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Abstract

We explore the criteria that contribute to the structural validity of modeling structures within the entity-

relationship (ER) diagram. Our approach examines cardinality constraints in conjunction with the degree

of the relationship to address constraint consistency, state compliance, and role uniqueness issues to derive

a complete and comprehensive set of decision rules. Unlike typical other analyses that use only maximum

cardinality constraints, we have used both maximum and minimum cardinality constraints in defining the

properties and their structural validity criteria yielding a complete analysis of the structural validity of

recursive, binary, and ternary relationship types. Our study evaluates these relationships as part of the
overall diagram and our rules address these relationships as they coexist in a path structure within

the model. The contribution of this paper is to provide a comprehensive set of decision rules to determine

the structural validity of any ERD containing recursive, binary, and ternary relationships. These decision

rules can be readily applied to real world data models regardless of their complexity. The rules can easily be

incorporated into the database modeling and designing process, or extended into case tool implementa-

tions.
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1. Introduction

Entity-relationship (ER) modeling [5] is the foundation of various analysis and design meth-
odologies for the development of information systems and relational databases [29]. A key
measure of success in the design of these models is the level that they accurately reflect the real
world environment. A model can be a very complex abstract structure, and designers are highly
prone to making small mistakes that incorporate inconsistencies into the structure. There is
various supporting empirical evidence [2,6,11,12] that concludes errors, mistakes, or inconsis-
tencies made in the early stages of the software development life cycle are very expensive to
correct. Boehm [3] states that the cost difference to correct an error in the early phases as opposed
to the post-implementation phase is on the order of a ratio of 1:100. Left undetected these in-
consistencies become very costly to correct, so early discovery of an error is highly desirable.

The structural validity of an ER diagram (ERD) is concerned whether or not a given ERD
contains any constructs that are contradictory to each other. An ERD with at least one incon-
sistent cardinality constraint is structurally invalid [22]. Direct treatment of structural validity as a
concept is rare in the literature. Some structural validity rules are partly discussed in other
publications, such as [1,10,24,27,30], but they do not exhaustively cover all the combinations of
maximum and minimum cardinality. Indirect treatment of the subject materials, are usually
confined to making buttress points concerning other issues. Structural validity in the literature is
almost always treated as a property of a study; in this paper we treat it as the object of our study.
In our study we evaluate each relationship type as part of the overall diagram and address how
they coexist with other relationship types within the model.

Deciding whether a particular ERD is valid or not is sometimes a difficult issue to many
database designers. For example, how do we know whether the diagrams shown in Fig. 1 are
valid? Fig. 1 shows three simple ERD containing recursive, binary and ternary relationship types.
These diagrams seem to be a plausible representation of a set of semantics, but they are actually
structurally invalid from many perspectives. The work presented in our paper will show why these
diagrams are invalid and allows for the evaluation of more complex diagrams than presented here.

This paper is organized into six sections. In Section 2, the concepts of semantic and structural
validity, both necessary for a valid design, are defined and discussed. In Section 3, we focus on
recursive relationships. In the literature, only two types of recursive relationships––symmetric and
asymmetric [8,30] and their validity [8] are discussed. In this section, we discuss five different types
of recursive relationships by further defining the concept of an asymmetric association into hier-
archical, circular, and mirrored relationships. We also introduce the concept of a hybrid rela-
tionship by combining the concepts of a circular and hierarchical association. By expanding the
work of [9], we present a complete taxonomy of recursive relationships and decision rules for
checking the validity of those various recursive relationships. Section 3 presents five rules and
three corollaries to evaluate the structural validity of standalone recursive relationship types.
Section 4 encapsulates our work on the structural validity of binary relationships. We show that
standalone binary relationships and binary relationships existing in an acyclic path are always
structurally valid. In this section, we examine binary relationships, as they exist in an ERD with
other binary relationship types. Our holistic view presents six rules and two corollaries to evaluate
ERDs containing binary relationships. These rules also play an important role in the analysis of
ternary relationships. Section 5 explores the effects of ternary relationship structures on the va-



Figure 1a (Unary Example)

Figure 1c (Ternary Example)

Figure 1b (Binary Example)

Fig. 1. Three plausible but structurally invalid ERD: (a) an ERD with invalid recursive relationships; (b) an ERD with

invalid binary relationships and (c) an example of an invalid multi-path entity relationship diagram with a constrained

ternary relationship showing the effects of the embedded relationships.
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lidity of the diagram. We extensively explore the embedded binary relationships derived from the
ternary relationship to perform our path analysis. Ternary relationships are also examined for
standalone validity and the redundancy [7] of embedded binary relationships in conjunction with
imposed constraining binary relationships. Both single and multiple constraining relationships are
explored. In addition, we consider the effects of minimum cardinality on constraining binary
relationships. Section 3.2 states the conclusions of our research, and Appendices summarize the
complete set of rules to test the structural validity of recursive, binary, and ternary relationships in
any ERD.

1.1. Related works

In this section, we review literatures related to the use of cardinality constraints and validity in
ER modeling.

The original entity-relationship model proposed by Chen [5] only used the maximum cardi-
nality constraints. The maximum cardinality constraint describes the maximum number of
data instances that may occur for that entity to participate in the relationship. Generally four
choices are available to a binary relationship: �one-to-one�, �one-to-many�, �many-to-one�, or
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�many-to-many�. Scheuermann et al. [23] introduced the idea of the participation constraint to the
model adding yet another concept that is important to our research and to the concept of
structural validity. The Scheuermann paper defined the minimum cardinality constraint on the
data model as the minimum number of data instances that must occur for that entity to partici-
pate in the relationship. Two choices are available: zero and one, and they correspond to the terms
�optional participation� and �mandatory participation�. Maximum and minimum cardinality
constraints are the keystone concepts to the analysis of structural validity, because taken together
they represent the structural constraints on the model [10].

Song and Jones in [18,25] discuss implicit binary relationships embedded in various ternary
relationships. They show that the implicit cardinality of any binary relationship in any ternary
relationship is M : N . They further present a structural validity rule called Explicit Binary Per-
mission rule. The rule states a binary relationship cannot be imposed where the binary cardinality
is less than the cardinality specified by the ternary. Jones and Song [19] discuss the decomposition
of ternary relationships into binary relationships and show that not every lossless decomposition
is always functional-dependency-preserving. Both Jones [18,19] and McAllister [22] address the
structural consistency issues related to ternary relationships. They specifically look at maximum
cardinality constraint issues in ternary relationships and examine the effect of related and unre-
lated binary relationship constraints on the ternary relationship. Their analysis of the structural
validity of the complex ternary relationship is solely based on the maximum cardinality constraint
of both the ternary relationship and the related binary relationships. One of the contributions of
our paper is that we analyze the structural validity by analyzing both maximum and minimum
cardinality constraints and ternary relationships along with any constraining binary relationships,
as they exist holistically within the ERD.

Various mechanisms were introduced to visually represent the information requirements. The
diagramming mechanisms evolved into many different forms that satisfied the need to commu-
nicate with either the user community or the implementation community, while allowing a great
deal of latitude in between for other mechanisms to be introduced. Ferg [12] performs an analysis
on three notations: information engineering (IE), Merise, and Chen notation. Each one illustrates
different views on showing the cardinality constraints that exist on the relationships. Liddle [21]
expands the previous analysis by examining and describing additional models such as the semantic
binary data model, the structural model, the semantic association model, the Nijssen�s informa-
tion analysis methodology, and the binary relationship model. Song [26] further compares and
contrasts various ER diagramming notations. In our paper we use the Elmasri and Navathe�s
notation [10] to describe the diagrams we are presenting. The main reason for using the Elmasri
notation as opposed to a newer notation such as UML, is that the ER diagramming is still a
widely acceptable mechanism in representing information and modeling data. The Elmasri no-
tation also uses the �look here, look across� notation for expressing minimum and maximum
cardinalities, respectively. Since ternary relationships are discussed in depth in this paper, we are
required to use the �look here� notation for the participation constraint. A �look across� notation
such as used in the UML does not effectively represent the semantics of participation constraints
imposed on relationships where the degree is higher than binary.

During the late 1980s and into the 1990s, numerous papers were written that enriched the
concept of cardinality constraints. Habrias [13] introduces the concept of static and dynamic
cardinality constraints. They believe that two views exist, first being the view of the present state
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and what happens in the static environment, and the second view referring to what happens in a
changing or dynamic environment. He models both the static and dynamic to allow analysis of the
processes that occur within a relation between two chronological states. Thalheim [28] discusses the
ambiguity of properties of n-ary relationship models and analyzes the theoretical basis of its
cardinality constraints. He presents ways of constructing and manipulating them in order to use
them in practical database tasks. For that purpose he formalizes concepts and introduces a way of
representing cardinality constraints for n-ary relationships in a diagram. The formalization of these
concepts aids in ‘‘detecting’’ inconsistencies in the cardinality constraints, leading to the im-
provement of maintenance processes and the enhancement of design decisions. Zhou [32] intro-
duces the concept of valences in conjunction with cardinality constraints. The concept of valence
constraints adds richness to the model�s semantics. The purpose of this is to discover evolving
relationships as the model matures or becomes more complex. The valence constraints impose
restrictions making the boundaries of the maximum cardinality constraints more specific. Valence
bundles describe the instance sets of a relationship and the various states that the model can
represent. Hartmann [14] introduces the concept of global cardinalities that supports lower and
upper bounds on cardinalities adding richness to the constraints imposed on relationships. In later
work, Hartmann [15] extends the concept of global cardinalities with int-cardinalities to allow gaps
or non-contiguous enumerated lists in the sets of permitted cardinalities. He [16] further presents
an efficient method for checking consistency and logical implications in cardinality constraints.
Applying his methods permits the designer to discover interesting properties of schemata as well as
conflicts among the particular constraints. Dullea and Song [9] present the classification of re-
cursive relationships as well as the criteria influencing the structural validity of recursive rela-
tionships in entity-relationship data models. Finally, some notable works address the integration of
object oriented concepts and data modeling. Ye [31] introduces a way of managing cardinalities in
object-oriented systems through an object-oriented language. Calvanese [4] analyzes the concept of
inheritance in relation to cardinality constraints in an object-oriented environment.

