
Fast and Precise Hybrid Type Inference for JavaScript

Abstract1

JavaScript performance is often bound by its dynamically typed na-2

ture. Compilers do not have access to static type information, mak-3

ing generation of efficient, type-specialized machine code difficult.4

To avoid incurring extra overhead on the programmer and to im-5

prove the performance of deployed JavaScript programs, we seek6

to solve this problem by inferring types. Existing type inference7

algorithms for JavaScript are often too computationally intensive8

and too imprecise—especially in the case of JavaScript’s exten-9

sible objects—to enable optimizations. Both problems arise from10

performing purely static analyses. In this paper we present a hybrid11

type inference algorithm for JavaScript based on points-to analysis.12

Our algorithm is fast, in that it pays for itself in the optimizations it13

enables. Our algorithm is also precise, generating information that14

closely reflects the program’s actual behavior, by augmenting static15

analysis with run-time type barriers.16

We showcase an implementation for Mozilla Firefox’s JavaScript17

engine, demonstrating both performance gains and viability. Through18

integration with the just-in-time (JIT) compiler in Firefox, we have19

improved its performance on major benchmarks and JavaScript-20

heavy websites by up to 50%. This is scheduled to become the21

default compilation mode in Firefox 9.22

1. The Need for Hybrid Analysis23

Consider the example JavaScript program in Figure 1. This pro-24

gram constructs an array of Box objects wrapping integer values,25

then calls a use function which adds up the contents of all those Box26

objects. No types are specified for any of the variables or other val-27

ues used in this program, in keeping with JavaScript’s dynamically-28

typed nature. Nevertheless, most operations in this program inter-29

act with type information, and knowledge of the involved types is30

needed to compile efficient code.31

In particular, we are interested in the addition res + v on line 9.32

In JavaScript, addition coerces the operands into strings or numbers33

if necessary. String concatenation is performed for the former, and34

numeric addition for the latter.35

Without static information about the types of res and v, a JIT36

compiler must emit code to handle all possible combinations of37

operand types. Moreover, every time values are copied around, the38

compiler must emit code to keep track of the types of the involved39

values, using either a separate type tag for the value or a specialized40

marshaling format. This incurs a large runtime overhead on the41

generated code, greatly increases the complexity of the compiler,42

[Copyright notice will appear here once ’preprint’ option is removed.]

1 function Box(v) {
2 this.p = v;
3 }
4
5 function use(a) {
6 var res = 0;
7 for (var i = 0; i < 1000; i++) {
8 var v = a[i].p;
9 res = res + v;

10 }
11 return res;
12 }
13
14 function main() {
15 var a = [];
16 for (var i = 0; i < 1000; i++)
17 a[i] = new Box(10);
18 use(a);
19 }

