Reasoning about participation constraints and Chen’s constraints

Sven Hartmann

Information Science Research Centre
Massey University
Palmerston North, New Zealand
s.hartmann@massey.ac.nz

Abstract

Cardinality constraints are often considered as one of
the basic constituents of the entity-relationship ap-
proach to database design. In his original proposal of
this model, Chen [6] defined cardinality constraints as
look-across constraints. Alternatively, however, car-
dinality constraints may also be defined on the basis
of the participation or look-here interpretation.

While both definitions correspond to each other for
binary relationships, they differ for n-ary relation-
ships (with n > 3). Participation constraints restrict
the number of relationships a fixed object may partic-
ipate in. Chen-style constraints limit the number of
objects that co-occur with a given tuple comprising
instances of the remaining n — 1 components of the
relationship type under discussion.

In our paper we present a sound and complete system
of inference rules for a class of generalized cardinality
constraints containing both, participation constraints
and Chen-style constraints. It turns out that both
constraint, classes are almost independent, which jus-
tifies their juxtaposition in conceptual database de-
sign. Similar results will be presented in the presence
of additional functional dependencies. The paper con-
cludes with an axiomatization for the joint class of
generalized cardinality constraints and functional de-
pendencies.

Keywords: cardinality constraint, ER modelling,
functional dependency, axiomatization

1 Introduction

The entity-relationship model is still today the most
popular approach towards conceptual modelling. Its
concepts are easy to understand and sufficiently pow-
erful to model real-world problems. Due to its pop-
ularity, the ER model is nowadays taught in almost
all university classes on data modelling. The ongoing
work on the ER model has led to a huge amount of
literature, both research articles and textbooks.

Cardinality constraints are commonly considered
as one of the basic constituents of the entity-
relationship model and its extensions. A cardinality
constraint is a restriction that bounds the number of

Copyright (©2003, Australian Computer Society, Inc. This pa-
per appeared at Fourteenth Australasian Database Conference
(ADC2003), Adelaide, Australia. Conferences in Research and
Practice in Information Technology, Vol. 17. Xiaofang Zhou
and Klaus-Dieter Schewe, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

elements in a set. For example, if A is a set of per-
sons and B a set of teams, we may require that every
team in B consists of at most 11 players and that
every person plays for at most one team. The entity-
relationship model is often acclaimed for its simple
and comprehensible graphical representation. In the
ER diagram, see Figure 1, there are two possible ways
to represent the mentioned requirements: either we
label the link between PLAYSFOR and PERSON by
11, and the link between PLAYSFOR and TEAM by 1,
or we do it just the other way round.

PERSON PLAYSFOR TEAM

Figure 1: A binary relationship type.

When it comes to drawing the ER diagram there is
an extraordinary amount of disagreement among data
modelers. Ferg [10] who was the first to point out this
problem called these two approaches Chen notation
and Merise notation, respectively. Song, Evans and
Park [21] called them look-across and look-here ap-
proach, respectively. Depending on which approach
we prefer, the diagram in Figure 2 tells us that every
Person owns up to 4 houses and every house has only
one owner (this is look-across approach) or that every
Person owns at most one house and every house can
have up to 4 owners (this is look-here approach).

1 4
PERSON HoOUSE

Figure 2: A binary relationship type with labels for
cardinality constraints.

Both approaches are frequently used in literature
and taught in university courses. The look-across
approach goes back to Chen [6] and is used e.g. in
[3, 17, 20, 23, 27]. The look-here approach goes back
to the French data modelling technique Merise [19]
and is used e.g. in [2, 4, 8, 9, 15, 25, 28]. Surprisingly
almost nobody is very disturbed by this problem -
even though it is a permanent source of confusion.
And in fact, for binary relationship types the differ-
ence between these two approaches is simply a mat-
ter of style. Both approaches can be used to express
pretty much the same semantic information, and both
representations can easily be translated to each other
by exchanging the labels at the links.

For ternary relationship types, however, the prob-
lem becomes more crucial. Suppose we want to illus-
trate in Figure 3 that every professor teaches at most
2 courses per weekday. If we follow the look-across
approach we shall label the link between TEACH and
COURSE by 2. But what should we do if we decide to

use the look-here approach? On the other hand, sup-
pose we want to illustrate that every course is taught
at most 5 times. If we use the look-here approach
we shall label the link between TEACH and COURSE
by 5. But what should we do if we are going to fol-
low the look-across approach? And even worse, which
approach shall we use if we are to illustrate both con-
straints simultaneously?

PROFESSOR

Figure 3: A ternary relationship type.

As pointed out by some authors [10, 18, 24] none of
the two approaches may be replaced by the other one
since the semantic constraints behind them may not
be expressed by each other. Nevertheless, most of the
standard textbooks on ER modelling still seem to ne-
glect this observation and - in order not to confront
readers with that uncomfortable situation - present
only one of the possible approaches. This solution,
however, falls far short with respect to practical chal-
lenges in data modelling.

The objective of this paper is to further discuss
the interaction between the two kinds of cardinal-
ities behind the two different labelling approaches.
We are going to present a sound and complete sys-
tem of inference rules for the two kinds of cardinality
constraints under discussion. Note that we are not
concerned about the graphical representation of these
constraints but about their expressive power.

We present our results for a class of general-
ized cardinality constraints introduced in [10, 16, 24]
which comprise the constraints behind both ap-
proaches, look-here and look-across. In addition, we
also study interactions between generalized cardinal-
ity constraints and functional dependencies which are
without any doubt the most popular constraint class
in data modelling. The main result of this paper is a
sound and complete system of inference rules for the
joint class of functional dependencies and generalized
cardinality constraints.

