An Introduction to B-Spline Curves

Thomas W. Sederberg

March 14, 2005

1 B-Spline Curves

Most shapes are simply too complicated to define using a single Bézier curve. A spline curve is a sequence of curve segments that are connected together to form a single continuous curve. For example, a piecewise collection of Bézier curves, connected end to end, can be called a spline curve. Overhauser curves are another example of splines. The word "spline" can also be used as a verb, as in "Spline together some cubic Bézier curves."

The word "spline" comes from the ship building industry, where it originally meant a thin strip of wood which draftsmen would use like a flexible French curve. Metal weights (called "ducks") were placed on the drawing surface and the spline was threaded between the ducks as in Figure 1. We know from basic

Figure 1: Spline and ducks.
structures theory that the bending moment M is an infinitely continuous function along the spline except at a duck, where M is generally only C^{0} continuous. Since the curvature of the spline is proportional to M ($\kappa=M / E I$), the spline is everywhere curvature continuous.

Curvature continuity is an important requirement for the ship building industry, as well as for many other applications. For example, railroad tracks are always curvature continuous, or else the train would experience severe jolts. Car bodies are G^{2} smooth, or else the reflection of straight lines would bend sharply.

While C^{1} continuity is straightforward to attain using Bézier curves (for example, popular design software such as Adobe Illustrator use Bézier curves and automatically impose tangent continuity as you sketch), C^{2} and higher continuity is cumbersome. This is where B-spline curves come in. In practical terms, B-spline curves can be thought of as a method for defining a sequence of degree n Bézier curves that join automatically with C^{n-1} continuity, regardless of where the control points are placed.

Whereas an open string of m Bézier curves of degree n involve $n m+1$ distinct control points (shared control points counted only once), that same string of Bézier curves can be expressed using only $m+n$ B-spline control points (assuming all neighboring curves are C^{n-1}). The most basic operation you need to understand about B-splines is how to extract the contituent Bézier curves. That understanding will provide you with a good working knowledge of B-spline curves.

2 Polar Form

Dr. Lyle Ramshaw of DEC Systems Research Center has developed a way of understanding B-splines based on what he calls polar forms. This contrasts with the approach taken by conventional textbooks which begin by studying the B-spline basis functions. Experience has shown that Ramshaw's method allows students to attain a working knowledge of B-spline curves much faster, and to retain that "closed-book" knowledge far longer, than with traditional methods.

Ramshaw refers to this labeling scheme as polar form. In polar form, control points are referred to as polar values. These notes summarize the properties and applications of polar form, without delving into derivations. The interested student can study Ramshaw's papers.

All of the important algorithms for Bézier and B-spline curves can be derived from the following four rules for polar values.

1. For degree n Bézier curves over the parameter interval $[a, b]$, the control points are relabeled $\mathbf{P}_{i}=$ $\mathbf{P}\left(u_{1}, u_{2}, \ldots u_{n}\right)$ where $u_{j}=a$ if $j \leq n-i$ and otherwise $u_{j}=b$. For a degree two curve over the interval $[a, b]$,

$$
\mathbf{P}_{0}=\mathbf{P}(a, a) ; \quad \mathbf{P}_{1}=\mathbf{P}(a, b) ; \quad \mathbf{P}_{2}=\mathbf{P}(b, b)
$$

For a degree three Bézier curve,

$$
\begin{array}{ll}
\mathbf{P}_{0}=\mathbf{P}(a, a, a) ; & \mathbf{P}_{1}=\mathbf{P}(a, a, b) \\
\mathbf{P}_{2}=\mathbf{P}(a, b, b) ; & \mathbf{P}_{3}=\mathbf{P}(b, b, b)
\end{array}
$$

and so forth. Figure 2 shows two cubic Bézier curves labeled using polar values. The first curve is defined