Figure 1. Motivating Example

and makes effective implementation of important optimizations43

like register allocation and loop invariant code motion much harder.44

If we knew the types of res and v, we can compile code which45

performs an integer addition without the need to check or to track46

the types of res and v. With static knowledge of all types involved47

in the program, the compiler can in many cases generate code48

similar to that produced for a statically-typed language such as49

Java, with similar optimizations.50

We can infer possible types for res and v statically by reasoning51

about the effect the program’s assignments and operations have on52

values produced later. This is illustrated below (for brevity, we do53

not consider the possibility of Box and use being overwritten).54

1. On line 17, main passes an integer when constructing Box ob-55

jects. On line 2, Box assigns its parameter to the result’s p prop-56

erty. Thus, Box objects can have an integer property p.57

2. Also on line 17, main assigns a Box object to an element of a.58

On line 15, a is assigned an array literal, so the elements of that59

literal could be Box objects.60

3. On line 18, main passes a to use, so a within use can refer to61

the array created line 15. When use accesses an element of a on62

line 8, per #2 the result can be a Box object.63

4. On line 8, property p of a value at a[i] is assigned to v. Per #364

a[i] can be a Box object, and per #1 the p property can be an65

integer. Thus, v can be an integer.66

5. On line 6, res is assigned an integer. Since v can be an integer,67

res + v can be an integer. When that addition is assigned to68

res on line 9, the assigned type is consistent with the known69

possible types of res.70

1 2011/11/1

This reasoning can be captured with inclusion constraints; we71

compute sets of possible types for each expression and model the72

flow between these sets as subset relationships. To compile correct73

code, we need to know not just some possible types for variables,74

but all possible types. In this sense, the static inference above75

is unsound: it does not account for all possible behaviors of the76

program. A few such behaviors are described below.77

• The read of a[i] may access a hole in the array. Out of bounds78

array accesses in JavaScript produce the undefined value if the79

array’s prototype does not have a matching property. Such holes80

can also be in the middle of an array; assigning to just a[0] and81

a[2] leaves a missing value at a[1].82

• Similarly, the read of a[i].v may be accessing a missing prop-83

erty and may produce the undefined value.84

• The addition res + v may overflow. JavaScript has a single85

number type which does not distinguish between integers and86

doubles. However, it is extremely important for performance87

that JavaScript compilers distinguish the two and try to repre-88

sent numbers as integers wherever possible. An addition of two89

integers may overflow and produce a number which can only be90

represented as a double.91

In some cases these behaviors can be proven not to occur, but92

usually they cannot be ruled out. A standard solution is to capture93

these behaviors statically, but this is unfruitful. The static analysis94

must be sound, and to be sound in light of highly dynamic behav-95

iors is to be conservative: many element or property accesses will96

be marked as possibly undefined, and many integer operations will97

be marked as possibly overflowing. The resulting type information98

would be too imprecise to be useful for optimization.99

Our solution, and our key technical novelty, is to combine un-100

sound static inference of the types of expressions and heap values101

with targeted dynamic type updates. Behaviors which are not ac-102

counted for statically must be caught dynamically, modifying in-103

ferred types to reflect those new behaviors if caught. If a[i] ac-104

cesses a hole, the inferred types for the result must be marked as105

possibly undefined. If res + v overflows, the inferred types for106

the result must be marked as possibly a double.107

With or without analysis, the generated code needs to test for108

array holes and integer overflow in order to correctly model the109

semantics of the language. We call dynamic type updates based110

on these events semantic triggers: they are placed on rarely taken111

execution paths and incur a cost to update the inferred types only112

the first time that path is taken.113

The presence of these triggers illustrates the key invariant our114

analysis preserves:115

Inferred types must conservatively model all types for vari-116

ables and object properties which currently exist and have117

existed in the past, but not those which could exist in the118

future.119

This has important implications:120

• The program can be analyzed incrementally, as code starts to121

execute. Code which does not execute need not be analyzed.122

This is necessary for JavaScript due to dynamic code loading123

and generation. It is also important for reducing analysis time124

on websites, which often load several megabytes of code and125

only execute a fraction of it.126

• Assumptions about types made by the JIT compiler can be127

invalidated at almost any time. This affects the correctness of128

the JIT-compiled code, and the virtual machine must be able129

to recompile or discard code at any time, especially when that130

code is on the stack.131

Dynamic checks and the key invariant are also critical to our132

handling of polymorphic code within a program. Suppose some-133

where else in the program we have new Box("hello!"). Doing so134

will cause Box objects to be created which hold strings, illustrating135

the use of Box as a polymorphic structure. Our analysis does not136

distinguish Box objects created in different places, and the result of137

the a[i].v access in use will be regarded as potentially producing138

a string. Naively, solving the constraints produced by the analy-139

sis will mark a[i].v, v, res + v, and res as all producing either140

an integer or a string, even if use’s runtime behavior is actually141

monomorphic and only works on Box objects containing integers.142

This problem of imprecision leaking across the program is seri-143

ous: even if a program is mostly monomorphic, analysis precision144

can easily be poisoned by a small amount of polymorphic code.145

We deal with uses of polymorphic structures and functions146

using runtime checks. At all element and property accesses, we147

keep track of both the set of types which could be observed for the148

access and the set of types which has been observed. The former149

will be a superset of the latter, and if the two are different then we150

insert a runtime check, a type barrier, to check for conformance151

between the resultant value and the observed type set. Mismatches152

lead to updates of the observed type set.153

For the example program, a type barrier is required on the154

a[i].p access on line 8, and nowhere else. The barrier will test155

that the value being read is an integer. If a string shows up due to156

a call to use outside of main, then the possible types of the a[i].p157

access will be updated, and res and v will be marked as possibly158

strings by resolving the analysis constraints.159

Type barriers differ from the semantic triggers described earlier160

in that the tests they perform are not required by the language and161

do not need to be performed if our analysis is not being used. We162

are effectively betting that the required barriers pay for themselves163

by enabling generation of better code using more precise type164

information. We have found this to be the case in practice (§4.1.1,165

§4.2.5).166

1.1 Comparison with other techniques167

The reader may question, “Why not use more sophisticated static168

analyses that produce more precise results?” Our choice for the169

static analysis to not distinguish Box objects created in different170

places is deliberate. To be useful in a JIT setting, the analysis must171

be fast, and the time and space used by the analysis quickly degrade172

as complexity increases. Moreover, there is a tremendous variety of173

polymorphic behavior seen in JavaScript code in the wild, and to174

retain precision even the most sophisticated static analysis would175

need to fall back to dynamic checks some of the time.176

Interestingly, less sophisticated static analyses do not fare well177

either. Unification-based analyses undermine the utility of dynamic178

checks; precision is unrecoverable despite dynamic monitoring.179

More dynamic compilation strategies generate type specialized180

code based on profiling information, without static knowledge of181

possible argument or heap types [9, 10]. Such techniques will deter-182

mine the types of expressions with similar precision to our analysis,183

but will always require type checks on function arguments or when184

reading heap values. With knowledge of all possible types, we only185

need type checks at accesses with type barriers, a difference which186

significantly improves performance (§4.1.1).187

We believe that our partitioning of static and dynamic analysis is188

a sweet spot for JIT compilation of a highly dynamic language. Our189

main technical contribution is a hybrid inference algorithm for the190

entirety of JavaScript, using inclusion constraints to unsoundly in-191

fer types extended with runtime semantic triggers to generate sound192

type information, as well as type barriers to efficiently and precisely193

handle polymorphic code. Our practical contributions include both194

an implementation of our algorithm and a realistic evaluation. The195

2 2011/11/1

v ::= undefined | i | s | {} values

e ::= v | x | e+ e | x.p | x[i] expressions

s ::= if(x) s else s | x = e | x.p = e | x[i] = e statements

τ ::= undefined | int | number | string | o types

T ::= P(τ) type sets

C ::= T ⊇ T | T ⊇B T constraints

Figure 2. Simplified JavaScript Core, Types, and Constraints

implementation is integrated with the JIT compiler used in Fire-196

fox and is of production quality. Our evaluation has various metrics197

showing the effectiveness of the analysis and modified compiler on198

benchmarks as well as popular websites, games, and demos.199

The remainder of the paper is organized as follows. In §2 we200

describe the static and dynamic aspects of our analysis. In §3201

we outline implementation of the analysis as well as integration202

with the JavaScript JIT compiler inside Firefox. In §4 we present203

empirical results. In §5 we discuss related work, and in §6 we204

conclude.205

2. Analysis206

We present our analysis in two parts, the static “may-have-type”207

analysis and the dynamic “must-have-type” analysis. The algorithm208

is based on Andersen-style (inclusion based) pointer analysis [6].209

The static analysis is intentionally unsound with respect to the se-210

mantics of JavaScript. It does not account for all possible behaviors211

of expressions and statements and only generates constraints that212

model a “may-have-type” relation. All behaviors excluded by the213

type constraints must be detected at runtime and their effects on214

types in the program dynamically recorded. The analysis runs in215

the browser as functions are trying to execute: code is analyzed216

function-at-a-time.217

Inclusion based pointer analysis has a worst-case complexity of218

O(n3) and is very well studied. It has shown—and we reaffirm this219

with our evaluation—to perform and scale well despite its cubic220

worst-case complexity [22].221

We describe constraint generation and checks required for a222

simplified core of JavaScript expressions and statements, shown in223

Figure 2. We let f ,x range over variables, p range over property224

names, i range over integer literals, and s range over string literals.225

The only control flow in the core language is if, which tests for226

definedness. We avoid talking about functions and function calls in227

our simplified core; the reader may think of functions as objects228

with special domain and codomain properties.229

The types over which we are trying to infer are also shown in230

Figure 2. The types can be primitive or an object type o.1 The int231

type indicates a number expressible as a signed 32-bit integer and232

is subsumed by number — int is added to all type sets containing233

number. Finally, we have sets of types which the static analysis234

computes.235

2.1 Object Types236

To reason about the effects of property accesses, we need type237

information for JavaScript objects and their properties. Each object238

is immutably assigned an object type o. When o ∈ Te for some239

expression e, then the possible values for e when it is executed240

include all objects with type o.241

For the sake of brevity and ease of exposition, our simpli-242

fied JavaScript core only contains the ability to construct Object-243

1 In full JavaScript, we also have the primitive types bool and null.

`e undefined : Tu
{

Tu ⊇ {undefined}
}

(UNDEF)

`e i : Ti
{

Ti ⊇ {int}
}

(INT)

`e s : Ts
{

Ts ⊇ {string}
}

(STR)

`e {} : T{}
{

T{} ⊇ {o}
}

where o fresh (OBJ)

`e x : Tx /0 (VAR)

`e x : Tx `e y : Ty

`e x+ y : Tx+y
Tx+y ⊇ {int} | int ∈ Tx∧int ∈ Ty,
Tx+y ⊇ {number} | int ∈ Tx∧number ∈ Ty,
Tx+y ⊇ {number} | number ∈ Tx∧int ∈ Ty,
Tx+y ⊇ {string} | string ∈ Tx∨string ∈ Ty

 (ADD)

`e x : Tx

`e x.p : Tx.p

{
Tx.p ⊇B prop(o, p) | o ∈ Tx

}
(PROP)

`e x : Tx

`e x[i] : Tx[i]

{
Tx[i] ⊇B index(o) | o ∈ Tx

}
(INDEX)

`e x : Tx `e e : Te

`s x = e : •
{

Tx ⊇ Te
}

(A-VAR)

`e x : Tx `e e : Te

`s x.p = e : •
{

prop(o, p)⊇ Te | o ∈ Tx
}

(A-PROP)

`e x : Tx `e e : Te

`s x[i] = e : •
{

index(o)⊇ Te | o ∈ Tx
}

(A-INDEX)

`s if(x) s1 else s2 : • Cs(s1)∪Cs(s2) (IF)

