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Abstract

We present here the numerical application of the theoret-
ical results derived in Correia et al. (2002) for the spin
evolution of Venus since its formation. We explore a large
variety of initial conditions in order to cover the possi-
ble formation and evolutionary scenarios. In particular,
we pay a special attention to the evolutions which cross
the chaotic zone resulting from secular planetary pertur-
bations (Laskar and Robutel, 1993). We demonstrate that
Venus’ axis can be temporarily trapped in a secular reso-
nance with the node of Neptune’s orbit, which can prevent
it from being tilted to 180◦, and will drive it towards 0◦.
We test several dissipation models and parameters to eval-
uate their contribution to the planet’s spin history. We
confirm that despite the variations in the models, only
three of the four final spin states of Venus are possible
(Correia and Laskar, 2001) and that the present observed
retrograde spin state of Venus can be attained by two
different processes. In the first scenario (F−π ), the axis
is tilted towards 180◦ while its rotation rate slows down,
while in the second one, the axis is driven towards 0◦ obliq-
uity and the rotation rate decreases, stops, and increases
again in the reverse direction to a final equilibrium value
(F−0 ).

Key Words: Venus; obliquity; spin dynamics; resonances;
chaos.

1 Introduction

The present rotation of Venus may represent a steady state
under the influence of gravitational and atmospheric tides
(Gold and Soter, 1969) and core-mantle friction (Goldre-
ich and Peale, 1970) after a long evolutionary process
(eg. Dobrovolskis, 1980). Laskar and Robutel (1993) have
shown that, due to planetary perturbations, there exists
a large chaotic zone for the spin of each terrestrial planet.
The passage of Venus in this chaotic zone allows the spin
axis to be tilted to 180◦ starting with any initial obliquity
(Laskar and Robutel, 1993, Néron de Surgy, 1996, Yo-
der, 1997). Finally, Correia and Laskar (2001, hereafter

referred as V1) have shown that most initial conditions
lead Venus to its present configuration, though by two
completely different processes. In (Correia et al., 2002,
referred as V2) we presented a detailed description of the
equations governing the spin evolution of Venus, including
planetary perturbations and dissipative effects. We ana-
lyzed the possible evolution scenarios and the constraints
on the dissipation models and parameters.

The present paper is devoted to the analysis of extended
numerical simulations of Venus’ spin evolution. We will
first choose a set of plausible coefficients for the models de-
fined in (V2), and we will call it the ‘standard model’. For
some of the dissipative parameters, when their values for
Venus are unknown, we will use the Earth values (assum-
ing that the internal structures of these two planets are
similar). In some other cases, we will use the constraints
imposed by the necessity for the planet to evolve into the
present configuration within the age of the Solar System
(4.6 Ga). The standard model is presented in the next
section, where our parameter choices are justified. Using
this model, massive numerical integrations are done, with
and without planetary perturbations in order to cover all
possible scenarios, starting with any initial condition. In
section three, we analyze the deviations from the standard
model resulting from different tidal and core-mantle fric-
tion models, as well as the effect of a late formation of
the atmosphere. In section four we explore other models
and the last section is devoted to the conclusions. In all
the following, we kept the notations and symbols from the
companion paper (V2).

2 The standard model

2.1 Choice of the parameters

Some of the parameters related to the dissipation have
actually been measured for Venus or for the Earth. As
these two planets have similar sizes and mean densities, it
is conceivable that their internal structure and composi-
tion are not very different. This will allow us to use the
Earth parameters when the corresponding Venus quanti-
ties are unknown. Among the well-known data are the
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mass, the mean radius and the mean density of Venus, re-
spectively (McNamee et al., 1993): m = 4.8685× 1024Kg,
R = 6.0518 × 106m and ρ̄ = 5.204 g cm−3. The poten-
tial Love number is (Konopliv and Yoder, 1996): k2 =
0.295 ± 0.066. The present parameters of the Venusian
atmosphere are also known, though less accurately than
the previous ones. The specific heat at constant pressure,
the mean ground temperature and the solar flux absorbed
by the ground, are respectively (Avduevskii et al., 1976):
cp ' 1 000 K kg−1, T̄s ' 730 K and Fs ' 100 W m−2. The
determination of the internal structure parameters is by
far, the most complicated. For the core radius we choose
Rc ∼ 3.2×106m (Yoder, 1995b) and for the mantle elastic
deformation correction we use the Earth value γel ∼ 0.75
(Sasao et al., 1980). The total polar moment of inertia,
C, and the polar moment of inertia of the core, Cc, fall
within (Yoder, 1997):

0.331 ≤ C

mR2
≤ 0.341 ; 0.020 ≤ Cc

mR2
≤ 0.041 ; (1)

In our simulations we used (B − A)/C = 2.16 × 10−6

(Konopliv et al., 1993), C/mR2 = 0.336, and Cc/C =
0.084, the same values as Yoder (1995a, 1997). All the
other dissipative parameters appearing in the equations
of (V2) are submitted to large uncertainties, namely,
the tidal phase lags δτ (σ), the effective viscosity ν and
the non-hydrostatic core ellipticity δEc. In the standard
model, that we will use as a reference, these parameters
are chosen as the most probable for our present under-
standing of the internal structure of terrestrial planets.

2.1.1 Gravitational tides model

The choice of a tidal dissipation model to Venus is not
easy. Venus is believed to spin rapidly at the beginning
of its evolution which contrasts with the present slow ro-
tation. For slow rotation rates (ω ∼ n), a viscous model
is the most appropriate, while for fast rotation rates, the
best choice seems to be the constant Q model (see V2).
Therefore, we have decided to use an interpolated model
which behaves like the viscous one for small tidal frequen-
cies (σ ∼ n), but that resumes to the constant one for
high tidal frequencies (ω À n). The interpolation func-
tion between those two models is then (V2, Eq.29):

bg(σ) = sign(σ)
k2

Qf

(
1− (1−Qf/Qn)

|σ|
n

)
, (2)

where Qf is the quality factor for the fast rotating planet
and Qn the same factor but for σ = n. The relation be-
tween the quality factor and the phase lag is (V2, Eq.25):

Qσ '
1

2δg(σ)
=

1

σ∆tg(σ)
. (3)

The Q factor for planets and satellites in the Solar Sys-
tem was estimated to be within (Goldreich and Soter,

1966):
10 < Q < 500 . (4)

In the particular case of Qn we know that the infe-
rior limit is raised to Qn > 45 in order to maintain the
present observed equilibrium between gravitational and
atmospheric tides (V2, Eq.96). In addition, for a given
initial rotation rate ωi, the time ∆tf needed to attain the
present spin state is given by (V2, Eq.105) :

∆tf ∝ Qωi . (5)

Hence, it is not possible to choose much higher values
than 45 for Qn as this will not allow to decelerate the
spin rate to the present value within the age of the Solar
System. Thus, as Yoder (1995a, 1997), we set Qn = 50
in the standard model. Some authors defend that in the
first billion years, planets should dissipate more energy
(eg. Burns, 1976, Lambeck, 1980, Dobrovolskis, 1980). In
the case of Venus this also coincides with the period of
fast rotation, so 10 < Qf < Qn. In (V1) we used Qf '
21.5, the Earth’s present observed value (with σ = 2π
d−1), derived from the laser measures of the Earth-Moon
distance (Dickey et al., 1994). However, this is a lower
limit, as for the present Earth, the main dissipation is
supposed to come from the oceans (see Lambeck, 1988).
Even though Venus could have had an ocean in the past,
we will choose here for the standard model a value of Qf
twice larger than the Earth one, i.e., Qf = 40.

2.1.2 Atmosphere model

The adopted model for the thermal atmospheric tides is
described in detail in (V2). We use for ground pressure
variations δp̃(σ) a smoothed heating at the ground model
(Dobrovolskis and Ingersoll, 1980):

|δp̃(σ)| = 5

16

γ

|σ|
gFs
cpT̄s

(
1− e−103( 2σ

n )
2)

, (6)

and we suppose that the ratio between the dissipation
time lags of the gravitational and the atmospheric tides is
constant and equal to its present value, i.e. (V2, Eq.100),

∆ta(σ)

∆tg(σ)
' ∆ta(2ωs)

∆tg(2ωs)
' 36.5 . (7)

This assumption implies that we are using for atmospheric
tides, the same dissipative model as for gravitational tides
(an interpolated model in this case). The arguments used
to support this choice are the same that justified it for
gravitational tides (different behaviors for fast and slow ro-
tation rates). However, this model has a crucial improve-
ment comparing with previous studies, as in this case, the
ratio ∆ta(σ)/∆tg(σ) tends to the present observed value
for dω/dt = 0.