In concluding the related works section, we would like to note that, even though much research
was performed on the use of cardinality constraints, the research on the structural validity using
both minimum and maximum cardinality has not been performed. We believe that our paper
makes a significant contribution on the correct use of ERDs.
2. Validity

An ER model is composed of entities, the relationships between entities, and constraints on
those relationships. Entities may be chained together in a series of alternating entities and rela-
tionships, or may participate singularly with one or more relationships. The connectivity of en-
tities and relationships is called a path. Paths are the building blocks of our study in structural
validity analysis. Paths visually define the semantic and structural association that each entity has
simultaneously with all other entities or with itself within the path. The terms, structural and
semantic validity, are defined as follows.

Definition. An entity-relationship diagram is structurally valid only when simultaneous consider-
ation of all structural constraints imposed on the model does not imply a logical inconsistency in
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any of the possible states. An entity-relationship diagram is semantically valid only when each and
every relationship exactly represents the modeler�s concept of the problem domain. An entity-
relationship diagram is valid when it is both semantically and structurally valid.

In data modeling, validity can be classified into two types: semantic and structural validity. A
semantically valid ERD shows the correct representation of the application domain being mod-
eled. The diagram must communicate exactly the intended concept of the environment as viewed
by the modeler. Since the semantic validity is application-dependent, we cannot define generalized
validity criteria. Therefore, we do not consider semantic validity in this paper.

The structural validity of an ERD is concerned whether or not a given ERD contains any
constructs that are contradictory to each other. An ERD with at least one inconsistent cardinality
constraint is structurally invalid [15]. An ERD represents the application semantics in terms of
maximum and minimum cardinality constraints. The driving force behind cardinality constraint
placement is the semantics of the model.

The values and placement of these constraints must be robust enough to convey the business
rules exactly intended by the modeler while being consistent with respect to the whole model
in order to reflect the real world environment [13,16,28]. The model is not just a set of indi-
vidually constrained relationships pieced together between sets of entities, but a holistic view of
the representation domain. Each set of cardinality constraints on a single relationship must be
consistent with all the remaining constraints in the model and over all possible states [13,21].
More restricted methods of cardinality constraints have been proposed, that allow upper and
lower bounds, or an algorithm to define the constraint [13–16,31,32]. These constraints are
more restrictive than the relaxed method of using �one� and �many� as their boundary. Al-
though the restricted constraints are richer in the semantic meaning of the model, they are
considered subsets of the relaxed cardinality constraints. Hartmann [15] states that the ‘‘set of
restricted cardinality (int-cardinality) constraints is consistent whenever the corresponding re-
laxed set of ordinary cardinality constraints is consistent’’. For the purpose of our own analysis,
we address the relaxed set of cardinality constraints because it includes the more restrictive
subset.

A recursive relationship, that is, the association between role groups within a single entity, is
evaluated as a standalone conceptual object. It is semantically invalid when the concept does not
reflect the business rules as defined by the user community. A recursive relationship is structurally
invalid when the cardinality and participation constraints do not support the existence of data
instances as required by the user and renders the entire diagram as invalid. We will show that
standalone binary relationships are always valid and are only evaluated holistically with respect to
all other relationships in the diagram. Ternary relationships are evaluated for structural validity
both as a standalone conceptual object and holistically as they behave with other relationships.
Our study shows that binary constraining relationships play an important role in the standalone
evaluation of ternary relationships while the embedded binary relationships holistically determine
the structural validity of the entire diagram.

In general, a structurally invalid diagram reflects semantically inconsistent business rules. In
order for a model to be valid all the paths in the model must also be valid. Our analysis will
investigate those types of structural paths in an ERD that are critical to the validity of the entire
diagram. Our study focuses on both the standalone structural validity of recursive and ternary
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relationships and the holistic structural validity of recursive, binary, and ternary relationships
represented in a constraint-compliant ERD.
3. Recursive relationships

Section 3.1 presents our taxonomy of recursive relationships and Section 3.2 presents the
complete decision rules for checking the validity of recursive relationships.

3.1. The taxonomy of recursive relationships

A recursive relationship is defined as an association between instances as they take on roles

within the same entity. Roles play an important part in the examination of structural validity,
especially for recursive relationships [12,32]. A role is the action or function that the instances of
an entity play in a relationship [4]. In a recursive relationship, a set of instances may take on a
single role or multiple roles within the same relationship. Examining these roles allows us to
classify all recursive relationships into symmetric or asymmetric associations while further clas-
sifying asymmetric relationship types into hierarchical, circular, and mirrored associations. The
complete classification of recursive relationships we consider in this paper is shown in Fig. 2 as
follows.

A recursive relationship is symmetric or reflexive when all the instances participating in the
relationship take on a single role and the semantic meaning of the relationship is exactly the same
for all the instances participating in the relationship independent of the direction in which it is
viewed. These relationship types are called bi-directional. For example, if instance I1 is associated
with another instance I2 in the same entity through relationship R and the I2 is associated with I1
using exactly the same semantics of relationship R then the relationship is symmetric. Relation-
ships such as ‘‘partner of’’, ‘‘spouse of’’, and ‘‘sibling of’’ are examples of symmetric relationships.

A recursive relationship is asymmetric or non-reflexive when there is an association between two
different role groups within the same entity and the semantic meaning of the relationship is different
depending on the direction in which the associations between the role groups are viewed. These
relationship types are called unidirectional. For example, the instances of an entity EMPLOYEE
associated through a relationship called SUPERVISES contain two roles groups. The role groups
are ‘‘supervisor employees’’ and ‘‘supervised employees’’. In one direction the relationship is
viewed as �supervisor employees supervise supervised employees� while in the other direction the
relationship is viewed as �supervised employees are supervised by supervisor employees�.
Unary Relationships

Symmetric (Reflexive) Asymmetric (Non-reflexive)

MirroredCircularHierarchical

Hierarchical-Circular

Fig. 2. A taxonomy of recursive relationships.
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Previous studies [8,30] of what here is described as a symmetric or reflexive relationship im-
plicitly suggested that the only other relationship type to be investigated would be an asymmet-
rical relationship. In this study we further classify the concept of an asymmetric relationship type
into three non-reflexive recursive relationship types: hierarchical, circular, and mirrored rela-
tionships.

A recursive relationship is hierarchical when a group of instances within the same entity are
ranked in grades, orders, or classes, one above another. It implies a beginning (or top) and an end
(or bottom) to the ranking scheme of instances. An example of a hierarchical recursive relationship
is the entity EMPLOYEE and the relationship SUPERVISES. In this relationship some employees
supervise other employees. There is usually an employee at the top who is not supervised by any
other employee and employees at the bottom who do not supervise any employees.

A recursive relationship is circular when an asymmetrical recursive relationship has at least one
instance that does not comply with the ranking hierarchy. The relationship is unidirectional in
that it can be viewed from two directions with different semantic meaning. An example of this
occurrence would be an entity representing a continuous-supporting help desk environment.
Envision the enforcement of a business rule where the help desk phone system rotors to the next
person available depending on the position of their assigned desk location. For example, consider
N individuals supporting the phones. As a call is received, the phone system assigns the re-
sponsibility of the call to the next available person in numeric order. If person N is unavailable,
the phone system assigns the call to person 1 or the next available person after person 1. Thus
person 1 is backed up by person 2, person 2 is backed up by person 3, and so on, while person N is
backed up by person 1. The relationship in this example is completely circular because no hier-
archy was established between help desk personnel. We can also develop a hybrid by introducing
a hierarchy to the help desk instances. If the business rules were changed to allow only senior
personnel to backup many other junior help desk individuals, then we would have a hierarchical–

circular relationship. This type of relationship is common among decision-makers where a
management employee of a lower rank assumes the responsibilities of a more senior manager
during their absence.

Another question that arises in the modeling of recursive relationships is whether an instance
can be associated with itself. This event is impossible in relationships above degree one but could
happen in special cases of a recursive relationship and we call this special event a mirrored rela-
tionship. A mirrored relationship exists when the semantics of a relationship allow an instance of
an entity to associate with itself through the relationship. For example certain individual con-
tributors in an organization could be self-managed while other individuals report up the man-
agement chain. Two relationships would be required to model the supervisory concept. Fig. 3
shows the diagram that addresses this issue.
SELF MANAGES
EMPLOYEE

M

1

1

1

MANAGES

Fig. 3. An entity with two asymmetrical recursive relationships addressing self-management issues.



Table 1

Valid recursive relationship types as they relate to the cardinality constraints

Type of relationship Direction of

relationship

Participation

constraints

Cardinality

constraints

Example

Relationship Role(s)

Symmetrical

(reflexive)

Bi-directional Optional–optional 1–1 Spouse of Person

Mandatory–manda-

tory

M–N

Asymmetrical

(non-reflexive)

Hierarchial Uni-direc-

tional

Optional–optional 1–M Supervises Manager–

employee1–1 Is supervised

by

Optional–optional M–N
Optional–mandatory Supervises Manager

Mandatory–manda-

tory

Is supervised

by

Employee

Circular Uni-direc-

tional

Optional–optional 1–1 Backs up Help desk

Mandatory–manda-

tory

Is backed up

by

Hierarchial

circular

Uni-direc-

tional

Optional–optional 1–M Backs up Decision-

makerOptional–mandatory Is backed up

by

Optional–optional M–N Supervises Manager–

employeeOptional–mandatory

Mandatory–manda-

tory

Is supervised

by

Mirrored Uni-direc-

tional

Optional–optional 1–1 Self-manages CEO

Manages self
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Table 1 summarizes each recursive relationship by its directional properties, the combination of
minimum and maximum cardinality constraints, and examples. In our diagrams throughout this
paper, we use �one (1) and many (M)� notation for maximum cardinality, and a single line to
indicate optional participation and a double line to show mandatory participation [10,12,26]. The
words ‘‘mandatory’’ and ‘‘optional’’ are used in our tables to indicate mandatory (or total) and
optional (or partial) minimum cardinality, respectively. Also, the notation jEj represents the
number of instances in entity E.

3.2. Decision rules for validity checking of recursive relationships

In this section, we analyze recursive relationships from the point of view of cardinality and
participation constraints. Table 1 pairs each valid set of constraints with the different recursive
relationship types. For example, symmetrical relationships are supported by �one-to-one� or
�many-to-many� cardinality constraints coupled with either �optional–optional� or �mandatory–
mandatory� participation constraints. Only these constraint combinations are valid for a sym-
metrical relationship. These constraints, along with others, also are valid in hierarchical and
hierarchical–circular relationships, as shown in the table. We review all combinations of con-
straints and identify the valid recursive relationship types discussed in Section 3.1, and shown in
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TAXED
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WITH
PERSON

1
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MARRIED
TO

Fig. 4. Valid recursive relationships.
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Table 1, through examples and discussion. Those minimum and maximum cardinality constraints
that yield invalid structures are demonstrated through formal proofs.