Figure 3. Constraint Generation Rules

prototyped object literals via the {} syntax; two objects have the244

same type when they were allocated via the same literal.245

In full JavaScript, types are assigned to objects according to246

their prototype: all objects with the same type have the same proto-247

type. Additionally, objects with the same prototype have the same248

type, except for plain Object, Array and Function objects. Object249

and Array objects have the same type if they were allocated at the250

same source location, and Function objects have the same type if251

they are closures for the same script. Object and Function objects252

which represent builtin objects such as class prototypes, the Math253

object and native functions are given unique types, to aid later op-254

timizations (§2.4).255

The type of an object is nominal: it is independent from the256

properties it has. Objects which are structurally identical may have257

different types, and objects with the same type may have different258

structures. This is crucial for efficient analysis. JavaScript allows259

addition or deletion of object properties at any time. Using struc-260

tural typing would make an object’s type a flow-sensitive property,261

making precise inference harder to achieve.262

Instead, for each object type we compute the possible properties263

which objects of that type can have and the possible types of those264

properties. These are denoted as type sets prop(o, p) and index(o).265

The set prop(o, p) captures the possible types of a non-integer266

property p for objects with type o, while index(o) captures the267

possible types of all integer properties of all objects with type o.268

These sets cover the types of both “own” properties (those directly269

held by the object) as well as properties inherited from the object’s270

prototype.271

2.2 Type Constraints272

The static portion of our analysis generates constraints modeling273

the flow of types through the program. We assign to each expression274

3 2011/11/1

a type set representing the set of types it may have at runtime.275

These constraints are unsound with respect to JavaScript semantics.276

Each constraint is augmented with triggers to fill in the remaining277

possible behaviors of the operation. For each rule, we informally278

describe the required triggers.279

The grammar of constraints are shown in Figure 2. We have280

the standard subset constraint, ⊇, and a barrier subset constraint,281

styled⊇B . For two type sets X and Y , X ⊇Y means that all types in282

Y are propagated to X . On the other hand, X ⊇B Y means that if Y283

contains types that are not in X , then a type barrier is required which284

updates the types in X according to values which are dynamically285

assigned to the location X represents (§).286

Rules for the constraint generation functions, Ce(e) for expres-287

sions (styled `e) and Cs(s) for statements (styled `s), are shown288

in Figure 3. Statically analyzing a function takes the union of the289

results from applying Cs to every statement in the method.290

The UNDEF, INT, STR, and OBJ rules for literals and the VAR291

rule for variables are straightforward.292

The ADD rule is complex, as addition in JavaScript is similarly293

complex. It is defined for any combination of values, can perform294

either a numeric addition, string concatenation, or even function295

calls if either of its operands is an object (calling their valueOf or296

toString members, producing a number or string).297

Using unsound modeling lets us cut through this complexity.298

Additions in actual programs are typically used to add two numbers299

or concatenate a string with something else. We statically model300

exactly these cases and use semantic triggers to monitor the results301

produced by other combinations of values, at little runtime cost.302

Note that even the integer addition rule we have given is unsound:303

the result will be marked as an integer, ignoring the possibility of304

overflow.305

PROP accesses a named property p from the possible objects306

referred to by x, with the result the union of prop(o, p) for all307

such objects. This rule is complete only in cases where the object308

referred to by x (or its prototype) actually has the p property.309

Accesses on properties which are not actually part of an object310

produce undefined. Accesses on missing properties are rare, and311

yet in many cases we cannot prove that an object definitely has312

some property. In such cases we do not dilute the resulting type313

sets with undefined. We instead use a trigger on execution paths314

accessing a missing property to update the result type of the access315

with undefined.316

INDEX is similar to PROP, with the added problem that any317

property of the object could be accessed. In JavaScript, x["p"] is318

equivalent to x.p. If x has the object type o, an index operation319

can access a potentially infinite number of type sets prop(o, p).320

Figuring out exactly which such properties are possible is generally321

intractable. We do not model such arbitrary accesses at all, and treat322

all index operations as operating on an integer, which we collapse323

into a single type set index(o). In full JavaScript, any indexed324

access which is on a non-integer property, or is on an integer325

property which is missing from an object, must be accounted for326

with triggers in the same manner as PROP.327

A-VAR, A-PROP and A-INDEX invert the corresponding read328

expressions. These rules are complete, except that A-INDEX pre-329

sumes that an integer property is being accessed. Again, in full330

JavaScript, the effects on prop(o, p) resulting from assignments to331

a string index x["p"] on some x with object type o must be ac-332

counted for with runtime checks.333

Our analysis is flow-insensitive, so the IF rule is simply the334

union of the constraints generated by the branches.335

2.3 Type Barriers336

As described in §1, type barriers are dynamic type checks inserted337

to improve analysis precision in the presence of polymorphic code.338

Propagation along an assignment X = Y can be modeled statically339

as a subset constraint X ⊇ Y or dynamically as a barrier constraint340

X ⊇B Y . It is always safe to use one in place of the other; in §4.2.5341

we show the effect of always using subset constraints in lieu of342

barrier constraints.343

For a barrier constraint X ⊇B Y , a type barrier is required344

whenever X 6⊇ Y . The barrier dynamically checks that the type345

of each value flowing across the assignment is actually in X , and346

updates X whenever values of a new type are encountered. Thought347

of another way, the vanilla subset constraint propagates all types348

at analysis time. The barrier subset constraint does not propagate349

types at analysis time but defers with dynamic checks, propagating350

the types only if necessary during runtime.351

Type barriers are much like dynamic type casts in Java: assign-352

ments from a more general type to a more specific type are possible353

as long as a dynamic test occurs for conformance. However, rather354

than throw an exception (as in Java) a tripped type barrier will de-355

specialize the target of the assignment.356

The presence or absence of type barriers for a given barrier con-357

straint is not monotonic with respect to the contents of the type sets358

in the program. As new types are discovered, new type barriers may359

be required, and existing ones may become unnecessary. However,360

it is always safe to perform the runtime tests for a given barrier.361

Recall our hypothetical situation from §1 where Box is used as362

a polymorphic structure containing either an integer or a string363

in the example program from Figure 1. The subset barrier con-364

straint on line 8 is Ta[i] ⊇B TBox, with Ta[i] = {int} and TBox =365

{int,string}. Since Ta[i] 6⊇ TBox, a type barrier is required.366

In the constraint generation rules in Figure 3 we present two367

rules which employ type barrers: PROP, and INDEX. In practice,368

we also use type barriers for call argument binding to precisely369

model polymorphic call sites where only certain combinations of370

argument types and callee functions are possible. Barriers could371

be used for other types of assignments, but we do not do so.372

Allowing barriers in new places is unlikely to significantly change373

the total number of required barriers — improving precision by374

adding barriers in one place can make barriers in another place375

unnecessary.376

2.4 Supplemental Analyses377

In many cases type information itself is insufficient to generate378

code which performs comparably to a statically-typed language379

such as Java. Semantic triggers are generally cheap, but they never-380

theless incur a cost. These checks should be eliminated in as many381

cases as possible.382

Eliminating such checks requires more detailed analysis infor-383