2 Popular
straints

concepts for cardinality con-

The entity-relationship approach to conceptual de-
sign, first introduced by Chen [6], considers the target
of a database as consisting of entities and relation-
ships. To begin with, we briefly review basic concepts
of this approach. We restrict ourselves to a charac-
teristic subset of design primitives that happen to be
essential for our further investigation. For an excel-
lent survey on entity-relationship modelling, we refer
to [25].

Entities and relationships are objects that are
stored in a database. Intuitively, entities may be seen
as basic objects in the domain of interest, whereas
relationships are derived objects representing connec-
tions between other objects. Usually, a database con-
tains lots of objects with common properties. By clas-
sifying them and pointing out their significant prop-

erties, we obtain object types that are used to model
the objects under discussion. All objects modelled
by a type E form an object set Et. Its members are
said to be objects or instances of type E. Entities
are instances of entity types, while relationships are
instances of relationship types.

Designing a database usually starts with declar-
ing entity types to model the basic real-world objects
in the target of the database. Afterwards, relation-
ship types may be specified hierarchically via aggre-
gation. A relationship type R is characterized by its
component set Co(R), its attribute set Attr(R), and
its primary key id(R). Herein, Co(R) consists of all
the object types Cy,...,C), involved in R. Roughly
speaking, R reflects real-world connections between
objects of the types Cy,...,C,. A relationship type
with n components is said to be n-ary. Relationship
types of arity 2 or 3 are, in particular, called binary
and ternary. Moreover, a relationship type R may
possess additional attributes. Attr(R) denotes the
set of attributes Aq,..., A, used to further describe
the relationship type R. Each of the attributes A;
has its domain dom(A;). The primary key id(R) of
R is a non-empty subset of Co(R) U Attr(R).

Sometimes it is convenient to allow an object type
to occur several times as a component of the same
relationship type. In this case, roles are associated
with the different occurrences. Though not always
explicitly set out, all our considerations apply to this
case, too.

Given an object set C? for every component C; €
Co(R), a relationship of type R is an element of the
cartesian product Ct x -+« x C% x dom(A7) X ++- x
dom(A,,). Hence, every relationship r of type R
assigns an object 7(C;) € C! to each component
C; € Co(R), and a value r(A;) € dom(A;) to each
attribute A; € Attr(R), respectively.

A population R! is a set of relationships of type R
such that for any two relationships 7 and " in R? their
projections r|;qg) and r’|;q(ry from Co(R) U Attr(R)
to the primary key ¢d(R) are distinct. The number of
relationships in a population is the size of the popula-
tion. Informally, a population R* may be regarded as
a table whose columns correspond to the components
and attributes of R and whose rows correspond to the
relationships in R?.

All object types declared for some application, col-
lectively, form a database scherna. A major advan-
tage of the entity-relationship approach is its abil-
ity to provide a simple graphical representation of
a database schema. The ER diagram of a database
schema is directed graph whose vertices represent the
object types in the database schema. As usual, ver-
tices for the entity types are drawn as rectangles and
vertices for the relationship types as diamonds. Two
vertices R and C are connected by an arc from R to
C whenever C' is a component of R. The arcs in the
ER diagram are also called links.

In database design great attention is devoted to
the modelling of semantics. Central to this idea is
the notion of integrity constraints. Defining and en-
forcing integrity constraints helps to guarantee that
the database correctly reflects the underlying domain
of interest. Cardinality constraints are among the
most popular integrity constraints used in the entity-
relationship model. They were introduced in Chen’s
original proposal of the ER model [6], and have been
frequently used in conceptual design since then. In

fact, Chen himself did not use the term ‘cardinality’,
but used the expressions ‘1:1 mapping’, ‘1:N mapping’
and ‘M:N mapping’ for binary relationship types with
given cardinality constraints and explained each of
them.

Later on, many authors formalized and used the
Chen style of cardinalities: Let R be a relationship
type with component set Co(R) = {C4,...,C,}, and
let Cj be one of its components. A Chen-style con-
straint is an expression card“"*"(R,C)) = b with
b € N*°, that is, b is a non-negative integer or oc.
This constraint holds in a population R! if for every
choice of objects ¢; € C! with i # k there are at
most b relationships in R' such that 7(C;) = ¢; for all
i # k. In the ER diagram, the Chen-style constraint
card®"*"(R,Cy) = b is graphically reflected by la-
belling the link between R and C} with the value b,
that is, uses the look-across approach.

As an example consider the Chen-style constraint
card®"*"(TEAcH, COURSE) = 2 declared on the rela-
tionship type in Figure 3. It claims that at most two
courses are taught by a certain professor on a cer-
tain weekday. Using the look-across approach, this
constraint can be illustrated by labelling the link be-
tween TEACH and COURSE with a 2.

In his paper [6], Chen also gave an example of
an M:N:P ternary relationship with components Sup-
PLIER, PROJECT, PART, but did not explain how
these cardinalities are to be understood. The authors
of the ER-like modelling technique Merise [19] pro-
posed an interpretation different from the one men-
tioned above: A participation constraint is an expres-
sion cardP*"*(R,Cy) = b with b € N°°. This con-
straint holds in a population R? if for every object
cx € CL there are at most b relationships in R* sat-
isfying 7(Ck) = ¢k. In the ER diagram, the partic-
ipation constraint cardP*’*(R,Cy) = b is graphically
reflected by labelling the link between R and C}, with
the value b, that is, uses the look-here approach.

For example, the participation constraint
cardP**(TEACH, COURSE) = 2 tells us that ev-
ery course is taught at most twice. Using the
look-here approach, this constraint can be illustrated
again by labelling the link between TEACH and
COURSE with a 2.