3.2.1. One-to-one recursive relationships

There are three cases that require investigation in one-to-one recursive relationships. They are
�mandatory–mandatory�, �optional–optional�, and �optional–mandatory�. The �mandatory–
optional� case is a reverse image of the �optional–mandatory� case and does not require further
analysis.

3.2.1.1. 1:1 Mandatory–mandatory. This type of relationship is valid for a symmetrical relation-
ship. In a �mandatory–mandatory� relationship each instance of the role group must participate
fully in the relationship. When the relationship is 1:1, each instance must be paired with one and
only one other instance. An example of this symmetrical pairing of instances is shown in Fig. 4
representing of a group of married persons with the relationship MARRIED_TO. Every person in
the group is married to one and only one other person in the group.

3.2.1.2. 1:1 Optional–optional. In an �optional–optional� relationship each instance of the role
groups can optionally participate in the relationship. This case makes no restrictions on the
number of roles that is contained in the entity, so both symmetrical and asymmetrical relation-
ships are supported. In a �one-to-one� symmetrical relationship, instances of the role group are
paired with one and only one other instance in the same role group. If the mandatory constraint is
removed from the relationship then additional non-participating instances can be included in the
entity without affecting the validity. In Fig. 4, married individual, have the option of being taxed
either jointly or separately. This is an example of a symmetric relationship where the entity is
PERSON and the relationship is TAXED_JOINTLY_WITH can take on a minimum cardinality
constraint of �mandatory–mandatory� or �optional–optional� when the maximum cardinality is
�one-to-one�. For the �mandatory–mandatory� case all of the instances in PERSON must file their
taxes jointly with their spouse while in the �optional–optional� case, shown in Fig. 4, at least one
pair of married persons may decide to file their taxes separately [28].

3.2.1.3. 1:1 Mandatory–optional or optional–mandatory. In a �mandatory–optional� relationship
each instance of one role group must participate in the relationship while the instances of the
other role group can optionally participate in the relationship. This implies the existence of two
different role groups in the entity and therefore the relationship must be asymmetric. Symmetric
relationships of any type cannot support �mandatory–optional� relationships because an instance
participating in a symmetric relationship is mapped to another instance in the same role group. By
the definition of a symmetrical relationship the instance being �mapped to� must also have the
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reflexive property of being able to map back to its paired instance. This would be impossible if the
participation is optional. Asymmetrical relationships also have a similar instance-mapping
problem, as we will demonstrate.

Theorem 1. A 1:1 recursive relationship structure with a minimum cardinality constraint of ‘man-
datory–optional’ is an invalid structure.

Proof. Suppose role group 1 (rg1) contains Ij instances (where j ¼ 1; 2; 3; . . . ; n) and represents all
the instances in entity E. That is,
jrg1j ¼ jEj ¼ n ð1Þ

Because of the mandatory participation, each instance in rg1 is mapped totally to role group 2
(rg2) and jrg2j is at least equal to n. Therefore,
jrg2jP n ð2Þ

If the instances of rg2 are only partially mapped to the instances of rg1 then the instances in rg2
may contain at least one additional instance that is not mapped to instances of rg1. Therefore, in
the strictest form
jrg2j > n ð3Þ

rg2 also represents all the instances in entity E, therefore from (3) we can derive
jEj > n ð4Þ

Eqs. (1) and (4) are inconsistent because jEj cannot be equal to n and greater than n. Therefore the
structure is invalid. �

The proof of Theorem 1 demonstrates that a 1:1 recursive relationship with a minimum
cardinality constraint of �mandatory–optional� or �optional–mandatory� is invalid for both sym-
metrical and asymmetrical relationships.

Rule 1. Only 1:1 recursive relationships with mandatory–mandatory or optional–optional minimum
cardinality constraints are structurally valid.

Corollary 1. All 1:1 recursive relationships with mandatory–optional or optional–mandatory mini-
mum cardinality constraints are structurally invalid.

3.2.2. One-to-many recursive relationships
There are four cases requiring investigation in one-to-many recursive relationships. The min-

imum cardinality constraints are mandatory–mandatory, mandatory–optional, optional–man-
datory, and optional–optional. �One-to-many� recursive relationships are always asymmetrical
relationships because the non-reflexive relationship requires two role groups.

3.2.2.1. One-to-many mandatory–mandatory. In a �one-to-many� recursive relationship the �man-
datory–mandatory� case is invalid as stated in the following rule and demonstrated in the fol-
lowing proof.
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Theorem 2. A ‘one-to-many’ recursive relationship where both minimum cardinality constraints are
mandatory is an invalid structure.

Proof. Given that role groups 1 and 2 are both contained in entity E, they participate fully in the
relationship R. Because of the 1 : M constraint placed on R, the relationship R must support the
case of rg1 containing fewer instances than rg2, therefore, in the strictest form
jrg1j < jrg2j ð1Þ

Because of the mandatory constraint on R the instances of rg1 represent all the instances in E,
therefore,
jrg1j ¼ jEj ð2Þ

Also because of the mandatory constraint on R the instances of rg2 represent all the instances in E,
therefore,
jrg2j ¼ jEj ð3Þ

If jrg1j ¼ jEj and jrg2j ¼ jEj

Then jrg1j ¼ jrg2j ð4Þ

Eqs. (1) and (4) are inconsistent, therefore the structural representation is invalid. �

3.2.2.2. One-to-many mandatory–optional. Also in the �one-to-many� recursive relationship, the
�mandatory–optional� case is invalid as stated in the following rule and demonstrated in the
following proof.

Theorem 3. Any ‘one-to-many’ recursive relationship where the minimum cardinality constraint is
mandatory on the ‘one’ side and optional on the ‘many’ side is an invalid structure.

Proof. Consider role groups 1 and 2 that are contained in entity E and that participate in a 1 : M
relationship R. If rg1 on the �one� side of a �one-to-many� relationship is mapped with optional
participation to rg2 on the �many� side, then the relationship R must support the case of rg1
containing fewer instances then rg2. Therefore, in the strictest form
jrg1j < jrg2j ð1Þ

Because of the mandatory cardinality constraint on the role group 1 the number of instances in
rg1 must equal the number of instances in entity E. Therefore,
jrg1j ¼ jEj ð2Þ

Combining Eqs. (1) and (2) implies that jEj < jrg2j, but this is inconsistent because the number of
instances in a role group can not exceed the total number of instances in the entity containing that
role group. �

3.2.2.3. One-to-many optional–mandatory. A hierarchical–circular recursive relationship type
supports the occurrence of the �optional–mandatory� case in a �one-to-many� recursive relation-
ship. An example would be where there are two roles being played by the instances of the entity.
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Fig. 5. An example of a one-to-many optional–mandatory recursive relationship.
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First, every instance participates as an employee and employees are expected to be able to make
decisions about the area of their expertise. Some employees have more than one area of expertise
and are required to backup other employees during their absence. The relationship is hierarchical
because all employees participate in the relationships of being backed-up at the bottom of hier-
archy but only some employees at the top of the hierarchy backup all other employees. The re-
lationship is circular because someone in the tree structure circles back to backup the instance at
the top. Fig. 5 is an example of this type of relationship. This relationship is similar to the help
desk example but allowing an instance to backup more than one other instance.

3.2.2.4. One-to-many optional–optional. Howe [17, p. 137] implies that ‘‘the most senior employee
is regarded as self-supervised’’ and allows the �many� side to be mandatory. Using this method
only implies that an employee can be self-managed and may lead to a different interpretation. We
feel the concept of role uniqueness should be explicitly stated in the diagram and the more ap-
propriate way to model the example would be with two relationships, both being �optional–
optional�. An example of a recursive relationship specifically addressing the self-management issue
is shown in Fig. 6.

Fig. 6 demonstrates the validity of the �optional–optional� case of a 1 : M relationship. It is
optional for the manager role group because only some instances are managers while others are
not. It is optional for the employee role group because as previously stated at least one manager at
the higher level is an employee that is not managed by other instances in the entity. From Theo-
rems 2 and 3, proofs, and the accompanying discussion the following rules and corollaries can be
stated about 1 : M relationships.

Rule 2. For 1 : M or M : 1 recursive relationships optional–optional minimum cardinality are
structurally valid.

Rule 3. For 1 : M recursive relationships of the hierarchical–circular type, optional–mandatory
minimum cardinality are structurally valid.

Corollary 2. All 1 : M or M : 1 recursive relationships with mandatory–mandatory minimum card-
inality constraints are structurally invalid.
SELF
MANAGES

MANAGES
EMPLOYEE

M

1

1

1

Fig. 6. An entity with two asymmetrical recursive relationships addressing the self-management issue.
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Corollary 3. All 1 : M orM : 1 recursive relationships with mandatory participation constraint on the
‘one’ side and an optional participation constraint on the ‘many’ constraints are structurally invalid.

3.2.3. Many-to-many recursive relationships
There are three cases requiring investigation in many-to-many recursive relationships. The

minimum cardinality constraints are mandatory–mandatory, mandatory–optional, and optional–
optional.

3.2.3.1. Many-to-many mandatory–mandatory. A �mandatory–mandatory� many-to-many rela-
tionship is valid for a symmetrical relationship while as stated before the asymmetrical recursive
relationship cannot be totally mandatory. In a �mandatory–mandatory� relationship each instance
of a role group must participate fully in the relationship. When the relationship is a �many-
to-many� relationship then each instance must be paired with one or more instances in the role
group. Because they are symmetric, each pairing is reflexive, meeting the requirement of a
�mandatory–mandatory� relationship. An easy-to-understand valid example would be an entity of
PERSON composed of groups of brothers and sisters with the SIBLING_OF as the relationship.
We could extend this concept to many business examples, such as groups of employees teaming
with each other to work on projects. Employees would work only on one project with many
employees represented through the recursive relationship TEAMED_WITH and the binary
relationship WORKS_ON connected to the entity PROJECT.

