Task 38 Solar Air-Conditioning and Refrigeration

Hans-Martin Henning

Fraunhofer-Institut für Solare Energiesysteme ISE Freiburg/Germany

IEA SOLAR HEATING & COOLING WORKSHOP Cape Town, South Africa

November 15, 2010

Outline

Introduction to solar cooling

Overall status and achievements

Summary & conclusion

Introduction to solar cooling

Overall status and achievements

Summary & conclusion

Stucture of Task 38 12/2010

Duration: 09/2006 –

Pre-engineered systems for residential and small commercial applications **AEE INTEC (Austria)**

Subtask B

Custom-made systems for large non-residential buildings and industrial applications **EURAC (Italy)**

Subtask C

Modeling and fundamental analysis

INES (France)

Subtask D

Market transfer activities

POLIMI (Italy)

Operating Agent: Fraunhofer ISE (Germany)

Task 38 Solar Air-Conditioning and Refrigeration

© Fraunhofer ISE

Solar thermal cooling - basic principle

Basic systems categories

- Closed cycles (chillers): chilled water
- Open sorption cycles: direct treatment of fresh air (temperature, humidity)

Fraunhofer

Open cycles – desiccant air handling units

Solid sorption

- Desiccant wheels
- Coated heat exchangers
- Silica gel or LiCI-matrix, future zeolite

Liquid sorption

- Packed bed
- Plate heat exchanger
- LiCl-solution: Thermochemical storage possible

Closed cycles – water chillers or ice production

- Liquid sorption: Ammonia-water or Water-LiBr (single-effect or double-effect)
- Solid sorption: silica gel water, zeolite-water
- **Ejector systems**

Thermo-mechanical systems

Turbo Expander/Compressor AC-Sun, Denmark in TASK 38

System typology

Driving temperature	Collector type	System type
Low (60-90°C)		Open cycle: direct air treatment
		<i>Closed cycle:</i> high temperature cooling system (e.g. chilled ceiling)

Task 38 Solar Air-Conditioning and Refrigeration

© Fraunhofer ISE

System typology

Driving temperature	Collector type	System type
Low (60-90°C)		Open cycle: direct air treatment
		<i>Closed cycle:</i> high temperature cooling system (e.g. chilled ceiling)
Medium (80-110°C)		Closed cycle: chilled water for cooling and dehumidification
		Closed cycle: refrigeration, air- conditioning with ice storage

System typology

Driving temperature	Collector type	System type
Low (60-90°C)		Open cycle: direct air treatment
		<i>Closed cycle:</i> high temperature cooling system (e.g. chilled ceiling)
Medium (80-110°C)		Closed cycle: chilled water for cooling and dehumidification
		Closed cycle: refrigeration, air- conditioning with ice storage
High (130-200°C)		Closed cycle: double-effect system with high overall efficiency
		Closed cycle: system with high temperature lift (e.g. ice production with air-cooled cooling tower)

Introduction to solar cooling

Overall status and achievements

Summary & conclusion

"Market"

SOLA HEATING & COULD'S POGGAMHE MIERDATIONAL ENERGY AGENCY

New small capacity chillers

Task 38 Solar Air-Conditioning and Refrigeration

© Fraunhofer ISE

no claim on completeness

High-temperature applications

- Increasing number of systems using single-axis concentrating collectors (parabolic trough, Fresnel) in combination with thermally driven chillers (150°C ... 200°C)
 - Double-effect chiller with high conversion efficiency (Coefficient of Performance COP 1.1...1.3)
 - Single-effect chiller with high temperature lift for low cooling temperatures (e.g. ice production) and high heat rejection temperatures (dry cooling towers)
- Application in sunny regions for buildings (e.g. hotels) or industrial application (e.g. cooling of food, ice production)

Large and very large installations (examples)

FESTO Factory Berkheim, Germany 1218 m² collector area

1.05 MW (3 adsorption chillers)

United World College (UWC) (in planning)

Singapore

3900 m² collector area

1.47 MW absorption chiller

Source: SOLID, Graz/Austria

Source: Paradigma, Festo

Source: SOLID, Graz/Austria

Task 38 Solar Air-Conditioning and Refrigeration

© Fraunhofer ISE

System performance

Significant progress in overall system performance

Electric COP-values up to >8 shown in monitoring of Task 38
> 8 kWh of cold production per 1 kWh of electricity for solar + cooling equipment (pumps, fans, heat rejection)

Goal: electric COP > 10

© Fraunhofer ISE

Introduction to solar cooling

Overall status and achievements

Summary & conclusion

Summary

- Energy saving up to > 50 % achievable compared to conventional reference systems (heating, hot water, cooling)
- Main challenges
 - High quality in all phases of project lifetime: design, installation, commissioning, operation
 - Minimize auxiliary energy demand: heat rejection, pumps & fans, part load behaviour
- Cost issues
 - First cost 2 to 5 times higher than for conventional solutions
 - Under good conditions life cycle cost lower than for conventional solutions

Example: hotel in Spain (simulation study)

Conclusion

- Future buildings have to be highly energy-efficient and make use of locally available renewable energies, mainly solar
- Integrated solutions for heating, cooling and hot water adapted to specific buildings / load profiles / applications and climatic (solar) conditions are needed
- Solar heating and cooling (SHC) systems will play a significant role, since they provide an energy saving solution on the demand side without affecting the electricity grid
- For SHC considerable potentials for further reduction of cost and increase of efficiency exist on both, component and system level
- Main challenge is to assure high quality of installations in broad market
- Development of quality procedures for all phases of projects are essential: Design \rightarrow Installation \rightarrow Commissioning \rightarrow Operation / Maintenance / Monitoring

Task 38 outputs (examples)

- Generic systems analysis
- Monitoring of overall 23 systems
- Tool to assess successful projects in an early phase
- Commissioning guidelines
- Completely revised third edition of a handbook for planners (mid next year)
- Thermodynamic analysis reports (exergy, simulation)

... thank you for your attention

Task 38 Solar Air-Conditioning and Refrigeration

© Fraunhofer ISE

Backup

Task 38 Solar Air-Conditioning and Refrigeration

© Fraunhofer ISE

Primary energy saving - solar fraction of driving heat

reference: chapter 7 of the new handbook

Primary energy saving - electricity consumption of heat rejection

reference: chapter 7 of the new handbook

Primary energy saving - EER of conventional vapour compression chiller reference: chapter 7 of the new handbook

Energy saving and cost – an example (simulation study)

Comparison of 4 solutions

- Reference: natural gas + vapour compression chiller
- Natural gas + solar thermal (heating + hot water) + vapour compression chiller
- Natural gas + solar thermal (heating + cooling + hot water) + bakcup vapour compression chiller
- Natural gas + vapor compression chiller + PV system
- Application: Hotel in Madrid (3100 m² useful area)
- Analysis of life cycle cost without any funding

Results

Results

Results