Another source of uncertainty is the evolution of the
atmosphere. In fact, it is largely accepted that terrestrial
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planets’ dense atmospheres are supposed to be secondary
atmospheres that result from a degassing process over
several hundred million years (Walker, 1975, Hart, 1978,
Melton and Giardini, 1982, Zahnle et al., 1988, Hunten,
1993, Pepin, 1991, 1994). According to current scenarios,
in the early stages of the planet, there was an extreme
ultraviolet radiation from the young evolving Sun, a few
hundred times above the levels of the present values (eg.
Walter and Barry, 1991), that was responsible for the loss
of the hydrogen-rich primordial atmospheres. The gen-
erated hydrogen escape flux was large enough to exert
upward drag forces on heavier atmospheric constituents,
sufficient to lift them out of the atmosphere (blowoff).
This process is assumed to last at least 300 Ma (Pepin,
1991, Hunten, 1993). More, the impact of a planetesi-
mal can erode part or the totality of the existing atmo-
sphere or add volatiles to it. The competition between
accretion and erosion depends on the composition of the
impactor and on the mass of the growing planet (Melosh
and Vickery, 1989, Hunten, 1993). Thus, since the “heavy
bombardment” was probably not finished before 800 Ma
(Chyba, 1987, Kasting, 1993), it is commonly assumed
that the secondary atmosphere only comes out after this
date. Finally, the past strength of the semiannual tide is
also affected by the transparency history of the Venusian
atmosphere. Presently, only 100 out of 2 600 W m−2 reach
the surface (Avduevskii et al., 1976). If the solar flux ab-
sorbed by the ground Fs, were larger in the past such that
the mean surface temperature were higher, then the ther-
mal atmospheric tides could be smaller. On the contrary,
if the greenhouse mechanism were less effective the mean
surface temperature could be lower, and atmospheric tides
could be larger.

For all these reasons, we will not consider the effect
of the atmosphere from the very beginning of the Solar
System. In our standard model the accretion of the at-
mosphere will only start after 300 Ma (blowoff) and the
surface pressure will grow linearly up to 800 Ma (end of
the heavy bombardment). This will be quantified by a
weight function ζ(t), which gives the ratio of the surface
pressure variations of the date (t) over the present ones,
as:

ζ(t) =





0 if t ≤ 0.3 Ga
(tGa − 0.3)/0.5 if 0.3 Ga < t < 0.8 Ga

1 if t ≥ 0.8 Ga
(8)

2.1.3 Core-mantle friction model

The general theory of the secular variations of the spin
due to the core-mantle friction (CMF) inside the planet is
described by Rochester (1976). The dynamical equations
depend on a coupling parameter κ that is not known for
Venus, and even for the Earth, we do not have at present

a solid estimation. Indeed, κ is proportional to the square
root of the cinematic viscosity ν (Roberts and Stewartson,
1965, Busse, 1968) whose uncertainty covers about 13 or-
ders of magnitude (Lumb and Aldridge, 1991). It can be
as small as ν = 10−7 m2 s−1 for the Maxwellian relaxation
time and experimental values for liquid metals, or as big
as ν = 105 m2 s−1 for the damping of the Chandler wobble
or attenuation of shear waves. The best estimate so far
of the actual value of this parameter is ν ' 10−6m2s−1

(Gans, 1972, Poirier, 1988). As in some previous studies
on the Venus spin dynamics, we will then use this value
in the standard model.

In addition, unlike the Earth’s case, friction between
the core and the mantle on Venus may become turbulent.
In fact, for slow rotation rates, the Reynolds’ number (Re)
for precessional flow is so large that turbulence at the
core-mantle boundary is almost certain unless the angle
between the core and the mantle spin vectors is extremely
small (see V2). Turbulence usually sets in for Re ∼ 105 to
106. To delay the onset of the turbulence, we will chose
RT = 106. We then compute uD/u0 ' 1/13.87 to en-
sure the continuity between the two regimes. Once in the
turbulent regime, the CMF does not depend anymore on
the viscosity. However, this will not simplify the motion
equations, as for slow rotation rates, the non-hydrostatic
term of the core ellipticity δEc, which is also unknown,
becomes dominant. This parameter depends on the ir-
regularities of the core-mantle boundary, which can reach
several kilometers (Hide, 1969). Yoder (1995a) computes
a theoretical value for the non-hydrostatic core elliptic-
ity, δEc ' 29δEd, but he recognizes that it is probably
too large (though not physically unreasonable). We pre-
fer here to assume the Venusian ellipticity to be closer to
the Earth one, with estimated value δEc ' 4δEd (Herring
et al., 1986).

2.2 Simulations excluding planetary per-
turbations

Having chosen a dissipation model for the long term evo-
lution of Venus’ spin, we can now perform numerical sim-
ulations. Before looking at the global dynamic of the spin,
we have integrated first the equations without planetary
perturbations. There are two main reasons for this choice:
The first one is historical. Before the discovery of the im-
portance of the chaotic zone for the obliquity (Laskar and
Robutel, 1993), all the studies on the subject excluded
this effect (Lago and Cazenave, 1979, Dobrovolskis, 1980,
Shen and Zhang, 1989, McCue and Dormand, 1993, Yo-
der, 1995a). Thus, it is easier to compare the results of
the standard model with ancient models when planetary
perturbations are not taken into account. Furthermore,
the scenarios where planetary perturbations were consid-
ered (Néron de Surgy, 1996, Yoder, 1997, Correia and
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Laskar, 2001) also analyzed the non perturbed behavior.
The other reason why we do not want integrate the global
equations immediately is to enhance the importance of the
effect of chaotic zone on the final evolution of Venus.

2.2.1 A first numerical experiment

In Fig. 1 we have traced different evolutions of the Venu-
sian obliquity for an initial rotation period Pi = 3 d (ini-
tial rotation rate ωi ' 75n). As expected (Tab. 1), the
final obliquity is either 0◦ or 180◦. For initial obliquity
values higher than the critical obliquity of εi = 31.4◦, the
planet’s axis is always tilted to 180◦ and the rotation is de-
celerated till the final period Pf = 243.02 d (ωf = 0.92n).
This corresponds to the final state F−π (Table 1), a retro-
grade rotation state which is in agreement with the present
observed situation of Venus. On the contrary, for ini-
tial obliquities lower than εi = 31.4◦ the planet’s axis
is straightened to 0◦. However, we must differentiate here
between two possible evolutions: the most common one,
when εi < 25.4◦, where the rotation is decelerated till
Pf = 76.83 d (ωf = 2.92n). This corresponds to the
direct rotation final state F+

0 (Table 1). The other pos-
sibility is obtained when the initial obliquity lies between
25.4◦ and 31.5◦. Here, the rotation rate brakes till zero
and thereafter accelerates in the reverse direction, the sta-
bilization occurring in the final state F−0 (Table 1), where
Pf = −243.02 d (ωf = −0.92n). This corresponds to a
scenario which was suggested by Kundt (1977), although
without analytical arguments.

state ε ω P (days)

F+
0 0◦ n+ ωs 76.83

F−0 0◦ n− ωs −243.02
F+
π 180◦ −n− ωs −76.83
F−π 180◦ −n+ ωs 243.02

Table 1: Possible final spin states of Venus, in absence of
planetary perturbations (Correia and Laskar, 2001). There
are two retrograde states (F−0 and F−π ) and two direct states (F+

0

and F+
π ).

2.2.2 Critical points and final states

The different scenarios described in the previous section
are easy to understand with the help of Fig. 2, where the
rotation rate (ω̇) is plotted versus (ω), for a fixed obliq-
uity value at ε = 0◦ (a) and ε = 180◦ (b). In these graph-
ics, the final evolution of Venus corresponds to one of the
three critical fixed points (ω̇ = 0). As the central fixed
point (I0 or Iπ) is unstable, the only possible final evolu-
tions are the four stable critical points corresponding to
F−0 ,F+

0 ,F−π ,F+
π . As we assume that at the origin ω > 0

(this is not a restriction, as retrograde initial rotations are
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Figure 1: Obliquity evolution in time (a) and with respect
to the rotation rate (b) using the standard model. Since we
start our integrations with ωi ' 75n (Pi = 3 d), Fig. (b) must be
read from the right to the left. Dotted lines correspond to direct
final states and filled lines to retrograde final states. The transition
initial obliquity between the direct states and the retrograde ones is
εi = 25.4◦ and εi = 31.4◦ between the two retrograde states.

obtained with ε > 90◦), Venus brakes from fast rotations
so we always come from the right hand side of Fig. 2.

