Paper based on: R.J. Oosterbaan, J. Boonstra and K.V.G.K. Rao, 1996, "The energy balance of groundwater flow". Published in V.P.Singh and B.Kumar (eds.), Subsurface-Water Hydrology, p. 153-160, Vol. 2 of Proceedings of the International Conference on Hydrology and Water Resources, New Delhi, India, 1993. Kluwer Academic Publishers, Dordrecht, The Netherlands. ISBN: 978-0-7923-3651-8

R.J. Oosterbaan
International Institute for Land Reclamation and Improvement/ILRI P.O. Box 45, 6700 Wageningen, The Netherlands.

Abstract

. The energy balance of groundwater flow developed by Oosterbaan, Boonstra and Rao (1994), and used for the groundwater flow in unconfined aquifers, is applied to subsurface drainage by pipes or ditches with the possibility to introduce entrance resistance and/or (layered) soils with anisotropic hydraulic conductivities. Owing to the energy associated with the recharge by downward percolating water, it is found that use of the energy balance leads to lower water table elevations than when it is ignored.

The energy balance cannot be solved analytically and a computerized numerical method is needed. An advantage of the numerical method is that the shape of the water table can be described, which was possible with the traditional methods only in particular situations, like drains without entrance resistance, resting on an impermeable layer in isotropic soils

Table of contents

1. INTRODUCTION 1
2. PIPE DRAINS 4
3. NUMERICAL INTEGRATION 5
4. EXAMPLE OF A NUMERICAL SOLUTION 7
5. DITCHES 10
6. ENTRANCE RESISTANCE 11
7. ANISOTROPY 12
8. LAYERED (AN) ISOTROPIC SOILS 14
GENERAL CONCLUSIONS 17
REFERENCES 17

1. INTRODUCTION

Oosterbaan, Boonstra and Rao (1994) introduced the energy balance of groundwater flow. It is based on equating the change of hydraulic energy flux over a horizontal distance to the conversion rate of hydraulic energy into to friction of flow over that distance. The energy flux is calculated on the basis of a multiplication of the hydraulic potential and the flow velocity, integrated over the total flow depth. The conversion rate is determined in analogy to the heat loss equation of an electric current.

Assuming (1) steady state fluxes, i.e. no water and associated energy is stored, (2) vertically two-dimensional flow, i.e. the flow pattern repeats itself in parallel vertical planes, (3) the horizontal component of the flow is constant in a vertical cross-section, and (4) the soil's hydraulic conductivity is constant from place to place, they found that:

$$
\begin{equation*}
\frac{d J}{--}=-\frac{V x}{d X} \frac{R(J-J r)}{K x}-\frac{\mathrm{Vx} \cdot \mathrm{~J}}{\mathrm{Vx}} \tag{1}
\end{equation*}
$$

where:

```
J is the level of the water table at distance X, taken with respect to the level of the impermeable base of the aquifer (m)
Jr is a reference value of level J (m)
X is a distance in horizontal direction (m)
Vx is the apparent flow velocity at X in horizontal X-direction
    (m/day)
Kx is the horizontal hydraulic conductivity (m/day)
R is the steady recharge by downward percolating water stemming
    from rain or irrigation water (m/day)
dX is a small increment of distance X (m)
dJ is the increment of level J over increment dX (m)
dJ/dX is the gradient of the water table at X (m/m)
```

The last term of Equation 1 represents the energy associated with the recharge R. When the recharge R is zero, Equation 1 yields Darcy's equation. The negative sign before $V x$ indicates that the flow is positive when the gradient $d J / d X$ is negative, i.e. the flow follows the descending gradient, and vice versa.

Figure 1 shows the vertically two-dimensional flow of ground water to parallel ditches resting on a horizontal impermeable base of a phreatic aquifer recharged by evenly distributed percolation from rainfall or irrigation (R>0, m/day). At the distance $X=N(m)$, i.e. midway between the ditches, there is a water divide. Here the water table is horizontal.

At the distance $\mathrm{X} \leq \mathrm{N}$, the discharge of the aquifer equals
$Q=-R(N-X)\left(m^{2} /\right.$ day $)$ where the minus sign indicates that the flow is contrary to the X direction. From this water balance we find $V x=Q / J=-R(N-X) / J$ (m/day). With this expresssion for the velocity Vx, Equation 1 can be changed into:

$$
\begin{equation*}
\frac{\mathrm{dJ}}{--} \frac{\mathrm{R}(\mathrm{~N}-\mathrm{X})}{\mathrm{dX}} \frac{\mathrm{Kx} \cdot \mathrm{~J}}{\mathrm{Kr}-\mathrm{J}} \frac{\mathrm{~J}-\mathrm{J}}{\mathrm{~N}-\mathrm{X}} \tag{2}
\end{equation*}
$$