For binary relationship types, Chen-style con-
straints may easily be translated to participation con-
straints and vice versa: If R has two components C
and Cs, then card“"*"(R,Cy) = b corresponds to
cardP®*(R,Cy) = b, and card“"*"(R,Cy) = V' cor-
responds to card?®*(R,Cy) = b'. The only difference
is the placement of the labels in the ER diagram. So
there is no need to use both kind of constraints simul-
taneously in a database schema.

In general, however, the difference between the
two definitions is more substantial: A Chen-style
constraint fixes instances of m — 1 components and
bounds the number of relationships in the population
R? involving this fixture, while a participation con-
straint fixes only an instance of a single component
and bounds the number of relationships in R? this
fixed object participates in.

This indicates that both kinds of cardinality con-
straints may be used in conceptual modelling for their
own right - as soon as we have an n-ary relation-
ship type with n > 3. Unfortunately, this matter
of fact is widely ignored in textbooks on conceptual
modelling. The reason for this is simple: If we want

to use Chen-style constraints and participation con-
straints simultaneously, it becomes more difficult to
illustrate them in the diagram. Neither the look-here
nor the look-across approach are suitable to illus-
trate both kinds of constraints. Suppose we specified
the constraints card“"*"(TracH, COURSE) = 2 and
cardP*"t(TEACH, COURSE) = 5 and want to illustrate
them in the diagram. The traditional way is to label
the link between the relationship type TEACH and its
component COURSE once with a 2 and once with a 5
- which will obviously cause some irritation. The ad-
equate solution for this problem would be a slightly
refined method to illustrate constraints in the dia-
gram. Instead, however, most textbooks either sug-
gest not to use m-ary relationship types at all or re-
strict themselves to one of the two kinds of cardinality
constraints.

3 On n-ary relationship types

One way to overcome the uncomfortable situation un-
der discussion is to restrict entity-relationship mod-
elling to binary relationship types. For example, the
authors of the Unified Modeling Language (UML)
proposed to avoid non-binary associations since the
definition of cardinalities is somehow complicated for
n-ary relationship types [20].

In our opinion, however, this proposal is not appli-
cable in general. First of all, n-ary relationship types
appear quite naturally in conceptual modelling. Po-
tential users of information systems usually express
their system requirements in natural language. The
abstraction of the requirements specification results
in a first version of a database schema which reflects
the most important concepts. This first schema is
the basis for further communication with the users
and for step-by-step refinement.

Requirements engineering provides best results if
users are allowed to express their application knowl-
edge and demands in a language they are familiar
with. Chen [7] pointed out that English sentences can
be straightforward transferred to relationship types.
Empirical studies provide similar results for other
languages, see [26]. Consider the observation ‘John
teaches a Java course on Tuesday’, or more generally
‘A professor teaches a course on a certain weekday’.
This can easily be modelled by a ternary relationship
type TEACH with components PROFESSOR, COURSE
and WEEKDAY as shown in Figure 3.

During system analysis the designer must extract
conceptual knowledge from requirements given in nat-
ural language, that is, descriptions in natural lan-
guage are transformed into formal descriptions of data
and conditions on them. Due to the complexity of
natural language sentences, the transformation often
results in n-ary relationship types with n > 3. This
observation holds in particular if the designer is as-
sisted by automated design tools, which accept natu-
ral language input. For a discussion of this issue, see
[26]. Examples for n-ary relationship types occurring
in conceptual design are given e.g. in [8, 23, 25]. It
should be mentioned, that n-ary relationship types
also appear during reverse engineering [22].

Of course, relationship types derived from natural
language sentences do not always respect database
requirements. In practice, they are sometimes too
large or carry along complicated dependencies. These
problems should be fixed in later design steps by de-

composing relationship types. This approach usually
increases the readability of the schema, reduces po-
tential redundancy and supports constraint enforce-
ment. However, splitting relationship types must not
be carried too far. The new structures should be more
acceptable than, but at least equivalent to the origi-
nal ones. Basic requirements are information preser-
vation and constraint preservation.

PROFESSOR

COURSE WEEKDAY

Figure 4: A possible decomposition of the ternary re-
lationship type TEACH into three binary relationship

types.

As an example consider the ternary relationship
type TEACH in Figure 3. Figure 4 shows a standard
decomposition of this relationship type into three bi-
nary ones. A decomposition of an n-ary relationship
type R is lossless if every original population R! over
R may be rebuild from the corresponding populations
over the new binary relationship types, without miss-
ing or spurious relationships. Hence, it should be pos-
sible to rebuild the population TEAcH! in Figure 5
from its projections to the three two-element subsets
{PROFESSOR,COURSE}, {PROFESSOR, WEEKDAY }
and {COURSE, WEEKDAY} of the component set of
TEAcCH, see Figure 6.

[Prorussor | Course | WEEKDAY |

John Java Tu
John C++ Tu
Mary Java Tu
Mary Java Fr
Mary C++ Fr

Figure 5: A population of the ternary relationship
type TEACH.

Unfortunately, the decomposition under inspec-
tion is not lossless as the tuple (Mary, C++, Tu) is
in the join of the populations over the three binary
relationship types, but does not occur in the original
population TEACH'.

[PROFESSOR | COURSE |[COURSE | WEEKDAY |

John Java Java Tu
John C++ Java Fr
Mary Java C++ Tu
Mary C++ C++ Fr
[WEEKDAY | PROFESSOR |

Tu John

Tu Mary

Fr Mary

Figure 6: The three projections of the population in
Figure 5 to the two-element subsets of the component
set of TEACH.

The question whether a lossless decomposition is
possible or not depends on the integrity constraints
specified for the relationship type to be decomposed.
In the relational data model, this question has been

widely studied e.g. for functional or multivalued de-
pendencies. In the entity-relationship model, the
question has been discussed in [14, 13, 18] for car-
dinality constraints. Unfortunately, these investiga-
tions concentrate only on ternary relationship types
and none of them covers all possible cases, as pointed

out in [5, 25].

