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Abstract. The combination of a Watt balance, a calculable capacitor, and a single-
electron tunneling device forms a triangle that yields a value for the single-electron
charge quantum QS in terms of the SI coulomb. Importantly, this result is independent
of the Josephson and quantum Hall effects, and thus avoids the possible confounding
corrections from these two effects that arise in the traditional quantum metrology
triangle. This new triangle can be used to test for corrections to the expected relation
QS = e, where e is the elementary charge. Combining existing results for Watt
balances, calculable capacitors, and an electron counting capacitance standard yields
(QS/e)− 1 = (−0.09± 0.92)× 10−6.
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1. Introduction

Quantum electrical standards for voltage and resistance based on the Josephson effect

and the quantum Hall effect, respectively, revolutionized electrical metrology almost 20

years ago [1]. They have allowed dramatic improvements in consistency among national

measurement institutes [2]. The question of the exactness of these quantum effects has

been the subject of many studies, both theoretical and experimental, and these have been

summarized recently in [3]. A well known test for exactness is the quantum metrology

triangle (QMT), which is made possible by adding a quantum electical standard of

current or charge based on single-electron tunneling effects. As described in detail in

the next section, the QMT tests for corrections in all three quantum electrical standards

at once. While this idea is elegant, it has the weakness that corrections to two (or even

three) of the effects could cancel each other. Thus it is important to have methods to

test each “leg” of the QMT individually. Such methods exist for both the Josephson

and quantum Hall legs [3], and in this paper we describe a test for the single-electron

leg alone. This test has been mentioned previously as part of broader discussions [4, 5].

Here we present more details to highlight the essential aspects of this test, and we

compute a value for QS from the best experimental results to date.

We begin with a review of the traditional QMT to provide context. We then

explain how a Watt balance, calculable capacitor, and electron counting capacitance

standard can be combined to form a new triangle. We do this in terms of an intuitive

(but impractical) thought experiment, in order to make the idea clear. Finally, we take

the best existing results for the three legs of this triangle and show how they can be

combined to yield a value for QS.

2. The Quantum Metrology Triangle

The quantum metrology triangle (QMT) comprises standards for voltage U , resistance

R, and current I. Each of the standards relates one of these quantities to the Planck

constant h and/or the elementary charge e:

(i) A Josephson voltage standard (JVS) driven at a frequency fJ and operating on the

nth step produces a voltage

UJVS = nfJ/KJ with KJ =
2e

h
(1 + εJ). (1)

(ii) A quantum Hall resistance (QHR) standard quantized on the ith plateau has a

resistance

RQHR = RK/i with RK =
h

e2
(1 + εK). (2)

(iii) A single-electron tunneling (SET) current standard driven at a frequency fS

produces a current

ISET = QSfS with QS = e(1 + εS). (3)
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In each case, a possible deviation from the expected quantum relation is parametrized

by ε.

In its original form [6], the three quantities are linked by Ohm’s law, U = IR.

In another form [7, 8], in which charge Q is used instead of current and R is linked

to a capacitance C via a quadrature bridge, the quantities are linked by Q = CU .

Both forms of the QMT lead to the same result:§ a value for the dimensionless product

KJRKQS, which equals exactly 2 if the three quantum relations are exact. Carrying

through the possible corrections gives

KJRKQS = 2 (1 + εJ) (1 + εS) (1 + εK)

≈ 2(1 + εJ + εS + εK),
(4)

where the second line relies on the fact that each ε term is much less than 1.

Because equation 4 involves possible corrections to all three quantum electrical

effects, a specific result for a QMT experiment is subject to interpretation. How one

treats the possibility of multiple corrections of opposite sign depends on how much

confidence one has in each of the individual legs. Since the current status of each leg

is quite different [3], this confidence is a function of the uncertainty assigned to the

experimental result that one wants to interpret. Thus while the QMT is a compact

and elegant way to express the effect of possible corrections, in practice it must be

supplemented by tests that isolate one leg at a time.

3. A Triangle to Measure QS

Figure 1 illustrates the triangle that is the focus of this paper. The principle that links

it together, analogous to Ohm’s law for the original form of the QMT, is the equivalence

of electrical and mechanical power. The most accurate realization of this equivalence

to date is the moving-coil Watt balance. This experiment was first proposed in 1976 [9]

and is reviewed in detail in [10, 11]. The equivalence realized by a Watt balance can be

written as

mgv =
U2

R
, (5)

where mgv is the mechanical power of a mass m moving at velocity v in a gravitational

field with acceleration g, and U2/R is the electrical power in a coil of wire moving

at velocity v through a magnetic field gradient. The equivalence of these powers is

established indirectly by performing the measurement in two phases: (1) a static phase

in which the current U/R in the coil balances the force mg, and (2) a moving phase in

which the motion of the coil at velocity v induces a voltage U in the coil. The key to

the accuracy of the Watt balance is the fact that the geometrical factor related to the

magnetic field gradient is the same for both phases, and thus cancels out of the final

result [10, 11].