Setting $F=J-J o$, and $F r=J r-J$, where $J o$ is the value of J at $X=0$, i.e. at the edge of the ditch, it is seen that F represents the level of the water
table with respect to the water level in the ditch (the drainage level). Applying the condition that $d F / d X=0$ at $X=N$, we find from Equation 2 that Fr=Fn, where $F n$ is the value of F at $X=N$, and:

$$
\begin{equation*}
\frac{d F}{--}=\frac{R(N-X)}{------} \frac{\mathrm{Fn}-\mathrm{F}}{\mathrm{KX} \cdot \mathrm{~J}} \tag{3}
\end{equation*}
$$

Introducing the drain radius C (m), and integrating Equation 3 from $X=C$ to any value X , gives:

$$
\begin{align*}
& \mathrm{X} R(\mathrm{~N}-\mathrm{X}) \quad \mathrm{X} \mathrm{Fn}-\mathrm{F} \tag{4}
\end{align*}
$$

Integration of the last term in Equation 4 requires advance knowledge of the level Fn. To overcome this problem, a numerical solution and a trial and error procedure must be sought. Oosterbaan et al. gave a method of numerical solution and an example from which it was found that the water table is lower than calculated according to the traditional method, except at the place of the ditch.

In the following, the equations will be adjusted for calculating subsurface drainage with pipe drains or ditches that do not penetrate to the impermeable base, while entrance resistance may occur and the soil's hydraulic conductivity may be anisotropic.

Figure 1. Vertically two-dimensional flow of ground water to parallel ditches resting on the impermeable base of a phreatic aquifer rechar ged by evenly distributed percolation from rainfall or irrigation.

2. PIPE DRAINS

Figure 2 shows the vertically two-dimensional flow of ground water to parallel pipe drains with a radius C (m), placed at equal depth in a phreatic aquifer recharged by evenly distributed percolation from rainfall or irrigation (R>0, m/day). The impermeable base is taken horizontal with a depth $D>C$ (m) below the centre point of the drains. At the distance $X=N(m)$, i.e. midway between the drains, there is a water divide. Here the water table is horizontal.

We consider only the radial flow approaching the drain at one side, because the flow at the other side is symmetrical, and also only the flow approaching the drain from below drain level.

According to the principle of Hooghoudt (1940), the ground water near the drains flows radially towards them. In the area of radial flow, the cross-section of the flow at a distance X from the drains is formed by the circumference of a quarter circle with a length $1 / 2 \pi X$. This principle is conceptualized in Figure 2 by letting an imaginary impermeable layer slope away from the centre of the drain at an angle with a tangent $1 / 2 \pi$.

Figure 2. Vertically two-dimensional flow of ground water to parallel pipe drains placed at equal depth in a phreatic aquifer recharged by evenly distributed percolation from rainfall or irrigation.

The depth of the imaginary sloping layer at distance X, taken with respect to the centre point of the drain, equals $Y=\frac{1}{2} \Pi X(m)$, so that the vertical cross-section of the flow is equal to that of the quarter circle. At the drain, where $X=C$, the depth Y equals $Y c=1 / 2 \Pi C$, which corresponds to a quarter of the drain's circumference.

The sloping imaginary layer intersects the real impermeable base at the distance:

$$
\begin{equation*}
\text { Xi }=2 D / \pi \tag{5}
\end{equation*}
$$

The area of radial flow is found between the distances $X=C$ and $X=X i$. Beyond distance $X=X i$, the vertical cross-section equals $Y=D$.

To include the flow approaching the drain from above the drain level, the total vertical cross-section in the area of radial flow is taken as $J=Y+F$.

The horizontal component $V x$ of the flow velocity in the vertical section is taken constant, but its vertical component need not be constant. Now, Equation 4 can be written for two cases as:

$$
\begin{align*}
& \text { X R(N-X) X Fn-F } \tag{6a}
\end{align*}
$$

3. NUMERICAL INTEGRATION

For the numerical integration, the horizontal distance N is divided into a number (T) of equally small elements with length U, so that $U=N / T$. The elements are numbered $S=1,2,3, \ldots . ., T$.

The height F at a distance defined by the largest value of distance X in element S, is denoted as F_{S}. The change of height F over the S-th element is denoted as G_{s}, and found from:

$$
G_{S}=F_{S}-F_{S-1}
$$

The average value of height F over the S-th element is:

$$
\underline{F}_{S}=F_{S-1}+\frac{1}{2} G_{S-1}
$$

For the first step (S=i, see Equation 10 below), the value of $\underline{F}_{s}=\underline{F}_{i}$ must be determined by trial and error because then the slope $G_{s-1}=G_{i-1}$ is not known.