TEACHE

For ON

COURSE WEEKDAY

Figure 7: A possible replacement of the ternary rela-
tionship type by an entity type.

Another possible way to replace an n-ary relation-
ship type by binary ones is illustrated in Figure 7.
This time, an n-ary relationship type R is trans-
formed into an entity type Rg and linked to its former
components via n new binary relationship types.

| TeacHg | PROFESSOR || TEACHE | COURSE |

Teach; John Teachy Java
Teachg John Teachg C++
Teachs Mary Teachs Java
Teachy Mary Teachy Java
Teachs Mary Teachs CH++
[TeacHp | WEEKDAY |

Teach; Tu

Teachso Tu

Teachs Tu

Teachy Fr

Teachs Fr

Figure 8: The three populations over the binary rela-
tionship types in Figure 7 corresponding to the pop-
ulation in Figure 5.

In practice it is rather easy to transform the orig-
inal population TEACH! to populations of the new
binary relationship types: For every relationship in
TEACH' we create a new entity of type TEACHg and
insert a new relationship into each of the three new
populations. The retransformation, however, is only
possible if each entity of type TEACHE participates
exactly once in each of three new populations. Note
that this condition may be expressed by Chen-style
constraints or by participation constraints declared on
the new binary relationship types together with ad-
ditional existence constraints. Moreover, the retrans-
formed relationships have to be mutually distinct on
the primary key of the n-ary relationship type. It
is not difficult to see that the decomposition under
inspection is lossless only if these two conditions is
satisfied.

Unfortunately, replacing the ternary relationship
type has some disadvantages, too. First of all, it dra-
matically increases the size of the schema: before the
decomposition we had three entity types and one re-
lationship type, afterwards we have four entity types
and three relationship types. Moreover, we have to
translate cardinality constraints declared on the orig-
inal relationship type to cardinality constraints de-

clared on the new types. For a participation con-
straint like card?®*(TEACH, COURSE) = 2 this is
fairly easy as it corresponds to the participation con-
straint cardP®"*(FOR, COURSE) = 2 declared on one
of the new binary types.

For a Chen-style constraint such as
card®"*"(TrAcH, COURSE) = 2 the situation is
more complicated. Of course, the constraint ‘Every
professor teaches at most two courses per weekday’
should be specified for the transformed schema,
too. But this is no longer possible with the help
of one of the traditional definitions of cardinality
constraints. Rather, we have to define a new kind
of ‘inter-relationship’ cardinality constraints which
is more difficult to understand and does not allow a
simple graphical representation in the ER diagram.

This example points out the major consequence
of forbidding n-ary relationship types: ER diagrams
become larger and less understandable for potential
users of the database system to be designed. More-
over, decomposing n-ary relationship types into bi-
nary ones does not solve any of the problems arising
from the simultaneous usage of Chen-style constraints
and participation constraints as discussed above.

Observation 1. n-ary relationship types with n > 3
are useful in conceptual modelling.

4 Participation constraints or Chen’s con-
straints

The standard way to avoid the discussion about the
graphical representation of cardinality constraints is
to introduce only one of the two kinds of cardinality
constraints under inspection. Often this is done in
the unspoken concensus that both kinds of constraints
may be used to express pretty much the same seman-
tic information. Unfortunately, this is not true. As
an example, consider the populations in Figures 9-11.
They show that both kinds of constraints may hold
independently from each other.

[ProrEssor | Course | WEEKDAY |

John Java Tu
John C++ We
Mary Java Tu
Susan Java Tu

[ProrEssor | COURSE | WEEKDAY |

John Java Tu
John C++ Tu
John Java Mo
Mary Java Tu
Figure 9: The first population satisfies

card?**(TEACH, PROFESSOR) = 2, but violates

card®""(TEACH, PROFESSOR) = 2. For the second
population, the situation is vice versa.

Of course, there is some interaction between
both kinds of constraints. For example, if
card?**(TEACH, PROFESSOR) = 2 holds in a popu-
lation TEACH' then card“"*"(TEAcH, COURSE) = 2
holds, too. This is not difficult to see: If a fixed pro-
fessor teaches at most 2 courses in total, then she/he
will teach no more than 2 courses on a fixed weekday.

Observation 2. Let R be a relationship type with
components Cy,...,Cy, and let i,k € {1,...,n}. If
a population RY satisfies the participation constraint

card?(R,Cy) = b then it also satisfies the Chen-
style constraint card®"*™ (R, C;) = b for every i # k.

For binary relationship types, the converse is also
true, but not for n-ary relationship types with n > 3.
As an example, consider the populations in Figure 10.

[PROFESSOR | COURSE | WEEKDAY |

John Java Tu

John C++ Tu

John Java We

Mary C++ Fr

[PROFESSOR | COURSE | WEEKDAY |

John Java Tu

John C++ Tu

Mary Java We

Mary C++ Fr
Figure 10: The Chen-style constraint
card®""(TEACH, COURSE) = 2 holds in both

populations. Moreover, the first population violates
cardP?*(TEACH, PROFESSOR) = 2, while the second
population satisfies this participation constraint.

Further, we should not expect a participation con-
straint like card?®"*(TEACH, PROFESSOR) = 2 to im-
ply any Chen-style constraint which is ‘sharper’ than
card®"*"(TEACH, COURSE) = 2. If a fixed professor
may teach up to 2 courses in total, then there is no
reason why she/he should not teach both courses on
the same weekday, see Figure 11.

[PROFESSOR | COURSE | WEEKDAY |

John Java Tu
John C++ Tu
Mary Java ‘We
Mary C++ Fr
PROFESSOR | COURSE | WEEKDAY |
John Java Tu
Susan C++ Tu
Mary Java We
Mary C++ Fr
Figure 11: The participation constraint

cardP®(TEACH, PROFESSOR) = 2 holds in both
populations. In addition, the first population violates
card®"*"(TEAcH, COURSE) = 1, while the second
one satisfies this Chen-style constraint.