The final state where the planet will end depends on
the value reached by ω when the obliquity comes close
to ε = 0◦ or ε = 180◦. If ω > n when the obliquity ε
approaches 0◦, the planet will tend towards the final state
F+

0 . On the contrary, if ω < n the spin will evolve to the
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Figure 2: Variation of dω/dt upon ω/n considering all dis-
sipative effects together at ε = 0◦ (a) and ε = 180◦ (b)
(Correia et al., 2002). As the central fixed point (I0 or Iπ) is
unstable, the only possible final evolutions are the four stable points
corresponding to F+

0 , F−0 , F+
π and F−π .

retrograde final state F−0 . When the obliquity is brought
to 0◦ during the first stages of the evolution, the rotation
rate will not be much reduced and will always verify ω >
n. It will then be impossible to reach the retrograde final
state F−0 . However, if the obliquity is far from 0◦ when
the planet enters the slow rotation regime, the presence of
the CMF effect allows the rotation rate to be reduced to
values ω < n and the planet will evolve into the final state
F−0 . When the obliquity evolves towards 180◦, dissipative
effects always impose ω ≥ −n. The planet spin is then
always on the right side of Iπ, and the only possibility is
to finish in the final state F−π .

2.2.3 Numerical simulations and the F−0 state.

Figure 3 is similar to Fig. 1b, but with initial obliquities
εi = 25◦, 26◦, and εi = 31◦, 32◦, which are bracketing

the critical initial obliquities (εi = 25.4◦ and εi = 31.4◦).
Only the final part of the evolutions are displayed in order
to differentiate more clearly the behavior near these crit-
ical obliquities. The evolution into the direct final state
F+

0 or into the retrograde state F−0 will depend whether
the CMF reduces the rotation rate ω to a value superior to
n or not as shown in Fig. 2a. The evolution into each ret-
rograde final state depends whether the obliquity is above
(final state F−π ) or below 90◦ (final state F−0 ), when the
CMF effect becomes dominant.

�
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#$"

% &'(
) *+ )
) ,

F+
0

F−0

F−π

ω/n

Figure 3: Final evolution of Venus’ obliquity versus rota-
tion rate for the initial obliquity values: εi = 25◦, 26◦ and
εi = 31◦, 32◦ (standard model). The difference between the
evolution into the direct final state F+

0 and the evolution into the

retrograde state F−0 depends whether the CMF effect reduces the
rotation rate ω to a value superior to n (direct final state) or infe-
rior to n (retrograde final state) as shown in Fig. 2a. The difference
between the evolution into each retrograde final state depends on
whether the obliquity is above 90◦ (final state F−π ) or below 90◦

(final state F−0 ) when the CMF effect become dominant.

The zone of retrograde states F−0 which appears within
the two critical obliquities was not observed in previous
studies (Lago and Cazenave, 1979, Dobrovolskis, 1980,
Shen and Zhang, 1989, McCue and Dormand, 1993, Yo-
der, 1995a, 1997, Néron de Surgy, 1996) because of their
choice of atmospheric tides models (see V2, section 3.1.2)
which introduced an infinite singularity at ω = n.

2.2.4 The initial spin rate of Venus.

The initial spin rate of Venus is not known as very lit-
tle constraint can be derived from the present planetary
formation models. A small number of large impacts at
the end of the formation process of a planet will not aver-
age, and can change its spin rate or direction (Dones and
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F+
0 F−0

F−π

Figure 4: Final states of Venus’ spin for initial obliquity
(εi ∈ [0◦, 180◦]) and period (Pi ∈ [0.5 d, 12 d]) in absence of
planetary perturbations. Initial periods are comprised between
0.5 days (12 hours) and 12 days with a step size of 0.1 day and
starting with any obliquity (from 0◦ to 180◦) with an increment
of 1◦. We can distinguish three final evolutions. The larger one
(dark grey) corresponds to the retrograde final state F−π , that occurs
for high initial obliquities. For small initial obliquities the planet
always evolves to the direct final state F+

0 (grey). Between these two

possibilities, we find the zone of the retrograde final state F−0 (light
grey). The time after which the final state is reached is indicated by
curved labeled in Ga.

Tremaine, 1993), and on the other hand, the empirical re-
lation ωi = Km4/5R−2 given by MacDonald (1964) leads
to Pi ' 13.5 hours for Venus. Overall, the only strong
constraint on the initial spin rate of Venus seems to be its
present observed slow rotation.

In Figs. 1 and 3, we chose for the initial rotation period
Pi = 3 days as it is the fastest initial period that allows
almost any initial obliquity to evolve into a final states
within the age of the Solar System. Evolutions with slower
initial rotation periods can be easily depicted from Fig. 1b
choosing a slower initial rotation rate as starting point and
ignoring the previous evolution. If we assume a stronger
dissipation, i.e., a smaller value of Q, we can set the initial
rotation rate ωi to higher values, as ωi ∝ Q−1∆tf , where
∆tf is the time required to reach a final state (Eq.5).

In order to cover all possible scenarios for the initial spin
of Venus, we have computed the possible evolutions for a
planet starting with an initial period comprised between
0.5 days (12 hours) and 12 days, with a step size of 0.1
day and starting with any obliquity (from 0◦ to 180◦) with
an increment of 1◦. Results are plotted in Fig. 4 where
each color represents a final state, and the numbered level
curves give the time in Ga needed to reach this state. We
can distinguish here only three final evolutions (the direct
states F+

π are not reachable). The larger one (dark grey)
corresponds to the retrograde final state F−π , that occurs
for high initial obliquities. For small initial obliquities the
planet always evolves to the direct final state F+

0 (grey).
Between these two possibilities, we find the zone of the

retrograde final state F−0 (light grey). The separating
curves between each final evolution are, in this case, more
or less straight lines which relates the initial period (in
days) to the initial obliquity (in degrees), as

P−i = 0.14 εi − 1.6 ; P+
i = 0.24 εi − 3.4 . (9)

Using the results plotted in Fig. 4, we tested expression
(5) for a constant Q value. For each initial obliquity we
plotted the initial rotation rate ωi versus the time ∆tf
needed to reach a final state (|ω−ωf |/n < 10−5) (Fig. 5).
We obtain roughly linear relations, in agreement with (5),
except for initial obliquities that intersect different final
states.

2.3 Effect of planetary perturbations

The planetary perturbations are now introduced using the
full secular system for the motion of the whole Solar Sys-
tem (Laskar, 1990, 1994). This allows to have a good
model for planetary perturbations, with reasonable CPU
time, despite the fact that we will perform the integrations
over several billion years. As the Solar System motion is
chaotic, we do not expect that the computed solution will
correspond to the precise evolution of the planets. How-
ever, since the diffusion of the trajectories is moderated
(Laskar, 1994), we assume that this solution will be rep-
resentative of the true planetary perturbations.

2.3.1 Final states with planetary perturbations

When planetary perturbations are considered, an impor-
tant modification occurs with the four final states charac-
terized in table 1. As explained in section 4.5 of (V2), due
to the forced obliquity δε, the final rotation rates ωf will
no longer correspond to steady states, because the obliq-
uity variations give rise to a variation δω (V2, Eq.110):

|δω| = n%(n/|ωf |)5/2δε2 , (10)

where % is a measure of the strength of the CMF and
tidal effects. The range of δω depends on the “mean”
final rotation rate ωf and on the range of forced obliquity
variations, obtained numerically.

For the retrograde rotation final states, we can still
use the present observed rotation period as the “mean”
rotation period of those final states. However, as it is
shown by (V2, Eq.111), for the direct rotation final states,
the rotation periods given in table 1 are no longer valid.
Indeed, for those final states, the precession constant
(α ' 14.7”/yr) lies near the chaotic zone and thus, the
forced obliquity variations will be larger. Numerical ex-
periments (using the standard model) show that for the
retrograde final states, the forced obliquity has a maxi-
mum amplitude of 2◦, whereas for the direct final states
it can be as large as 8◦. According to expression (V2,
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Figure 5: Initial rotation rate ωi versus the time needed to
reach a final state ∆tf , for εi = 0◦, 20◦ and 40◦ (a) and
for εi = 80◦, 150◦ and 180◦ (b) using the standard model.
For a constant value of Q we see that expression (5) is verified for
any obliquity, except when occurs a transition from one final state
to another.

Eq.112), the rotation period of the direct rotation final
states will then be increased, which is confirmed in our
numerical experiments, where we observe that the final
rotation period is within 130 and 140 days. The new mean
periods are given in table 2 (to be compared with table 1).

In his study of Venus’ free obliquity, Yoder (1995a) find
numerically for the retrograde final states obliquity varia-
tions a “mean” obliquity of about 2◦, while for some sets
of the dissipation parameters, the maximal obliquity can
reach up to 4◦. The difference with our values results from

state ε δεmax P (days) ∆P (days)

F+
0 5◦ 8◦ 135 ±5

F−0 1◦ 2◦ −243 ±1
F+
π 175◦ 8◦ −135 ±5
F−π 179◦ 2◦ 243 ±1

Table 2: Possible final spin states of Venus, in presence of
planetary perturbations. There are two retrograde states (F−0
and F−π ) and two direct states (F+

0 and F+
π ), but the rotation final

periods are no longer completely steady.

two main reasons: First, while Yoder uses a constant Q
model, our model is linear for slow rotation rates. The
second difference is that Yoder takes into account the ac-
tual separation of about 0.5◦ between the axis of rotation
and the axis of greatest inertia. As explained in (V2), we
have merged these two axis for our long-term integrations.