mation. Rather than build additional complexity into the type anal-384

ysis itself, we use supplemental analyses which leverage type in-385

formation but do not modify the set of inferred types. We do sev-386

eral other supplemental analyses, but those described below are the387

most important.388

Integer Overflow In the execution of a JavaScript program, the389

overall cost of doing integer overflow checks is very small. On390

kernels which do many additions, however, the cost can become391

significant. We have measured overflow check overhead at 10-20%392

of total execution time on microbenchmarks.393

Using type information, we normally know statically where394

integers are being added. We use two techniques on those sites395

to remove overflow checks. First, for simple additions in a loop396

(mainly loop counters) we try to use the loop termination condition397

to compute a range check which can be hoisted from the loop, a398

standard technique which can only be performed for JavaScript399

with type information available. Second, integer additions which400

are used as inputs to bitwise operators do not need overflow checks,401

as bitwise operators truncate their inputs to 32 bit integers.402

4 2011/11/1

Packed Arrays Arrays are usually constructed by writing to their403

elements in ascending order, with no gaps; we call these arrays404

packed. Packed arrays do not have holes in the middle, and if an405

access is statically known to be on a packed array then only a406

bounds check is required. There are a large number of ways packed407

arrays can be constructed, however, which makes it difficult to408

statically prove an array is packed. Instead, we dynamically detect409

out-of-order writes on an array, and mark the type of the array410

object as possibly not packed. If an object type has never been411

marked as not packed, then all objects with that type are packed412

arrays.413

The packed status of an object type can change dynamically due414

to out-of-order writes, possibly invalidating JIT code.415

Definite Properties JavaScript objects are internally laid out as a416

map from property names to slots in an array of values. If a property417

access can be resolved statically to a particular slot in the array,418

then the access is on a definite property and can be compiled as a419

direct lookup. This is comparable to field accesses in a language420

with static object layouts, such as Java or C++.421

We identify definite property accesses in three ways. First, if422

the property access is on an object with a unique type, we know423

the exact JavaScript object being accessed and can use the slot424

in its property map. Second, object literals allocated in the same425

place have the same type, and definite properties can be picked up426

from the order the literal adds properties. Third, objects created427

by calling new on the same function will have the same prototype428

(unless the function’s prototype property is overwritten), and we429

analyze the function’s body to identify properties it definitely adds430

before letting the new object escape.431

These techniques are sensitive to properties being deleted or432

reconfigured, and if such events happen then JIT code will be433

invalidated in the same way as by packed array or type set changes.434

3. Implementation435

We have implemented this analysis for SpiderMonkey, the Java-436

Script engine in Firefox. We have also modified the engine’s JIT437

compiler, JaegerMonkey, to use inferred type information when438

generating code. Without type information, JaegerMonkey gener-439

ates code in a fairly mechanical translation from the original Spi-440

derMonkey bytecode for a script. Using type information, we were441

able to improve on this in several ways:442

• Values with statically known types can be tracked in JIT-443

compiled code using an untyped representation. Encoding the444

type in a value requires significant memory traffic or marshaling445

overhead. An untyped representation stores just the data com-446

ponent of a value. Additionally, knowing the type of a value447

statically eliminates many dynamic type tests.448

• Several classical compiler optimizations were added, including449

linear scan register allocation, loop invariant code motion and450

function call inlining.451

These optimizations could be applied without having static type452

information. Doing so is, however, far more difficult and far less453

effective than in the case where types are known. For example,454

loop invariant code motion depends on knowing whether opera-455

tions are idempotent, while in general JavaScript operations are456

not, and register allocation requires types to determine whether457

values should be stored in general purpose or floating point reg-458

isters.459

In §3.1 we describe how we handle dynamic recompilation in460

response to type changes, and in §3.2 we describe the techniques461

used to manage analysis memory usage.462

3.1 Recompilation463

As described in §1, computed type information can change as a464

result of runtime checks, newly analyzed code or other dynamic465

behavior. For compiled code to rely on this type information, we466

must be able to recompile the code in response to changes in types467

while that code is still running.468

As each script is compiled, we keep track of all type information469

queried by the compiler. Afterwards, the dependencies are encoded470

and attached to the relevant type sets, and if those type sets change471

in the future the script is marked for recompilation. We represent472

the contents of type sets explicitly and eagerly resolve constraints,473

so that new types immediately trigger recompilation with little474

overhead.475

When a script is marked for recompilation, we discard the JIT476

code for the script, and resume execution in the interpreter. We do477

not compile scripts until after a certain number of calls or loop back478

edges are taken, and these counters are reset whenever discarding479

JIT code. Once the script warms back up, it will be recompiled480

using the new type information in the same manner as its initial481

compilation.482

3.2 Memory Management483

Two major goals of JIT compilation in a web browser stand in stark484

contrast to one another: generate code that is as fast as possible,485

and use as little memory as possible. JIT code can consume a large486

amount of memory, and the type sets and constraints computed487

by our analysis consume even more. We reconcile this conflict by488

observing how browsers are used in practice: to surf the web. The489

web page being viewed, content being generated, and JavaScript490

code being run are constantly changing. The compiler and analysis491

need to not only quickly adapt to new scripts that are running, but492

also to quickly discard regenerable data associated with old scripts493

that are no longer running much, even if the old scripts are still494

reachable and not subject to garbage collection.495

We do this with a simple trick: on every garbage collection, we496

throw away all JIT code and as much analysis information as pos-497

sible. All inferred types are functionally determined from a small498

core of type information: type sets for the properties of objects,499

function arguments, the observed type sets associated with bar-500

rier constraints and the semantic triggers which have been tripped.501

All type constraints and all other type sets are discarded, notably502

the type sets describing the intermediate expressions in a function503

without barriers on them. This constitutes the great majority of the504

memory allocated for analysis. Should the involved functions warm505

back up and require recompilation, they will be reanalyzed. In com-506

bination with the retained type information, the complete analysis507

state for the function is then recovered.508

In Firefox, garbage collections typically happen every several509

seconds. If the user is quickly changing pages or tabs, unused JIT510

code and analysis information will be quickly destroyed. If the user511

is staying on one page, active scripts may be repeatedly recompiled512

and reanalyzed, but the timeframe between collections keeps this513

as a small portion of overall runtime. When many tabs are open514

(the case where memory usage is most important for the browser),515

analysis information typically accounts for less than 2% of the516

browser’s overall memory usage.517

4. Evaluation518

We evaluate the effectiveness of our analysis in two ways. In §4.1519

we compare the performance on major JavaScript benchmarks of a520

single compiler with and without use of analyzed type information.521

In §4.2 we examine the behavior of the analysis on a selection of522

websites which heavily use JavaScript to gauge analysis effective-523

ness in practice.524

5 2011/11/1

JM Compilation JM+TI Compilation ×1 Times (ms) ×20 Times (ms)