Figure 2: Bézier curves labeled using polar form.
over the parameter interval $[0,2]$ and the second curve is defined over the parameter interval $[2,3]$. Note that $\mathbf{P}(t, t, \ldots, t)$ is the point on a Bézier curve corresponding to parameter value t.
2. For a degree n B-spline with a knot vector (explained later) of

$$
\left[t_{1}, t_{2}, t_{3}, t_{4}, \ldots\right]
$$

the arguments of the polar values consist of groups of n adjacent knots from the knot vector, with the $i^{t h}$ polar value being $\mathbf{P}\left(t_{i}, \ldots, t_{i+n-1}\right)$, as in Figure 3.
3. A polar value is symmetric in its arguments. This means that the order of the arguments can be changed without changing the polar value. For example,

$$
\mathbf{P}(1,0,0,2)=\mathbf{P}(0,1,0,2)=\mathbf{P}(0,0,1,2)=\mathbf{P}(2,1,0,0), \text { etc. }
$$

4. Given $\mathbf{P}\left(u_{1}, u_{2}, \ldots, u_{n-1}, a\right)$ and $\mathbf{P}\left(u_{1}, u_{2}, \ldots, u_{n-1}, b\right)$ we can compute $\mathbf{P}\left(u_{1}, u_{2}, \ldots, u_{n-1}, c\right)$ where c is any value:

$$
\mathbf{P}\left(u_{1}, u_{2}, \ldots, u_{n-1}, c\right)=
$$

Knot Vector $=[1,2,3,4,5,6,7,8]$

Figure 3: B-spline curve labeled using polar form.

$$
\frac{(b-c) \mathbf{P}\left(u_{1}, u_{2}, \ldots, u_{n-1}, a\right)+(c-a) \mathbf{P}\left(u_{1}, u_{2}, \ldots, u_{n-1}, b\right)}{b-a}
$$

$\mathbf{P}\left(u_{1}, u_{2}, \ldots, u_{n-1}, c\right)$ is said to be an affine combination of $\mathbf{P}\left(u_{1}, u_{2}, \ldots, u_{n-1}, a\right)$ and $\mathbf{P}\left(u_{1}, u_{2}, \ldots, u_{n-1}, b\right)$. For example,

$$
\begin{gathered}
\mathbf{P}(0, t, 1)=(1-t) \times \mathbf{P}(0,0,1)+t \times \mathbf{P}(0,1,1) \\
\mathbf{P}(0, t)=\frac{(4-t) \times \mathbf{P}(0,2)+(t-2) \times \mathbf{P}(0,4)}{2} \\
\mathbf{P}(1,2,3, t)=\frac{\left(t_{2}-t\right) \times \mathbf{P}\left(2,1,3, t_{1}\right)+\left(t-t_{1}\right) \times \mathbf{P}\left(3,2,1, t_{2}\right)}{\left(t_{2}-t_{1}\right)}
\end{gathered}
$$

What this means geometrically is that if you vary one parameter of a polar value while holding all others constant, the polar value will sweep out a line at a constant velocity, as in Figure 4.

Figure 4: Affine map property of polar values.

2.1 Subdivision of Bézier Curves

To illustrate how polar values work, we now show how to derive the de Casteljau algorithm using only the first three rules for polar values.

Given a cubic Bézier curve defined over the parameter interval $[0,1]$, we wish to split it into Bézier curves over the intervals $[0, t]$ and $[t, 1]$. The control points of the original curve are labeled

$$
\mathbf{P}(0,0,0), \quad \mathbf{P}(0,0,1), \quad \mathbf{P}(0,1,1), \quad \mathbf{P}(1,1,1)
$$

The subdivision problem amounts to finding polar values

$$
\mathbf{P}(0,0,0), \quad \mathbf{P}(0,0, t), \quad \mathbf{P}(0, t, t), \quad \mathbf{P}(t, t, t)
$$

and

$$
\mathbf{P}(t, t, t), \quad \mathbf{P}(t, t, 1), \quad \mathbf{P}(t, 1,1), \quad \mathbf{P}(1,1,1)
$$