The average value of the horizontal distance X of the S-th element is found as:

$$
\underline{X}_{S}=U(S-0.5)
$$

The average value of depth Y over the S-th element is:

$$
\begin{array}{lll}
\underline{Y}_{S}=1 / 2 \pi \underline{X}_{S} & \text { when } & C<\underline{X}_{S}<X i \\
\underline{Y}_{S}=D & \text { when } & X i<\underline{X}_{s}<N \tag{7b}
\end{array}
$$

Equation 3 can now be approximated by:

$$
\begin{equation*}
G_{S}=U\left(A_{S}+B_{S}\right) \tag{8}
\end{equation*}
$$

where:

$$
A_{S}=R\left(N-\underline{X}_{s}\right) / Z_{S}
$$

with:

$$
\begin{array}{lll}
Z_{S}=K x\left(\underline{Y}_{s}+\underline{F}_{S}\right) & \text { when } & C<\underline{X}_{s}<X i \\
Z_{S}=K x\left(D+\underline{F}_{s}\right) & \text { when } & X i<\underline{X}_{s}<N \tag{9b}
\end{array}
$$

and:

$$
B_{S}=\left(\underline{F}_{S}-F_{T}\right) /\left(N-\underline{X}_{S}\right)
$$

where F_{T} is the value of \underline{F}_{S} when $S=T$. The factor Z_{S} can be called transmissivity ($\mathrm{m}^{2} / \mathrm{day}$) of the aquifer.

Now, the height of the water table at any distance X can be found, conform to Equations $6 a$ and 6 b , from:

$$
F_{\mathrm{S}}=\sum_{\mathrm{i}}^{\mathrm{S}} \mathrm{G}_{\mathrm{S}}
$$

where i is the initial value of the summations, found as the integer value of:

$$
\begin{equation*}
i=1+C / U \tag{11}
\end{equation*}
$$

so that the summation starts at the outside of the drain.
Since F_{S} depends on B_{S} and B_{S} on F_{S} and F_{T}, which is not known in advance, Equations 8 and 10 must be solved by trial and error.

Omitting the last terms of Equations 6 a and 6b, i.e. ignoring part of the energy balance, and further in similarity to the above procedure, a value $\mathrm{G}_{\mathrm{s}}{ }^{*}$ can be found as:

$$
\begin{equation*}
\mathrm{G}_{\mathrm{s}}{ }^{*}=\mathrm{R} \cdot \mathrm{U}\left(\mathrm{~N}-\underline{X}_{\mathrm{S}}\right) / \mathrm{Z}_{\mathrm{S}}{ }^{*} \tag{12}
\end{equation*}
$$

where:

$$
\begin{array}{lll}
\mathrm{Z}^{*}=K x\left(\underline{Y}_{S}+\underline{F}_{S}^{*}\right) & \text { when } & \mathrm{C}<\underline{X}_{S}<\mathrm{Xi} \\
\mathrm{Z}_{\mathrm{S}}{ }^{*}=\mathrm{Kx}\left(\mathrm{D}+\underline{F}_{S^{*}}\right) & \text { when } & \mathrm{Xi}<\underline{X}_{S}<\mathrm{N}
\end{array}
$$

and:

$$
\underline{F}_{s}{ }^{*}=F_{S-1} *+\frac{1}{2} G_{s-1} *
$$

Thus the height of the water table, in conformity to Equation 10, is:

$$
\begin{equation*}
\mathrm{FS}_{\mathrm{S}}{ }^{\star}=\Sigma \stackrel{\mathrm{S}}{\mathrm{i}} \mathrm{G}_{\mathrm{S}}{ }^{*} \tag{13}
\end{equation*}
$$

This equation will be used for comparison with Equation 10 and with traditional solutions of Hooghoudt's drainage equations.

4. EXAMPLE OF A NUMERICAL SOLUTION

To illustrate the numerical solutions we use the same data as in an example of drain spacing calculation with Hooghoudt's equation given by Ritzema (1994) :

```
N = 32.5 m C = 0.1 m
Kx = 0.14 m/day R = 0.001 m/day
    D = 4.8 m Fn* = 1.0 m
```

The calculations for the numerical solutions were made on a computer with the EnDrain program (see www.waterlog.info/endrain.htm). The results are presented in Tables 1 and 2 and in Figure 3.

Table 1 gives the values of height $F_{S}(m)$ and gradients $G_{S} / p, A_{S}, B_{S}$ at some selected values of distance X, using Equations 8 and 10 (i.e. using the energy balance) with steps of $U=0.05 \mathrm{~m}$, so that in total 650 steps are taken with a large number of iterations. Smaller values of step U do not yield significantly different results.

Table 2 gives the values of height $F_{S} *$ and gradient $G_{s} * / p$, at the same selected values of distance X of Table 1 and 2, using Equations 12 and 13 (i.e. ignoring part of the energy balance).

It is seen from Table 2.2 that the Fn^{*} value (i.e the value of F^{*} at $\mathrm{X}=\mathrm{N}=32.5 \mathrm{~m}$) equals 0.99 m . This is in close agreement with the value Fn*=1.0 m used by Ritzema.