3.2.3.2. Many-to-many mandatory–optional. In the example of a hierarchical tree for a �many-
to-one� relationship using the entity EMPLOYEE with different levels of management, we showed
that the minimum cardinality constraint is �optional� on both sides of the relationship. This oc-
curred because some employees were at the bottom of the management chain and did not manage
anyone, and one employee, the highest manager, was at the top of the chain not managed by
anyone. If we change this example to a company that is completely employee-owned and some of
these employees form the board of directors that manage the senior manager, then this is an
example of a �many-to-many�, mandatory–optional recursive relationship. In this modified ex-
ample, some employees (but not all) take on the role of manager satisfying the optional side of the
relationship. The mandatory side of the relationship is satisfied because all employees are man-
aged even the most senior manager and the owner-employees. This is an example of a �many-
to-many� relationship because the senior manager is managed by more than one owner–employee
and manages more than one employee in the hierarchy. This type of relationship with these
constraints is valid.

3.2.3.3. Many-to-many optional–optional. Our earlier example of an entity PERSON composed of
groups of only brothers and sisters with the SIBLING_OF as the relationship is a valid �man-
datory–mandatory� �many-to-many� recursive relationship and can serve as a model for the totally
optional case. If we add individuals to the entity PERSON that have no brothers or sisters then
these individuals can not participate in the relationship SIBLING_OF. Of more importance is
that they do not participate on both sides of the relationship because they have no brothers or
sisters, and no other instance has them as brother or sister. The relationship is optional on both
sides. This is an example of a valid symmetric relationship.
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Rule 4. All recursive relationships with many-to-many maximum cardinality are structurally valid
regardless of minimum cardinality constraints.

Rule 5. All recursive relationships with optional–optional minimum cardinality are structurally valid.
3.3. Analysis of Fig. 1a

From Section 3.2, we have developed five decision rules for determining the validity of a re-
cursive relationship and three corollaries that quickly identify invalid recursive relationships.
Appendix A summarizes each validity rule and corollary for recursive relationships with an ex-
ample. The relationship types that are addressed by each rule are also included.

In Fig. 1a of this paper the ERD contained three recursive relationships: PARTNERPARTNER_OFOF,
MANAGEMANAGE, and SUBSTITUTESUBSTITUTE. PARTNERPARTNER_OFOF is invalid because it violates Corollary 1. It was shown
in this paper by formal proof presented for Theorem 1 that a �one-to-one� recursive relationship
with a �mandatory–optional� participation constraint is invalid. SUBSTITUTESUBSTITUTE is invalid because it
violates Corollary 2. The proof of Theorem 2 states that a �one-to-many� recursive relationship
with a �mandatory–mandatory� participation constraint is invalid. MANAGEMANAGE is invalid because it
violates Corollary 3. The proof of Theorem 3 states that a �one-to-many� recursive relationship
with a �mandatory–optional� participation constraint is invalid. ERD containing these types of
recursive relationships are invalid.
4. Binary relationships

A binary relationship is an association between the role group of one entity with the role group
of another entity. It is a relationship of degree two and involves only two entities associated by
one relationship [15]. With respect to the relative number of instances in the two entities allowed
by a relationship, certain simple binary structures can support only one of three possible solu-
tions: jE1j ¼ jE2j, jE1j < jE2j, or jE1j > jE2j while others can support all three. The key to deter-
mining the possible relative values of the number of instances in each of the two entities is the
maximum and minimum cardinality constraints placed on the relationship [15,22]. For example,
in a 1:1 mandatory–mandatory binary relationship, the number of instances in each entity par-
ticipating in the relationship must always be equal to each other by the definition of the cardi-
nality constraints on the relationship [4,31]. Changing the cardinality constraints can relax the
restrictions allowing the inequalities to vary in either direction. For example, in a 1:1 optional–
optional binary relationship, the relative number of instance values between E1 and E2 can be
jE1j ¼ jE2j, jE1j < jE2j, or jE1j > jE2j depending on how many instances in each entity do not
participate in the relationship [20]. This type of relationship, when occurring in a cyclic path, is
self-adjusting with respect to the relative values of the instances in each entity in a path allowing
the relative values to vary to accommodate other restrictions placed on the whole path. This
accommodation is similar to what occurs to entities that are restricted. In a �many-to-one�
mandatory–mandatory relationship the entity on the �One� side accommodates the relationship by
having less instances than the entity on the �many� side.



Table 2

Structural restrictions of a binary relationship

Case Maximum

cardinality

Minimum cardinality Restrictions on the number of

instances between entities

B1 1:1 Mandatory–mandatory jE1j ¼ jE2j
B2 1:1 Mandatory–optional jE1j < jE2j
B3 1:1 Optional–mandatory jE1j > jE2j
B4 1:1 Optional–optional Self-adjusting

B5 M :1 Mandatory–mandatory jE1j > jE2j
B6 M :1 Mandatory–optional Non-restrictive

B7 M :1 Optional–mandatory jE1j > jE2j
B8 M :1 Optional–optional Self-adjusting

B9 1:M Mandatory–mandatory jE1j < jE2j
B10 1:M Mandatory–optional jE1j < jE2j
B11 1:M Optional–mandatory Self-adjusting

B12 1:M Optional–optional Self-adjusting

B13 M : N Mandatory–mandatory Self-adjusting

B14 M : N Mandatory–optional Self-adjusting

B15 M : N Optional–mandatory Self-adjusting

B16 M : N Optional–optional Self-adjusting
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In considering both cardinality constraints there are 16 possible combinations of a simple path
consisting of just two entities and one relationship between them. Table 2 identifies each of the 16
simple paths and the restrictions that apply to these paths. Having a restriction does not make the
path structurally invalid; it only identifies the structural constraints that are imposed on the path.
A path will become structurally invalid only when it cannot support all the structural constraints
imposed on the path simultaneously. Our analysis will consider two types of paths: acyclic and
cyclic.

4.1. Acyclic paths

Acyclic paths are paths that do not recur back on a previous entity. Acyclic paths are open-
ended paths where each entity only has a direct structural effect on an adjacent entity in the path.
An entity may have a transitive relationship with a non-adjacent entity in an acyclic path, but this
is a semantic issue and not a structural issue. The only structural issue in a transitive relationship
is that connectivity has been established. Fig. 7 shows an example of an acyclic path with the
simple binary relationship of E1 associated with E2 through R12. As shown in Table 2 this path of a
simple binary relationship is valid, independent of the cardinality constraints imposed on the
single relationship. We can create another acyclic path by appending R23 associating E2 with E3 as
shown in Fig. 8. Even though the two relationships share the common entity E2 and there may be
E1 R12 E2

Fig. 7. An example of an acyclic path with two entities.



R23 E3E1 R12 E2

Fig. 8. An example of an acyclic path with three entities.
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a transitive semantic relationship between them, they are structurally mutually exclusive of each
other.

In an acyclic path the maximum and minimum cardinality constraints of two relationships
sharing the same entity are independent of each other. Either relationship can take on any of the
16 possible cardinality combinations of Table 2 without affecting the structural validity of the
other relationship. Since any single simple binary relationship is always structurally valid and each
binary relationship in an acyclic path is structurally independent of any other binary relationship,
an acyclic path containing binary relationships is always structurally valid.

Rule 5. An acyclic path containing all binary relationships is always structurally valid.

4.2. Self-adjusting relationships and cyclic paths

A cyclic path is a closed path having the capability of starting with and ending with the same
entity. This capability extends itself to any entity within the cyclic path. Unlike acyclic paths and
because of the nature of a closed path, it is possible for an entity in a cyclic path to have indirect
structural associations with other non-adjacent entities in the path. Relationships in a cyclic path
can be structurally dependent on each other.

Table 3 shows the four possible conditions that can exist for a binary relationship derived from
Table 2. By examining the possible generalized combinations of these four conditions we can
develop a set of heuristics that determine the structural validity of a cyclic path containing a self-
adjusting relationship.

Theorem 4. Any cyclic path of binary relationships containing a self-adjusting relationship (see
Table 3) will be structurally valid.

Proof. Given a cyclic path with entities E1;E2;E3; . . . ;EðN�1Þ;EN with relationships R12;R23;
R34; . . . ;RðN�1ÞN ;RN1 and RN1 is self-adjusting. The acyclic path between E1;E2;E3; . . . ;EðN�1Þ;EN is
always valid as stated in our Rule 5 and will yield an inequality (or equation) between the number
Table 3

Four possible conditions for binary relationships

Cases Restrictions on the number of instances between entities

B4, B6, B8, B11, B12, B13, B14, B15, B16 Self-adjusting

B1 jE1j ¼ jE2j
B2, B9, B10 jE1j < jE2j
B3, B5, B7 jE1j > jE2j
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of instances in E1 and EN . Since the binary relationship RN1 is self-adjusting, the simple binary
relationship between EN and E1 will accommodate the restrictions placed on EN and E1 by the
acyclic path between E1;E2;E3; . . . ;EðN�1Þ;EN . �

From Table 2 there are three structure types that are self-adjusting. They are �optional–
optional�, {many-to-one when �optional� on the �one� side}, and �many-to-many�. The following
three rules can be developed from the proof of Theorem 4.

Rule 6. A cyclic path that contains all binary relationships, and one or more ‘optional–optional’
relationships is always structurally valid.

Rule 7. A cyclic path that contains all binary relationships, and one or more ‘many-to-one’ rela-
tionships with ‘optional’ participation on the ‘one’ side is always structurally valid.

Rule 8. A cyclic path that contains all binary relationships and one or more ‘many-to-many’ rela-
tionships is always structurally valid.
4.3. Opposing relationships

In the absence of a self-adjusting relationship in a cyclic path, each relationship in the path
must take on one and only one of the equality conditions, jE1j ¼ jE2j, jE1j < jE2j, or jE1j > jE2j.
The equality condition jE1j ¼ jE2j has a neutral effect on the path and will be discussed in the next
section. In this section, we look at the conditions jE1j < jE2j and jE1j > jE2j, and their behavior in
a cyclic path. Fig. 9 demonstrates the concept of opposing relationships. In Fig. 9 the entity
EMPLOYEE is associated with the entity DEPARTMENT in two ways. The diagram is struc-
turally valid because the two relationships comply simultaneously with the restrictions in Table 2.
From Table 2 (Case B5) RMEMBER OF states that jEEMPLOYEEj > jEDEPARTMENTj and from (Case B3)
RMANAGES also states that jEEMPLOYEEj > jEDEPARTMENTj. Since they both reflect the same inequality
with respect to EMPLOYEE and DEPARTMENT, and there are no other imposed constraints
on the diagram then the cyclic path is structurally valid.