2.3.2 Standard model with Pi = 3 d and εi = 1◦

As the chaotic dynamics prevents one or few integrations
to be representative of the possible past evolution, we have
performed exhaustive numerical experiments. Setting the
initial rotation period to Pi = 3 d and the initial obliq-
uity to εi = 1◦ we have simultaneously integrated over 4.6
Ga, 100 orbits with initial precession angles separated by
0.05 rad. We will not plot of course all these trajectories,
but only a selection of them, corresponding to some typ-
ical behavior. With these settings, we obtained the three
different final evolution states, F+

0 , F−0 and F−π (Fig. 8a-
c). In absence of planetary perturbations we have seen
in the previous section that for any initial obliquity lower
than 25.4◦ the planet always ended in the direct final state
F+

0 . However, the passage trough the chaotic zone now
allows the obliquity to drift between 0◦ and almost 80◦,
far beyond the 25◦ level, and only a part of the trajectories
finishes in the direct rotation state. The other trajectories
lead to one of the retrograde rotation final states F−0 or
F−π . The paths which drive to each final state are quite
different, and in Fig. 6, we have plotted the evolution of
the maximal and minimal obliquity for all initial condi-
tions leading to the same final state.

Since we started with Pi = 3 d, the initial precession
constant is α0 = 16.2”/yr (V2, Eq.2), which corresponds
to the chaotic zone, but with moderated diffusion (Figs 9a-
c). This is why the maximal obliquity increases from 1◦ to
about 20◦. After 1 Ga, the maximal obliquity can reach
40◦. However, as soon as the precession constant decreases
below α ' 10”/yr (ω ∼ 45n), the planet will enter in the
strong chaotic zone. Here, the maximal obliquity largely
increases up to 70◦. Moreover, the amplitude of the obliq-
uity variations can now sweep more than 50◦ in a few mil-
lion years, as it is illustrated in Fig. 7. Due to dissipative
effects, the precession constant decreases till α = 5.85”/yr

7
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Figure 6: Maximal and minimal obliquity evolution in time. For the initial obliquity εi = 1◦, we have simultaneously integrated 100
orbits with initial precession angles separated by 0.05 rad. Each image shows the maximal and minimal obliquities for all initial conditions
leading to the same final state. The large augmentation in the maximal obliquity always present for ω comprised within 40n and 50n
corresponds to the entry in the strong chaotic zone.
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Figure 7: Example of chaotic variation of the obliquity inside
the chaotic zone. When the precession constant of Venus is com-
prised within 5”/yr < α < 10”/yr, we can observe strong variations
of the obliquity due to planetary perturbations, whose amplitude
variations can reach 50◦ in a few million years.

(ω = 14n). Henceforth, its value increases again, because
the non-hydrostatic term δEd of the dynamical ellipticity
Ed becomes dominant (V2). When α approaches its ini-
tial value α ∼ 15”/yr (ω ∼ 3n), the CMF effect becomes
very strong and controls the spin evolution until the obliq-
uity reaches near 0◦ or 180◦ values. During that time, the
effects of planetary perturbations over the obliquity are
unable to counteract the CMF dissipation.

2.3.3 Evolution with εi = 60◦, 90◦ and 120◦

We have repeated the above study for initial obliquities
εi = 60◦, 90◦ and 120◦ (also in Figs. 8 and 9). In absence
of planetary perturbations when we started with εi = 60◦

the planet ended in the retrograde rotation final state F−π
(Fig. 1b). Now, the planet can still evolve into this final
state, but also to the retrograde rotation final state F−0
or to the direct rotation final state F+

0 . The reason is the
same as for εi = 1◦: the crossing of the chaotic zone allows
the obliquity to decrease to low values and then to evolve
eventually to another final state. However, as for εi =
60◦ the planet starts deep inside the strong chaotic zone
(Figs. 9d-f), strong obliquity variations can be observed
from the very beginning.

When we set the initial obliquity at 90◦ (i.e., in the fron-
tier between the chaotic and the stable zone), most of the
trajectories evolve into the retrograde final state F−π . Be-
fore the formation of the atmosphere, gravitational tides
slightly decrease the initial obliquity (as shown in Fig. 1b),
but this is not sufficient to bring it into the strong chaotic
zone. However, the obliquity may encounter a resonance
with the secular frequency of the Solar System s8 (see sec-
tion 2.6), where it has a small chance of being captured. In
that case, the obliquity remains trapped below 90◦. When
the CMF effect becomes very efficient, the planet leaves

8
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Figure 8: Several examples of the possible evolution of the obliquity of Venus with the rotation rate, starting with Pi = 3 d
(ω ' 75n). Each evolution ends up in one of the three possible final rotation states: F+

0 , F−0 and F−π . For εi = 1◦ (a,b,c), the obliquity
drifts between 0◦ and almost 80◦. The increase in the obliquity allows many trajectories to finish in one of the retrograde rotation final
states F−0 or F−π , instead of the direct rotation state F+

0 as in the absence of planetary perturbations. Inversely, for εi = 60◦ (d,e,f) the

crossing of the chaotic zone can decrease the obliquity, allowing the planet to evolve into other possibilities than the final state F−π . Finally,
for εi = 90◦ (g,h) and εi = 120◦ (i), the only effect of the planetary perturbations is to add small oscillations of the obliquity around a
mean value as we never cross the chaotic zone.
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Figure 9: Several examples of the possible evolution of the precession constant α with the obliquity, starting with α0 =
16.2”/yr (Pi = 3 d). For εi = 60◦ (d,e,f) the planet begins deep inside the chaotic zone, while for εi = 1◦ (a,b,c) this zone is reached
for α ∼ 10”/yr. There we can observe obliquity variations of about 50◦ in a few million years. For εi = 90◦ (g,h) and εi = 120◦ (i), the
planet is outside the chaotic zone and we only observe small obliquity variations. Due to dissipative effects, the initial precession constant
is slowly decreased until 5.85”/yr. Henceforth, it increases again, because the non-hydrostatic term δEd of the dynamical ellipticity Ed
becomes dominating. When the precession constant approaches again its initial value α ∼ 15”/yr, the CMF effect becomes stronger than
planetary perturbations and it controls the entire evolution.
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the resonance, and is driven into the direct final state F+
0

or to the retrograde final state F−0 , instead of the usual
evolution towards F−π (Fig. 9g,h).

For εi = 120◦ there is only one possible final evolution,
which is the retrograde final state F−π . In this case, in-
dependently of the precession initial phase, the different
dynamical evolutions are very similar and they are close
to the obliquity behavior in absence of planetary pertur-
bations (Fig. 1b). This is quite understandable: since the
entire evolution stays outside the chaotic zone, the only
effects of the planetary perturbations is to add small oscil-
lations to the unperturbed obliquity (Fig. 9i). The same
behavior is expected for any evolution that never crosses
the chaotic zone (εi > 100◦).

2.4 Global view with planetary perturba-
tions

In order to obtain a more global view, we have performed
similar integrations as in Fig. 4, but with the addition of
planetary perturbations. In Fig. 10 we show the possible
final evolutions for a planet starting with an initial pe-
riod ranging from 3 to 12 days, with an increment of 0.25
day, and initial obliquity from 0◦ to 180◦, with an incre-
ment of 2.5 degrees (rotation periods faster than 3 days
are excluded as they do not allow the planet to reach a
final rotation state within the age of the Solar System).
Each color represents one of the possible final states. As
expected, for high initial obliquities, the final evolution of
Venus remains essentially the same as without planetary
perturbations since none of these trajectories encounters
the chaotic zone. This is not the case for paths starting
with low initial obliquities. Here, however, we can dis-
tinguish two different zones: one corresponding to slow
initial rotation periods (Pi > 8 d) where the direct rota-
tion final state F−0 is prevailing and another one for faster
initial rotation periods, where we find a mixture of the
three attainable final states, F+

0 , F−0 and F−π .

For slow initial rotation periods, the initial precession
constant is small, and the planet starts its evolution in
the bottom of the chaotic zone (Fig. 9). The planet has
thus less chances to increase its obliquity, as for slow
initial rotation periods, the critical obliquities are higher
(Eq.9). On the other hand, as the initial rotation period
decreases, the critical obliquities have lower values, and
the passage in the chaotic zone increases the probabilities
of ending in a final state different than F+

0 . This is
why for fast initial rotation periods we find a random
distribution of the three possible final states. To empha-
size this chaotic behavior, we integrated this area twice
more, with a difference of 10−9 in the initial eccentricity
of Mars (Fig. 10b), and with a difference of 10−9 in
the inital eccentricity of Neptune (Fig. 10c). Finally,
in Fig. 11 we plotted several steps in the evolution of

F+
0

F−0

F−π

(a)

(b)

(c)



Figure 10: Final states of Venus’ spin for initial obliquity
(εi ∈ [0◦, 180◦]) and period (Pi ∈ [3 d, 12 d]) when plane-
tary perturbations are included. We have computed the possi-
ble evolutions for a planet starting with an initial period comprised
between 3 and 12 days with a step size of 0.25 day and starting with
any obliquity (from 0◦ to 180◦) with an increment of 2.5◦. For high
initial obliquities, the final evolution of Venus remains essentially
unchanged since none of these trajectories crossed the chaotic zone.
The passage through this zone is reflected by the scattering of the
final states in the left side of the picture. To emphasize the chaotic
behavior in the bottom left corner of picture (a), we integrated it
again with the same initial conditions, but with a difference of 10−9

in the initial eccentricity of Mars (b) and Neptune (c).