§ We ignore the factors n, fJ, i, and fS here because in practice they are known with negligible
uncertainty.
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Figure 1. Metrology triangle involving a Watt balance, a calculable capacitor, and
an electron counting capacitance standard. This triangle is built on the equivalence of
electrical and mechanical power.

The left side of the triangle in figure 1 involves an electron counting capacitance

standard (ECCS) [12, 13, 14] in which a known number of electrons N is placed onto a

cryogenic, vacuum-gap capacitor [15], generating a voltage U across the capacitor. From

the definition of capacitance, the defining relation for this side is C = NQS/U . The

right side of the triangle uses a quadrature bridge at angular frequency ω to balance the

imaginary impedance 1/ωC of a capacitor with the real impedance R of a resistor [16].

Since the quadrature bridge necessarily operates at finite frequency (typically ω = 104

rad/s), while C in the ECCS and R in the Watt balance are effectively dc values, the

frequency dependence of both C and R must be known. For C, an upper bound for the

frequency dependence has been determined using a combination of direct measurements

and a model for the dielectric films presumed responsible for the frequency dependence

[17]. For R, a coaxial resistor having a calculable ac/dc difference can be used [18, 16].

The following thought experiment illustrates how the triangle in figure 1 yields a

value for QS. A Watt balance is operated in the static phase with a known mg and with

R chosen so that the current in the coil at the balance condition produces a voltage U

across R. In the moving phase, the velocity v is chosen so that the voltage induced in

the coil is again U . From equation 5, we have

U = (mgvR)1/2 . (6)

A quadrature bridge is then used to link R with a capacitance C, giving

U =
(mgv
ωC

)1/2

. (7)
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Finally, the capacitance C is charged by an SET device, with the number of charge

quanta N chosen so that the voltage generated is again precisely U . This gives

U =
NQS

C
, (8)

and setting this equal to equation 7 yields

NQS

C
=

(mgv
ωC

)1/2

(9)

QS =
1

N

(
mgvC

ω

)1/2

. (10)

It is clear that equation 10 will give a value for QS in SI units if all quantities on

the right side are measured in SI units. The mechanical quantities coming from the

Watt balance are measured in terms of the SI kilogram, meter, and second [10, 11]. A

Thompson-Lampard calculable capacitor [19] gives a capacitance of (ε0 ln 2/π)L, where

ε0 is the electric constant and L is the displacement of its guard electrode, and thus

gives C in terms of the SI farad if L is measured in meters. For the purposes of this

illustration we can choose L so that the calculable capacitor gives the same value of C

used in the other parts of the triangle. It is worth noting that the calculable capacitor

is not essential here. Other means of bringing an SI electrical unit (volt, ampere, etc.)

into the triangle would also yield an SI value for QS. In other words, the triangle in

figure 1 needs to be “anchored” to an SI electrical unit, and this could be done at any

of the three vertices. However, all other realization experiments for SI electrical units

currently have much larger uncertainty than calculable capacitors.

The thought experiment leading to equation 10 intentionally avoided any use of

the Josephson and quantum Hall effects in order to make it clear that the final result is

completely independent of any assumptions about the exactness of these effects. In an

actual experiment, the limitations of the Watt balance, ECCS, and calculable capacitor

do not allow the same values of voltage and capacitance to be used for all parts of the

experiment. Thus in practice one would use a programmable JVS [20] for some of the

voltage measurements, and a QHR system might be involved in the link between the

Watt balance and the calculable capacitor (especially if different parts are far apart in

space and time). However, in this case it is only the stability and universality of the

JVS and QHR that are exploited, not their connections to h and e.

Single-electron tunneling enters the triangle in figure 1 as a charge source that links

the Watt balance directly to the calculable capacitor. It is also possible to obtain a value

for QS using an SET current source. This approach, which is less direct than figure 1

but leads to a result that is equally independent of the Josephson and quantum Hall

relations, is described in the Appendix.

4. Best Value for QS to Date

The measurements needed to realize the triangle in figure 1 have in fact been completed,

although not for this purpose and not at the same time and place. They are the following:
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(i) Several results for RK in SI units have been obtained by using a quadrature bridge

and ac/dc resistor to compare the impedances of a calculable capacitor and a QHR

device. The weighted mean of five such results is (see equation 200 of [21])

RK = 25 812.808 18(47) Ω [18× 10−9]. (11)

(Here the number in parentheses is the standard uncertainty referred to the last

digits of the quoted value, and the number in square brackets is the relative standard

uncertainty. All uncertainties given in this paper are standard uncertainties.)