With respect to cyclic path {EMPLOYEE–DEPARTMENT–EMPLOYEE} the relationships
are opposing as one moves through the path. They oppose each other in that reading from left to
right EMPLOYEE is greater than DEPARTMENT and DEPARTMENT is less than EM-
PLOYEE.
DEPARTMENTEMPLOYEE

MEMBER_OF

MANAGES1

1M

1

Fig. 9. An example of two entities in a cyclic path.
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Fig. 10. An example of valid and invalid structures in a cyclic path.
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Theorem 5. In the absence of a self-adjusting or equivalent relationship (jE1j ¼ jE2j) in a cyclic path
there must exist at least one set of opposing relationships for the path to be valid.

Proof. Consider Fig. 10a. It represents a valid structure because it supports a valid set of instances
for each entity. From Table 2 we can see that R12 corresponds to case B7 and R23 corresponds to
case B5 yielding the following inequalities:
R12 from B7 jE1j > jE2j ð1Þ

R23 from B5 jE2j > jE3j ð2Þ

Concluding that jE1j > jE3j ð3Þ
Also from Table 2, R31 corresponds to case B9
R31 from B9 jE3j < jE1j ð4Þ
Since inequality (3) is opposing inequality (4) in this path, then the diagram is a valid structure
and can support a valid set of semantics that is represented by the combination of these rela-
tionships. �

Another view of the proof is that jE3j < jE1j from (4) implies jE1j > jE3j (4a). Since (4a) is
equivalent to (3), the E1–E2–E3 sub-path yields the same inequality association as the sub-path E1–
E3. Therefore, the structure can support a valid set of instances.

Proof. Consider Fig. 10b. It is an invalid structure because it cannot support at least one valid set
of instances for each entity. From Table 2 we can see that both R45 and R56 correspond to case B5
yielding the following inequalities:
R45 from B5 jE4j > jE5j ð5Þ

R56 from B5 jE5j > jE6j ð6Þ

concluding that jE4j > jE6j ð7Þ
Also from Table 2 we can see that R64 also corresponds to case B9
R64 from B5 jE6j > jE4j: � ð8Þ
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This cyclic path contains no opposing relationships. They are all flowing in one direction.
Inequality jE6j > jE4j (8) also implies the inequality jE4j < jE6j (8a). Since inequality (7) is not
equivalent to (and in contradiction of) inequality (8a) while representing the same entities (E4

and E6), this structure cannot support any set of data instances and, therefore, is an invalid
structure. Figs. 9 and 10 demonstrate that a cyclic path without self-adjusting relationships can
be valid if and only if the inequalities are supported holistically throughout the diagram. This
requires the presence of at least one relationship whose inequality solution is opposing the in-
equality solution of another relationship in the cyclic path. A set of opposing relationships con-
sists of at least one binary relationship from this group [{1 : M mandatory–mandatory}, {1 : M
mandatory–optional}, or {1:1 mandatory–optional}] and at least one other binary relation-
ship from [{M : 1 mandatory–mandatory}, {M : 1 optional–mandatory}, or {1:1 optional–man-
datory}].
Rule 9. Cyclic paths containing at least one set of opposing relationships are always valid.
Corollary 4. Cyclic paths containing no opposing relationships and no self-adjusting relationships
are structurally invalid and called a Circular Relationship.
4.4. Neutral effects

The presence of a 1:1 mandatory–mandatory (Case B1) relationship in a cyclic path with more
than two relationships has a neutral effect with respect to the other relationships and the validity
of the path. The neutrality of a B1 type relationship can be shown by taking any valid cyclic path
P with entities E1;E2;E3; . . . ;EðN�1Þ;EN with relationships R12;R23;R34; . . . ;RðN�1ÞN ;RN1 where
N > 2. By inserting an entity ENþ1 and a B1 type relationship RNþ1 after RN to cyclic path P will
have no effect on the validity of the path because jENþ1j ¼ jEN j and the structural relationship
between E1 and EN is equivalent to the structural relationship between E1 and ENþ1 thus main-
taining the consistency with all other entities in the path. Similarly it can be shown that adding a
B1 type relationship to an invalid path can continue to maintain the path�s invalidity; therefore it
is neutral in its effect.
Corollary 5. The presence of a {‘One-to-one’ mandatory–mandatory} relationship has no effect on
the structural validity (or invalidity) of a cyclic path containing other relationship types. (This
corollary applies to all the above rules.)

A cyclic path containing all B1 type relationships is always structurally valid because each
entity has the same number of instances as all the others in the path supporting the maximum and
minimum cardinality constraints placed on the relationships.
Rule 10. A cyclic path containing all ‘one-to-one’ mandatory–mandatory binary relationships is
always structurally valid.
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4.5. Analysis of Fig. 1b

In Section 4 we developed six decision rules for determining the validity of a binary relationship
and two corollaries that quickly identify invalid binary relationships. Appendix B summarizes
each validity rule and corollary for binary relationships with an example.

In Fig. 1b of this paper the ERD contains three cyclic paths that require evaluation. The cyclic
path PRODUCTPRODUCT–EMPLOYEEEMPLOYEE–PROJECTPROJECT–DEPARTMENTDEPARTMENT–DIVISIONDIVISION–PRODUCTPRODUCT is a valid path be-
cause it contains at least one opposing relationship and meets the evaluation criteria for Rule 10.
From Corollary 5 the one-to-one relationship RESPONSIBLERESPONSIBLE has no effect on the validity of the
path. The path PRODUCTPRODUCT–EMPLOYEEEMPLOYEE–DEPARTMENTDEPARTMENT–DIVISIONDIVISION–PRODUCTPRODUCT is an invalid path
according to Corollary 4 and 5. It does not have any opposing or self-adjusting relationships. The
path EMPLOYEEEMPLOYEE–PROJECTPROJECT–DEPARTMENTDEPARTMENT–EMPLOYEEEMPLOYEE is also an invalid path governed by
Corollary 4. It is a circular relationship.
5. Effects of ternary relationships on validity

In this section, we examine the criteria to evaluate the validity of an ERD containing paths with
binary and ternary relationships. Ternary relationships are associations involving three entities. In
a ternary relationship the association of an instance from each entity participating in the rela-
tionship is represented as a triple [10,22,27].

Membership in the triple implies that instance pairs of two entities are associated with an
instance from the remaining entity [20]. Consider the example of a ternary relationship with
entities X , Y , and Z, each containing one instance X1, Y 1, and Z1, respectively. The triple rep-
resents the association of the instance pair (Y 1;Z1) with X1, (X1;Z1) with Y 1, and (X1; Y 1) with
Z1. Continuing to populate the entities with instances, the number of triples can increase by the
combinations of allowable �instance pairs to instances� in the relationship. The allowable pairing
is only restricted by the maximum and minimum cardinality constraints on the relationship
[12,14].
5.1. Ternary relationships as members of acyclic paths

Like binary relationships, ternary relationships can be part of an acyclic or cyclic path. Only
two entities of the ternary relationship participate in the path. When evaluating the validity of an
acyclic path containing a ternary relationship, only the binary relationship between the two en-
tities in the path is used. The binary relationship between two entities of a ternary relationship is
derived from the ternary relationship and can either be explicit or implicit. Since our previous
Rule 6 states that an acyclic path containing all binary relationships is always valid and since a
derived binary association represents the binary relationship between two entities in a ternary
relationship, an acyclic path containing a ternary relationship is always structurally valid.
Rule 6 (Restated). If a path containing binary and ternary relationships is an acyclic path, then the
path is always structurally valid.
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5.2. Ternary relationships as members of cyclic paths

Song and Jones [18,19,25] have performed comprehensive studies of the simultaneous coexis-
tence of ternary and binary relationships, and the interrelationships created by their joint coex-
istence. They identified three types of binary-ternary coexistence relationships: unconstrained
ternary relationships with derived binary relationships between entities, ternary relationships
further constrained by explicit binary relationships, and unrelated binary relationships between
two entities of a ternary relationship. In their analysis they established rules to determine the
standalone validity of these three relationship types. The purpose of the next three sections is to
investigate and establish rules to determine the overall validity of an ERD containing these three
relationship types.

5.2.1. No explicit binary relationships (constraining or unrelated) between entities
In this section we examine the criteria for evaluating the validity of cyclic path containing a

ternary relationship with no explicit binary relationships between entities. Between any two en-
tities in a ternary relationship, when there is no explicit constraining binary relationship, there is
an implicit binary relationship that describes the association between the instances of only these
two entities. Jones and Song [18] established the implicit binary cardinality (IBC) rule stated as
follows.

In any given ternary relationship, regardless of ternary cardinality, the implicit cardinalities
between any two entities must be considered �many-to-many�, provided that there is no ex-
plicit restrictions on the number of instances that can occur.

The rule implies that the maximum cardinality constraints of a ternary relationship have no
effect on the cardinality of implicit binary relationships provided that there are no explicit re-
strictions on the ternary relationship. The following example demonstrates that the implicit binary
relationship between any of the two entities tends towards a �many-to-many� relationship.

A 1 :1 :M ternary relationship allows one of the entities� instances to participate in the instance
pairings of the other entities more than once. The minimal set of triples to demonstrate a 1 :1 :M
relationship is: X1 :Y 1 :Z1 and X1 :Y 1 :Z2, showing that the instance pair {X1; Y 1} is associated
with more that one instance in entity Z. Adding two additional triples (X2 :Y 1 :Z3 and X1 :Y 2 :Z3)
as shown in Fig. 11 will allow us to draw some inference about maximum cardinality constraints
of the embedded binary relationships. An embedded (or implicit) binary relationship is a rela-
tionship between two entities in a ternary that is not explicitly modeled in the diagram but can be
derived between two entities as they participate in the ternary relationship. The observed binary
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1 1
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Instance Tables
R(xy)

X1:Y1
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R(xz)

X1:Z1
X1:Z2
X2:Z3
X1:Z3

R(yz)

Y1:Z1
Y1:Z2
Y1:Z3
Y2:Z3

Fig. 11. An unconstrained 1 :1 : M ternary relationship showing three embedded binary relationships.



Fig. 12. A 1 :1 :M ternary relationship with minimum cardinality constraints imposed showing there is no effect on the

embedded binary relationships.
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relationships RðxyÞ between entities X and Y in the above set of triples is also �many-to-many�, and
likewise entities X and Z from RðxzÞ, and entities Y and Z from RðyzÞ, as shown in the instance
tables in Fig. 11. This example demonstrates that the maximum cardinality constraints for the
implicit binary relationships embedded in a 1 : 1 : M ternary relationship tends towards M : N .
Jones [18] shows this phenomenon extends to all other combinations of maximum cardinality
constraints for ternary relationships.