Observation 3. In general, participation constraints
cannot be expressed by Chen-style constraints, and
Chen-style constraints cannot be expressed by partic-
ipation constraints.

5 A unifying concept: Generalized Cardinal-
ity Constraints

In order to resolve the confusion around participa-
tion constraints and Chen-style constraints, some au-
thors introduced new approaches towards cardinality
constraints. Generalized cardinality constraints have
been defined e.g. by Ferg [10], by Thalheim [24] within
his Higher-order entity-relationship model (HERM)
and by Embley et.al. [9] within their Object-oriented
System Analysis (OSA). For surveys on classes of car-
dinality constraints used in entity-relationship mod-
elling the interested reader is referred to [16, 25].

Let R be a relationship type and W a non-empty
subset of the component set Co(R) = {C1,...,Cy}.
A generalized cardinality constraint is an expression

card(R,W) = b with b € N*°. This constraint holds
in a population R? if for every choice of entities ¢; €
C! with C; € W there are at most b relationships in
Rt such that r(C;) = ¢; for all C; € W.

A participation constraint card?*t(R,Cy) = b
corresponds to a generalized cardinality constraint
card(R,W) = b with W = {Cy}. A Chen-style
constraint card®"*"(R,C}) = b is just a generalized
cardinality constraint card(R,W) = b with W =
Co(R)\ {Ck}. It should be emphasized that there are
generalized cardinality constraints which are neither
Chen-style nor participation constraints. If the pri-
mary key of a relationship type contains no attributes,
that is, if id(R) C Co(R), we immediately have the
generalized cardinality constraint card(R,id(R)) = 1.

6 Inference Rules for Generalized Cardinal-
ity Constraints

The constraints satisfied by a population are usually
not independent. A single constraint o follows from
a constraint set X if o holds in every population R?
which satisfies 3. We also say that % implies 0. Two
constraint sets ¥ and ¥’ are equivalent if every con-
straint in ¥’ follows from ¥ and vice versa.

In practice, of course, we will not inspect all pos-
sible populations in order to decide whether a con-
straint ¢ follows from a given constraint set > or not.
Rather, we are interested in inference rules which help
us to decide this question. An inference rule is an ex-
pression %’y where Y/ is a subset of X, and states
some condition on ¥’ which has to be satisfied if we
want to apply this rule. If ¥ contains a subset ¥’ sat-
isfying the condition v, then o may be derived from X
due to that inference rule. An inference rule is sound
if 3 implies every constraint ¢ which may be derived
from ¥ due to that rule.

We are interested in inference rules which com-
pletely describe all the implications of a given con-
straint set X. A rule system R is a set of inference
rules. The most prominent example of such a rule
system is the Armstrong system for functional de-
pendencies [1]. A set ¥ is syntactically closed with
respect to R if it contains every constraint o which
may be derived from ¥ due to some rule in R. Given
a class Z of integrity constraints, a constraint set X
is semantically closed with respect to Z if it contains
every constraint ¢ € Z which is implied by ». The
general problem is to find a rule system R such that
a given set X C Z is semantically closed w.r.t. Z if
and only if it is syntactically closed w.r.t. R. Such a
rule system is said to be sound and complete for the
implication of Z.

In this section, we will present a suitable rule sys-
tem for generalized cardinality constraints and verify
that this system is sound and complete. As already
mentioned above, there is some kind of interaction be-
tween generalized cardinality constraints: According
to Observation 2, participation constraints always im-
ply certain Chen-style constraints. This observation
gives rise to rule (C2) below. The other two rules are
obvious: (C1) gives us the trivial constraint provid-
ing co as an upper bound, while (C3) allows us to
conclude ‘weaker’ constraints from ‘sharper’ ones.

Observation 4. Let R be a relationship type, X,Y
be non-empty subsets of Co(R), and b,b/ € N*°. The
following rules are sound:

(C1)

card(R,X) = oo
card(R,X) =b
XcyY
(@) ardmy =~ ©
card(R,X)=b ,
(%) caramx) = *<°

Let X be a set of generalized cardinality con-
straints specified on a relationship type R. Given a
non-empty subset Y C Co(R) let by denote the small-
est integer b such that Y¢ contains some constraint
card(R,X) = b with X C Y. If no such integer ex-
ists, we put by = oco. Informally, we may say that
card(R,Y) = by is the ’sharpest’ constraint deriv-
able from X by applying the rules (C1) and (C2).

For example, consider the constraint set

containing card(TEACH, {PROFESSOR}) = 3,
card(TEACH, {COURSE}) = 1 as well as
card(TEACH, {PROFESSOR, WEEKDAY }) = 4.
We obtain b{PROFESSOR} = 3, b{COURSE} = 1,
b{WEEKDAY} = o0, {PROFESSOR,COURSE} = 1,
{PROFESSOR, WEEKDAY} — 3, {COURSE,WEEKDAY} — 1

and b{PROFESSOR,COURSE,WEEKDAY} =

Later on, we make use of the following observation.

Observation 5. Let X be a given set of generalized
cardinality constraints. For any two nmon-empty sub-
sets X andY of Co(R) with X CY we have bx > by.

Now consider the constraint set 5 which consists
of the constraints card(R,Y) = by for all the non-

empty subsets Y of Co(R). We call $5 the basic
constraint set corresponding to Y¢. Note that %5
provides essentially the same semantic information as
Y¢: The constraints in X2 may be derived from X
by applying the rules (C1) and (C2). As these rules
are sound, Eg follows from ¥c. Conversely, every
constraint in Y¢ may be derived from 2 due to rule
(C3). Hence, X8 implies Y.

