A 13Ghz Loadable Counter

with 20ps/bit Settling Time
and Early Completion, in 40nm CMOS

BWRC Seminar
02-Oct-2009

Adam Megacz
(joint work with Ivan Sutherland and Jo Ebergen)

g

0 Berkeley

Sunday, 4 October 2009

Outline

* Numbers

>How to count

>Problem statement

>Number representations
>Redundant representations
>Resettling

* Interlude

e Circuits
> Algorithm

>Circuit
>Layout

>
>

mplementation

D)emo

Sunday, 4 October 2009

How do we count?

» Counting down

17
16
15
14
13
12

... and so on

V VVVYVYVYV

Sunday, 4 October 2009

How do we count?

» Counting down in binary

>10001 = 17
>10000 = 16
>01111 = 15
>01110 = 14
>01101 = 13
>01100 = 12

>...and so on

Sunday, 4 October 2009

How do we count?

» Counting down in binary

>10001 = 17 — Problem: “zeroness” may depend
~[10000| = 16 on the state of all bits of the count in
>01111 = 15 the worst case. Not scalable.
>01110 = 14

>01101 = 13

>01100 = 12

>...and so on

Sunday, 4 October 2009

How do we count?

5. A shovel that normally costs $8 is on sale for 40% off. What is the sale price of the shovel?

Even my students
understand this

Sunday, 4 October 2009

What problem are we solving?

» Need an n-bit counter with two operations:
>1oad Will:
>Accept an ordinary binary value (no fancy encodings allowed!)
>Set the counter to that value
>dec Wil either:
>Report failure if the counter value was zero
>Report success and decrement the counter if it was nonzero

* Performance requirements:
>“dec” must complete in a bounded amount of time
>No matter what the count value is.
>No matter how big the counter (n) is.

Sunday, 4 October 2009

How do we count?

» Counting down in binary

~10001 = 1x2%0x23+0x2%+0x2 1+1x2%=17
~10000 = 16
~01111 = 15
~01110 = 14
~01101 = 13
~01100 = 12

>... and so on

Sunday, 4 October 2009

How do we count?

» Redundant binary representations

~10001 = 1x2%+0x2° +0x22+0x21+1x29=17

Sunday, 4 October 2009

How do we count?

» Redundant binary representations

~10001 = 1x2%+0x2° +0x22+0x21+1x29=17
502001 = 0x2%+2x23+0x22+0x21+1x20=17

10

Sunday, 4 October 2009

How do we count?

» Redundant binary representations

~10001 = 1x2%+0x2° +0x22+0x21+1x29=17
502001 = 0x2%+2x23+0x22+0x21+1x20=17
01201 = 0x2%+1x23+2x22+0x21+1x29=17

11

Sunday, 4 October 2009

How do we count?

» Redundant binary representations

>10001 = 1x2%+0x2°+0x22+0x21+1x20=17
02001 = 0x2%+2x23+0x22+0x21+1x20=17
501201 = 0x2%+1x23+2x22+0x21+1x29=17
501121 = 0x2%+1x23 +1x2%2+2x21+1x29=17

12

Sunday, 4 October 2009

How do we count?

» Redundant binary representations

>10001 = 1x2%+0x2°+0x22+0x21+1x20=17
02001 = 0x2%+2x23+0x22+0x21+1x20=17
501201 = 0x2%+1x23+2x22+0x21+1x29=17
J01121] = 0x2*+1x2° +1x2%+2x21 +1x27=17

Fully “settled” representation

13

Sunday, 4 October 2009

How do we count?

» Decrementing a settled number

>01121 = O0x2%+1x23+1x22+2x21+14x20=17
>01120 = O0x2%+1x23+1x22+2x21+0x20=16

Theorem 1: if the representation is fully settled,
only the least significant bit needs to be used
to decrement and test zeroness.

14

Sunday, 4 October 2009

How do we count?

* Resettling

>01120
>01112

16
16

15

Sunday, 4 October 2009

How do we count?

* Resettling
>01120 = 16 >01110 =
>01112 = 16 >01102 =

14
14

16

Sunday, 4 October 2009

How do we count?

* Resettling
>01120 = 16 >01110 = 14
>01112 = 16 >01102 = 14

Any time you see a O to the right of a non-0,
you can resettle by decrementing the non-0O
and turning the O into a 2

17

Sunday, 4 October 2009

How do we count?
* Theorem 2 (Ebergen)

>(0n average, no more than 2 settling operations are performed
per decrement operation.

> OE| = 17

> d1oo| = 16

> dilpl = 16

> dilit| = 15

> diltol = 14 o

> Q1oR| = 14 n
" el - 12 2{:55::n/l%—n/Q%—n/4+-”.::2n,
>oog2 = 14 i=0

> dopgt| = 13

> dopgol = 12

> daglpl = 12

> doplt| = 11

Sunday, 4 October 2009

How do we count?

