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1 The Moment Generating Function

De�nition 1 The Moment Generating Gunction (mgf) of the random variable
X with cdf FX is the Laplace Transform of FX ,

M (t) := E
�
eXt

�
=

Z 1

�1
extdF ,

de�ned for those values of t for which the integral exists. If the expectation
does not exist even in a neighborhood of 0, we say that the moment generating
function does not exist.

Note that d
dtM (t) = d

dt

R1
�1 e

xtdF =
R1
�1

dext

dt dF =
R1
�1 xe

xtdF = E
�
XetX

�
.

Thus, d
dtM (t)

��
t=0

= E
�
XetX

���
t=0

= E [X]. Analogous, we can stablish that
dn

dtnM (t)
��
t=0

= E
�
XnetX

���
t=0

= E [Xn]1 .

Theorem 2 If X has mgf MX (t), then

E [Xn] =M
(n)
X (0) =

dn

dtn
MX (t)

����
t=0

.

Remember that two random variables with di¤erent pdfs can have the same
moments (all of them), unless they have bounded support. That is, the moment
generating function does not uniquely determines the distribution2 .

Theorem 3 Let FX and FY be two cdfs all of whose moments exist: (i) if X
and Y have bounded support, then FX = FY if and only if EXr = EY r; r =
0; 1; 2; :::; (ii) if the moment generating function exist and MX (t) =MY (t) for
all t in some neighborhood of 0, then FX = FY .

�E-mail: bneri@fgvmail.br
1See Casella (2002) for more on deriving under the integration sign (Leibniz´s Rule).
2A su¢ cient condition for the moment sequence to be unique is Carleman´s Condition

(Chung, 1974):
P1
r=1

1

(�02r)
1
2r

= +1.
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Theorem 4 MaX+b (t) = e
btMX (at) ;8a; b 2 R.

Theorem 5 (Convergence of mgfs) Let fXig be a sequence of random vari-
ables, each with mgf MXi

(t) and suppose that limi!1MXi
(t) = MX (t), for

all t in a neighborhood of 0, and that MX (t) is a mgf. Then there is a unique
cdf FX whose moments are determined by MX (t) and, for all x where FX (x)
is continuous, we have limi!1 FXi

(x) = FX (x). That is, convergence, for
jtj < h > 0, of mgfs implies convergence of cdfs.

2 Cumulant Generating Function

For a random variable X, the cumulant generating function S (t) is de�ned as
S (t) := ln [MX (t)]. This function can be used to generate the cumulants of X.
The cumulants are (rather circuitously) the coe¢ cients in the Taylor series of
the cumulant generating function. The �rst three cumulants are equal to the
central moments3 . That is,

k1 =
d

dt
S (t)

����
t=0

= EX = �1,

k2 =
d2

dt2
S (t)

����
t=0

= V arX = �2,

k3 =
d3

dt3
S (t)

����
t=0

= E
h
(X � EX)3

i
= �3,

and, more generally,

kr :=
dr

dtr
S (t)

����
t=0

.

3 The Characteristic Function

De�nition 6 The Characteristic Function (cf) of the random variable X with
cdf FX is the Fourier Transform of FX ,

� (t) := E
�
eiXt

�
=

Z 1

�1
eixtdF ,

where i2 = �1, that is, the complex i.

Note that

�(r) (0) =
dr

dtr
� (t)

����
t=0

= E [(iX)
r
] = ir�0r,

that is,

�0r =
�(r) (0)

ir
,

3For further information, look for "cumulant" in http://mathworld.wolfram.com
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where �0r = E [X
r] is the rth moment of X4 .

The power series expansion of eiXt is

eiXt =
1X
r=0

(iXt)
r

r!
,

then the characteristic function can also be written as

� (t) =
1X
r=0

E [(iXt)
r
]

r!
=

1X
r=0

(it)
r

r!
�0r.

Thus, if the rth exists, it is generated as the coe�cient of (it)
r

r! in the in�nite
series expansions of � (t).
Because



eixt

 = kcos (xt) + i sin (xt)k = 1 and a probability density in-
tegrates 1, the characteristic function always exists even though the moment
generating function may not exist. The characteristic function completely de-
termines the distribution, that is, every cdf has a unique characteristic function.

Theorem 7 (Uniqueness Theorem) Two distribution functions are identical
if and only if their characteristic functions are also identical.

Theorem 8 A characteristic function is uniformly continuous on the real line.5

Theorem 9 (Inversion Theorem) Let F (x) be the distributon function, as-
sumed continuous, and � (t) be the corresponding characteristic function. Then,
8x 2 R;8h 2 R+;

F (x+ h)� F (x� h) = lim
T!1

1

2�

Z T

�T

1� e�ith
it

e�itx� (t) dt,

provided that x� h and x+ h are continuity points of F (x).

Theorem 10 (Inversion Formula) If a characteristic function � (t) is ab-
solutely integrable over (�1;+1), then the corresponding distribution function
F (x) is absolutely continuous and the corresponding density function (which is
continuous) is

f (x) = F 0 (x) =
1

2�

Z 1

�1
e�itx� (t) dt,

which is the Fourier Inverse Transform of � (t).

Thus, note that to each characteristic function � (t) there exists a unique
distribution function F (x).

Theorem 11 (Convergence of Characteristic Functions) Let fXig be a
sequence of random variables, each with characteristic function �Xi

(t) and sup-
pose that limi!1 �Xi

(t) = �X (t), for all t in a neighborhood of 0, and that
�X (t) is a characteristic function. Then for all x where FX (x) is continuous,
we have limi!1 FXi (x) = FX (x). That is, convergence, for jtj < h > 0, of
characteristic functions implies convergence of cdfs.

4Several exercises can be found in Ramanathan (1993).
5The proof is in Ramanathan (1993).
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4 Factorial Moment Generating Function

De�nition 12 The factorial moment generating function of the random vari-
able X is de�ned as E

�
tX
�
, if the expectation exists. Note that

dr

dtr
E
�
tX
�����
t=1

= E [X (X � 1) ::: (X � r + 1)] ,

where the right-hand side is the rth factorial moment of X.

5 Probability Generating Function

De�nition 13 If X is a discrete random variable, then its factorial moment
generating function is called the probability generating function and we can write
E
�
tX
�
=
P

x t
xP (X = x). Note that the coe¢ cients of the power series give

the probabilities,
1

k!

dk

dtk
E
�
tX
�����
t=0

= P (X = k) .
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