Venus, separated by 250 million years (with and without
planetary perturbations), using the same technique as
in Fig. 10. These sequences provide a global view of
the evolution of the rotation period due to dissipative
effects and planetary perturbations. The passage of each
trajectory through the chaotic zone can be observed, as
well as the time needed to reach a final state.

2.5 Final states probabilities.

The crossing of the chaotic zone, allows a trajectory to
rapidly modify its obliquity and evolve to a final state
that was not accessible in absence of planetary perturba-
tions. The path in the chaotic zone is very sensitive to
small changes in initial conditions or in the model, and it
is thus impossible to preview in which final state it will
end. However, this chaotic zone favors some trajectories,
according to the initial conditions. In order to estimate

11



   

Figure 11: Spin evolution of Venus. Each picture is separated by 250 million years. Columns 1 and 2 correspond to a evolution without
planetary perturbations, that are included in columns 3 and 4. This picture give us a global view of the modifications in time of the rotation
period due to dissipative effects and due to planetary perturbations. The last figure of columns 2 and 4 correspond respectively to Fig. 4
and Fig. 10.
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the probabilities of finishing in each final state, we have
integrated the dynamical equations 100 times for every
initial obliquity and initial periods of 3, 4, 5, 6, 7 and 8
days, changing between each initial condition the phase of
the precession angle by 10−6 rad (Fig. 12).

Contrarily to the situation with no planetary pertur-
bations (Fig. 4), the crossing of the chaotic zone allows
any initial obliquity (with Pi < 8 d) to evolve into the
present observed state. For fast initial rotation periods or
high initial obliquities, the retrograde final states are the
most probable ones, but as the initial period increases, the
direct final state F+

0 becomes dominant. For low obliqui-
ties (εi < 60◦), the retrograde state F−0 represents always
about 10% of the possible final evolutions. For fast initial
rotation periods, the F−0 states represent less than 1/5 of
all retrograde states, but for slow initial rotations, they be-
come the majority of retrograde final states for low initial
obliquities. This contrasts with the behavior described in
section 2, where only initial obliquities comprised between
25◦ and 31◦ led to F−0 .

2.6 Secular resonances

In Fig. 10 we observe the presence of a narrow strip of
initial conditions within 85◦ < εi < 90◦ that lead to the
two final states F+

0 and F−0 in a zone where the retrograde
final state F−π is the most likely outcome. We will also see
in sections 3, 4 that this strip is always present, indepen-
dently of the dissipation models considered. Indeed, this
curious effect results from the capture of the spin into a
secular resonance with Neptune.

2.6.1 Resonance equations

The conservative Hamiltonian of the system with plane-
tary perturbations writes (Laskar and Robutel, 1993):

H =
L2

2C
− αX

2

2L
+ 2C(t)X

+
√
L2 −X2

∑

k=1

Jk sin(ψ + νkt+ φk) , (11)

where νk are the secular frequencies of the orbital motion
of Venus, Jk the amplitude of the perturbation and φk
a phase angle. For an isolated frequency (νk), we retain
only the k term in the Hamiltonian, and since ψ̇ ' α cos ε
(V2), expression (11) resumes to an integrable Hamilto-
nian similar to the one of a pendulum (Colombo, 1966,
Ward, 1975, Henrard, 1987). Inside the resonance island,
the obliquity will librate around the equilibrium value εe:

cos εe = −νk
α
, (12)

and the maximal ε+ and minimal ε− obliquity values in
the resonant island are given by:

cos ε± ' −
νk
α
∓ 2

√
Jνk
α

sin εe . (13)
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Figure 12: Probability of ending in one of Venus’ final states

(grey: F+
0 , light grey: F−0 , dark grey: F−π ). For initial

period of 3, 4, 5, 6, 7 and 8 days respectively, and initial obliquity
from 0 to 80 degrees, with 5 degree step size, 100 trajectories have
been computed with an increment of phase in the precession angle
of 10−6 radian. These are the same kind of pictures as Fig. 4 in
(V1). However, here there is a drastic reduction of F−0 final states
for slow initial rotation rates, because dissipation parameters of the
standard model are weaker (see section 4).
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If the motion is trapped in this island, we then say that
there is a resonance between the secular frequency νk and
the obliquity. The complete system is not integrable, as
the terms in expression (11) are very numerous, but we can
look individually to the location of each resonance. When
the resonances are far apart, the motion will behave lo-
cally as in the integrable case, with just the addition of
supplementary oscillations, but if several resonances over-
lap, the motion is no longer regular and becomes chaotic
(Chirikov, 1979, see also Laskar, 1996).

2.6.2 The secular resonance s8

Performing a frequency analysis (Laskar, 1990, 1999) of
the obliquity over 20 Ma for Venus with α = 10”/yr
we observe that for obliquities within 85◦ < ε < 90◦

there is an isolated resonance where the obliquity can be
trapped, corresponding to the secular frequency s8 (pre-
cession of the node of Neptune’s orbit) (Fig. 13). With
s8 ' −0.69”/yr (Table 3), for α0 = 10”/yr (which cor-
responds to the initial period Pi ' 5 d), we obtain from
expression (12) an equilibrium obliquity εe ' 86◦. As the
rotation rate changes, so does α (see V2) and the equilib-
rium obliquity εe varies with ω as:

cos εe = − 2ωνk
3n2Ed

. (14)

Therefore, we observe in Fig. 10 a slight curvature of the
resonance strip, starting at about 85◦ for slow initial ro-
tation periods and bending to 90◦, as the initial rotation
period decreases.
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Figure 13: Frequency analysis of the obliquity over 20 Ma
for Venus with α = 10”/yr. The dotted line represents the
spectrum of the secular perturbations (Table 3). For the frequency
s8, the frequency analysis proves the existence of a elliptic stability
point for the obliquity close to 90◦ (Laskar and Robutel, 1993).

name νk (”/yr) Jk (”/yr) φk (◦)

s2 −6.984 476.65× 10−4 −76.28
s1 −5.589 829.74× 10−4 −106.33
νa −4.280 5.29× 10−4 161.66
νb −3.708 4.57× 10−4 40.53
s7 −3.006 59.71× 10−4 50.07
s8 −0.692 9.06× 10−4 −66.33

Table 3: Principal secular frequencies of Venus’ planetary
perturbations orbit for slow precession speed (ψ̇).

2.6.3 Capture and escape probabilities

When dissipative torques are present, the existence of an
isolated resonance is not sufficient to guarantee that the
planet’s obliquity will remain trapped. On the other hand,
the same torques may allow non-resonant initial condi-
tions to be captured into resonance after some time.

An overview of capture and escape probabilities was
given in section 2.4 of (V2) for spin-orbit resonances. Here
we are dealing with a different kind of resonances, but the
same approach is still valid (for a review, see Henrard,
1993). A dissipation torque that provides a non zero cap-
ture probability (even for a small probability) is insuffi-
cient to lead a previously captured planet to escape from
the resonance. Conversely, a torque that never allows the
capture will always force the planet to leave the resonance.
The only exception is a constant torque, but that is not
the case of tidal and CMF torques. In Fig. 14, we plotted
the probability of the planet’s obliquity to be captured
in a resonance as a function of the rotation period, in
presence of gravitational and thermal atmospheric tides
(CMF can be neglected for these rotation rates). Capture
in the s8 resonance subsists for a wide range of rotation
periods. Thus, initial obliquities starting inside this reso-
nance will remain captured until Venus enters in the slow
rotation regime. Then, CMF effect becomes dominating
(see Yoder, 1995a, 1997, V2) and the planet obliquity al-
ways abandon any previous resonant configuration. How-
ever, as the resonant obliquity remains inferior to 90◦, the
planet will evolve into one of the final states with ε = 0◦.