Test Time (ms) # Time (ms) # Ratio JM JM+TI Ratio JM JM+TI Ratio

3d-cube 2.68 15 8.21 24 3.06 14.1 16.6 1.18 226.9 138.8 0.61
3d-morph 0.55 2 1.59 7 2.89 9.8 10.3 1.05 184.7 174.6 0.95
3d-raytrace 2.25 19 6.04 22 2.68 14.7 15.6 1.06 268.6 152.2 0.57
access-binary-trees 0.63 4 1.03 7 1.63 6.1 5.2 0.85 101.4 70.8 0.70
access-fannkuch 0.65 1 2.43 4 3.76 15.3 10.1 0.66 289.9 113.7 0.39
access-nbody 1.01 5 1.49 5 1.47 9.9 5.3 0.54 175.6 73.2 0.42
access-nsieve 0.28 1 0.63 2 2.25 6.9 4.5 0.65 143.1 90.7 0.63
bitops-3bit-bits-in-byte 0.28 2 0.58 3 2.07 1.7 0.8 0.47 29.9 10.0 0.33
bitops-bits-in-byte 0.29 2 0.54 3 1.86 7.0 4.8 0.69 139.4 85.4 0.61
bitops-bitwise-and 0.24 1 0.39 1 1.63 6.1 3.1 0.51 125.2 63.7 0.51
bitops-nsieve-bits 0.35 1 0.73 2 2.09 6.0 3.6 0.60 116.1 63.9 0.55
controlflow-recursive 0.38 3 0.65 6 1.71 2.6 2.7 1.04 49.4 42.3 0.86
crypto-aes 2.04 14 6.61 23 3.24 9.3 10.9 1.17 162.6 107.7 0.66
crypto-md5 1.81 9 3.42 13 1.89 6.1 6.0 0.98 62.0 27.1 0.44
crypto-sha1 0.88 7 2.46 11 2.80 3.1 4.0 1.29 44.2 19.4 0.44
date-format-tofte 0.93 21 2.27 24 2.44 16.4 18.3 1.12 316.6 321.8 1.02
date-format-xparb 0.88 7 1.26 6 1.43 11.6 14.8 1.28 219.4 285.1 1.30
math-cordic 0.45 3 0.94 5 2.09 7.4 3.4 0.46 141.0 50.3 0.36
math-partial-sums 0.47 1 1.03 3 2.19 14.1 12.4 0.88 278.4 232.6 0.84
math-spectral-norm 0.54 5 1.39 9 2.57 5.0 3.4 0.68 92.6 51.2 0.55
regexp-dna 0.00 0 0.00 0 0.00 16.3 16.1 0.99 254.5 268.8 1.06
string-base64 0.87 3 1.90 5 2.18 7.8 6.5 0.83 151.9 103.6 0.68
string-fasta 0.59 4 1.70 9 2.88 10.0 7.3 0.73 124.0 93.4 0.75
string-tagcloud 0.54 4 1.54 6 2.85 21.0 24.3 1.16 372.4 433.4 1.17
string-unpack-code 0.89 8 2.65 16 2.98 24.4 26.7 1.09 417.6 442.5 1.06
string-validate-input 0.58 4 1.65 8 2.84 10.2 9.5 0.93 216.6 184.1 0.85

Total 21.06 146 53.13 224 2.52 261.9 246.4 0.94 4703.6 3700.3 0.79

Figure 4. SunSpider-0.9.1 Benchmark Results

4.1 Benchmark Performance525

As described in §3, we have integrated our analysis into the526

Jaegermonkey JIT compiler used in Firefox. We compare perfor-527

mance of the compiler used both without the analysis (JM) and528

with the analysis (JM+TI). JM+TI adds several major optimiza-529

tions to JM, and requires additional compilations due to dynamic530

type changes (§3.1). Figure 4 shows the effect of these changes on531

the popular SunSpider JavaScript benchmark2.532

The compilation sections of Figure 4 show the total amount of533

time spent compiling and the total number of script compilations534

for both versions of the compiler. For JM+TI, compilation time also535

includes time spent generating and solving type constraints, which536

is small: 4ms for the entire benchmark. JM performs 146 compi-537

lations, while JM+TI performs 224, an increase of 78. The total538

compilation time for JM+TI is 2.52 times that of JM, an increase of539

32ms, due a combination of recompilations, type analysis and the540

extra complexity of the added optimizations.541

Despite the significant extra compilation cost, the type-based542

optimizations performed by JM+TI quickly pay for themselves.543

The ×1 and ×20 sections of Figure 4 show the running times544

of the two versions of the compiler and generated code on the545

benchmark run once and modified to run twenty times, respectively.546

In the single run case JM+TI is a 6.3% improvement over JM. One547

run of SunSpider completes in less than 250ms, which makes it548

difficult to get an optimization to pay for itself on this benchmark.549

JavaScript heavy webpages are typically viewed for longer than550

1/4 of a second, and longer execution times better show the effect551

of type based optimizations. When run twenty times, the speedup552

given by JM+TI increases to 27.1%.553

2 http://www.webkit.org/perf/sunspider/sunspider.html

Figures 5 and 6 compare the performance of JM and JM+TI on554

two other popular benchmarks, the V83 and Kraken4 suites. These555

suites run for several seconds each, far longer than SunSpider, and556

show a larger speedup. V8 scores (which are given as a rate, rather557

than a raw time; larger is better) improve by 50%, and Kraken558

scores improve by a factor of 2.69.559

Across the benchmarks, not all tests improved equally, and560

some regressed over the engine’s performance without the analysis.561

These include the date-format-xparb and string-tagcloud tests in562

SunSpider, and the RayTrace and RegExp tests in the V8. These563

are tests which spend little time in JIT code, and perform many side564

effects in VM code itself. Changes to objects which happen in the565

VM due to, e.g., the behavior of builtin functions must be tracked566

to ensure the correctness of type information for the heap. We are567

working to reduce the overhead incurred by such side effects.568

4.1.1 Performance Cost of Barriers569

The cost of using type barriers is of crucial importance for two570

reasons. First, if barriers are very expensive then the effectiveness571

of the compiler on websites which require many barriers (§4.2.2) is572

greatly reduced. Second, if barriers are very cheap then the time573

and memory spent tracking the types of heap values would be574

unnecessary.575

To estimate this cost, we modified the compiler to artificially in-576

troduce barriers at every indexed and property access, as if the types577

of all values in the heap were unknown. For benchmarks, this is a578

great increase above the baseline barrier frequency (§4.2.2). Fig-579

ure 7 gives times for the modified compiler on the tracked bench-580

3 http://v8.googlecode.com/svn/data/benchmarks/v6/run.html
4 http://krakenbenchmark.mozilla.org

6 2011/11/1

Test JM JM+TI Ratio

Richards 4497 7152 1.59
DeltaBlue 3250 9087 2.80
Crypto 5205 13376 2.57
RayTrace 3733 3217 0.86
EarleyBoyer 4546 6291 1.38
RegExp 1547 1316 0.85
Splay 4775 7049 1.48

Total 3702 5555 1.50

Figure 5. V8 (version 6) Benchmark Scores (higher is better)

Test JM (ms) JM+TI (ms) Ratio

ai-astar 889.4 137.8 0.15
audio-beat-detection 641.0 374.8 0.58
audio-dft 627.8 352.6 0.56
audio-fft 494.0 229.8 0.47
audio-oscillator 518.0 221.2 0.43
imaging-gaussian-blur 4351.4 730.0 0.17
imaging-darkroom 699.6 586.8 0.84
imaging-desaturate 821.2 209.2 0.25
json-parse-financial 116.6 119.2 1.02
json-stringify-tinderbox 80.0 78.8 0.99
crypto-aes 201.6 158.0 0.78
crypto-ccm 127.8 133.6 1.05
crypto-pbkdf2 454.8 350.2 0.77
crypto-sha256-iterative 153.2 106.2 0.69

