
A 13Ghz Loadable Counter
with 20ps/bit Settling Time

and Early Completion, in 40nm CMOS

BWRC Seminar
02-Oct-2009

Adam Megacz
(joint work with Ivan Sutherland and Jo Ebergen)

Sunday, 4 October 2009

Outline
• Numbers
>How to count
>Problem statement
>Number representations
>Redundant representations
>Resettling

• Interlude

2

• Circuits
>Algorithm
>Circuit
>Layout
> Implementation
>Demo

Sunday, 4 October 2009

How do we count?

• Counting down

> 17
> 16
> 15
> 14
> 13
> 12
>... and so on

3
Sunday, 4 October 2009

How do we count?

• Counting down in binary

>10001 = 17
>10000 = 16
>01111 = 15
>01110 = 14
>01101 = 13
>01100 = 12
>... and so on

4
Sunday, 4 October 2009

How do we count?

• Counting down in binary

>10001 = 17
>10000 = 16
>01111 = 15
>01110 = 14
>01101 = 13
>01100 = 12
>... and so on

5

Problem: “zeroness” may depend
on the state of all bits of the count in
the worst case. Not scalable.

Sunday, 4 October 2009

How do we count?

6

Even my students
understand this

Sunday, 4 October 2009

What problem are we solving?

• Need an n-bit counter with two operations:
>load will:
>Accept an ordinary binary value (no fancy encodings allowed!)
>Set the counter to that value

>dec will either:
>Report failure if the counter value was zero
>Report success and decrement the counter if it was nonzero

• Performance requirements:
>“dec” must complete in a bounded amount of time
>No matter what the count value is.
>No matter how big the counter (n) is.

7
Sunday, 4 October 2009

How do we count?

• Counting down in binary

>10001 = 1⨯2 +0⨯2 +0⨯2 +0⨯2 +1⨯2 =17
>10000 = 16
>01111 = 15
>01110 = 14
>01101 = 13
>01100 = 12
>... and so on

8

4 3 2 1 0

Sunday, 4 October 2009

How do we count?

• Redundant binary representations

>10001 = 1⨯2 +0⨯2 +0⨯2 +0⨯2 +1⨯2 =17

9

4 3 2 1 0

Sunday, 4 October 2009

How do we count?

• Redundant binary representations

>10001 = 1⨯2 +0⨯2 +0⨯2 +0⨯2 +1⨯2 =17
>02001 = 0⨯2 +2⨯2 +0⨯2 +0⨯2 +1⨯2 =17

10

4 3 2 1 0

4 3 2 1 0

Sunday, 4 October 2009

How do we count?

• Redundant binary representations

>10001 = 1⨯2 +0⨯2 +0⨯2 +0⨯2 +1⨯2 =17
>02001 = 0⨯2 +2⨯2 +0⨯2 +0⨯2 +1⨯2 =17
>01201 = 0⨯2 +1⨯2 +2⨯2 +0⨯2 +1⨯2 =17

11

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

Sunday, 4 October 2009

How do we count?

• Redundant binary representations

>10001 = 1⨯2 +0⨯2 +0⨯2 +0⨯2 +1⨯2 =17
>02001 = 0⨯2 +2⨯2 +0⨯2 +0⨯2 +1⨯2 =17
>01201 = 0⨯2 +1⨯2 +2⨯2 +0⨯2 +1⨯2 =17
>01121 = 0⨯2 +1⨯2 +1⨯2 +2⨯2 +1⨯2 =17

12

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

Sunday, 4 October 2009

How do we count?

• Redundant binary representations

>10001 = 1⨯2 +0⨯2 +0⨯2 +0⨯2 +1⨯2 =17
>02001 = 0⨯2 +2⨯2 +0⨯2 +0⨯2 +1⨯2 =17
>01201 = 0⨯2 +1⨯2 +2⨯2 +0⨯2 +1⨯2 =17
>01121 = 0⨯2 +1⨯2 +1⨯2 +2⨯2 +1⨯2 =17

13

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

Fully “settled” representation

Sunday, 4 October 2009

How do we count?

• Decrementing a settled number

>01121 = 0⨯2 +1⨯2 +1⨯2 +2⨯2 +1⨯2 =17
>01120 = 0⨯2 +1⨯2 +1⨯2 +2⨯2 +0⨯2 =16

14

4 3 2 1 0

4 3 2 1 0

Theorem 1: if the representation is fully settled,
only the least significant bit needs to be used
to decrement and test zeroness.

Sunday, 4 October 2009

How do we count?

• Resettling

15

>01120 = 16
>01112 = 16

Sunday, 4 October 2009

How do we count?

• Resettling

16

>01120 = 16
>01112 = 16

>01110 = 14
>01102 = 14

Sunday, 4 October 2009

How do we count?

• Resettling

17

Any time you see a 0 to the right of a non-0,
you can resettle by decrementing the non-0
and turning the 0 into a 2

>01120 = 16
>01112 = 16

>01110 = 14
>01102 = 14

Sunday, 4 October 2009

How do we count?
• Theorem 2 (Ebergen)
>On average, no more than 2 settling operations are performed

per decrement operation.