The above example in Fig. 11 considered the minimal number of instance triples to satisfy the
maximum cardinality constraints. Adding two instances (Y 9 and Z9) to entities Y and Z does not
have any effect on the maximum cardinality constraints of the embedded binary relationships as
shown in the instance tables in Fig. 12. The conclusion is that the minimum cardinality constraints
have no effect on the IBC rule.

Rule 12. A cyclic path containing a ternary relationship where there are no explicitly restricting
binary relationships on the ternary’s entities is always structurally valid, regardless of maximum or
minimum cardinality constraints on the ternary relationship.

5.2.2. The effects of explicit unrelated binary relationships involved with a ternary relationship
An explicit binary relationship between two entities participating in a ternary relationship can

be unrelated to the ternary relationship. When that binary relationship imposes a concept different
from the concept being presented by the ternary and does not constrain the instances participating
in the ternary relationship, it is considered to be unrelated [28].

For example, if an association exists between the owner of a book, the title of the book, and
store where the book is purchased, then a ternary relationship can be used to model this asso-
ciation. Fig. 13a shows how that relationship would be diagrammed. If we introduce an additional
relationship that is independent of the OWNERSHIP relationship, such as the reader of the book,
then the binary relationship READ between Person and Book in Fig. 13b is an explicit unrelated
relationship. Owning and reading a book are two different concepts. In an unrelated relationship
Book Ownership Store

Person

Book Ownership Store

PersonRead

(b)(a)

Fig. 13. (a) A temporary relationship with no explicit relationships and (b) a temporary relationship with an explicit

unrelated binary relationships.
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the maximum and minimum cardinality of the binary is independent of the ternary. From a
structural validity viewpoint, unrelated binary relationships imposed on two entities in a ternary
relationship, behave in the same manner as a ternary involved in a cyclic path and should be
evaluated in the same manner.

5.2.3. The effects of explicit constraining binary relationships imposed on ternary relationships
There are real world scenarios involving three entities that cannot be modeled by using only a

simple ternary relationship, because the implicit cardinality between any two entities is �many-
to-many�, but can be modeled using the combination of a ternary relationship and a constraining
binary relationship. A constraining binary relationship on the ternary relationship is used to
further define the association between two entities and is considered part of the ternary rela-
tionship. An explicit constraining relationship restricts the instance groupings of the ternary re-
lationship by directly constraining the possible instance pairings allowed between the two entities.
Fig. 14 shows a simple ternary relationship that associates PROJECT, BUDGET, and TEAM.

Fig. 14 shows an M : 1 : 1 relationship where each Project is associated with a Team and
Budget combination. The functional dependencies {Budget, Project}! {Team} and {Team,
Project}! {Budget} are derived from the M : 1 : 1 ternary relationship. The instance table in Fig.
14 shows a possible set of instance triples that conform to the diagram and the requirements. The
instance table reflects the �many-to-many� embedded binary relationships between each pair of
entities in the ternary relationship. Assume a recent change in business policy imposes the fol-
lowing additional constraint on the model. Projects can only be funded from a single budget. At
first, we may try to model this rule by modifying the ternary relationship. If we introduce the
functional dependency {Budget, Team}! {Project}, we violate the condition that �Teams may
work on more than one project�. Relaxing our constraints is certainly not the answer to our
problem either. Modifying the ternary association to create another simple ternary relationship
does not accomplish our objective. The reason is the new requirement�s association between
Project and Budget is only a binary association and does not directly involve the entity Team as
shown by its functional dependency {Project}! {Budget}. This is a constraining binary rela-
tionship that is considered part of the ternary relationship because it is subset of the ternary
relationship. Jones and Song [18] established the explicit binary permission (EBP) rule for eval-
uating potential combinations of explicit constraining binary relationships allowed to be imposed
on a ternary relationship. Their EBP rule states: ‘‘For any given ternary relationship, a binary
relationship cannot be imposed where the binary cardinality is less than the cardinality specified
by the ternary, for any specific entity’’. Table 4 summarizes the allowable and disallowable binary
impositions on the different cardinality constraints of a ternary relationship.
BUDGET WORKS TEAM

PROJECT

1 1
M

M

NM

M
N N

PROJECT
1
2
3
3
4
5
5
6

BUDGET
Research
Research
Research
Marketing
Marketing

Admin
Research
Marketing

TEAM
T1
T1
T2
T3
T3
T1
T2
T3

Instance Table

Fig. 14. A simple ternary relationship with resulting embedded binary relationships and a possible set of instance

triples.



Table 4

Allowed and disallowed constraining binary impositions [18]

1:1:1 ternary relationships

Any cardinality of a binary relationship can be imposed on a 1:1:1 ternary relationship

1 : 1 : M ternary relationships

X Y Z Allowed

M N Yes

M 1 Yes

1 1 Yes

1 M Yes

M N Yes

M 1 No

1 1 No

1 M Yes

M N Yes

M 1 No

1 1 No

1 M Yes

1 : M : N ternary relationships

X Y Z Allowed

M N Yes

M 1 No

1 1 No

1 M Yes

M N Yes

M 1 No

1 1 No

1 M Yes

M N Yes

M 1 No

1 1 No

1 M No

M : N : P ternary relationships

Only binary cardinality of M : N can be imposed on a M : N : P ternary relationship

This imposition is redundant since the ternary relationship implicitly establishes the cardinality constraints

PROJECT
1
2
3
4
5
6

BUDGET
Research
Research
Research
Marketing

Admin
Marketing

TEAM
T1
T1
T2
T3
T1
T3

Instance Table

BUDGET WORKS TEAM

PROJECT

1 1

M
M

NM

M
1 1

FUNDED
M

1

Fig. 15. A ternary relationship with an explicit constraining binary relationship (FUNDED) and the resulting em-

bedded binary relationships with a possible set of instance triples.
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The constraining binary relationship in our example is allowable according to the EBP rule.
Fig. 15 shows the ternary relationship from Fig. 14 with the explicit binary relationship imposed,



192 J. Dullea et al. / Data & Knowledge Engineering 47 (2003) 167–205
the resulting maximum cardinality constraints of the embedded binary relationships, and a
possible instance table to reflect the instance triples of the diagram. Important to our analysis of
structural validity are the changes that occur to the embedded binary relationships due to the
imposition. The embedded relationship between Project and Budget follows the constraining
M : 1 relationship as expected but the additional embedded relationship between Project and
Team also changes to M : 1 because of the imposition. The embedded relationships change be-
cause of the additional binary FD(s) imposed on the ternary relationship and the additional bi-
nary FDs that may be derived from the imposition on the ternary relationships. Jones [18]
analyzed the effects of an imposed constraining binary relationship on the embedded binary re-
lationships in a ternary relationship and their results are presented in Table 5.

Fig. 16 is another example ERD showing a ternary relationship without an imposed con-
straining relationship. This diagram contains a ternary relationship and two cyclic paths, XYZWVX
Table 5

Effects of single binary imposition on a ternary relationship [18]

Ternary relationship X : Y : Z Imposed constraining binary

relationship

Effect on the embedded relationships

1:1:1 X : Y is M : 1 X : Y is M : 1
X : Z is M : 1
Y : Z is M : N

X : Y is 1 : M X : Y is 1 : M
X : Z is M : N
Y : Z is M : 1

X : Y is 1:1 X : Y is 1:1

X : Z is M : 1
Y : Z is M : 1

M : 1 : 1 X : Y is M : 1 X : Y is M : 1
X : Z is M : 1
Y : Z is M : N

X : Z is M : 1 X : Y is M : 1
X : Z is M : 1
Y : Z is M : N

Y : Z is M : 1 X : Y is M : N
X : Z is M : N
Y : Z is M : 1

Y : Z is 1 : M X : Y is M : N
X : Z is M : N
Y : Z is 1 : M

Y : Z is 1:1 X : Y is M : N
X : Z is M : N
Y : Z is 1:1

M : N : 1 X : Z is M : 1 X : Y is M : N
X : Z is M : 1
Y : Z is M : N

Y : Z is M : 1 X : Y is M : N
X : Z is M : N
Y : Z is M : 1



Fig. 16. An example of a valid multi-path ERD containing an unconstrained ternary relationship showing the em-

bedded binary relationships.
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and XZWVX , that require evaluation. Both cyclic paths involve embedded binary relationships.
First, the ternary is evaluated for structural validity. Since in this example there are no con-
straining relationships on the ternary, the ternary relationship is structurally valid. The analysis of
the cyclic paths for structural validity is restricted only to the explicit or implicit binary rela-
tionships in the paths. Both cyclic paths in Fig. 16 contain at least one �many-to-many� and
therefore according to Rule 6 these paths are structurally valid. This diagram is structurally valid
because all the paths and the ternary relationship are structurally valid.

From the concepts presented in this section, we conclude that first the ternary relationship
must be evaluated for its structural validity and the embedded binary relationships between the
entities must be determined. When that step is completed we can identify and evaluate all the
paths for structural validity. In evaluating the ternary relationship we use the following rule and
corollary.

Rule 13. If the maximum cardinality constraints for a constraining binary relationship imposed on a
ternary relationship is greater than or equal to the maximum cardinality constraints of the ternary
relationship between the two involved entities then the constrained ternary relationship is valid.

Corollary 6. If the maximum cardinality constraints for a constraining binary relationship imposed
on a ternary relationship is less than the maximum cardinality constraints of the ternary relationship
between the two involved entities, then the constrained ternary relationship is invalid.