Table 1. Results of the calculations of the height of the water table at some selected distances with a numerical and iterative solution of the hydraulic energy balance for the conditions described the example of Section 4, using Equations 8 and 10 with steps $U=0.01 \mathrm{~m}$.

Distance from drain center X (m)	Height of the watertable F (m)	```Gradient of F G/U (m/m)```	Gradient needed for the flow A (m/m)	Adjustment of A due to the energy of recharge B $(\mathrm{m} / \mathrm{m})$
0.75	0.229	0.146	0.162	-0.017
1.5	0.302	0.069	0.084	-0.015
3	0.369	0.028	0.042	-0.013
6	0.446	0.024	0.036	-0.012
9	0.515	0.021	0.032	-0.010
12	0.574	0.018	0.027	-0.009
15	0.625	0.015	0.023	-0.008
18	0.667	0.013	0.019	-0.006
21	0.701	0.010	0.015	-0.005
24	0.727	0.007	0.011	-0.004
27	0.745	0.005	0.007	-0.002
30	0.755	0.002	0.003	-0.001
32.5	0.758	0.000	0.000	0.000

Table 2. Results of the calculations of the level the water table at some selected distances using a numerical solution of Equations 12 and 13 (i.e. ignoring part of the energy balance), with steps $U=0.05 \mathrm{~m}$, for the conditions described in the example of Section 4.

Distance from drain center X (m)	Height of the water table F* (m)	$\begin{aligned} & \text { Gradient } \\ & \text { of } F^{*} \\ & G^{*} / \mathrm{U}(\mathrm{~m} / \mathrm{m}) \end{aligned}$
0.75	0.240	0.161
1.5	0.324	0.083
3	0.410	0.042
6	0.524	0.036
9	0.624	0.031
12	0.710	0.027
15	0.784	0.022
18	0.845	0.018
21	0.894	0.014
24	0.931	0.011
27	0.958	0.007
30	0.972	0.003
32.5	0.976	0.000

EnDrain program at www. waterlog.info/endrain.htm

Figure 3. The shape of the water table calculated with the energy balance equation and the Darcy equation (traditional) for the conditions given in the example. Graph produced by the EnDrain program.

Figure 4. Vertical and horizontal dimensions of ditch drains.

Comparison of the tables learns that the $F n$ value (i.e. the value of F at $\mathrm{X}=\mathrm{N}=100 \mathrm{~m}$) of Table 1 ($\mathrm{Fn}=0.76$) is considerably smaller than the Fn* value $(0.98 \mathrm{~m})$ of Table 2 (i.e. without energy balance). This is also shown in Figure 3.

When a value of elevation $F n=1.0 \mathrm{~m}$ is accepted, the spacing can be considerably wider than 65 m .

5. DITCHES

The principles of calculating the groundwater flow to ditches are similar as those to pipe drains.

When the width of the waterbody in the ditch (Wd) is twice its depth (Dd), then the principles are exactly the same (the ditches are neutral). Only the radius C of the drain must be replaced by an equivalent radius $\mathrm{Ce}=\mathrm{Dd}=\frac{1}{2} W \mathrm{Wd}$ (Figure 4). In conformity to the flow near pipe drains, the water enters the ditch from one side radially over a perimeter $\frac{1}{2} \pi C e$. The numerical calculations start at the distance $X=\frac{1}{2}$ Wd from the central axis of the ditch. This means that the initial value i (Equation 11) is changed into the integer value of:

$$
\begin{equation*}
i^{\prime}=1+\frac{1}{2} W d / U \tag{14}
\end{equation*}
$$

The corresponding value of the horizontal distance X is indicated by Xi'.
The depth Y of the sloping impermeable layer is taken with respect to the water level in the drain. Otherwise the calculations are the same as for pipes.

For other situations (Figure 4), we distinguish wide ditches (${ }^{1}$ 2Wd $>$ Dd) from narrow ditches ($1 \frac{1}{2} W d<$ Dd).

For wide ditches, we replace the radius C by an equivalent radius $C w=D d$, and we define the excess width as $W=\frac{1}{2} W d-D d$. The initial value i is again changed into i' of Equation 14. Further, the value \underline{Y}_{s} in Equation 7a changes into:

$$
\begin{equation*}
\underline{Y}_{s} \prime^{\prime}=\frac{1}{2} \Pi X_{S} \quad\left[1 / 2 W d<X_{S}<X_{i}{ }^{\prime}\right] \tag{15}
\end{equation*}
$$

and the value of Z_{s} in Equation $9 a$ changes into:

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{s}}{ }^{\prime}=\mathrm{Kx}\left(\underline{\mathrm{~F}}_{s}+\underline{\mathrm{Y}}_{s}^{\prime}+\mathrm{We}\right) \quad\left[\frac{1}{2} W \mathrm{Wd}<\mathrm{X}_{\mathrm{s}}<\mathrm{Xi}^{\prime}\right] \tag{16}
\end{equation*}
$$

For narrow ditches, the radius C is replaced by an equivalent radius $C n=$ $\frac{1}{2} W d$, and we define the excess dept as De = Dd-1 $\frac{1}{2} W d$. Like before, the initial value i is changed into i'. Further, the factor Z_{s} in Equation $9 a$ is changed into:

$$
\begin{equation*}
\mathrm{Z}_{s} "=\mathrm{Kx}\left(\underline{\mathrm{~F}}_{s}+\underline{Y}_{s}+\mathrm{De}\right) \quad\left[\mathrm{Dd}<\mathrm{X}_{\mathrm{S}}<\mathrm{Xi} \mathrm{I}^{\prime}\right] \tag{17}
\end{equation*}
$$

An example of results of calculations with the energy balance is given in Table 3 for different ditches but otherwise with the same data as in the example for pipe drains. All ditches have a wetted surface area of $2 \mathrm{~m}^{2}$.

From the table it is seen that the elevations Fn of the water table midway between the ditches are about 70% of the Fn value (0.76) calculated for pipe drains. Reasons are the larger equivalent radius, which reduces the contraction of and resistance to the the radial flow, and the larger surface width, which reduces the width of the catchment area.

Table 3. Results of the calculations of the height Fn of the water table, taken with respect to the drainage level, midway between ditches of different shapes, using a numerical and iterative solution of the hydraulic energy balance for the the conditions described the example of Section 4, using Equations 8 and 10 with steps $U=0.01 \mathrm{~m}$ and making the adjustments as described in Section 5.

Width wd (m)	Depth Dd (m)	Equivalent radius (m)	Type of ditch	Elevation Fn (m)
2	1	1	Neutral	0.55
3	0.667	0.667	Wide/shallow	0.52
1	2	0.5	Narrow/deep	0.52

6. ENTRANCE RESISTANCE.

When entrance resistance is present, the water level just outside the drain is higher than inside by a difference $F e$, the entrance head. Now, the first value \underline{E}_{i} of \underline{E}_{s} is changed into $\underline{E}_{i}{ }^{\prime}=\underline{F}_{i}+F e$. Otherwise the calculation procedure remains unchanged.

An example of the results of calculations with the energy balance for pipe drains with varying entrance heads, but otherwise with the same data as in the first example for pipe drains, is shown in Table 4. It is seen that the increment of elevation Fn is a fraction of the entrance head Fe. However, with increasing heads Fe, the fraction increases somewhat: from 56\% (for $\mathrm{Fe}=0.1$) to 69% (for $\mathrm{Fe}=0.5$). Hence, the adverse effect of entrance head increases more than proportionally.

Table 4. Results of the calculations of the height Fn of the water table, taken with respect to the drainage level, midway between drain pipes, with different entrance heads, using a numerical and iterative solution of the hydraulic energy balance for the conditions described the example of Section 4, using Equations 8 and 10 with steps U=0.01 m and making the adjustments as described in Section 6.

Entrance head Fe (m)	Elevation Fn (m)	Increment (i) of Fn	
		$\mathrm{i}=\mathrm{Fn}-0.755$	i/Fe in \%
0.0	0.757	-	-
0.1	0.813	0.056	56
0.2	0.878	0.121	60
0.3	0.950	0.193	64
0.4	1.025	0.268	67
0.5	1.103	0.346	69

7. ANISOTROPY

The hydraulic conductivity of the soil may change with depth and be different in horizontal and vertical direction. We will distinguish a horizontal conductivity Ka of the soil above drainage level, and a horizontal and vertical conductivity Kb and Kv below drainage level. The following principles are only valid when $K v>R$, otherwise the recharge R percolates downwards only partially and the assumed water balance $\mathrm{Q}=-\mathrm{R}(\mathrm{N}-\mathrm{X})$ is not applicable.

The effect of the conductivity Kv is taken into account by introducing the anisotropy ratio $A=\sqrt{ }(\mathrm{Kb} / \mathrm{Kv})$, as described for example by Boumans (1979). The conductivity Kb is divided by this ratio, yielding a transformed conductivity: $K t=K b / A=\sqrt{ }(K b . K v)$. As normally $K v<K b$, we find $A>1$ and $K t<K b$. On the other hand, the depth of the aquifer below the bottom level of the drain is multiplied with the ratio. Hence the transformed depth is: Dt=A.D

The distance Xi=2D/п (Equation 5) of the radial flow now changes into $X t=2 D t / \pi$. When $A>1$, the transformed distance $X t$ is larger than Xi. The effect of the transformation is that the extended area of radial flow and the reduced conductivity Kt increase the resistance to the flow and enlarges the height of the water table.