18

> 01121 = 17
> 01120 = 16
> 01112 = 16
> 01111 = 15
> 01110 = 14
> 01102 = 14
> 01022 = 14
> 00222 = 14
> 00221 = 13
> 00220 = 12
> 00212 = 12
> 00211 = 11

Toggle rate is “n”Toggle rate is “n/2”Toggle rate is “n/4”Toggle rate is “n/8”

∞�

i=0

n

2i
= n/1 + n/2 + n/4 + . . . = 2n

1

Sunday, 4 October 2009

How do we count?

• Resettling

19

Theorem 3: resettling the upper bits can be
performed concurrently with decrementing the
lower bits. If the number was already settled, it will
resettle as fast or faster than it can be
decremented.

>01112 = 16
>01111 = 15
>01110 = 14
>01102 = 14
>01021 = 13

Sunday, 4 October 2009

Interlude
• Have we assumed that the counter is only finitely

long?

20
Sunday, 4 October 2009

Circuits

21
Sunday, 4 October 2009

Syntax
• To avoid terrible confusion, I will...
>Use words for states: Zero, One, Two, Done
>Use numbers for numerals (duh): 0, 1, 2
>Use symbols for logic levels: -, +

22
Sunday, 4 October 2009

Circuit Implementation
• Each “bit” of the counter is a pair of state wires
>Four possible states: Zero, One, Two, Done
• A GasP module sits between each pair of bits
>When the more significant neighbor is not Zero
> .. and the least significant neighbor is Zero
> then fire, and:
>If the more significant neighbor is Done set the less significant

neighbor to Done
>Otherwise decrement the more significant neighbor and set the

less significant neighbor to Two

23
Sunday, 4 October 2009

Safest Binary Encoding
• I will name the two state wires
>OneOrDone , which is + when the state is One or Done
>OneOrTwo , which is + when the state is One or Two
• I will write the state of a pair of wires as
> [OneOrDone,OneOrTwo]
>So,
>Zero=[--]
>One =[++]
>Two =[-+]
>Done=[+-]

24
Sunday, 4 October 2009

Hamming Distances

• Diagram
>Hamming-adjacent codes

connected by dashed lines
>Arrowheads indicate possible

transitions
• One transition (One-to-
Zero) is not Hamming
adjacent
>Neighbor might “see” a Done

or a Two during the transition.
>Must manually check that this

will not cause misbehavior.
>Fortunately, it does not. 25

Zero
[--]

One
[++]

Two
[-+]

Done
[+-]

Sunday, 4 October 2009

Adding a Timing Constraint
• If we are willing to assume a timing constraint, we can

simplify the circuit
>This turns out to speed it up considerably
>New state wires:
>TwoOrDone, which is + when the state is Two or Done
>TwoOrOne, which is + when the state is Two or One

26
Sunday, 4 October 2009

Half-Drivers
• Pull-up network:
>active only when output is high
>weak (X=1) transistors
>otherwise same behavior

27
Sunday, 4 October 2009

One Bit (Full Circuit)

28
Sunday, 4 October 2009

Loading 16 (binary 10000)

29

0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 D

0 2 1 0 2 1 0 2 1 0 2 1 0 D

0 2

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! X

1 0 2 1 0 D

0 2 1 0 D

1 0 D

Sunday, 4 October 2009

Loading 18 (binary 10010)

30

!

1

0

1

0

0

1

First
decrement
happens

while
borrowing is

still in
progress

2

Sunday, 4 October 2009

40nm Implementation
• Loadable down counter designed and implemented
• Summary
>Calibre DRC clean
>Simulation from extracted layout
>486 lambda bit pitch (x 3 rows tall)
>Ready for tape-out (just needs fill+scan)
>Performance: 13Ghz (76ps cycle), 20ps/bit settling time

31
Sunday, 4 October 2009

40nm Layout
• Calibre DRC clean
• 486λ x 810λ per bit
•M1+M2 only

32
Sunday, 4 October 2009

Marina test chip
• Includes earlier 6/4 GasP counter design, 90nm
>6 bits wide
>Fully interfaced to Dock

33
Sunday, 4 October 2009

Marina Demo
• Caveats
>This design was done before the 40nm counter I just

presented
>This design was done in three weeks, conception to tape-out
>... because we finished the main project early and had extra space

>This design is in 90nm CMOS, not 40nm
>The counter is deployed in an application
>No test harness, so measuring performance is a bit tricky

34
Sunday, 4 October 2009

Marina Demo
• Program you will see (for varying values of X):
>Repeat forever:
>Load counter with X
>Run the counter down
>Send a token

• Token pulses are passed through 16 frequency
dividers (each divides by two) before going to the pad.

35
Sunday, 4 October 2009

Demo

36
Sunday, 4 October 2009

The Power of Asynchrony
• Different bits need not be sized the same!
>No clock constraint to meet, so:
>Size the least significant bits very large (fast, lots of area)
>Size the more significant bits exponentially smaller

– Down to min-size
– Big area savings in large (>=64bit) counters

37
Sunday, 4 October 2009

What does this have to do with Fleet?
(important slide)

• In a conventional processor, the clock is the “animating
force” which drives computation forward
• In Fleet, the “animating force” is a counter running down
>Every asynchronous system is “just” a mass of coupled ring

oscillators
>Voltages move around rings like teeth of gears
>Counters are the engines which drive the network of gears
• Fast, wide counters are important for fast Fleets

38
Sunday, 4 October 2009

Questions?

39
Sunday, 4 October 2009