Total 10176.4 3778.2 0.37

Figure 6. Kraken-1.1 Benchmark Results

Suite Time/Score vs. JM vs. JM+TI

Sunspider-0.9.1 ×1 262.2 1.00 1.06
Sunspider-0.9.1 ×20 4044.3 0.86 1.09
Kraken-1.1 7948.6 0.78 2.10
V8 (version 6) 4317 1.17 0.78

Figure 7. Benchmark Results with 100% barriers

marks. On a single run of SunSpider, performance was even with581

the JM compiler. In all other cases, performance was significantly582

better than the JM compiler and significantly worse than the JM+TI583

compiler.584

This indicates that while the compiler will still be able to effec-585

tively optimize code in cases where types of heap values are not586

well known, accurately inferring such types and minimizing the587

barrier count is important for maximizing performance.588

4.2 Website Performance589

In this section we measure the precision of the analysis on a variety590

of websites. The impact of compiler optimizations is difficult to591

accurately measure on websites due to confounding issues like592

differences in network latency and other browser effects. Since593

analysis precision directly ties into the quality of generated code, it594

makes a good surrogate for optimization effectiveness.595

We modified Firefox to track several precision metrics while596

running, all of which operate at the granularity of individual op-597

erations. A brief description of the websites used is below. A full598

description of the tested websites and methodology used for each599

is available in the appendix of the full version of the paper.600

• Ten popular websites which use JavaScript extensively. Each601

site was used for several minutes, exercising various features.602

• The membench50 suite5, a memory testing framework which603

loads the front pages of 50 popular websites.604

• The three benchmark suites described in §4.1.605

• Six games and demos which are bound on JavaScript perfor-606

mance. Each was used for several minutes or, in the case of607

non-interactive demos, viewed to completion.608

When developing the analysis and compiler we tuned behavior609

for the three covered benchmark suites, as well as various websites.610

Besides the benchmarks, no tuning work has been done for any of611

the websites described here.612

We address several questions related to analysis precision, listed613

below. The answers to these sometimes differ significantly across614

the different categories of websites.615

1. How polymorphic are values read at access sites? (§4.2.1)616

2. How often are type barriers required? (§4.2.2)617

3. How polymorphic are performed operations? (§4.2.3)618

4. How polymorphic are the objects used at access sites? (§4.2.4)619

5. How important are type barriers? (§4.2.5)620

4.2.1 Access Site Polymorphism621

The degree of polymorphism used in practice is of utmost impor-622

tance for our analysis. The analysis is sound and will always com-623

pute a lower bound on the possible types that can appear at the var-624

ious points in a program, so the precision of the generated type in-625

formation is limited for access sites and operations which are poly-626

morphic in practice. We draw the following distinction:627

Monomorphic Sites that have only ever produced a single kind of628

value. Two values are of the same kind if they are either prim-629

itives of the same type or both objects with possibly different630

object types. Access sites containing objects of multiple types631

can often be optimized just as well as sites containing objects632

of a single type, as long as all the observed object types share633

common attributes (§4.2.4).634

Dimorphic Sites that have produced either strings or objects (but635

not both), and also at most one of the undefined, null or a636

boolean value. Even though multiple kinds are possible at such637

sites, an untyped representation can still be used, as a single638

test on the unboxed form will determine the type. The un-639

typed representation of objects and strings are pointers, whereas640

undefined, null and booleans are either 0 or 1.641

Polymorphic Sites that have produced values of multiple kinds,642

and compiled code must use a typed representation which keeps643

track of the value’s kind.644

The inferred precision section of Figure 8 shows the fractions of645

dynamic indexed element and property reads which were at a site646

inferred as producing monomorphic, dimorphic, or polymorphic647

sets of values. All these sites have type barriers on them, so the648

set of inferred types is equivalent to the set of observed types.649

The category used for a dynamic access is determined from the650

types inferred at the time of the access. Since the types inferred for651

an access site can grow as a program executes, dynamic accesses at652

the same site can contribute to different columns over time.653

Averaged across pages, 84.7% of reads were at monomorphic654

sites, and 90.2% were at monomorphic or dimorphic sites. The655

latter figure is 85.9% for websites, 97.3% for benchmarks, and656

5 http://gregor-wagner.com/tmp/mem50

7 2011/11/1

Inferred Precision (%) Arithmetic (%) Indices (%)

Test Mono Di Poly Barrier (%) Int Double Other Unknown Int Double Other Unknown

gmail 78 5 17 47 62 9 7 21 44 0 47 8
googlemaps 81 7 12 36 66 26 3 5 60 6 30 4
facebook 73 11 16 42 43 0 40 16 62 0 32 6
flickr 71 19 10 74 61 1 30 8 27 0 70 3
grooveshark 64 15 21 63 65 1 13 21 28 0 56 16
meebo 78 11 10 35 66 9 18 8 17 0 34 49
reddit 71 7 22 51 64 0 29 7 22 0 71 7
youtube 83 11 6 38 50 27 19 4 33 0 38 29
ztype 91 1 9 52 43 41 8 8 79 9 12 0
280slides 79 3 19 64 48 51 1 0 6 0 91 2
membench50 76 11 13 49 65 7 18 10 44 0 47 10

sunspider 99 0 1 7 72 21 7 0 95 0 4 1
v8bench 86 7 7 26 98 1 0 0 100 0 0 0
kraken 100 0 0 3 61 37 2 0 100 0 0 0

angrybirds 97 2 1 93 22 78 0 0 88 8 0 5
gameboy 88 0 12 16 54 36 3 7 88 0 0 12
bullet 84 0 16 92 54 38 0 7 79 20 0 1
lights 97 1 2 15 34 66 0 1 95 0 4 1
FOTN 98 1 1 20 39 61 0 0 96 0 3 0
monalisa 99 1 0 4 94 3 2 0 100 0 0 0