These new control points can be derived by applying the symmetry and affine map rules for polar values. Refering to Figure 5, we can compute

STEP 1.

$$
\begin{aligned}
& \mathbf{P}(0,0, t)=(1-t) \times \mathbf{P}(0,0,0)+(t-0) \times \mathbf{P}(0,0,1) \\
& \mathbf{P}(0,1, t)=(1-t) \times \mathbf{P}(0,0,1)+(t-0) \times \mathbf{P}(0,1,1) \\
& \mathbf{P}(t, 1,1)=(1-t) \times \mathbf{P}(0,1,1)+(t-0) \times \mathbf{P}(1,1,1)
\end{aligned}
$$

STEP 2.

$$
\begin{aligned}
& \mathbf{P}(0, t, t)=(1-t) \times \mathbf{P}(0,0, t)+(t-0) \times \mathbf{P}(0, t, 1) \\
& \mathbf{P}(1, t, t)=(1-t) \times \mathbf{P}(0, t, 1)+(t-0) \times \mathbf{P}(t, 1,1)
\end{aligned}
$$

STEP 3.

$$
\mathbf{P}(t, t, t)=(1-t) \times \mathbf{P}(0, t, t)+(t-0) \times \mathbf{P}(t, t, 1)
$$

Figure 5: Subdividing a cubic Bézier curve.

3 Symmetric polynomials

The polar form of a Bézier curve is based on the notion of symmetric polynomials. The idea is to represent a degree m polynomial in one variable, $p(t)$, as a polynomial in $n \geq m$ variables, $p\left[t_{1}, \ldots, t_{n}\right]$, that is degree one in each of those variables and such that

$$
p[t, \ldots, t]=p(t)
$$

The polynomial is said to be symmetric because we require that the value of the polynomial will not change if the arguments are permuted. For example, if $n=3$, we require that $p[a, b, c]=p[b, c, a]=p[c, a, b]$ etc.

A symmetric polynomial has the form

$$
p\left[t_{1}, \ldots, t_{n}\right]=\sum_{i=0}^{n} c_{i} p_{i}\left[t_{1}, \ldots, t_{n}\right]
$$

where

$$
p_{0}\left[t_{1}, \ldots, t_{n}\right]=1 ; \quad p_{i}\left[t_{1}, \ldots, t_{n}\right]=\frac{\sum_{j=1}^{n} t_{j} p_{i-1}\left[t_{1}, \ldots, t_{j-1}, t_{j+1}, \ldots, t_{n}\right]}{n}, \quad i=1, \ldots n
$$

For example,

$$
\begin{gathered}
p\left[t_{1}\right]=c_{0}+c_{1} t_{1} \\
p\left[t_{1}, t_{2}\right]=c_{0}+c_{1} \frac{t_{1}+t_{2}}{2}+c_{2} t_{1} t_{2} \\
p\left[t_{1}, t_{2}, t_{3}\right]=c_{0}+c_{1} \frac{t_{1}+t_{2}+t_{3}}{3}+c_{2} \frac{t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}}{3}+c_{3} t_{1} t_{2} t_{3}
\end{gathered}
$$

and

$$
\begin{aligned}
p\left[t_{1}, t_{2}, t_{3}, t_{4}\right]= & c_{0}+c_{1} \frac{t_{1}+t_{2}+t_{3}+t_{4}}{4}+c_{2} \frac{t_{1} t_{2}+t_{1} t_{3}+t_{1} t_{4}+t_{2} t_{3}+t_{2} t_{4}+t_{3} t_{4}}{6} \\
& +c_{3} \frac{t_{1} t_{2} t_{3}+t_{1} t_{2} t_{4}+t_{1} t_{3} t_{4}+t_{2} t_{3} t_{4}}{4}+c_{4} t_{1} t_{2} t_{3} t_{4}
\end{aligned}
$$

The symmetric polynomial $b\left[t_{1}, \ldots t_{n}\right]$ for which $p[t, \ldots t]=p(t)$ is referred to as the polar form or blossom of $p(t)$.