Although the s8 resonance is quite resistant to tidal
torques, there is only a small probability that Venus could
be captured in this resonance (Pcap. < 3%). This be-
havior can be observed in all numerical simulations in-
cluding planetary perturbations (Figs. 15b, 15d, 16b, 16d,
19b, 19d, 17b, 22a, 22b and 22c). Indeed, for slow ini-
tial rotation periods and initial obliquities within about
60◦ and 90◦, we find sporadically some different final
states than F−π . Those exceptions correspond to tra-
jectories that have experienced a capture in the s8 res-
onance (Figs. 9e,g). Once captured, these trajectories re-
main inside the resonance until the slow rotation regime
is reached. In order to get a numerical estimation of the
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Figure 14: Capture probabilities for secular resonances. Each
curve expresses the probability of the planet’s obliquity of being cap-
tured in one resonance when crossing it, under the effect of gravi-
tational and atmospheric tides. When the probability reaches zero,
that also means that a previous captured obliquity will inevitably
leave that resonance.

capture probabilities in the s8 resonance, we run 1000 ex-
periments starting close to the resonance. For each initial
period and obliquity, we simultaneously integrated 100 or-
bits with initial precession angles separated by 0.05 rad
(Table 4). About 3% of the trajectories were captured
during the evolution, which is in a perfect agreement with
the theoretical value of Fig. 14.

Pi εi F+
0 F−0 F−π

7.0 d 70.0◦ 4 - 96
7.0 d 72.5◦ 4 - 96
7.0 d 75.0◦ 1 3 96
7.0 d 77.5◦ 1 1 98
7.0 d 80.0◦ - 1 99
8.0 d 70.0◦ 5 2 93
8.0 d 72.5◦ 1 1 98
8.0 d 75.0◦ 3 1 96
8.0 d 77.5◦ - 1 99
8.0 d 80.0◦ 2 - 98

Total (%) 2.1 1.0 96.9

Table 4: Number of final evolutions which end in each final
state for different initial conditions. For the same initial period
and obliquity we simultaneously integrated 100 orbits with initial
precession angles separated by 0.05 rad. Final evolutions that end
in a final state other than F−π correspond to a former capture in the
s8 resonance.

2.6.4 Other secular resonances

Besides s8, the most significant secular frequencies are re-
lated to the precession of the node of the orbits of Mercury
(s1), Venus (s2) and Uranus (s7) (Fig. 13 and Table 3).
s1 and s2 are in the large chaotic zone of the obliquity,
preventing any kind of capture. However, for s7 (and also
for νa and νb) we may wonder if a similar behavior as for
s8 is possible, in spite of some small chaos already present
in that area (visible in Fig. 13).

To answer to this question, we computed the dissipa-
tive torques in the vicinity of each resonance (Fig. 14).
We see that contrarily to s8, the capture probability for
νa, νb and s7 decreases rapidly to zero as the planet slows
down. Thus, even if for some initial condition the motion
is trapped in one of those resonances, and resisted to the
chaotic diffusion, it will surely not resist to the dissipative
torques. The secular resonance with s8 is thus the only re-
sponsible for the exceptional behavior of initial conditions
within 85◦ < ε < 90◦.

3 Parameter variations

Having described the behavior of the spin of Venus using
the standard model, we will now perform some additional
numerical experiments where one or several dissipation
parameters of the standard model are modified. We will
see that the main results depicted for the standard model
will remain grossly unchanged, although some modifica-
tions will occur, especially in the case of a late formation
of the atmosphere.

3.1 Tidal dissipation strength

For tidal dissipation we mean here the whole dissipation
caused by gravitational and thermal atmospheric tides to-
gether. Indeed, as we have seen in (V2), within the con-
straint imposed by expression (7), those two effects can be
described as a single one depending of the gravitational
tidal model and dissipation factor Q.

In order to test expression (5), we chose a Q factor
50% larger than in the standard model (i.e. Qf = 60
and Qn = 75). The results are plotted in Fig. 15 for
both the standard and the modified model. It is clear
that the picture of the final spin evolution remain almost
unchanged (except, of course, for solutions having crossed
the chaotic zone). Moreover, the level lines indicating the
time needed to reach a final state are grossly the same
in both pictures, rescaled by a 1.5 factor in the modified
model, corresponding to the 50% augmentation of the Q
factor, in agreement with (5).

It should be noted that relation (5) was established in
the particular case where the planet’s obliquity was held
fixed at ε = 0◦ or ε = 180◦, where the CMF cancels.
However, since before approaching a final state, the planet
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Figure 15: Final states of Venus’ spin for a planet less dissipative than in the standard model (Qf = 60, Qn = 75). For
initial obliquity (εi ∈ [0◦, 180◦]) and period (Pi ∈ [3 d, 12 d]) we plotted the final evolutions for the standard model (left) and a planet less
dissipative (right). The two pictures are almost identical (except for solutions having crossed the chaotic zone). The time needed to reach
a final state is multiplied by a factor of 1.5 corresponding to the 50% augmentation of the Q factor.
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Figure 16: Final states of Venus’ spin for different tidal dissipation models. For initial obliquity (εi ∈ [0◦, 180◦]) and period
(Pi ∈ [3 d, 12 d]) we plotted the final evolutions for the constant Q model (left) and for a more viscous model (right). The tidal model,
mainly interferes with the number of retrograde final states of each kind: a constant Q model favors the final state F−π , while the linear
one favors the final state F−0 .
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spends most of its evolution in a fast rotation regime, the
CMF impact on the time evolution is negligible.

3.2 Change of tidal dissipation model

The tidal strength affects mainly the time needed to reach
a final state. We will now see how the change of model
affects the final picture. For the standard model, the dissi-
pation is interpolated between the constant Q model and
the viscous one, which can be retrieved by setting respec-
tively Qf = Qn or Qf → 0 in equation (2).

3.2.1 Constant Q model

The ‘constant Q model’ was used in most of the previous
studies on Venus rotational evolution. Like Yoder (1995a,
1997) we set here Q ' 50 (more precisely, Qf = 49.9 and
Qn = 50, to avoid singularities in our equations). With
this model, we performed the same numerical experiment
as in Fig. 15.

In absence of planetary perturbations (Fig. 16a), the
most important difference from the standard model is the
almost complete disappearance of the zone corresponding
to the retrograde final states F−0 , which are now replaced
by the F−π . This happens because, when using the ‘con-
stant Q model’, the amplitude of the atmospheric tides
become almost infinite for tidal frequencies σ = 0, which
prevents the rotation rate from evolving into negative val-
ues (Fig. 2). The time needed to reach the stabilization
is also longer because Qf = 49.9 corresponds to a weaker
dissipation.

When planetary perturbations are added (Fig. 16b), we
can isolate the same distinct three areas corresponding to
different evolutions as in the standard model, though in
the zone of mixed states, we practically find only the two
final possibilities for the spin (F+

0 and F−π ).

3.2.2 Near viscous (or linear) model

The evolution of the tidal dissipation corresponding to a
‘linear model’ can be directly obtained from the expression
of the interpolated model (Eq.2) setting Qf = 0:

lim
Qf→0

bg(σ) =
k2σ

nQn
= k2σ∆tg . (15)

However, for fast rotation rates the gravitational tides dis-
sipation becomes too strong, and incompatible with the
condition (4). We thus preferred to use here an interpo-
lated model, but which behaves like the linear model for
a wider range of tidal frequencies than the standard one,
choosing a fast dissipation factor Qf = 30. The numerical
results (Figs. 16c,d) give rise to a different kind of evo-
lution. Indeed, in absence of planetary perturbations we
observe a large augmentation of the retrograde states F−0
zone, at the expense of the other retrograde final state F−π .

The reason is the inverse as for the constant Q model: a
linear model reduces the amplitude of the variations of the
rotation rate (ω̇), and it becomes easier to cross the tidal
frequencies σ = 0. Also, as the dissipation is stronger,
gravitational tides acting before the formation of the at-
mosphere are able to lower rapidly the obliquities.

The minimal critical initial obliquity which allows an
evolution into the retrograde final state F−π is now al-
ways higher than 100◦, that is, about 10◦ more than the
boundaries of the chaotic zone. Once the effects of plan-
etary perturbations are taken into account, in the zones
of mixed states, we only count the two final states F+

0

and F−0 , since the retrograde final states F−π cannot be
reached by simple diffusion in the chaotic zone. In addi-
tion, we also observe that the entire zone corresponding to
the retrograde final states F−0 in the non perturbed case,
is replaced by a mixed zone, even for slow initial rotation
periods and high initial obliquities. Indeed, most of the
paths leading to the final state F−0 are close to the paths
leading to F+

0 (Fig. 3), and even a short journey of the
obliquity in the chaotic zone is enough to exchange these
two evolutions. We thus find that a constant Q model
favors the final state F−π , while the linear one favors F−0 .

