-
firm nor refute the validity of such a subfamily.
The positioning of the two non-Eumeces
scincines varies throughout the different molecu-
lar analyses, partly supporting (Fig. 3) the pro-
posed subfamily but also refuting it (Fig. 2).

However, even if the subfamily Eumecinae
represents a true monophyletic group, Griffith et
al.’s (2000) justification to “preserve the genus
for most of the species [...] and the vast majority
[of] literature”, expresses only a “personal pref-
erence” of these authors and does not represent
any taxonomical problem, which is of concern
for the ICZN. While in the Code all kinds of ex-
ceptional taxonomic situations are presented
(ICZN, 1999), the situation discussed above is
not related to any of them. Therefore the name
Novoeumeces Griffith, Ngo and Murphy, 2000
must be considered an objective junior synonym
of Eumeces Wiegmann, 1834 (comp. also Bauer
et al., 2003: 269). From the results discussed
above, the name Eumeces must be restricted to
the African E. schneideri species-group of
FEumeces sensu lato, while the North American
and the remaining Asian species must be re-
named. Since this whole group has always been
referred to as the Pariocela species-group and to
avoid further taxonomic confusion, a designated
type species for the group should be chosen so
that this name can be elevated to genus rank.

The close relationships of the species of the
genera Scincopus and Scincus with respect to
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Eumeces sensu stricto (see above) is corrobo-
rated by the respective genetic distances (Table
3). While among the specimens of E. algeriensis
(0.3-1.3%) and E. schneideri (0.0-0.1%) respec-
tively, only low to very low differences are pres-
ent, there is a strong interspecific differentiation
between the two (8.4-9.1%). As the intergeneric
differences of both species to Scincopus
(10.0-10.4% and 10.1-10.7%, respectively) and
even more to the two species of Scincus exam-
ined (8.8-9.6% and 7.3-8.6%, respectively) are
at the same level as the intrageneric differences,
the taxonomic status of both Scincopus and
Scincus as independent genera appears question-
able.

Within the Pariocela section, the analysis
shows that “E.” egregius and Neoseps reynoldsi
are sister species. The genetic differentiation be-
tween the two species (5%), both of which are
endemic to Florida, is at the same general level as
between the other species of the section, and
therefore N. reynoldsi is a specialized member of
the Pariocela section of Eumeces sensu lato,
which has developed a distinct morphology
(Schmidt, 1955) as a consequence of its burrow-
ing mode of living. This is another striking ex-
ample, that ecologically variable morphological
characters should only be used in any phylogen-
etic analysis if they are interpreted with the ut-
most caution. As a consequence, the name
Neoseps Stejneger, 1910 must be synonymised.
If the name Pariocela Fitzinger, 1843 should be
retained for the group, Neoseps would become
its objective junior synonym (see also Telford,
1959; Richmond and Reeder, 2002).

Despite the incompleteness of the taxon sam-
pling, the recovered topologies support some of
the proposed subgroups within the Pariocela
section. The laticeps species-group (laticeps,
inexpectatus, fasciatus) as already defined by
Taylor (1935) is part of a well supported clade,
which also includes the species of the obsoletus-
and anthracinus species-groups (obsoletus,
septentrionalis, obstusirostris). This former
group is supposed to be closely related to some
Asian species (Taylor, 1935), which cannot be
confirmed here due to the lack of Asiatic voucher
species. “Eumeces” anthracinus itself is not part
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of this group, since it is consistently placed out-
side the latter clade, and is mostly recovered as
sister species to “E.” egregius.

Lieb (1985) regarded “E.” latiscutatus as a
member of the laticeps species-group. This ar-
rangement is not confirmed by the present work,
since the laticeps-group is always placed far
from the two specimens of latiscutatus in the
cladograms. Nonetheless, it is interesting to note
that the position of the latter species is inconsis-
tent in the different trees. All analyses place
latiscutatus as sister-group to the Pariocela spe-
cies-group. Since a biochemical analysis by Kato
et al. (1994) shows latiscutatus to be deeply em-
bedded in an East Asian radiation, and several
studies about the origin of the North American
scincid fauna propose an Asian origin for all
scincid species, a positioning of latiscutatus in a
basal position to the rest of the Pariocela section
appears possible.

The included species of the skiltonianus spe-
cies-group  (skiltonianus, gilberti,
rubricaudatus) form a strongly supported clade.
However, the expected clustering of the included
species and subspecies of the group is not as ex-
pected by the respective taxonomic status given
to the different forms, as one would expect true
subspecies to be related closest to the respective
nominate form. The shown topologies are ex-
plained by the observed genetic differences be-
tween the included forms. “Eumeces” gilberti
rubricaudatus is more closely related to s.
skiltonianus (2.0%) than to its nominate species
g. gilberti (2.2%). A comprehensive genetic
analysis by Richmond and Reeder (2002), which
included 53 populations of the different
morphospecies of the skiltonianus spe-
cies-group, found that the current distribution
and morphotypes are the result of an ecological
speciation, and that the evolutionary changes in
body size are correlated with differences in adult
colour pattern. They conclude that body size was
likely the target of natural selection and that dif-
ferences in colour pattern are probably “second-
ary consequences of evolving large body size”.
This is a good example that, despite the undis-
puted usefulness of morphological differences
and mitochondrial DNA in taxonomic classifica-



86 HAMADRYAD

tions, the utmost care must be taken when deal-
ing with recently evolved and closely related
parapatric species-groups.
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