Example Find the polar form of $p(t)=t^{3}+6 t^{2}+3 t+1$.
Answer: $p\left[t_{1}, t_{2}, t_{3}\right]=1+3 \frac{t_{1}+t_{2}+t_{3}}{3}+6 \frac{t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}}{3}+t_{1} t_{2} t_{3}$.
Theorem For every degree m polynomial $p(t)$ there exists a unique symmetric polynomial $p\left[t_{1}, \ldots, t_{n}\right]$ of degree $n \geq m$ such that $p[t, \ldots, t]=p(t)$. Furthermore, the coefficients b_{i} of the degree n Bernstein polynomial over the interval $[a, b]$ are

$$
b_{i}=p[\underbrace{a, \ldots, a}_{n-i}, \underbrace{b, \ldots, b}_{i}]
$$

Example Convert $p(t)=t^{3}+6 t^{2}+3 t+1$ to a degree 3 Bernstein polynomial over the interval $[0,1]$.
We use the polar form of $p(t): p\left[t_{1}, t_{2}, t_{3}\right]=1+3 \frac{t_{1}+t_{2}+t_{3}}{3}+6 \frac{t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}}{3}+t_{1} t_{2} t_{3}$. Then,

$$
b_{0}=p[0,0,0]=1, \quad b_{1}=p[0,0,1]=2, b_{2}=p[0,1,1]=5, b_{3}=p[1,1,1]=11
$$

4 Knot Vectors

A knot vector is a list of parameter values, or knots, that specify the parameter intervals for the individual Bézier curves that make up a B-spline. For example, if a cubic B-spline is comprised of four Bézier curves with parameter intervals $[1,2],[2,4],[4,5]$, and $[5,8]$, the knot vector would be

$$
\left[t_{0}, t_{1}, 1,2,4,5,8, t_{7}, t_{8}\right]
$$

Notice that there are two (one less than the degree) extra knots prepended and appended to the knot vector. These knots control the end conditions of the B-spline curve, as discussed in Section 8.

For historical reasons, knot vectors are traditionally described as requiring n end-condition knots, and in the real world you will always find a meaningless additional knot at the beginning and end of a knot vector. For example, the knot vector in Figure 3 would be $\left[t_{0}, 1,2,3,4,5,6,7,8, t_{9}\right]$, where the values of t_{0} and t_{9} have absolutely no effect on the curve. Therefore, we ignore these dummy knot values in our discussion, but be aware that they appear in B-spline literature and software.

Obviously, a knot vector must be non-decreasing sequence of real numbers. If any knot value is repeated, it is referred to as a multiple knot. More on that in Section 6. A B-spline curve whose knot vector is evenly spaced is known as a uniform B-spline. If the knot vector is not evenly spaced, the curve is called a non-uniform B-spline.

5 Extracting Bézier Curves from B-splines

We are now ready to discuss the central practical issue for B -splines, namely, how does one find the control points for the Bézier curves that make up a B-spline. This procedure is often called the Böhm algorithm after Professor Wolfgang Böhm.

Consider the B-spline in Figure 3 consisting of Bézier curves over domains [3, 4], [4, 5], and [5, 6]. The control points of those three Bézier curves have polar values

$$
\begin{array}{llll}
\mathbf{P}(3,3,3), & \mathbf{P}(3,3,4), & \mathbf{P}(3,4,4), & \mathbf{P}(4,4,4) \\
\mathbf{P}(4,4,4), & \mathbf{P}(4,4,5), & \mathbf{P}(4,5,5), & \mathbf{P}(5,5,5) \\
\mathbf{P}(5,5,5), & \mathbf{P}(5,5,6), & \mathbf{P}(5,6,6), & \mathbf{P}(6,6,6)
\end{array}
$$

respectivly. Our puzzle is to apply the affine and symmetry properties to find those polar values given the B-spline polar values.