3.3 Atmosphere

In the standard model, we considered that the effect of the
atmosphere starts 300 million years after the planetary
formation and grows linearly to the present values within
500 million years (Eq.8). To analyze the consequences
of its formation date on the dynamical evolution of the
spin, we have plotted in figure 17 the evolution for a late
formation of a dense atmosphere. In this example, we
assume that the formation of the atmosphere only starts
after the end of the last heavy bombardment (some 800
million years after the Solar System formation) and that
the present stage is attained in 200 million years, that is
with a weight function ζ(t) (see Eq.8),

ζ(t) =





0 if t ≤ 0.8 Ga
(tGa − 0.8)/0.2 if 0.8 Ga < t < 1.0 Ga

1 if t ≥ 1.0 Ga
(16)

In absence of planetary perturbations (Fig. 17a), and for
initial rotation periods faster than about Pi = 7 days, the
results are similar to those of the standard model (Fig. 4).
Indeed, for a fast rotating planet (ω À n), the effect of the
atmosphere on the rotation rate can be neglected. There
still remains, even for fast rotation rates, a small contribu-
tion to the obliquity (see V2), and we can observe a slight
displacement to the right of the critical obliquities sepa-
rating the different final states zones. This difference be-
comes larger as the initial rotation gets slower. For Pi ' 9
days and ε ' 135◦, we have a sudden modification in the
shape of the separating line between the two retrograde
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Figure 17: Final states of Venus’ spin for a late formation of
the atmosphere. For initial obliquity (εi ∈ [0◦, 180◦]) and period
(Pi ∈ [3 d, 12 d]) we plotted the final evolutions for an atmosphere
that starts its accretion 800 million years after the Solar System
formation and that attains its present stage in 200 million years.
In the upper left corner of the perturbed picture (b), we notice the
presence of a large number of the retrograde final states F−0 due to
a previous passage trough the 1:1 resonance.

final states F−0 and F−π . This apparent discontinuity is
linked to the date of the atmosphere’s formation. Before
0.8 Ga, for those initial conditions, the obliquity has al-
ready attained a temporary equilibrium position εe due to
gravitational tides alone (V2, Eq.69):

εe = arccos (2n/ω) . (17)

As soon as the effect of the atmosphere begins, this equi-
librium is disrupted and the obliquity starts to change
again.

When planetary perturbations are added (Fig. 17b), for
initial rotation periods faster than Pi = 7 days we observe
similar patterns as for the standard model (Fig. 10). As in
Fig. 16d, the zones previously occupied by the retrograde
final state F−0 are transformed in zones of mixed states F+

0

and F−0 . Nevertheless, in the upper left corner of Fig. 17b,
normally fully occupied by the direct rotation final states
F+

0 , we notice the presence of a large number of retrograde
final states F−0 . This remarkable phenomenon was first
seen in (V1) and it was explained in detail in (V2). For a
late introduction of the atmosphere, tidal dissipation can
slow down the planet to the synchronous rotation state.
However, due to the permanent CMF effect resulting from

the forced obliquity induced by planetary perturbations,
Venus has a great probability of skipping this resonance
and continue to slow down to an equilibrium rotation rate
ωe < n such that (V2, Eq.116):

ωe ' n(1− %δε2) . (18)

Once the atmospheric torque becomes important, the
planet will evolve into the final state F−0 according to the
evolutionary tendencies plotted in Fig. 2a. For the stan-
dard model, the probability of capture in the 1:1 resonance
is very small, as it is show in Fig. 18. Nevertheless, even
when the capture in the resonance occurs, the atmospheric
torque obliges the planet to leave the previous equilibrium
state (see V2, section 4.6.2). The later is the formation of
the atmosphere (or stronger is the dissipation), the larger
is the zone occupied by the F−0 final states in the top of
the picture, as we will see in section 4 (Figs. 22, 23).
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Figure 18: Probability of capture in the 1:1 resonance. Using
the dissipation parameters of the standard model, we plotted the
capture probability of the planet as a function of the forced obliquity
δε. (V2, Eq.120).

3.4 Core-mantle friction

The difficulty in modeling the CMF effect comes essen-
tially from two unknown parameters: the effective viscos-
ity ν and the non-hydrostatic core ellipticity δEc. The un-
certainty on δEc is about one order of magnitude, while ν
covers thirteen orders of magnitude (Lumb and Aldridge,
1991). However, Ec appears as a square (cube in the tur-
bulent regime) in the dynamical equations, while the ef-
fective viscosity enters as a square root (V2, Eq.52). This
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reduces the impact of ν, but increases it for Ec. Their
contribution to the Reynolds’ number (Re) is (V2, Eqs.55,
56):

Re =
(αRc cos ε sin ε)2

ωνE2
c

, (19)

where Rc is the planet’s core radius. Turbulence usually
sets in for Re ∼ 105 to 106. Thus, high values of ν and Ec
delay turbulent friction, but since the doubtfulness upon ν
is about six times greater than for E2

c , it is essentially the
effective viscosity that determines the onset of turbulence.

3.4.1 Effective viscosity

In order to estimate the consequences of the effective vis-
cosity in the final evolution of Venus, we performed two
experiments, with ν = 10−4 m2 s−1 and ν = 10−2 m2 s−1

(Fig. 19). We observe two distinct behaviors. For ν =
10−4 m2 s−1 (left hand side pictures) we hardly differenti-
ate the results from those of the standard model (where
ν = 10−6 m2 s−1), which contrasts with the case where
ν = 10−2 m2 s−1 (right hand side pictures).

For small values of the effective viscosity, the CMF ef-
fect only becomes important for slow rotation rates, after
the onset of turbulence (only the time needed to reach the
final states is little shorter). We plotted in Fig. 21, the
change of the different coupling parameters κ with the ro-
tation rate ω. According to the definition of the transition
Reynolds number (RT ) given in (V2, Eq.76), the onset of
turbulence always occurs at the intersection of κ(lam.)
with κ(turb.). Thus, for a giving ν value, the correct cou-
pling parameter κ to use in the dynamical equations is
given by the maximal value of κ(lam.) and κ(turb.). Usu-
ally, for δEc ' 4δEd, the CMF effect becomes efficient for
ω values within 3n and 4n, that is, for log10(ω/n) ∼ 0.5.
Since, for ν = 10−4 m2 s−1 and ν = 10−6 m2 s−1 the on-
set of turbulence occurs in the fast rotation regime, the
main contribution of these two CMF effects to dynamical
equations is thus identical and the final picture remains
essentially unchanged.

On the other hand, for ν = 10−2 m2 s−1, the onset of
turbulence occurs in the slow rotation regime. This means
that when CMF effect becomes efficient, the friction is still
laminar, and therefore stronger than it was in the previ-
ous situations. The main consequence will be a strong
reduction in the number of the retrograde final states F−0 .
Indeed, since the CMF effect is much more efficient here
than in the standard model, it will quickly bring the obliq-
uity into one of its stability points (ε = 0◦ or ε = 180◦),
preventing the rotation rate ω to become smaller than
n. As a consequence, when planetary perturbations are
considered, the zone of mixed states is predominantly oc-
cupied by the two final states F+

0 and F−π .
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Figure 21: Variation of the coupling parameter κ with the
rotation rate. Each line represents κ for different values of the
effective viscosity and in two different regimes. The onset of tur-
bulence always occurs in the interception of κ(lam.) with κ(turb.).
Then, for a giving ν value, the correct coupling parameter κ to take
into dynamical equations is given by the maximal value of κ(lam.)
and κ(turb.). We used δEc ' 4δEd (Herring et al., 1986).

3.4.2 Core ellipticity

The effect of the core ellipticity Ec is opposite to the ef-
fect of the effective viscosity ν. Moreover, according to
expression (19), a smaller value of Ec anticipates the on-
set of turbulence, giving rise to a dependency of dynamical
equations in E−3

c . In Figs. 20a,b we plotted the results of
a numerical simulation where the non-hydrostatic core el-
lipticity is δEc = 2.5 × 10−5, that is, twice smaller than
for the standard model. The CMF effect is thus stronger,
and we obtain an identical behavior as for a strong effec-
tive viscosity (Figs. 19c,d). However, in presence of plan-
etary perturbations (Fig. 20b), the final states are more
scattered than in the case of a strong effective viscosity
(Fig. 19d). In fact, for a small core ellipticity, when plan-
etary perturbation are not present, the critical obliquities
for transition into the different final states, correspond to
lower initial obliquities.