5.2.4. Analysis of Fig. 1c

This is an appropriate point to analyze Fig. 1c. This figure is similar to Fig. 16 except that the
ternary relationship is constrained by the binary relationship FUNDEDFUNDED. The labels VV to ZZ are
used in place of the entity names for readability. We will use the notation RðxyzÞjRðxyÞ to indicate
that RðxyÞ is a constraining relationship on RðxyzÞ. This diagram contains the constrained ter-
nary relationship RðxyzÞjRðxyÞ and two cyclic paths, XYZWVX and XZWVX . The first step again is
to analyze the ternary relationship with the constraining relationships imposed on it. RðxyÞ is a
M : 1 constraining relationship and from Table 4 or the EBP rule we conclude it is a valid im-
position on a M : 1 : 1 ternary relationship. Therefore the ternary is structurally valid. In our
analysis of the cyclic paths we only use the binary relationships. In Fig. 1c both cyclic paths
XYZWVX and XZWVX are invalid according to our rules. They are called circular relationships as
described in Section 4 and according to Corollary 4 these cyclic paths are invalid. This ERD in
Fig. 1c is invalid.
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5.2.5. The effects of multiple constraining relationships on structural validity

In the previous section, we showed that the imposition of a constraining relationship affects the
embedded binary relationships between the entities of the ternary relationship and consequently
can affect the validity of the ERD. If necessary an additional constraining relationship can be
imposed on an already constrained ternary relationship to further define the modeler�s concept of
the real world environment. Care must be taken when imposing an additional constraining re-
lationship on an already constrained relationship. The first constraining relationship imposes
additional derived functional dependencies on the functional dependencies already imposed by the
ternary relationship. A second constraining relationship cannot redefine already defined func-
tional dependencies, although a valid imposition may indirectly further define the derived em-
bedded cardinality between two entities. The only entities in a ternary relationship available to be
constrained are those that have an embedded �many-to-many� cardinality constraint between
them. These entities do not have binary type functional dependencies between them and are
therefore unconstrained with respect to a binary relationship.

For example, in a 1:1:1 ternary relationship RðxyzÞ, if we choose any two entities, such as X and
Y , and impose a 1:1 constraining relationship between X and Y , then we introduce two additional
functional dependencies on the ternary relationship.

Two additional FDs are derived: Y ! Z and X ! Z. From this information each embedded
binary relationship in the ternary relationship is defined by a functional dependency, therefore no
additional constraining relationships can be imposed.

In another example of a 1:1:1 ternary relationship RðxyzÞ we choose any two entities, such as X
and Y , and impose an M : 1 constraining relationship between X and Y . This would impose one
binary functional dependency on the ternary and one additional FD is derived: X ! Z.

From this information only two embedded binary relationships in the ternary relationship are
constrained by binary functional dependencies. The embedded binary association between entities
Y and Z is still �many-to-many� allowing an additional constraining relationship to be imposed if
necessary. We have three options to analyze. The relationship between Y and Z can be M : 1,
1 : M , or 1:1. The only other option of imposingM : N would be redundant. The following are the
functional dependencies for the three cases.

Original FDs on RðxyzÞ Imposed FDs from RðxyÞ
ðX ; Y Þ ! Z Y ! X
ðX ;ZÞ ! Y X ! Y
ðY ;ZÞ ! X

Original FDs on RðxyzÞ Imposed FDs from RðxyÞ Derived FD

ðX ; Y Þ ! Z X ! Y X ! Z
ðX ;ZÞ ! Y
ðY ;ZÞ ! X
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In the �many-to-one� case for RðyzÞ the derived FD {Y ! X} in combination with the FD
{X ! Y } from the explicit previously imposed relationship redefines the relationship RðxyÞ and
therefore is invalid. The same argument applies to the �one-to-one� case. The only valid imposition
is the �one-to-many� case because this imposition does not redefine any explicitly defined rela-
tionship. It does further define the embedded relationship RðxzÞ to be �one-to-one�. Table 6 from
[18] shows the results of a second constraining binary imposition on ternary relationships for all
possible relevant cases.

Rule 14. If a second constraining binary relationship is required to further define an already con-
strained ternary relationship, then it can only be imposed between two entities where the maximum
cardinality constraint is ‘many-to-many’ and the effect of the second constraining relationship cannot
redefine any previously defined explicit relationships or relax any previously derived binary rela-
tionships for the imposition to be structurally valid.

RðxyzÞ constrained by
RðxyÞ

Imposed RðyzÞ FDs from RðyzÞ Derived FD

ðX ; Y Þ ! Z Many-to-one Y ! Z Y ! X
ðX ; ZÞ ! Y
ðY ; ZÞ ! X One-to-many Z ! Y Z ! X
X ! Y
X ! Z (derived) One-to-one Y ! Z Y ! X

Z ! Y Z ! X
5.2.6. The effects of minimum cardinality on implicit and explicit binary relationships
5.2.6.1. Implicit binary relationships. The previous section did not mention minimum cardinality
constraints. The purpose of this section is to explore the effects of minimum cardinality on implicit
relationships and explicit constraining relationships. Imposing an optional participation con-
straint on one (or more) of the entities in a ternary relationship restricts at least one instance of the
entity from participating in the ternary relationship. We will continue to use instance tables as an
analysis methodology and generalize from the results. In Fig. 17, we use four triples to reveal the
�many-to-many� embedded binary relationships in the ternary. We use instance Z9 in entity Z to
represent the set of instances that do not participate in the ternary relationship. We extract the
embedded binary relationships RðxzÞ, RðyzÞ, and RðxyÞ from the instance triples of the ternary
relationship RðxyzÞ. Since Z9 did not participate in RðxyzÞ it follows that it does not participate in
RðxzÞ and RðyzÞ. We conclude that when evaluating structural validity, the minimum cardinality
constraints of the embedded binary relationships must follow the minimum cardinality constraints
on the entities of the ternary relationship regardless of the ternary�s maximum cardinality. The
driving reason is that the instance pairs in the embedded relationships must be a subset of the
instance triples of the ternary relationship.



Table 6

The effects of multiple binary imposition on ternary relationships [18]

Ternary relation-

ship X : Y : Z
Imposed constraining

binary relationship

Embedded binary

relationship

Additional imposed

constraining binary

relationship

Resultant embedded

binary relationship

1:1:1 X : Y is M : 1 X : Y is M : 1 Y : Z is 1 : M X : Y is M : 1
X : Z is M : 1 X : Z is 1:1

Y : Z is M : N Y : Z is 1 : M
X : Y is M : 1 X : Y is M : 1 X : Z is 1 : M X : Y is M : 1

X : Z is M : 1 X : Z is 1:1

Y : Z is M : N Y : Z is 1 : M

M : 1:1 X : Y or Z : X is M : 1 X : Y is M : 1 Y : Z is 1:1 X : Y is M : 1
X : Z is M : 1 X : Z is M : 1
Y : Z is M : N Y : Z is 1:1

X : Y or Z : X is M : 1 X : Y is M : 1 Y : Z is M : 1 X : Y is M : 1
X : Z is M : 1 X : Z is M : 1
Y : Z is M : N Y : Z is M : 1

X : Y or Z : X is M : 1 X : Y is M : 1 Y : Z is 1 : M X : Y is M : 1
X : Z is M : 1 X : Z is M : 1
Y : Z is M : N Y : Z is 1 : M

Y : Z is 1:1 X : Y is M : N X : Y or X : Z is M : 1 X : Y is M : 1
X : Z is M : N X : Z is M : 1
Y : Z is 1:1 Y : Z is 1:1

Y : Z is M : 1 X : Y is M : N X : Y or X : Z is M : 1 X : Y is M : 1
X : Z is M : N X : Z is M : 1
Y : Z is M : 1 Y : Z is M : 1

Y : Z is 1 : M X : Y is M : N X : Y or X : Z is M : 1 X : Y is M : 1
X : Z is M : N X : Z is M : 1
Y : Z is 1 : M Y : Z is 1 : M

M : N :1 X : Z is M : 1 X : Y is M : N Y : Z is M : 1 X : Y is M : N
X : Z is M : 1 X : Z is M : 1
Y : Z is M : N Y : Z is M : 1

Y : Z is M : 1 X : Y is M : N X : Z is M : 1 X : Y is M : N
X : Z is M : N X : Z is M : 1
Y : Z is M : 1 Y : Z is M : 1

X R(xyz) Y

Z

1 1
1 N

M

N

M

N

M

R(xyz)

X1:Y1:Z1
X1:Y2:Z2
X2:Y1:Z3
X2:Y2:Z1

R(yz)

Y1:Z1
Y2:Z2
Y1:Z3
Y2:Z1

Instance Tables

X Y Z

X1 Y1 Z1
X2 Y2 Z2

Z3
Z9

R(xz)

X1:Z1
X1:Z2
X2:Z3
X2:Z1

R(xy)

X1:Y1
X1:Y2
X2:Y1
X2:Y2

Z9 does not participate in R(xyz)

Fig. 17. A 1:1:1 ternary relationship with optional participation on Z and related instance tables.
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5.2.6.2. Explicit binary relationships. In this section, we examine minimum cardinality constraints
with respect to explicit binary constraining relationships. We use the concept of minimality with
instance tables and functional dependencies to perform our analysis. In our tables let Z9 represent
the set of instances that do not participate in the relationship. We will first examine the imposition



X R(xyz) Y

Z

1 1

1 1

M

1

M

N

1

M

R(yz)
M

R(xyz)|R(yz)

X1:Y1:Z1
X1:Y2:Z2
X2:Y1:Z3

R(xyz)

X1:Y1:Z1
X1:Y2:Z2
X2:Y1:Z3
X2:Y2:Z1

R(yz)

Y1:Z1
Y2:Z2
Y1:Z3

Instance Tables

X Y Z

X1 Y1 Z1
X2 Y2 Z2

Z3
Z9

R(xz)

X1:Z1
X1:Z2
X2:Z3

R(xy)

X1:Y1
X1:Y2
X2:Y1

Z9 does not participate in R(xyz)

Fig. 18. A ternary relationship with optional participation on Z and a constraining relationship RðyzÞ imposed on

RðxyzÞ.
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of a constraining relationship on a ternary relationship where the minimum cardinality of the
binary follows the minimum cardinality of the ternary. Consider Fig. 18 with an imposition of a
�many-to-one� binary constraining relationship between entities Y and Z, and the following pos-
sible scenario. This imposition adds the functional dependency Z ! Y to the relationship re-
moving Y 2 : Z1 from instance table RðyzÞ and X2 : Y 2 : Z1 from RðxyzÞ as shown in Fig. 18. We
also lose X2 : Z1 from RðxzÞ because of the change in the embedded cardinality between Z and X
caused by the constraining relationship (See Table 5). The remaining instance groupings in table
RðxyzÞjRðyzÞ still contain the minimal number of triples (X1 : Y 1 : Z1) to represent the ternary
relationship and RðxyÞ remains a �many-to-many� embedded relationship. In the instance table in
Fig. 18 RðxzÞ and RðyzÞ correctly reflect �many-to-one� relationships as shown in Table 5. Fig. 18
and the accompanying instance tables show the effect the constraining relationship RðyzÞ has on
RðxyzÞ. If we remove Z9 from the instance table and impose mandatory participation on Z from
both the ternary and the constraining binary, we find the results to be the same as in the instance
tables of Fig. 18. We conclude that when the minimum cardinality constraint of the constraining
binary relationship follows the minimum cardinality of the ternary the resulting embedded binary
relationships remain to be subsets of both the original and the constrained ternary relationships.