For the Bézier curve over $[3,4]$, we first find that $\mathbf{P}(3,3,4)$ is $1 / 3$ of the way from $\mathbf{P}(2,3,4)$ to $\mathbf{P}(5,3,4)=$ $\mathbf{P}(3,4,5)$. Likewise, $\mathbf{P}(3,4,4)$ is $2 / 3$ of the way from $\mathbf{P}(3,4,2)=\mathbf{P}(2,3,4)$ to $\mathbf{P}(3,4,5)$. See Figure 6 .

Figure 6: First step in Böhm algorithm.

Before we can locate $\mathbf{P}(3,3,3)$ and $\mathbf{P}(4,4,4)$, we must find the auxilliary points $\mathbf{P}(3,2,3)(2 / 3$ of the way from $\mathbf{P}(1,2,3)$ to $\mathbf{P}(4,2,3))$ and $\mathbf{P}(4,4,5)(2 / 3$ of the way from $\mathbf{P}(3,4,5)$ to $\mathbf{P}(6,4,5))$ as shown in Figure 7 . Finally, $\mathbf{P}(3,3,3)$ is seen to be half way between $\mathbf{P}(3,2,3)$ and $\mathbf{P}(3,3,4)$, and $\mathbf{P}(4,4,4)$ is seen to be half

Figure 7: Second step in Böhm algorithm.
way between $\mathbf{P}(3,4,4)$ and $\mathbf{P}(4,4,5)$.

Note that the four Bézier control points were derived from exactly four B-spline control points; $\mathbf{P}(5,6,7)$ and $\mathbf{P}(6,7,8)$ were not involved. This means that $\mathbf{P}(5,6,7)$ and $\mathbf{P}(6,7,8)$ can be moved without affecting the Bézier curve over $[3,4]$. In general, the Bézier curve over $\left[t_{i}, t_{i+1}\right]$ is only influenced by B-spline control points that have t_{i} or t_{i+1} as one of the polar value parameters. For this reason, B-splines are said to possess the property of local control, since any given control point can influence at most n curve segments.

6 Multiple knots

If a knot vector contains two identical non-end-condition knots $t_{i}=t_{i+1}$, the B-spline can be thought of as containing a zero-length Bézier curve over $\left[t_{i}, t_{i+1}\right]$. Figure 8 shows what happens when two knots are moved together. The Bézier curve over the degenerate interval $[5,5]$ has polar values $\mathbf{P}(5,5,5), \mathbf{P}(5,5,5), \mathbf{P}(5,5,5)$, $\mathbf{P}(5,5,5)$, which is merely the single point $\mathbf{P}(5,5,5)$. It can be shown that a multiple knot diminishes the

Figure 8: Double knot.
continuity between adjacent Bézier curves. The continuity across a knot of multiplicity k is generally $n-k$.

7 Periodic B-splines

A periodic B-spline is a B-spline which closes on itself. This requires that the first n control points are identical to the last n, and the first n parameter intervals in the knot vector are identical to the last n intervals as in Figure 9.

Figure 9: Periodic B-spline.

8 Bézier end conditions

We earlier noted that a knot vector always has $n-1$ extra knots at the beginning and end which do not signify Bézier parameter limits (except in the periodic case), but which influence the shape of the curve at its ends. In the case of an open (i.e., non-periodic) B-spline, one usually chooses an n-fold knot at each end. This imposes a Bézier behavior on the end of the B-spline, in that the curve interpolates the end control points and is tangent to the control polygon at its endpoints. One can verify this by noting that to convert such a B-spline into Bézier curves, the two control points at each end are already in Bézier form. This is illustrated in Figure 10.

Figure 10: Bézier end condition.