(ii) Three Watt balance results are included in the most recent CODATA adustment

of fundamental constants [22]. The Josephson and quantum Hall effects are always

used in a Watt balance experiment (this is what allows it to link the kilogram to the

Planck constant [10, 11]), and it is common to express the result of the experiment

as a value for the quantity K2
JRK. It is then clear that combining the value of

RK in equation 11 with the weighted mean of the three Watt balance results will

yield a weighted mean value for KJ. This has been done, and the result is given in

equation 290 of [22],

KJ = 483 597.8865(94) GHz/V [19× 10−9]. (12)

It is important to note that this value of KJ is independent of the relations

KJ = 2e/h and RK = h/e2, whereas the recommended value of KJ resulting from

a least-squares adjustment is not. ‖
(iii) An ECCS experiment has recently been completed [14]. The result can be expressed

as a ratio of the values for a cryogenic capacitor measured in two ways. C0 is

determined by comparison to a calculable capacitor with an ac bridge, while CECCS

is determined by charging the capacitor with a known number of charge quanta

and measuring the resulting voltage. Furthermore, CECCS is defined for QS = e and

KJ = 2e/h exactly. The ratio is then [14]

C0

CECCS

=
QSKJ

2e2/h
= (1 + εS) (1 + εJ) , (13)

and the experimental result for this ratio is [14]

C0

CECCS

− 1 = (−0.10± 0.92)× 10−6. (14)

‖ We caution the reader that the values of input data in the tables of [21] and [22] have been
truncated to show only the significant digits, while calculations of weighted means (and the least-
squares adjustment itself) rely on values having more digits. The calculations also take account of
covariances when appropriate. Thus calculating an accurate weighted mean for several input data
requires more information than is contained in the tables. The complete values of most input data, as
well as their covariances, are available at http://physics.nist.gov/constants.
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Combining equations 12, 13, and 14, and using the 2006 recommended value for

2e2/h [22], ¶ we obtain the following value for QS,

QS = 1.602 1763(15)× 10−19 C [0.92× 10−6]. (15)

Although JVS and QHR standards were involved for practical reasons in the three

types of experiments used to obtain this value of QS, it is nevertheless independent

of the relations KJ = 2e/h and RK = h/e2. Finally, using equation 3 and the 2006

recommended value for the elementary charge [22], we find the following value for a

possible correction to the SET charge quantum,

εS = (−0.09± 0.92)× 10−6. (16)

Unlike the value of QS in equation 15, this value of εS is not strictly independent of the

Josephson and quantum Hall relations. The recommended value of e depends strongly

on the value of h, and the Watt balance results that determine h are treated, for the

purposes of the least-squares adjustment, under the assumption that the Josephson

and quantum Hall relations are exact. However, there is little reason to question this

assumption at the current uncertainty of QS [3, 22], so we may still draw the conclusion

that QS = e within 0.9 parts in 106.

5. Conclusion

The triangle described here provides the first measurement of QS in SI units that

is independent of any assumptions about possible corrections to the Josephson and

quantum Hall effects. Using the best existing results yields a value that agrees with the

recommended value of e within a relative standard uncertainty of slightly less than 1 part

in 106. A direct test now exists for each of the legs of the original quantum metrology

triangle, which should facilitate the interpretation of forthcoming experimental results.
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Appendix A. Determining QS by using an SET current source

In the ECCS, an SET pump is programmed to operate for a specified number of cycles,

but this same device can also be run continuously to produce a specified current. Other

types of SET devices that operate only in the continous mode may eventually be able

¶ Since 2e2/h = 4α/µ0c, with the magnetic constant µ0 and the speed of light c defined constants in
the SI, it is proportional to the fine structure constant α. The results that determine the recommended
value of α come from experiments involving the electron magnetic moment anomaly and the photon
recoil of atoms [22], and are completely independent of the Josephson and quantum Hall relations.
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Figure A1. Links involving a Watt balance, a calculable capacitor, and an SET
current source that can be used to determine QS. We assume a known relation between
f and ω.

to deliver much larger currents than an SET pump [8, 5]. Thus a measurement of QS

based on an SET current source is also of interest, and figure A1 shows the links needed

to realize such a measurement. The Watt balance relation is expressed in terms of a

current and a voltage, and an SET device links the current to a frequency on the left

side and the voltage to a resistance on the right side. The frequency and resistance

are then linked to a calculable capacitor (which again anchors the experiment to an SI

electrical unit) via a quadrature bridge. The equations for these links are

mgv = (QSf)(QSf)R

= (QSf)2(1/ωC),
(A.1)

QS =

(
mgvωC

f 2

)1/2

. (A.2)

In an idealized thought experiment, the SET source could drive the current through

the coil of the Watt balance in the static phase with f chosen to balance the force mg.

The velocity in the moving phase and the other parameters could be chosen to close

the loop, analogous to the discussion in section 3. In a real experiment, JVS and QHR

devices would again be used for their stability and universality, but the result for QS is

completely independent of the exactness of the quantum relations for these effects.

The measurements with SET current sources needed to determine a value for QS

from figure A1 have not yet been done. Ongoing efforts at LNE and NIST, as well
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as other national measurement institutes, are aimed at performing such measurements

in the future. As always, having multiple paths to the same result will allow checks

of systematic errors, which will be substantially different for the experiments shown in

figures 1 and A1.
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