Average 84.7 5.7 9.8 41.4 58.1 25.7 10.0 6.2 63.2 1.7 27.0 7.7

Figure 8. Website Type Profiling Results

94.7% for games and demos; websites are more polymorphic than657

games and demos, but by and large behave in a monomorphic658

fashion.659

4.2.2 Barrier Frequency660

Examining the frequency with which type barriers are required661

gives insight to the precision of the model of the heap constructed662

by the analysis.663

The barrier section of Figure 8 shows the frequencies of in-664

dexed and property accesses on sampled pages which required a665

barrier. Averaged across pages, barriers were required on 41.4% of666

such accesses. There is a large disparity between websites and other667

pages. Websites were fairly homogenous, requiring barriers on be-668

tween 35% and 74% of accesses (averaging 50%), while bench-669

marks, games and demos were generally much lower, averaging670

13% except for two outliers above 90%.671

The larger proportion of barriers required for websites indicates672

that heap layouts and types tend to be more complicated for web-673

sites than for games and demos. Still, the presence of the type barri-674

ers themselves means that we detect as monomorphic the very large675

proportion of access sites which are, with only a small amount of676

barrier checking overhead incurred by the more complicated heaps.677

The two outliers requiring a very high proportion of barriers678

do most of their accesses at a small number of sites; the involved679

objects have multiple types assigned to their properties, which680

leads to barriers being required. Per §4.1.1, such sites will still see681

significant performance improvements but will perform worse than682

if the barriers were not in place. We are building tools to identify683

hot spots and performance faults in order to help developers more684

easily optimize their code.685

4.2.3 Operation Precision686

The arithmetic and indices sections of Figure 8 show the frequency687

of inferred types for arithmetic operations and the index operand688

of indexed accesses, respectively. These are operations for which689

precise type information is crucial for efficient compilation, and690

give a sense of the precision of type information for operations691

which do not have associated type barriers.692

In the arithmetic section, the integer, double, other, and un-693

known columns indicate, respectively, operations on known inte-694

gers which give an integer result, operations on integers or doubles695

which give a double result, operations on any other type of known696

value, and operations where at least one of the operand types is un-697

known. Overall, precise types were found for 93.8% of arithmetic698

operations, including 90.2% of operations performed by websites.699

Comparing websites with other pages, websites tend to do far more700

arithmetic on non-numeric values — 16.8% vs. 1.6% — and con-701

siderably less arithmetic on doubles — 14.8% vs. 37.9%.702

In the indices section, the integer, double, other, and unknown703

columns indicate, respectively, that the type of the index, i.e., the704

type of i in an expression such as a[i], is known to be an integer, a705

double, any other known type, or unknown. Websites tend to have706

more unknown index types than both benchmarks and games.707

4.2.4 Access Site Precision708

Efficiently compiling indexed element and property accesses re-709

quires knowledge of the kind of object being accessed. This infor-710

mation is more specific than the monomorphic/polymorphic dis-711

tinction drawn in §4.2.1. Figure 9 shows the fractions of indexed712

accesses on arrays and of all property accesses which were opti-713

mized based on static knowledge.714

In the indexed access section, the packed column shows the715

fraction of operations known to be on packed arrays (§2.4), while716

the array column shows the fraction known to be on arrays not717

known to be packed. Indexed operations behave differently on ar-718

rays vs. other objects, and avoiding dynamic array checks achieves719

some speedup. The “Uk” column is the fraction of dynamic ac-720

cesses on arrays which are not statically known to be on arrays.721

Static detection of array operations is very good on all kinds722

of sites, with an average of 75.2% of accesses on known packed723

arrays and an additional 14.8% on known but possibly not packed724

arrays. A few outlier websites are responsible for the great majority725

8 2011/11/1

Indexed Acc. (%) Property Acc. (%)

Test Packed Array Uk Def PIC Uk

gmail 90 4 5 31 57 12
googlemaps 92 1 7 18 77 5
facebook 16 68 16 41 53 6
flickr 27 0 73 33 53 14
grooveshark 90 2 8 20 66 14
meebo 57 0 43 40 57 3
reddit 97 0 3 45 51 4
youtube 100 0 0 32 49 19
ztype 100 0 0 23 76 0
280slides 88 12 0 23 56 21
membench50 80 4 16 35 58 6

sunspider 93 6 1 81 19 0
v8bench 7 93 0 64 36 0
kraken 99 0 0 96 4 0

angrybirds 90 0 10 22 76 2
gameboy 98 0 2 6 94 0
bullet 4 96 0 32 65 3
lights 97 3 1 21 78 1
FOTN 91 6 3 46 54 0
monalisa 87 0 13 78 22 0

Average 75.2 14.8 10.1 39.4 55.1 5.5

Figure 9. Indexed/Property Access Precision

Precision Arithmetic

Test Poly (%) Ratio Unknown (%) Ratio

gmail 46 2.7 32 1.5
googlemaps 38 3.2 23 4.6
facebook 48 3.0 20 1.3
flickr 61 6.1 39 4.9
grooveshark 58 2.8 30 1.4
meebo 36 3.6 28 3.5
reddit 37 1.7 13 1.9
youtube 40 6.7 28 7.0
ztype 54 6.0 63 7.9
280slides 76 4.0 93 —
membench50 47 3.6 29 2.9

sunspider 5 — 6 —
v8bench 18 2.6 1 —
kraken 2 — 2 —

angrybirds 90 — 93 —
gameboy 15 1.3 7 1.0
bullet 62 3.9 79 11.3
lights 37 — 63 —
FOTN 28 — 57 —
monalisa 44 — 41 —