9 Knot insertion

A standard design tool for B-splines is knot insertion. In the knot insertion process, a knot is added to the knot vector of a given B-spline. This results in an additional control point and a modification of a few existing control points. The end result is a curve defined by a larger number of control points, but which defines exactly the same curve as before knot insertion.

Knot insertion has several applications. One is the de Boor algorithm for evaluating a B-spline (discussed in the next section). Another application is to provide a designer with the ability to add local details to a B-spline. Knot insertion provides more local control by isolating a region to be modified from the rest of the curve, which thereby becomes immune from the local modification.

Consider adding a knot at $t=2$ for the B-spline in Figure 10. As shown in Figure 11, this involves replacing $\mathbf{P}(0,1,3)$ and $\mathbf{P}(1,3,4)$ with $\mathbf{P}(0,1,2), \mathbf{P}(1,2,3)$, and $\mathbf{P}(2,3,4)$. Figure 12 shows the new set of control points, which are easily obtained using the affine and symmetry properties of polar values.

Note that the continuity at $t=2$ is C^{∞}.

10 The de Boor algorithm

The de Boor algorithm provides a method for evaluating a B-spline curve. That is, given a parameter value, find the point on the B-spline corresponding to that parameter value.

Any point on a B-spline $\mathbf{P}(t)$ has a polar value $\mathbf{P}(t, t, \ldots, t)$, and we can find it by inserting knot $t n$ times. This is the de Boor algorithm. Using polar forms, the algorithm is easy to figure out.

The de Boor algorithm is illustrated in Figure 13.

	Initial	After Knot Insertion
Knot Vector:	$[(0,0,0,1,3,4,4,4)]$	$[(0,0,0,1,2,3,4,4,4)]$
Control Points:	$\mathbf{P}(0,0,0)$	$\mathbf{P}(0,0,0)$
	$\mathbf{P}(0,0,1)$	$\mathbf{P}(0,0,1)$
	$\mathbf{P}(0,1,3)$	$\mathbf{P}(0,1,2)$
	$\mathbf{P}(1,3,4)$	$\mathbf{P}(1,2,3)$
	$\mathbf{P}(3,4,4)$	$\mathbf{P}(2,3,4)$
	$\mathbf{P}(3,4,4)$	$\mathbf{P}(4,4,4)$

Figure 11: Before and after.

Figure 12: Knot insertion.

Figure 13: De Boor algorithm.

11 Knot Intervals

B-spline curves are typically specified in terms of a set of control points, a knot vector, and a degree. Knot information can also be imposed on a B-spline curve using knot intervals, introduced as a way to assign knot information to subdivision surfaces. A knot interval is the difference between two adjacent knots in a knot vector, i.e., the parameter length of a B-spline curve segment. For even-degree B-spline curves, a knot interval is assigned to each control point, since each control point in an even-degree B-spline corresponds to a curve segment. For odd-degree B-spline curves, a knot interval is assigned to each control polygon edge, since in this case, each edge of the control polygon maps to a curve segment.

While knot intervals are basically just an alternative notation for representing knot vectors, knot intervals offer some nice advantages. For example, knot interval notation is more closely coupled to the control polygon than is knot vector notation. Thus, knot intervals have more geometric meaning than knot vectors, since the effect of altering a knot interval can be more easily predicted. Knot intervals are particularly well suited for periodic B-splines.

Knot intervals contain all of the information that a knot vector contains, with the exception of a knot origin. This is not a problem, since the appearance of a B-spline curve is invariant under linear transformation of the knot vector-that is, if you add any constant to each knot the curve's appearance does not change. B-splines originated in the field of approximation theory and were initially used to approximate functions. In that context, parameter values are important, and hence, knot values are significant. However, in curve and surface shape design, we are almost never concerned about absolute parameter values.