Including the entrance resistance, the transmissivity Z_{s} (Equations 9a and 9b), for different types of drains, now becomes:

```
pipe drains: \(\quad Z_{S}=1 / 2 \Pi K t . \underline{X}_{S}+(K b-K t) D d\)
    \(+\mathrm{Ka} \cdot \underline{\mathrm{F}}_{\mathrm{S}} \quad\left[\mathrm{C}<\underline{\mathrm{X}}_{\mathrm{S}}<\mathrm{Xt}\right]\)
neutral ditches: \(\quad Z_{S}=1 / 2 \Pi K t . \underline{X}_{S}+(\mathrm{Kb}-\mathrm{Kt}) \mathrm{Dd}\)
    \(+\mathrm{Ka} \cdot \underline{\mathrm{F}}_{\mathrm{S}} \quad\left[\mathrm{Ce}<\underline{\mathrm{X}}_{S}<\mathrm{Xt}\right]\)
wide ditches: \(\quad Z_{S}=1 / 2 \Pi K t . \underline{X}_{S}+(K b-K t) D d\)
    \(+\mathrm{Kv} \cdot \mathrm{We}+\mathrm{Ka} \cdot \underline{\mathrm{F}}_{\mathrm{S}} \quad\left[\mathrm{CW}<\underline{\mathrm{X}}_{S}<\mathrm{Xt}\right]\)
narrow ditches: \(\quad Z_{S}=1 / 2 \pi K t . \underline{X}_{S}-\frac{1}{2} K t . W d\)
    \(+\mathrm{Kb} \cdot \mathrm{Dd}+\mathrm{Ka} \cdot \underline{\mathrm{F}}_{\mathrm{S}} \quad\left[\mathrm{Cn}<\underline{\mathrm{X}}_{S}<\mathrm{Xt}\right]\)
all drains: \(\quad \mathrm{Z}_{\mathrm{S}}=\mathrm{Kt} . \mathrm{Dt}+\mathrm{Ka} \cdot \underline{\mathrm{F}}_{\mathrm{S}} \quad\left[\mathrm{Xt}<\underline{\mathrm{X}}_{\mathrm{S}}<\mathrm{N}\right]\)
```

The suggestion of Boumans to use the wetted perimeter of the ditches to find the equivalent radius, without making a distinction between wide and narrow drains, is not followed as this would lead to erroneous results for narrow and very deep drains, especially when they penetrate to the impermeable layer. In the latter case there is no radial flow but the use of the wetted perimeter would introduce it. The proposed method does not.

Table 5 gives an example of energy balance calculations for pipe drains in soils with anisotropic hydraulic conductivity using $K a=K b=0.14$, Ka in the previous examples, and $K v=0.14,0.014$ and 0.0014 . This yields anisotropy ratios $A=1,3.16$, and 10 respectively. All other data are the same as in the previous examples.

The table shows that the height Fn increases with increasing ratio A and the increase is higher for the smaller pipe drains than for the larger ditches. This is due to the more pronounced contraction of the flow to the pipe drains than to the ditches and the associated extra resistance to flow caused by the reduction of the hydraulic conductivity for radial flow from Kb to Kt.

The narrow/deep ditches show by far the smallest increase of the height Fn, due to their deeper penetration into the soil by which they make use of the higher horizontal conductivity Kb .

Unfortunately, it is practically very difficult to establish and maintain such deep drains at field level.

When the height Fn would be fixed, one would see that the spacing in anisotropic soils is by far the largest for the narrow and deep ditches. Neutral drains would have smaller spacing than wide drains, i.e. the advantage of wide ditches in isotropic soils vanishes in anisotropic soils. The pipe drains would have the smallest spacing.

Table 5. Results of the calculations of the height Fn (m) of the water table, taken with respect to the drainage level, midway between pipe drains and ditches in anisotropic soils with a fixed value of the horizontal hydraulic conductivity $K b=0.14 \mathrm{~m} / \mathrm{day}$, using a numerical and iterative solution of the hydraulic energy balance for the conditions described the previous examples, using Equations 8 and 10 with steps U=0.01 m and making the adjustments as described in Section 7.

	Height Fn of the water table (m)			
	Pipe drains	Neutral	Wide	Narrow
	$\mathrm{C}=0.1 \mathrm{~m}$	Wd=2 m	Wd=3 m	Wd=1 m
Kv (m/day)		$\mathrm{Dd}=1 \mathrm{~m}$	$\mathrm{Dd}=0.667 \mathrm{~m}$	$\mathrm{Dd}=2 \mathrm{~m}$
0.14	0.76	0.55	0.52	0.52
0.014	1.13	0.69	0.73	0.59
0.0014	1.63	1.00	1.11	0.74

8. LAYERED (AN)ISOTROPIC SOILS

The soil may consist of distinct (an)isotropic layers. In the following model, three layers are discerned.