Observation 6. Every set X¢ of generalized cardi-
nality constraints is equivalent to the basic constraint
set BB corresponding to Yc.

Our objective is to show that the rules (C1)—(C3)
presented above form a complete rules system for gen-
eralized cardinality constraints. The following result
is a first step into this direction. It verifies that sets of
generalized cardinality constraints do not imply any
constraint which may not be derived from the corre-
sponding basic set due to (C3).

Observation 7. Let X¢ be a set of generalized car-
dinality constraints, let Y be a non-empty subset of
Co(R), and let b < by be some positive integer. Then
Yo does not imply the constraint card(R,Y) = b.

Let o denote the constraint card(R,Y) = b under
inspection. For b < by the value b will be finite. To
verify the previous observation we construct a popula-
tion R%° which satisfies Eg but violates o. To begin
with we fix object sets CV7 = {Citgs--+:Cibt1o}
for every component C; € Co(R), and choose val-
Ues i1,y Aipt1,0 € dom(A;) for every attribute
A; € Attr(R). Then, let R%? consist of b+ 1 relation-

ships 71,5, -..,7b+1,0 Where
Cij ifC, ¢Y
ryo(C) = { e KCEY
’ Cil,o ifC; ey,

[ProrEssor | COURSE | WEEKDAY

John Java Mo
John C++ Mo
John Delphi Mo

Figure 12: Let o denote the constraint
card(TEACH,{PROFESSOR,WEEKDAY}) = 2. The
population R%° above violates o.

and 7, (A;) = a; 5, for every attribute A; of R.

Clearly, the resultant population R%? satisfies 25.
Moreover, any two relationships coincide in their pro-
jections to the fixed subset Y C Co(r). As R
is of size b + 1 it obviously violates the constraint
card(R,Y) =b.

Theorem 8. The rules (C1)-(C3) form a sound and
complete system for the implication of generalized car-
dinality constraints.

As we have already pointed out the soundness of
the three rules it remains to discuss the completeness.
Let R be a relationship type with a set X of general-
ized cardinality constraints declared on it. Fix some
constraint o, say card(R,Y) = b, which may not be
be derived from ¢ due to our rules. Note, that for
any non-empty subset X C Y the constraint set Y¢
may only contain constraints card(R,X) = b with
b > b. By definition, this gives us by > b. Now
consider the population R%? constructed above. It
satisfies Y, but violates . Hence, the constraint
under inspection does not follow from Y- as claimed.

Thus, the rule system (C1) (C3) is in fact sound
and complete as desired. Hence, Observation 2 above
- which is a simple consequence of rule (C2) - describes
the only non-trivial implication between participation
constraints and Chen-style constraints. This explains
why both kinds of constraints are necessary in concep-
tual data modelling and none of these two approaches
should be neglected for the sake of an easier graph-
ical representation of cardinality constraints in ER
diagrams.

7 Generalized Cardinality Constraints in the
presence of Functional Dependencies

Functional dependencies are considered to be the
most important class of integrity constraints used in
database design. Of course, functional dependencies
are also of interest in entity-relationship modelling. In
practice, most applications require functional depen-
dencies as well as cardinality constraints. The objec-
tive of this section is to present a sound and complete
rule system for the joint class of functional dependen-
cies and generalized cardinality constraints.

A functional dependency on R is a statement R :
X — Z where both, X and Z are non-empty subsets
of Co(R)UAttr(R). This functional dependency holds
in the population R® if we have r[Z] = r'[Z] whenever
r[X] = 7/[X] holds for any two relationships r and 7’
in R

As an example consider the populations R%® in-
troduced above. Any two relationships r and 7’ in
such a population coincide in their projections to Y,
that is, r[Y] = ' lY] but differ in each component
C €Y. Hence, R*? cannot satisfy some functional
dependency R : X — Z where X is a subset of Y and
Z contains some component C not in Y. In fact, it is

easy to see that R¥“ satisfies a functional dependency
R : X — Z if and only if we have either X ¢ Y or
X UZ CY. In the first case, any two relationships
in the population R*° differ in their projections to
X, while in the second case any two relationships co-
incide in their projections to Y, and thus, in their
projections to X U Z.

Observation 9. Let o be a generalized cardinality
constraint, say card(R,Y) = b. The population R
constructed above satisfies a functional dependency
R : X — Z if and only if we have X € Y or
XuUuzZzcCy.

Usually, one expects to find at least one functional
dependency for every relationship type R: As R is
supposed to have a primary key id(R), we immedi-
ately have the functional dependency R : id(R) —
Co(R) U Attr(R).

It is well-known [1] that the Armstrong rules (F1)—
(F3) below are sound and complete for the implication
of functional dependencies.

(F1) R:X—->Y yex

R:X—-Y
(F2) R: X —XUY
R:X—-Y R:Y—Z
R:X -7

Let X be a set of functional dependencies, and let
X C Co(R)U Attr(R) be a non-empty subset of com-
ponents and/or attributes. As usual, we denote by
Xt ={C € Co(R)UAttr(R) :Xr = R: X — {C}}
the functional closure of X under Y g, that is, the
set of all components and attributes which are deter-
mines by X according to the functional dependencies
implied by Xp.

(F3)

Given a set X of functional dependencies, we call
YE={R:X - Xt :0# X CCo(R)UAttr(R)} the
basic constraint set corresponding to YXp. In text-
books on database theory, the dependencies in %2
are sometimes called right-extended. 1t is well-known
that Y and $8 are equivalent, cf. [17].