For odd-degree B-spline curves, the knot interval d_{i} is assigned to the control polygon edge $\mathbf{P}_{i}-\mathbf{P}_{i+1}$. For even-degree B-spline curves, knot interval d_{i} is assigned to control point \mathbf{P}_{i}. Each vertex (for even degree) or edge (for odd degree) has exactly one knot interval. If the B-spline is not periodic, $\frac{n-1}{2}$ "end-condition" knot intervals must be assigned past each of the two end control points. They can simply be written adjacent to "phantom" edges or vertices sketched adjacent to the end control points; the geometric positions of those phantom edges or vertices are immaterial.

Figure 14: Sample cubic B-spline
Figure 14 shows a cubic B-spline curve. The control points in Figure 14.a are labeled with polar values, and Figure 14.b shows the control polygon edges labeled with knot intervals. End-condition knots require that we hang one knot interval off each end of the control polygon. Note the relationship between the knot vector and the knot intervals: Each knot interval is the difference between two consecutive knots in the knot vector.

For periodic B-splines, things are even simpler, since we don't need to deal with end conditions. Figure 15 shows two cubic periodic B-splines labelled with knot intervals. In this example, note that as knot interval d_{1} changes from 1 to 3 , the length of the corresponding curve segment increases.

Figure 16 shows two periodic B-splines with a double knot (imposed by setting $d_{0}=0$) and a triple knot (set $\left.d_{0}=d_{1}=0\right)$.

In order to determine formulae for operations such as knot insertion in terms of knot intervals, it is helpful to infer polar labels for the control points. Polar algebracan then be used to create the desired formula. The

Figure 15: Periodic B-splines labelled with knot intervals

Figure 16: Periodic B-splines with double and triple knots.
arguments of the polar labels are sums of knot intervals. We are free to choose any knot origin. For the example in Figure 17, we choose the knot origin to coincide with control points \mathbf{P}_{0}. Then the polar values are as shown in Figure 17.b.

The following subsections show how to perform knot insertion and interval halving, and how to compute hodographs using knot intervals. These formulae can be verified using polar labels.

11.1 Knot Insertion

Knot intervals provide an easy-to-remember method for performing knot insertion. For a cubic B-spline, begin by splitting each edge $\mathbf{P}_{i}-\mathbf{P}_{i+1}$ of the control polygon into three segments whose lengths are proportional to d_{i-1}, d_{i}, and d_{i+1} as shown in Figure 18a. (for periodic B-splines, the subscript values are all modulo the number of edges in the control polygon). For a B-spline of even degree $2 n$, each edge is split into $2 n$

Figure 17: Inferring polar labels from knot intervals.

a.

Figure 18: Knot insertion on a cubic B-spline.
segments whose lengths are proportional to $d_{i-n}, \ldots, d_{i+n-1}$ and for a B-spline of odd degree $2 n+1$, each edge is split into $2 n+1$ segments whose lengths are proportional to d_{i-n}, \ldots, d_{i+n}.

Knot insertion in terms of knot intervals can be thought of as splitting a knot interval at some fraction $t \in[0,1]$. For example, suppose we wish to split knot interval d_{1} in Figure 18a at $t=\frac{1}{3}$. We simply find each occurrence of d_{1} on the control polygon edges, insert a control point $\frac{1}{3}$ of the way along each segment labelled d_{1}, and replace the control points \mathbf{P}_{1} and \mathbf{P}_{2} with \mathbf{A}, \mathbf{B} and \mathbf{C} as shown in Figure 18.b.

Knot removal is the inverse of knot insertion. Thus, given the control polygon in Figure 18.b, knot removal would produce the control polygon in Figure 18.a. Knot removal is possible only when two adjacent curve segments are C^{r} with $r>n-m$ where n is the degree and m is the multiplicity of the knot; thus it is not generally possible to perform knot removal. We will say that a control polygon which cannot undergo knot removal is in minimal form, and the minimal form of a B-spline control polygon results when all knots have been removed that can be.