The first layer reaches to a depth D1 below the soil surface, corresponding to the depth Wd of the water level in the drain, and it has an isotropic hydraulic conductivity Ka. The layer represents the soil conditions above drainage level.

The second layer has a reaches to depth D2 below the soil surface (D2>D1). It has horizontal and vertical hydraulic conductivities K2x and K2v respectively with an anisotropy ratio A2. The transformed conductivity is Kt2 $=\mathrm{K} 2 \mathrm{x} / \mathrm{A} 2$.

The third layer rests on the impermeable base at a depth D3 (D3>D2). It has a thickness T3 = D3 -D2 and horizontal and vertical hydraulic conductivities Kx3 and Kv3 respectively with an anisotropy ratio A3. The transformed conductivity is $K t 3=K 3 x / A 3$, and the transformed thickness is Tt3 $=$ A3. T3

When the thickness $T 3=0$ and/or the conductivity $K 3=0$ (i.e. the third layer has zero transmissivity and is an impermeable base), the depth D2 may be both larger or smaller than the bottom depth Db of the drain. Otherwise, the depth D2 must be greater than the sum of bottom depth and the (equivalent) radius ($C^{*}=C, C e, C w$, or $C n$) of the drain, lest the radial flow component to the drain is difficult to calculate.

For pipe drains, neutral and wide ditch drains, and with $D 2>\mathrm{Dw}+\mathrm{C}^{\star}=$ Dw + Dd, the transformed thickness of the second soil layer below drainage level becomes Tt 2 = $\mathrm{A} 2(\mathrm{D} 2-\mathrm{Dw})$. For narrow ditches we have similarly $\mathrm{Tt} 2=$ A2 (D2-Dw- $\frac{1}{2} W d+D d$)

With the introduction of an additional soil layer, the expressions of transmissivity \underline{Z}_{s} in Section 7 need again adjustment, as there may two distances Xt (Xt1 and Xt2) of radial flow instead of one, as the radial flow may occur in the second and the third soil layer:

```
Xt1 = 2T2t/п
Xt2 = Xt1 + 2Tt3/п
```

With these boundaries, the transmissivities become:
pipe drains:

$$
Z_{\mathrm{s}}=1 / 2 \Pi K t 2 \cdot \underline{X}_{\mathrm{s}}+(\mathrm{Kx} 2-\mathrm{Kt} 2) \mathrm{Dd}+\mathrm{Ka} \cdot \underline{F}_{\mathrm{s}}
$$

$\left[C<\underline{X}_{s}<X t 1\right]$
neutral ditches:

$$
Z_{S}=1 / 2 \Pi K t 2 \cdot \underline{X}_{s}+(K x 2-K t 2) D d+K a \cdot \underline{F}_{s} \quad\left[\mathrm{Ce}<\underline{X}_{s}<X t 1\right]
$$

wide ditches:

$$
Z_{s}=1 / 2 \Pi K t 2 \cdot \underline{X}_{s}+(\mathrm{Kx} 2-\mathrm{Kt} 2) \mathrm{Dd}+\mathrm{Kv} 2 \cdot \mathrm{We}+\mathrm{Ka} \cdot \underline{\mathrm{~F}}_{s} \quad\left[\mathrm{Cw}<\underline{\mathrm{X}}_{s}<\mathrm{Xt} 1\right]
$$

narrow ditches:

$$
Z_{\mathrm{s}}=1 / 2 \pi K t 2 \cdot \underline{X}_{\mathrm{s}}-1 / 2 \mathrm{Kt2} \cdot \mathrm{Wd}+\mathrm{Kx} 2 \cdot \mathrm{Dd}+\mathrm{Ka} \cdot \underline{F}_{\mathrm{s}} \quad\left[\mathrm{Cn}<\underline{X}_{\mathrm{s}}<\mathrm{Xt}\right]
$$

all drains:

$$
\begin{array}{ll}
\mathrm{Z}_{\mathrm{s}}=\mathrm{Kt} 2 \cdot \mathrm{Tt} 2+\frac{1}{2} \Pi \mathrm{Kt} 3 \cdot \underline{\mathrm{X}}_{s}+\mathrm{Ka} \cdot \underline{\underline{F}_{s}} & {\left[\mathrm{X} t 1<\underline{\mathrm{X}}_{s}<\mathrm{Xt} 2\right]} \\
\mathrm{Z}_{\mathrm{s}}=\mathrm{Kt} 2 \cdot \mathrm{Tt} 2+\mathrm{Kt} 3 \cdot \mathrm{Tt} 3+\mathrm{Ka} \cdot \underline{\underline{F}_{s}} & {\left[\underline{\mathrm{X}}_{s}>\mathrm{Tt} 2+\mathrm{Tt} 3\right]}
\end{array}
$$