Average 42.1 4.3 37.4 6.0

Figure 10. Type Profiles Without Barriers

of accesses in the latter category. For example, the V8 Crypto726

benchmark contains almost all of the benchmark’s array accesses,727

and the arrays used are not known to be packed due to the top728

down order they are initialized. Still, speed improvements on this729

benchmark are very large.730

In the property access section of Figure 9, the “Def” column731

shows the fraction of operations which were statically resolved as732

definite properties (§2.4), while the PIC column shows the fraction733

which were not resolved statically but were matched using a fall-734

back mechanism, polymorphic inline caches [14]. The “Uk” col-735

umn is the fraction of operations which were not resolved either736

statically or with a PIC and required a call into the VM; this in-737

cludes accesses where objects with many different layouts are used,738

and accesses on rare kinds of properties such as those with scripted739

getters or setters.740

An average of 39.4% of property accesses were resolved as def-741

inite properties, with a much higher average proportion on bench-742

marks of 80.3%. The remainder were by and large handled by PICs,743

with only 5.5% of accesses requiring a VM call. Together, these744

suggest that objects on websites are by and large constructed in745

a consistent fashion, but that our detection of definite properties746

needs to be more robust on object construction patterns seen on747

websites but not on benchmarks.748

4.2.5 Precision Without Barriers749

To test the practical effect of using type barriers to improve preci-750

sion, we repeated the above website tests using a build of Firefox751

where subset constraints were used in place of barrier constraints,752

and type barriers were not used at all (semantic triggers were still753

used). Some of the numbers from these runs are shown in Figure 10.754

The precision section shows the fraction of indexed and prop-755

erty accesses which were inferred as polymorphic, and the arith-756

metic section shows the fraction of arithmetic operations where at757

least one operand type was unknown. Both sections show the ratio758

of the given fraction to the comparable fraction with type barriers759

enabled, with entries struck out when the comparable fraction is760

near zero. Overall, with type barriers disabled 42.1% of accesses761

are polymorphic and 37.4% of arithmetic operations have operands762

of unknown type; precision is far worse than with type barriers.763

Benchmarks are affected much less than other kinds of sites,764

which makes it difficult to measure the practical performance im-765

pact of removing barriers. These benchmarks use polymorphic766

structures much less than the web at large.767

5. Related Work768

There is an enormous literature on points-to analysis, JIT compila-769

tion, and type inference. We only compare against a few here.770

The most relevant work on type inference for JavaScript to the771

current work is Logozzo and Venter’s work on rapid atomic type772

analysis [16]. Like ours, their analysis is also designed to be used773

online in the context of JIT compilation and must be able to pay774

for itself. Unlike ours, their analysis is purely static and much more775

sophisticated, utilizing a theory of integers to better infer integral776

types vs floating point types. We eschew sophistication in favor of777

simplicity and speed. Our evaluation shows that even a much sim-778

pler static analysis, when coupled with dynamic checks, performs779

very well “in the wild”. Our analysis is more practical: we have780

improved handling of what Logozzo and Venter termed “havoc”781

statements, such as eval, which make static analysis results im-782

precise. As Richards et al. argued in their surveys, real-world use783

of eval is pervasive, between 50% and 82% for popular websites784

[19, 20].785

Other works on type inference for JavaScript are more formal.786

The work of Anderson et al. describes a structural object type sys-787

tem with subtyping over an idealized subset of JavaScript [7]. As788

the properties held by JavaScript objects change dynamically, the789

structural type of an object is a flow-sensitive property. Thiemann790

and Jensen et al.’s typing frameworks approach this problem by us-791

ing recency types [15, 23]. The work of Jensen et al. is in the con-792

text of better tooling for JavaScript, and their experiments suggest793

that the algorithm is not suitable for online use in a JIT compiler.794

9 2011/11/1

Again, these analyses do not perform well in the presence of stati-795

cally uncomputable builtin functions such as eval.796

Performing static type inference on dynamic languages has been797

proposed at least as early as Aiken and Murphy [4]. More related798

in spirit to the current work are the works of the the implemen-799

tors of the Self language [24]. In implementing type inference for800

JavaScript, we faced many challenges similar to what they faced801

decades earlier [1, 25]. Agesen outlines the design space for type802

inference algorithms along the dimensions of efficiency and preci-803

sion. We strived for an algorithm that is both fast and efficient, at804

the expense of requiring runtime checks when dealing with com-805

plex code. Our experience building tracing JIT compilers [11, 12]806

has demonstrated that solely using type feedback limits the opti-807

mizations that we can perform, and reaching peak performance re-808

quires static knowledge about the possible types of heap values.809

Agesen and Hölzle compared the static approach of type infer-810

ence with the dynamic approach of type feedback and described the811

strengths and weaknesses of both [2]. Our system tries to achieve812

the best of both worlds. The greatest difficulty in static type in-813

ference for polymorphic dynamic languages, whether functional or814

object-oriented, is the need to compute both data and control flow815

during type inference. We solve this by using runtime information816

where static analyses do poorly, e.g. determining the particular field817

of a polymorphic receiver or the particular function bound to a vari-818

able. Our type barriers may be seen as a type cast in context of Glew819

and Palsberg’s work on method inlining [13].820

Framing the type inference problem as a flow problem is a821

well-known approach [17, 18]; practical examples include Self’s822

inferencer [3]. Aiken and Wimmers presented general results on823

type inference using subset constraints [5].824

Other hybrid approaches to typing exist, such as Cartwright825

and Fagan’s soft typing and Taha and Siek’s gradual typing [8,826

21]. They have been largely for the purposes of correctness and827

early error detection. While these approaches may also be used to828

improve performance of compiled code, they are at least partially829

prescriptive, in that they help enforce a typing discipline, while830

ours is entirely descriptive, in that we are inferring types only to831

help JIT compilation.832

6. Conclusion and Future Work833

We have described a hybrid type inference algorithm that is both834

fast and precise using constraint-based static analysis and runtime835

checks. Our production-quality implementation integrated with the836

JavaScript JIT compiler inside Firefox has demonstrated the anal-837

ysis to be both effective and viable. We have presented compelling838

empirical results: the analysis enables generation of much faster839

code, and infers precise information on both benchmarks and real840

websites.841

We hope to look more closely at type barriers in the future with842

the aim to reduce their frequency without degrading precision. We843

also hope to look at capture more formally the hybrid nature of our844

algorithm.845

846

Acknowledgements. We thank the Mozilla JavaScript team, Todd847

Millstein, Jens Palsberg, and Sam Tobin-Hochstadt for draft read-848

ing and helpful discussion.849

References850

[1] O. Agesen. Constraint-Based Type Inference and Parametric Poly-851

morphism, 1994.852

[2] O. Agesen and U. Hölzle. Type feedback vs. concrete type infer-853

ence: A comparison of optimization techniques for object-oriented854

languages. In OOPSLA, pages 91–107, 1995.855

[3] O. Agesen, J. Palsberg, and M. I. Schwartzbach. Type Inference of856

Self: Analysis of Objects with Dynamic and Multiple Inheritance. In857

ECOOP, pages 247–267, 1993.858

[4] A. Aiken and B. R. Murphy. Static Type Inference in a Dynamically859

Typed Language. In POPL, pages 279–290, 1991.860

[5] A. Aiken and E. L. Wimmers. Type Inclusion Constraints and Type861

Inference. In FPCA, pages 31–41, 1993.862

[6] L. O. Andersen. Program Analysis and Specialization for the C Pro-863

gramming Language. PhD thesis, DIKU, University of Copenhagen,864

1994.865

[7] C. Anderson, S. Drossopoulou, and P. Giannini. Towards Type Infer-866

ence for JavaScript. In ECOOP, pages 428–452, 2005.867

[8] R. Cartwright and M. Fagan. Soft Typing. In PLDI, pages 278–292,868

1991.869

[9] C. Chambers. The Design and Implementation of the SELF Com-870

piler, an Optimizing Compiler for Object-Oriented Programming Lan-871

guages. PhD thesis, Department of Computer Science, Stanford, 1992.872

[10] C. Chambers and D. Ungar. Customization: Optimizing Compiler873

Technology for SELF, A Dynamically-Typed Object-Oriented Pro-874

gramming Language. In PLDI, 1989.875

[11] M. Chang, E. W. Smith, R. Reitmaier, M. Bebenita, A. Gal, C. Wim-876

mer, B. Eich, and M. Franz. Tracing for Web 3.0: Trace Compilation877

for the Next Generation Web Applications. In VEE, pages 71–80,878

2009.879

[12] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.880

Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ru-881

derman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and882

M. Franz. Trace-based just-in-time type specialization for dynamic883

languages. In PLDI, pages 465–478, 2009.884

[13] N. Glew and J. Palsberg. Type-Safe Method Inlining. In ECOOP,885

pages 525–544, 2002.886

[14] U. Hölzle, C. Chambers, and D. Ungar. Optimizing Dynamically-887

Typed Object-Oriented Languages With Polymorphic Inline Caches.888

In ECOOP, pages 21–38, 1991.889

[15] S. H. Jensen, A. Møller, and P. Thiemann. Type Analysis for890

JavaScript. In SAS, pages 238–255, 2009.891

[16] F. Logozzo and H. Venter. RATA: Rapid Atomic Type Analysis by892

Abstract Interpretation. Application to JavaScript Optimization. In893

CC, pages 66–83, 2010.894

[17] N. Oxhøj, J. Palsberg, and M. I. Schwartzbach. Making Type Infer-895

ence Practical. In ECOOP, 1992.896

[18] J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Inference.897

In OOPSLA, 1991.898

[19] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the899

dynamic behavior of JavaScript programs. In PLDI, pages 1–12, 2010.900

[20] G. Richards, C. Hammer, B. Burg, and J. Vitek. The Eval That Men Do901

– A Large-Scale Study of the Use of Eval in JavaScript Applications.902

In ECOOP, pages 52–78, 2011.903

[21] J. G. Siek and W. Taha. Gradual Typing for Objects. In ECOOP, 2007.904

[22] M. Sridharan and S. J. Fink. The Complexity of Andersen’s Analysis905

in Practice. In SAS, pages 205–221, 2009.906

[23] P. Thiemann. Towards a Type System for Analyzing JavaScript Pro-907

grams. In ESOP, pages 408–422, 2005.908

[24] D. Ungar and R. B. Smith. Self: The Power of Simplicity. In OOPSLA,909

pages 227–242, 1987.910

[25] D. Ungar, R. B. Smith, C. Chambers, and U. Hölzle. Object, Message,911

and Performance: How they Coexist in Self. Computer, 25:53–64,912

October 1992. ISSN 0018-9162.913

10 2011/11/1