* Resettling

>01112
>01111
>01110
>01102
>0102

16
15
14
14
13

Theorem 3: resettling the upper bits can be
performed concurrently with decrementing the
lower bits. |f the number was already settled, it will
resettle as fast or faster than it can be

decremented. '

Sunday, 4 October 2009

Interlude

» Have we assumed that the counter is only finitely
long?

20

Circuits

21

Sunday, 4 October 2009

Syntax

* To avoid terrible confusion, | will...

>

>
>

\

\

"/

se words for states: Zero, One, Two, Done
se numbers for numerals (duh): 0, 1, 2
se symbols for logic levels: -, +

Sunday, 4 October 2009

Circuit Implementation

* Each “bit” of the counter is a pair of state wires
>Four possible states: Zero, One, Two, Done

* A GasP module sits between each pair of bits
>\When the more significant neighbor is not Zero
>.. and the least significant neighbor is Zero

>then fire, and:

>|f the more significant neighbor is Done set the less significant
neighbor to Done

>Qtherwise decrement the more significant neighbor and set the
less significant neighbor to Two

23

Sunday, 4 October 2009

Safest Binary Encoding

* | will name the two state wires
>(0neOrDone , Which IS + when the state IS One or Done
>0ne0rTwo , Which Is + when the state IS One or Two

o | will write the state of a pair of wires as

> [OneOrDone,One0rTwol

24

Sunday, 4 October 2009

Hamming Distances

» Diagram
>Hamming-adjacent codes @
connected by dashed lines 4

>Arrowheads indicate possible

transitions /’ \\
* One transition (One-to-
Zero) is not Hamming
adjacent A g

>Neighbor might “see” a Done s
or a Two during the transition.

>Must manually check that this
will not cause misbehavior.

>Fortunately, it does not. o5

Sunday, 4 October 2009

Adding a Timing Constraint

* If we are willing to assume a timing constraint, we can
simplify the circuit
>This turns out to speed it up considerably

>New state wires:
>TwoOrDone, which Is + when the state IS Two or Done
> ~which is + when the state Is Two or One

26

Sunday, 4 October 2009

Half-Drivers

* Pull-up network:
>active only when output is high
>weak (X=1) transistors
>otherwise same behavior

27

Sunday, 4 October 2009

One Bit (Full Circuit)

~fire

fire Oq
X=8

disable

< >
:K fire » -
X=21 » B S vy
X=21 o X=22
CK fire ll: @—
O <

MSN[TwoOrOne]

LSN[TwoOrOne]

28

Sunday, 4 October 2009

Loading 16 (binary 10000)

vin) [P9eans POOny [O0.qns [300.gns3B0-4ns [309-4ns [PO9.gns 3R0-gns 500 00-qns _PO0ans oIy [PORgns POgns PUnans Y
’

13!

Sunday, 4 October 2009

Loading 18 (binary 10010)

decrement
happens
while t
borrowing is IE
still in < ==
progress

Sunday, 4 October 2009

40nm Implementation

» Loadable down counter designed and implemented

e Summary

>(Calibre DRC clean

>Simulation from extracted layout

>4386 lambda bit pitch (x 3 rows tall)
>Ready for tape-out (just needs fill+scan)
>Performance: 13Ghz (76ps cycle), 20ps/bit settling time

31

Sunday, 4 October 2009

40nm Layout
» Calibre DRC clean
* 486\ x 810A per bi

« M1+M2 only

32

_ PR R R RRR AL R AL R LA e vn L e]

T ek e vy

Sunday, 4 October 2009

Marina test chip

* Includes earlier 6/4 GasP counter design, 90nm
>0 bits wide

>Fully interfaced to Dock

SEENEEEENEEEEEEE A RN

EREREREEAEN

Sunday, 4 October 2009

Marina Demo

» Caveats
>This design was done before the 40nm counter | just

presented

>This design was do

>

-

> ... because we finis

This design is in 90

ne in three weeks, conception to tape-out
ned the main project early and had extra space

nm CMOS, not 40nm

'he counter is deployed in an application
>No test harness, so measuring performance is a bit tricky

34

Sunday, 4 October 2009

Marina Demo

* Program you will see (for varying values of X):
>Repeat forever:
>Load counter with X
>Run the counter down
>Send a token

* Token pulses are passed through 16 frequency
dividers (each divides by two) before going to the pad.

35

Sunday, 4 October 2009

Demo

36

Sunday, 4 October 2009

The Power of Asynchrony

* Different bits need not be sized the same!

>No clock constraint to meet, so:
>Size the least significant bits very large (fast, lots of area)

>Size the more significant bits exponentially smaller
— Down to min-size
— Big area savings in large (>=64bit) counters

37

Sunday, 4 October 2009

What does this have to do with Fleet?
(iImportant slide)

* In a conventional processor, the clock is the “animating
force” which drives computation forward

* In Fleet, the “animating force” is a counter running down

>Every asynchronous system is “just” a mass of coupled ring
oscillators

>\oltages move around rings like teeth of gears
>Counters are the engines which drive the network of gears

* Fast, wide counters are important for fast Fleets

38

Sunday, 4 October 2009

Questions?

39