An example will be given for pipe drains situated at different depths within the relatively slowly permeable second layer having different anisotropy ratios and being underlain by an isotropic, relatively rapidly permeable, third layer with different conductivities. We have the following data:

$\mathrm{N}=38 \mathrm{~m}$	C	$=0.05 \mathrm{~m}$	R
$\mathrm{D} 1=1.0 \mathrm{~m}$	D 2	$=2.0 \mathrm{~m}$	D 3
N	$=6.007 \mathrm{~m} / \mathrm{day}$		
$\mathrm{N}=38 \mathrm{~m}$	$\mathrm{Kx} 2=0.5 \mathrm{~m} / \mathrm{day}$	$\mathrm{Kx} 3=1.0 \mathrm{~m} / \mathrm{day}$	
$\mathrm{Ka}=0.5 \mathrm{~m} /$ day	$\mathrm{Kv} 2=0.5 \mathrm{~m} / \mathrm{day}$	$\mathrm{Kv} 3=1.0 \mathrm{~m} / \mathrm{day}$	
and variations:	$\mathrm{Kv} 2=0.1 \mathrm{~m} / \mathrm{day}$	$\mathrm{Kv} 2=0.05 \mathrm{~m} / \mathrm{day}$	
	$\mathrm{Kx} 3=\mathrm{Kv} 3=2.0 \mathrm{~m} /$ day	$\mathrm{Kx} 3=\mathrm{Kv} 3=5.0 \mathrm{~m} / \mathrm{day}$	

The results are shown in Table 6.

Table 6. Results of the calculations of the height Fn (m) of the water table, taken with respect to the drainage level, midway between pipe drains in a layered soil of which the second layer, in which the drains are situated, has varying anisotropy ratios with a fixed value of the horizontal hydraulic conductivity Kx2=0.5 m/day, using a numerical and iterative solution of the hydraulic energy balance for the conditions described the example of Section 8, using Equations 8 and 10 with steps $U=0.01 \mathrm{~m}$ and making the adjustments as described in Section 8.

Hydr. cond. 3rd layer $\begin{gathered} \text { Kx3=Kv3 } \\ (\mathrm{m} / \text { day }) \end{gathered}$	```Vert. hydr. cond. Kv2 2nd layer (m/day)```	Anisotropy ratio A2 2nd layer (-)	Height Fn of the water table above drainage level (m)
1.0	0.5	1.0	0.54
1.0	0.1	2.24	0.75
1.0	0.05	3.13	0.86
2.0	0.5	1.0	0.45
2.0	0.1	2.24	0.67
2.0	0.05	3.13	0.79
5.0	0.5	1.0	0.37
5.0	0.1	2.24	0.60
5.0	0.05	3.13	0.74

The results indicate that both the conductivity of the 3rd layer and the anisotropy of the $2 n d$ layer, in which the drains are situated, exert a considerable influence on the height Fn. In the Netherlands, it is customary to prescribe a minimum permissible depth of the water table of 0.5 m at a discharge of $7 \mathrm{~mm} /$ day, which is exceeded on average only once a year. In the example, with a drain depth of 1.0 m , this condition is fulfilled when the height Fn is at most 0.5 m . Here,
this occurs when Kv 2 is at least $0.5 \mathrm{~m} /$ day and when $\mathrm{Kx} 3=\mathrm{Kv} 3$ is at least 2.0 m. To meet the prescription in the other cases of the example, either the drain depth should be deeper or the drain spacing narrower.

GENERAL CONCLUSIONS

Application of the energy balance of groundwater flow to pipe and ditch drains leads to lower elevations of the water table or, if the elevation is fixed, to a wider drain spacing. Also, it can give the shape of the water table. Further, it can take entrance resistance and anisotropy of the soil's hydraulic conductivity into account. Calculations with the energy balance need be done on a computer because of the cumbersome iterative, numerical procedure required.

REFERENCES

Boumans, J.H. (1979). Drainage calculations in stratified soils using the anisotropic soil model to simulate hydraulic conductivity conditions. In: J.Wesseling (Ed.), Proceedings of the International Drainage Workshop, p. 108-123. Publ. 25, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands.

Oosterbaan, R.J., J.Boonstra and K.V.G.K.Rao, 1996. The energy balance of groundwater flow. In: V.P.Singh and B.Kumar (eds.), Subsurface-Water Hydrology, p. 153-160, Vol.2 of Proceedings of the International Conference on Hydrology and Water Resources, New Delhi, India, 1993. Kluwer Academic Publishers, Dordrecht, The Netherlands. ISBN: 978-0-7923-3651-8

Ritzema, H.P. (1994). Subsurface flow into drains. In: H.P. Ritzema (Ed.), Drainage Principles and Applications, Publication 16, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands, p. 263-304. ISBN: 9070753339