Another important difference between the two cases is
the presence, in the upper left corner of Fig. 20b, of a
concentration of retrograde final state F−0 , in a similar way
as for a late introduction of the atmosphere (Fig. 17b).
Here, the atmosphere grows at the same rate as in the
standard model, but the stronger CMF decelerates much
faster the low initial obliquities (that wander in the chaotic
zone), allowing initial conditions with slowest period to
approach the synchronous rotation state before 300 Ma.
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Figure 19: Final states of Venus’ spin for different CMF effective viscosities. For initial obliquity (εi ∈ [0◦, 180◦]) and period
(Pi ∈ [3 d, 12 d]) we plotted the final evolutions for ν = 10−4 m2 s−1 (left) and for ν = 10−2 m2 s−1 (right). In the first case the final
picture resemble the standard model (Fig. 15a,b) because CMF friction is essentially turbulent, therefore, independent of ν. However, for
ν = 10−2 m2 s−1, CMF is still laminar in the slow rotation regime, then stronger than in the standard model (Fig. 21).
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Figure 20: Final states of Venus’ spin for different CMF core non-hydrostatic ellipticity. For initial obliquity (εi ∈ [0◦, 180◦])
and period (Pi ∈ [3 d, 12 d]) we plotted the final evolutions for δEc = 2.5×10−5 ' 2δEd (left) and for δEc = 10×10−5 ' 8δEd (right). The
effect of Ec is opposite to the effect of ν: a small Ec increases the strength of the CMF effect. In presence of planetary perturbations (b,d)
we notice the presence of a large number of retrograde final states F−0 , though due to different reasons in each case: a previous passage
through the 1:1 resonance (left) and a small critical obliquity (right).
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In Figs. 20c,d, we have chosen a non-hydrostatic core
ellipticity δEc = 10−4, twice larger than for the standard
model. This reduces substantially the CMF effect, which
is only present for very slow rotation rates. The late ap-
pearance of a strong CMF causes the planet to take more
time to reach a final state (given by the labeled lines).
Usually, the final states F−0 are associated with this aug-
mentation in the stabilization time, but in absence of plan-
etary perturbations (Fig. 20c), the retrograde final states
F−0 almost disappear. This is because close to the criti-
cal points σ = 0 (in particular for ω = n), the CMF in
the turbulent regime is not strong enough to counterbal-
ance the effect of atmospheric tides (see Fig. 2). However,
once planetary perturbations are considered (Fig. 20d),
the CMF effect is increased during the passage through
the critical points σ = 0 (see V2, section 4.5) and the ret-
rograde final states F−0 regain a large portion of the final
evolutions.

4 Stronger dissipation

The results presented in the previous sections for the long-
term evolution of Venus, are in good agreement with the
results from (V1). In the final evolution picture, we always
count three distinct zones: for high initial obliquities, a
large area corresponding to the retrograde final state F−π ;
for low initial obliquities and fast initial rotation rates, a
zone of mixing final states; and the remaining area, where
the direct rotation final states F+

0 are prevailing. The
main difference with respect to (V1) concerns this last
area, where we found in (V1) a large zone of retrograde
final states F−0 (Fig. 22c). As explained in section 3.3, this
behavior corresponds to a previous passage through the
synchronous resonance. This was made possible because
in (V1) the effect of the atmosphere is only considered
after 1.0 Ga, and because all the dissipative parameters
are stronger than in the present standard model (Qf =
21.5, ν = 10−2 m2 s−1, δEc = 9.75× 10−6).

In Fig. 22a we plotted the final evolutions picture
in presence of planetary perturbations for a dissipation
model like the standard one, but where Qf = 21.5 and
ν = 10−2 m2 s−1. Results are now shown starting at the
initial period Pi = 2 days, since the stronger dissipation
allows faster initial periods. The final picture is more or
less a combination of the scenarios of Fig. 16d (Qf = 30)
and Fig. 19d (ν = 10−2 m2 s−1), but in the top left corner
of this figure we notice the presence of the retrograde final
state F−0 , as it was observed in Fig. 17b (late introduction
of the atmosphere) and in Fig. 20b (small core ellipticity).
The atmosphere model is still the one of the standard
model (8) , but the stronger dissipation allows the paths
with slow initial periods to skip the 1:1 resonance, before
the effect of the atmosphere becomes efficient. In Fig. 22b,
we use the same choice of parameters as for Fig. 22a, ex-

F+
0 F−0 F−π

Q=21.5, ν=10−2m2s−1, (0.3→ 0.8Ga)

Q=21.5, ν=10−2m2s−1, (0.8→ 1.0Ga)

CorreiaandLaskar(2001)

Figure 22: Final states of Venus’ spin for strong dissipa-
tion models. For initial obliquity (εi ∈ [0◦, 180◦]) and period
(Pi ∈ [2 d, 10.5 d]) we plotted the final evolutions for a successive
increase in the dissipation models and the date of the formation of
the atmosphere. We notice a progressive replacement of the number
of direct rotation final states F+

0 by the retrograde final states F−0 .

cept for the formation of the atmosphere, which is given by
expression (16). Thus, with the combination of a strong
dissipation with a late atmosphere, we observe like in (V1)
an almost total replacement of the direct final state F+

0

zone, by a zone of retrograde final states F−0 (to be com-
pared with Fig. 22c).
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Figure 23: Final states of Venus’ spin for different atmosphere evolutions. For initial obliquity (εi ∈ [0◦, 180◦]) and period
(Pi ∈ [2 d, 10.5 d]) we plotted the final evolutions for a successive increase the date of the formation of the atmosphere using the same
dissipation parameters from Correia and Laskar (2001). In (a) the atmosphere is present from the beginning of the evolution. In (b), (c)
and (d) the atmosphere density grows linearly during 0.5 Ga, but starting at different epochs. We notice a progressive replacement of the
number of direct rotation final states F+

0 by the retrograde final states F−0 .

4.1 Introduction of the atmosphere

To stress the importance of the date of formation of the
atmosphere on Venus, in the case of a planet with a strong
dissipation, we performed a last set of numerical simula-
tions, using the same dissipative model and parameters
as in (V1), but introducing the atmosphere at different
epochs (Fig. 23). In (V1) (Fig. 22c), the atmosphere
was abruptly introduced 1 Ga after the formation of the
planet. In fact, the final picture does not change much
for a linear introduction of the atmosphere between 0.5
and 1.0 Ga (Fig. 23d). When the atmosphere is present
from the very beginning (Fig. 23a), we observe that the
large area occupied by the retrograde rotation final states
F−0 is replaced by a region where the direct rotation fi-
nal state F+

0 dominates (although F−0 is still present), in
a similar way as for the standard model. Indeed, since
the atmosphere is present from the beginning, the planet
never approaches the synchronous rotation state, in spite
of the strong dissipation. However, when the atmosphere
formation is delayed (Figs. 23b-d), the zone of retrograde
final states F−0 increases, in an identical replacement se-
quence as in Figs. 22a-c.

5 Conclusions

One of the main difficulties for the understanding of the
long term evolution of the spin of Venus arises from the un-
certainty of many of the involved geophysical parameters.
In the present study, we have chosen a set of parameters
which we believe to represent the most plausible values
for our current understanding of the planet. We called
this model the ‘standard model’. Its evolution is analyzed
here in full details, but as some of its parameters are only
loosely constrained, we also discussed the impact of their
possible variations. One of our main results is that in all

cases but one, the spin of Venus can always reach three of
the four final states of Venus (one of direct rotation, F+

0 ,
and two of retrograde rotation, F−0 and F−π ). The only
exception is the scenario with a constant Q model (see
section 3.2.1), where the final state F−0 is not attainable.
Although it was used in most of the previous studies on
Venus, we believe that this model is not realistic for slow
rotation rates, as the amplitude of thermal atmospheric
tides becomes infinite for a zero tidal frequency (σ = 0),
which prevents the CMF to reduce the rotation rate to
ω < n. Thus, we do not recommended to use this model
in further studies of slow rotating planets like Venus.

The consideration of the resonances between the pre-
cession frequency and the secular orbital frequencies, has
proven to be essential in the search for realistic scenar-
ios of evolution. Apart from the important effect of the
crossing of the chaotic zone (Laskar and Robutel, 1993),
a striking example is given by the secular resonance be-
tween the obliquity and the precession of the node of Nep-
tune’s orbit, which modifies the distribution of final states
for trajectories captured in this resonance. Furthermore,
the planetary perturbations eliminate the constraint upon
the critical obliquity that allows the evolution into a ret-
rograde final state. Indeed, as long as a trajectory crosses
the chaotic zone during its evolution, any of the three pos-
sible final spin evolutions can be expected, provided that
the critical obliquities lie inside this chaotic zone. This is
frequently the case, especially for a planet with fast initial
rotation.

In the present study, we have restricted our analysis to
initial rotation periods slower than 2 or 3 days. One may
question this choice as many of the Solar System planets
present a faster spin in our days. In fact, the initial rota-
tion period of Venus can be chosen as fast as we desire,
as long as we increase the dissipation, in order to reach
the present configuration within the age of the Solar Sys-
tem. This could be possible during the first billion years as
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proposed by several authors (eg. Burns, 1976, Lambeck,
1980), while some additional possibilities comes from the
recent work of Touma and Wisdom (2001). A scenario
with a faster initial period and a stronger dissipation can
be easily deduced with some proper rescaling of the var-
ious scenarios presented here (Eq.5), and it should not
modify substantially the general picture which is given in
the present work, which already revealed to be robust to
changes of parameters or models.
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patifs sur les variations à long terme des obliquités
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