

The methods we were using to approach our past research

- Distinguish between the two different kind of controls
 - o Pressure threshold
- Combining Isometric and Isotonic Control to be available at the same time (Using the Pressure-Sensitive UnMousePad)
- Widgets
- GUI navigation
- Degree of freedom control
- Applications design

The earliest investigation of pressure-sensitive touch devices can be back to 1980s when Buxton proposed several interactions for using a pressure-sensitive multi-touch tablet.

Pressure-Sensitive Inputs

- Buxton (1985) Multi-Touch Tablet that used capacitance, rather than optical sensing
 - Using pressure for signaling vs. multiple keys of mouse control (SHIFT + X)
 - $\circ~$ Continuous pressure sensing with multiple levels of pressure
- Multi-user interaction touch table Diamond Touch (2001); SmartSkin (2002).
- Ramos research of human ability on selection tasks by varying pressure with gestures
 - The optimal discrete level of pressure using a pen is six.
 - Widgets design: Visual feedback ; Mapping function; Minimize gestures changes
- Davidson using a Perceptive Pixel multi-touch wall (2006)
 - Simultaneously using an isometric tilting with isotonic movement
 - $\circ~$ Using pressure to alter the depth of the object
- Rosenberg (2009) The UnMousePad: pressure-sensitive touch input pad
 - $\circ~$ Determine accurate pressure data and fine position sensing
 - **Detecting subtle finger movements** The source with Affective Measurement

The IBM joystick developed by Ted selker first applied the Isometric movement to control the cursor movement.

Isometric and Isotonic

- Isotonic gestures requires movements while Isometric's does not
- Zhai Ability of humans to perform six-degree-offreedom control
 - o Visual feedback
 - $\circ\,$ Combine isotonic and isometric controls
- Ted Selker Pointing stick (1984) which becomes IBM track point in the future
 - $\circ\,$ Uses isometric forces of a finger to move a cursor

Concepts

The pressure-sensitive multi-touch device enables the separation and combined using of both isometric and isotonic control.

Separating Gestures

- Isotonic
 - o Movement
 - Better at positioning and lower pressure values
- Isometric
 - o No movement
 - Better at control the rate (speed-up and slow down while maintaining a level of control) and higher pressure values
 - Faster human response
- Control by Different Muscle groups
- Using a pressure threshold

Six Degree of Freedom

- One Possibility
 - Movement X -> Position X
 - Movement Y -> Position Y
 - Scaling -> Position Z
 - Rotation -> Rotation Z
 - o Lean X
 - o Lean Y

Isometric Gestures

- Isometric Click
- One Possible Mapping
 - o One touch
 - o Multi-touch
 - o Hand
- Isometric Twist
- Isometric Pinch

Concepts

Each isometric interaction requires manipulating the direction, magnitude and distribution of pressure applied to the surface.

Isometric Click

Push two fingers clockwise or around a central point (centroids angles change)

Isometric Pinch

Push two fingers towards or away from each other (force centroids become closer or further)

Concepts

Leaning, which is one of the basic types of isometric control, can be done by one finger, multi-finger, or the whole hand

Isometric Roll/Lean

One Finger Rolling

Two Finger leaning: Pushing towards the same direction

Hand Click or Lean

- One finger leaning direction is evaluated by the changes of the center of mass
- Two finger leaning direction is basing on the force difference, center of mass is calculated by take the weighted average of two fingers
- Hand clicking or leaning is controlled by the summation and weighted average of all the finger touch forces

Pressure Sensitive User Interface with Affective Measurement

Designs

By combining isotonic and isometric control on a pressure-sensitive multi-touch device, new interactions that take advantage of these new degrees of freedom become possible in the design of GUI navigation techniques, degree of freedom control, widgets and Applications.

Widgets to aid the UI design

isometric pressure menu: Lean left or right

Isometric twist widget

GUI Navigation

- Isotonic and Isometric Rolling
 Cursor:
 - Positioning: Rolling the finger along x and y directions. (IBM Track point)
 - Selection: Pressing until the pressure pass the threshold

Cursor position Moving Pressing to select

Designs

(ل) آ

Having both isometric and isotonic control can increase the available degrees of freedom when controlling multiple dimensions of the object and enhance the application design.

Degree of Freedom Control

- Isotonic rotate-scale-translate interaction :
 - o Size
 - o Orientation
 - o Location
- Isometric Interaction:
 - Click -> Selection
 - Roll or Lean -> Position
 - Pinch -> Size
 - Twist -> Orientation
- Combining:
 - Isotonic -> individual objects
 - Isometric -> control the world (Control all dimensions in 3D world)

Applications

Sculpting (Painting): Isotonic positioning and Isometric for Thickness

Piano: key is selected by isotonic position and pressed using an isometric click

References

Pressure

- William Buxton, Ralph Hill, and Peter Rowley. Issues and techniques in touch-sensitive tablet input. SIGGRAPH Computer. Graph., 1985.
- Gonzalo Ramos, Matthew Boulos, and Ravin Balakrishnan. Pressure widgets. In CHI '04: Proceedings of the SIGCHI conference on Human factors in computing systems, pages 487–494, New York, NY, USA, 2004. ACM.
- Philip L. Davidson and Jefferson Y. Han. Extending 2d object arrangement with pressure-sensitive layering cues. In UIST '08: Proceedings of the 21st
 annual ACM symposium on User interface software and technology, pages 87–90, New York, NY, USA, 2008. ACM.

Interaction

 Gordon Kurtenbach and William Buxton. User learning and performance with marking menus. In • CHI '94: Conference companion on Human factors in computing systems, page 218, New York, NY, USA, 1994. ACM. Jason L. Reisman, Philip L. Davidson, and Jefferson Y. Han. A screen-space formulation for 2d and 3d direct manipulation. In UIST '09: Proceedings of the 22nd annual ACM symposium on User interface software and technology, pages 69–78, New York, NY, USA, 2009. ACM.

٠

٠

- Jun Rekimoto and Carsten Schwesig. Presenseii: bidirectional touch and pressure sensing interactions with tactile feedback. In CHI '06: CHI '06 extended abstracts on Human factors in computing systems, pages 1253–1258, New York, NY, USA, 2006. ACM.
- Ilya Rosenberg and Ken Perlin. The unmousepad: an interpolating multi-touch force-sensing input pad. In SIGGRAPH '09: ACM SIGGRAPH 2009 papers, pages 1–9, New York, NY, USA, 2009. ACM.
- Shumin Zhai. Human performance in six degree of freedom input control. In PH.D., 1995.
 - Shumin Zhai, Barton A. Smith, and Ted Selker. Dual stream input for pointing and scrolling. In CHI '97: CHI '97 extended abstracts on Human factors in computing systems, pages 305–306, New York, NY, USA, 1997. ACM.