Let X be a set of functional dependencies and let
o denote a functional dependency R : X — Z which
is not implied by X, that is, Z is not a subset of
XT. It is rather easy to find a population R*® which
satisfies X but violates o. First, we fix a two-element
object set Cf’” = {¢i1,0:Ci 2,0} for every C; € Co(R)
as well as two values a;1,0, 02, € dom(A;) for every
attribute A; € Attr(R). Then, let R%“ consist of the
two relationships m , and ry , where 71, is given by
m,6(Ci) = ¢i 1,0 for every C; € Co(R) and 71 »(4;) =
a;1,, for every A; € Attr(R), while 7y, is defined by

N fCipe fCiEXT,
r2.0(Ci) = {cm,a if C; e X+,
and N
a2, ifA; g XT,

r2.0(Ai) = {ai,l,a if A4; € XT.

This time, we may ask which generalized cardinal-
ity constraints hold in R%?. The answer is fairly easy:
As RY9 is of size 2, it clearly satisfies every general-
ized cardinality constraint card(R,Y) = b with b > 2.
For b = 1, however, the constraint under discussion
only holds if Y is not a subset of XT.

Observation 10. Let X g be a set of functional de-
pendencies, and let o be a functional dependency not

[ProrEssor | COURSE | WEEKDAY

John Java Mo
John Java Tu

Figure 13: Let o denote the functional dependency
TeACH : {COURSE} — {WEEKDAY} and suppose
E? contains the functional dependency TEACH
{Course} — {PROFESSOR,COURSE}. The popula-
tion population R%“ above satisfies Zg, but violates
.

mmplied by Xp, say R : X — Z. The population
R constructed above satisfies a generalized cardi-
nality constraint card(R,Y) = b if and only if we
haveb>2 orY ¢ XT.

The previous observation shows that there is some
sort of interaction between functional dependencies
and generalized cardinality constraints. The follow-
ing two rules are simple examples of inference rules
involving both kinds of integrity constraints.

Observation 11. Let R be a relationship type, X,Y
be non-empty subsets of Co(R) and b € N*°. The
following rules are sound:

R:X =Y, card(R,Y) =1
card(R,X)=1>
card(R,X) =1

R: X — Co(R) U Attr(R)

(CF1)

(CF2)

It is easy to check the correctness of these rules.
Suppose a population contains b + 1 relationships
which coincide in their projections to X. If X deter-
mines Y, then all these relationships coincide in their
projections to Y, too. Then, however, the cardinality
constraint card(R,Y) = b would be violated. This
verifies (CF1). Rule (CF2) is a simple consequence of
the definition of generalized cardinality constraints.

Theorem 12. The rules (C1)-(C3), (F1)-(F3),
(CF1) and (CF2) form a sound and complete sys-
tem for the implication of generalized cardinality con-
straints and functional dependencies.

As the soundness has already been discussed above
it remains to verify the completeness of the rule sys-
tem R comprising all the rules mentioned in the the-
orem. Let X¢ be a set of generalized cardinality con-
straints and X g be a set of functional dependencies,
and let ¥ = X U Xp denote their union. Clearly,
¥ is equivalent to 8 U X8, If ¥ is syntactically

closed w.r.t. the rule system R, then Y& contains Zg
by our completeness result for generalized cardinality
constraints, and X r contains X% due to the complete-
ness of the Armstrong system. The following obser-
vation collects some obvious results on the interaction
of generalized cardinality constraints and functional
dependencies in syntactically closed constraint sets.
The first result is a consequence of (CF1), while the
second one is caused by (CF2).

Observation 13. Let X = Yo UXp be syntactically
closed with respect to the rule system R mentioned
above, and let X be a non-empty subset of Co(R). We
have bx = bx+, and if bx = 1 then X™ = Co(R) U
Attr(R).

We are now ready to verify Theorem 12. Suppose
Y = Yo UXp is syntactically closed w.r.t. R. We have

to check that ¥ does not imply any functional depen-
dency or generalized cardinality constraint which is
not already contained in X.

Firstly, let card(R,Y) = b be a fixed generalized
cardinality constraint which is not in X¢. It suffices to
present some population which satisfies Zg UXE but
violates the fixed cardinality constraint. Of course,
we have b < by = by+. By o we denote the general-
ized cardinality constraint card(R,Y ™) = b and con-
sider the population R*“ constructed above. By con-
struction, it violates o and thus the fixed constraint
card(R,Y) = b. On the other hand, it satisfies 5
and thus every generalized cardinality constraint in
Y.¢. By Observation 9 this population satisfies all
functional dependencies R : X — Z with X ¢ YT
or X UZ C Y*. Fortunately, this condition holds
for each functional dependency in X2 as X C Y
immediately gives X UZ C XT C Y. Hence, our
population R*“ satisfies Z? and thus Xp.

Secondly, let R : X — Z be a fixed functional de-
pendency which is not in X . Note that the existence
of such a dependency yields X+ # Co(R) U Attr(R)
and, by the previous observation, bx > 2. Again
it suffices to present some population which satisfies
Zg UE? but violates the fixed functional dependency.
This time, let 0 denote R : X — Z. Consider the re-
lationship R%° constructed above. It violates o, but
satisfies ©2 and thus Yp. Furthermore, by Obser-
vation 10, our population satisfies every generalized
cardinality constraint card(R,Y) = b with Y ¢ X
or b > 2. Fortunately, this condition holds for each
generalized cardinality constraint in Eg asY C X+
immediately gives by > bx+ > 2. Therefore, our
population R"“ satisfies X2, and thus X¢.

This concludes the proof of Theorem 12. Con-
sequently, the rule system comprising the infer-
ence rules (C1)—(C3) for generalized cardinality con-
straints, the Armstrong rules and the rules (CF1) and
(CF2) happens to be sound and complete. In particu-
lar, it shows that the rules (CF1) and (CF2) describe
all possible interactions between functional dependen-
cies and generalized cardinality constraints.