We further find that from our definition of a constraining relationship the instance pairs of RðyzÞ
are always a subset of the instance triples of RðxyzÞ. If RðyzÞ contains an instance pair that is not a
subset of RðxyzÞ, then the binary relationship is unrelated to the ternary relationship and not a
constraining relationship. Consider the case where the minimum cardinality constraint is �optional�
on one of the entities of the ternary relationship that is being constrained. In Fig. 19 the proposed
constraining relationship RðyzÞ is �mandatory� forcing Z9 to participate in RðyzÞ without partici-
pating in RðxyzÞ. Y 1 : Z9 in RðyzÞ is not a member of RðxyzÞ, therefore, RðyzÞ is not a subset of the
RðxyzÞ, and therefore, RðyzÞ cannot be a constraining relationship. If the intent is for that rela-
tionship to be constraining, then it is semantically and structurally invalid because it is unrelated to
the ternary relationship. Fig. 19 shows this example of an invalid constraining relationship RðyzÞ.
Fig. 19. A 1:1:1 ternary relationship with optional participation on Z (Z9 does not participate) and an invalid con-

straining relationship RðyzÞ with mandatory participation.
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The case where the ternary is fully mandatory and the proposed constraining relationship is
�optional� on one side, presents a similar issue. The driving force in the resulting constrained
relationship is the ternary relationship not the constraining relationship. In this case the ter-
nary relationship is allowing all instances to participate in the relationship. The constraining
binary relationship is in conflict with the ternary relationship in that it restricts at least one in-
stance that is not restricted by the ternary. In this case the constraining relationship is redefining
the ternary relationship not further defining it. We state the following rule and corollary.

Rule 15. The minimum cardinality constraints of a constraining relationship must follow the mini-
mum cardinality constraints of the ternary relationship being constrained for it to be structurally
valid.

Corollary 7. If the minimum cardinality constraints of a constraining relationship do not follow the
minimum cardinality constraints of the ternary relationship, then the constrained ternary relationship
is invalid.
6. Conclusion

In this paper, we have discussed the structural validity of ERD. The structural validity of an
ERD is concerned with whether or not a given ERD contains any constructs that are contra-
dictory to each other. An ERD with at least one inconsistent cardinality constraint is structurally
invalid. In this paper we have developed rules that allow us to check whether a given ERD is
structurally invalid. In defining the properties and validity criteria, while most previous analyses
used only maximum cardinality constraints, we have used both maximum and minimum cardi-
nality constraints. Analyses with minimum constraints, in addition to maximum constraints, re-
sult in more complete criteria for checking structural validity in ERD. We have shown that the use
of maximum constraints alone cannot completely determine the structural validity. The absence
of using the minimum cardinality constraint in determining structural validity does not give full
consideration to the role each instance plays in each relationship and makes the incorrect as-
sumption that all instances always participate in each relationship. We believe that our analysis
has yielded a complete and comprehensive set of decision rules to determine the structural validity
of any ERD containing recursive, binary, and ternary relationships.

For recursive relationships, we have first presented the complete classification of recursive
relationships and then the criteria that contribute to the validity of modeling recursive relation-
ships. We have classified all recursive relationships into symmetric and asymmetric. Asymmetric
recursive relationships are further classified into hierarchical, circular, and mirrored. We have
identified their directional properties and their validity in terms of maximum and minimum
cardinality constraints. Our decision rules used concepts of role uniqueness, path connectivity,
and cardinality constraints. Five rules and three corollaries were established to determine struc-
tural validity of recursive relationships. Appendix A summarizes each rule and corollary with
valid and invalid examples.

For the structural validity of any ERD containing binary relationships, we have used the
notions of path connectivity and cardinality constraints. Both acyclic and cyclic paths were in-
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vestigated and all combinations of minimum and maximum cardinality constraints were analyzed.
The concepts of opposing and self-adjusting relationships were introduced to determine cyclic
path validity. Six rules and two corollaries were established to determine structural validity of
binary relationships. Appendix B states each rule and corollary with examples.

Finally, we have also performed a complete investigation of the structural validity of ternary
relationships. We improved the analysis of structural validity of ternary relationships in two
aspects. First, while previous approaches used only maximum cardinality constraints, we con-
sidered both minimum and maximum constraints. Second, while previous approaches analyzed
only in standalone ternary relationships, our study considered the ternary relationship as part of
the overall diagram. That is, our rules addressed ternary relationships as they coexist with other
relationships in a path structure within the model. These two points allowed us to develop
comprehensive rules for checking validity of more complex business concepts. Our analysis
yielded four additional rules and two corollaries. We summarized them with examples in
Appendix C.

The contribution of this paper is to provide a comprehensive set of decision rules to determine
the structural validity of any ERD containing recursive, binary, and ternary relationships. The
rules presented in this paper are easy to use to evaluate the structural validity of complex ERDs
containing recursive, binary, and ternary relationships. The 15 rules and seven corollaries add
value to the information management analysis and design process insofar as they provide a
standalone, application-independent tool that can easily be automated to evaluate the structural
validity of any ERD regardless of complexity. We believe that this analysis is a completed effort
and can be readily implemented in its current form providing an adequate foundation for the
evaluation of structural validity in entity relationship modeling. These rules can be extended to the
analysis of other diagramming techniques used in data modeling and the analysis of diagrams in
the object-oriented model [4,31].
Appendix A

Summary of validity rules for recursive relationships with examples
Validity rules for recursive relationships Valid example

Only 1:1 recursive relationships with mandatory–mandatory or
optional–optional minimum cardinality constraints are struc-
turally valid. Valid for symmetrical and completely circular
relationships.

For 1:M or M :1 recursive relationships optional–optional
minimum cardinality are structurally valid. Valid for asym-
metrical relationships only.

1

TUTORS STUDENT

M

For 1:M recursive relationships of the hierarchical–circular
type, optional-mandatory minimum cardinality are structurally
valid. Valid for hierarchical–circular relationships only.

DECISION
MAKER

1

M

BACKS
UP



Validity rules for recursive relationships Valid example

All recursive relationships with many-to-many maximum
cardinality are structurally valid regardless of minimum card-
inality constraints. Valid for symmetrical, hierarchical, and
hierarchical–circular relationships.

SIBLING PERSON

M

M

All recursive relationships with optional–optional minimum
cardinality are structurally valid. Valid for symmetrical and
asymmetrical relationships.

ARE
FRIENDS

WITH
PERSON

Validity corollaries for recursive relationships Invalid example

All 1:1 recursive relationships with mandatory–optional or
optional–mandatory minimum cardinality constraints are
structurally invalid.

1

1

PAIRED
WITH

POLICE
OFFICER

All 1:M or M :1 recursive relationships with mandatory–
mandatory minimum cardinality constraints are structurally
invalid.

1

M

SUBSTITUTE PRODUCT

All 1:M or M :1 recursive relationships with mandatory
participation constraint on the �one� side and an optional
participation constraint on the �many� constraints are struc-
turally invalid.

1

M

MANAGE EMPLOYEE

200 J. Dullea et al. / Data & Knowledge Engineering 47 (2003) 167–205
Appendix B

Summary of validity rules for binary relationships with examples
Validity rules for binary relationships Valid example

An acyclic path containing all binary relationships is always
structurally valid.

A cyclic path that contains all binary relationships, and one or
more �optional–optional� relationships is always structurally
valid.



Validity rules for binary relationships Valid example

A cyclic path that contains all binary relationships, and one or
more �many-to-one� relationships with �optional� participation
on the �One� side is always structurally valid.

A cyclic path that contains all binary relationships, and one or
more �many-to-many� relationships is always structurally valid.

Cyclic paths containing at least one set of opposing relation-
ships are always valid.
Explanation. A set of opposing relationships consists of at least
one binary relationship from this group [{�one-to-many�,
mandatory–mandatory}, {�one-to-many�, mandatory–option-
al}, or {�one–to-one�, mandatory–optional}] and at least one
other binary relationship from [{�many-to-one�, mandatory–
mandatory}, {�many-to-one�, optional–mandatory}, or {�one-
to-one�, optional–mandatory}].

A cyclic path containing all �one-to-one� binary relationships
that are either all �mandatory–mandatory� or at least one
�optional–optional� minimum cardinality constraint is always
structurally valid.

Validity corollaries for binary relationships Invalid example

Cyclic paths containing no opposing relationships and no self-
adjusting relationships are structurally invalid and are called a
circular relationship.
Explanation of opposing relationship: See Rule 9.

The presence of a {�one-to-one� mandatory–mandatory} rela-
tionship has no effect on the structural validity (or invalidity) of
a cyclic path containing other relationship types. (This corol-
lary applies to all the above rules.)
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Appendix C

Summary of validity rules for ternary relationships with examples
Validity rules for ternary relationships Valid example

A cyclic path containing a ternary relationship with no
explicit restricting binary relationships on the ternary�s
entities is always structurally valid, regardless of maximum
and minimum cardinality constraints on the ternary rela-
tionship.

If the maximum cardinality constraints for a constraining
binary relationship imposed on a ternary relationship is
greater than or equal to the maximum cardinality constraints
of the ternary relationship between the two involved entities,
then the constrained ternary relationship is valid.

If a second constraining binary relationship is required to
further define an already constrained ternary relationship,
then it can only be imposed between two entities where the
maximum cardinality constraint is �many-to-many� and the
effect of the second constraining relationship can not redefine
any previously defined explicit relationships or relax any
previously derived binary relationships for the imposition to
be structurally valid.

The minimum cardinality constraints of a constraining
relationship must follow the minimum cardinality con-
straints of the ternary relationship being constrained for it to
be structurally valid.

Validity corollaries for ternary relationships Invalid example

If the maximum cardinality constraints for a constraining
binary relationship imposed on a ternary relationship is less
than the maximum cardinality constraints of the ternary
relationship between the two involved entities, then the
constrained ternary relationship is invalid.

If the minimum cardinality constraints of a constraining
relationship do not follow the minimum cardinality con-
straints of the ternary relationship, then the constrained
ternary relationship is invalid.
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