8 Conclusion

In this paper we discussed the implication problem
for a class of cardinality constraints which generalize
the two popular kinds of cardinality constraints used
in entity-relationship modelling. We presented a sys-
tem of inference rules and proved this system to be
sound and complete. This result verifies again that
Chen-style constraints and participation constraints
are almost independent such that both kinds of con-
straints may be used in conceptual modelling for their
own right - as soon as n-ary relationship types come
into play. Together, these constraint classes allow
us to specify semantic information which may not
be expressed when considering only one of the two
approaches. This justifies the simultaneous usage of
both constraint classes in data modelling. Moreover
we studied interactions between generalized cardinal-
ity constraints and functional dependencies and again
presented a sound and complete system of inference
rules.

It should be noted that there are still more gen-
eral definitions of cardinality constraints proposed in
literature. For a survey, see [16, 25]. In the relational
data model, Grant and Minker [11] studied numerical

dependencies which generalize functional dependen-
cies and are closely related to generalized cardinal-
ity constraints. Unfortunately, the class of numerical
dependencies does not allow a finite axiomatization
as shown in [11]. McAllister [18] discussed a class
of cardinality constraints which are equivalent to nu-
merical dependencies, but are based on some kind of
non-classical logic. But again, there is no complete
rule system known for this constraint class. In [12]
we studied implications for participation constraints
which impose not only upper bounds on the num-
ber of occurrences of certain objects, but also lower
bounds. In future it should be possible to present
a sound and complete system of inference rules for
generalized cardinality constraints and minimum par-
ticipation constraints. However, this problem is not
in the scope of the present paper and requires more
involved methods from combinatorial design theory.

References

[1] W. W. Armstrong. Dependency structures of database
relationship. Inform. Process., 74:580-583, 1974.

[2] C. Batini, S. Ceri, and S. B. Navathe. Database design:
An entity-relationship approach. Benjamin/Cummings,
Menlo Park, 1992.

[3] T. Bruce. Designing quality databases with IDEF1X in-
formation models. Dorset House, 1992.

[4] D. Calvanese and M. Lenzerini. Making object-oriented
schemas more expressive. In Proc. Thirteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 243—254. ACM Press, Minneapo-
lis, 1994.

[5] R. Camps. From ternary relationships to relational tables.
SIGMOD Record, 31, 2002.

[6] P. P. Chen. The entity-relationship model: towards a
unified view of data. ACM Trans. Database Systems, 1:9—
36, 1976.

[7] P. P. Chen. English sentence structure and entity-
relationship diagrams. Information Science, 29:127-149,
1983.

[8] R. Elmasri and S. B. Navathe. Fundamentals of database
systems. Addison-Wesley, 1999.

[9] D. W. Embley, B. D. Kurtz, and S. N. Woodfield. Ob-
ject oriented systems analysis: a model-driven approach.
Yourdon Press Series, Prentice Hall, 1992.

[10] S. Ferg. Cardinality constraints in entity-relationship
modeling. In T. J. Teorey, editor, Proceedings of the
10th International Conference on Entity-Relationship Ap-
proach (ER’91), 23-25 October, 1991, San Mateo, Cali-
fornia, USA, pages 1 30. ER Institute, 1991.

[11] J. Grant and J. Minker. Inferences for numerical depen-
dencies. Theoretical Comput. Sci., 1985:271-287, 41.

[12] S. Hartmann. On the implication problem for cardinal-
ity constraints and functional dependencies. Ann. Math.
Artificial Intelligence, 33:253-307, 2001.

[13] T. H. Jones and I.-Y. Song. Analysis of binary/ternary
cardinality combinations in entity-relationship modeling.
Data Knowledge Eng., 19:39-64, 1996.

[14] T. H. Jones and 1.-Y. Song. Binary equivalents of ternary
relationships in entity-relationship modeling: A logical
decomposition approach. J. Database Manag., 11:12 19,
2000.

[15] M. Lenzerini and P. Nobili. On the satisfiability of depen-
dency constraints in entity-relationship schemata. Infor-
mation Science, 15:453-461, 1990.

[16] S. W. Liddle, D. W. Embley, and S. N. Woodfield. Cardi-
nality constraints in semantic data models. Data Know!l-
edge Eng., 11:235-270, 1993.

(17]

(18]

19]

20]

[21]

(22]
23]
24]
[25]

[26]

27]

28]

G. Loizou and M. Levene. A guided tour of relational
databases and beyond. Springer, Berlin, 1999.

A. McAllister. Complete rules for n-ary relationship car-
dinality constraints. Data Knowledge Eng., 27:255—288,
1998.

A. Rochfeld and H. Tardieu. Merise: An information sys-
tem design and development methodology. Information
Manag., 6:143 159, 1983.

J. Rumbaugh, I. Jacobson, and G. Booch. The unify-
1ng modeling language reference manual. Addison-Wesley,
Reading, 1999.

1.-Y. Song, M. Evans, and E. Park. A comprehensive anal-
ysis of entity-relationship diagrams. J. Computer Software
Engrg., 3:427-459, 1995.

C. Soutou. Extracting mn-ary relationships through
database reverse engineering. LNCS, 1157:392-405, 1993.

T. J. Teorey. Database modeling and design.
Kaufmann, San Francisco, CA, 1998.

Morgan

B. Thalheim. Foundations of entity-relationship modeling.
Ann. Math. Artificial Intelligence, 6:197-256, 1992.

B. Thalheim.
Berlin, 2000.

Entity-relationship modeling. Springer,

A. M. Tjoa and L. Berger. Transformation of requirement
specifications expressed in natural language into an EER
model. LNCS, 823:206-217, 1993.

J. Ullman and J. Widom. A first course in database sys-
tems. Prentice Hall, 1997.

E. Yourdon. Modern Structured Analysis. Prentice Hall,
1989.

