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ABSTRACT. An energy balance of groundwater flow is introduced. It is based 
on equating the change of hydraulic energy flux over a horizontal distance 
to the conversion rate of hydraulic energy into to friction of flow over 
that distance. The energy flux is calculated on the basis of a 
multiplication of the hydraulic potential with the flow velocity, and is 
integrated over the total flow depth. The conversion rate is determined in 
analogy to the heat loss equation of an electric current. The hydraulic 
energy balance is applied to the steady-state flow of water in a phreatic 
aquifer recharged by downward percolation stemming from rainfall or 
irrigation, and a quantitative example is given using a numerical solution. 
It is shown that the gradient of the water table is smaller than that 
calculated with the current methods, which do not take into account the 
energy associated with the incoming percolation water. 
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1. ENERGY BALANCES 
 

1.1 Energy fluxes 
 
The hydraulic potential (P) can be defined as the energy per unit volume of 
water (ε/m3, where ε represents energy units). The flow velocity (V) of 
groundwater can be defined as the discharge per unit cross-sectional area 
perpendicular to the direction of flow (m3/day per m2). The product P.V 
therefore represents an energy flux, i.e. an energy flow per unit cross-
sectional area (ε/day per m2). 
 Figure 1 shows a longitudinal section of two-dimensional groundwater flow 
(i.e. the flow pattern repeats itself in the planes parallel to the plane of 
the drawing) in a phreatic aquifer, i.e. an aquifer with a free water table. 
The water table is recharged by downward percolating water (R m/day) 
stemming from rainfall and/or irrigation. A coordinate system, with X (m) 
giving the horizontal and Z (m) the vertical distance from the origin, is 
also indicated.  The horizontal component of the flow velocity in any point 
(X,Z) is indicated by Vx. The Z-levels of the impermeable layer and the 
water table in a vertical cross-section are shown as I and J respectively. 
   The total energy flow through a vertical cross-section (Ex, ε/day per m 
width in the direction perpendicular to the longitudinal section) is 
 
       J 
  Ex = ∫[Vx(P-Pr)]dZ       (1.1) 
       I 
 
where Pr is a reference value of P, independent of X and Z, to be determined 
in accordance to the boundary conditions of the flow. 
 
 
 

    
 
 Figure 1. A vertical cross-section in a longitudinal section along  
 two-dimensional groundwater flow in a phreatic aquifer recharged 
 by percolation. 
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The change of the energy flow Ex per unit distance in a horizontal direction 
is 
 
  dEx   d  J 
  ─── = ── ∫[Vx(P-Pr)]dZ 
  dX    dX I 
 
Using Leibnitz's rule, and assuming that the impermeable layer is horizontal 
(I=0, dI/dX=0),the above equation can be written as 
 
  dEx  J  d                         dJ 
  ─── = ∫[──{Vx(P-Pr)}]dZ + Vj(Pj-Pr)── 
  dX   0 dX                         dX 
 
where Vj and Pj are the values of Vx and P at the water table. 
 Partial differentiation of the product Vx(P-Pr) in the previous Equation, 
and noting that dPr/dX=0, yields 
 
 dEx   J  dP      J       dVx               dJ 
 ─── = ∫(Vx──)dZ + ∫[(P-Pr)───]dZ + Vj(Pj-Pr)──   (1.2) 
    dX   0   dX      0       dX                dX 
 
 

1.2. The hydraulic head 
 
The energy units ε, expressed in S.I. units, are kg.m2/day2, so that the 
units ε/m3 of the potential P become kg/day2 per m. The potential P can be 
converted into an hydraulic head as follows 
 
  H = P/ρ.g 
where: 
 
  H is the hydraulic head (m) 
  ρ is the mass density of water (kg/m3) 
  g is the gravitational acceleration (m/day2) 
 
With the conversion of potential P into head H, Equation 1.2 becomes 
 
 dEx/dX   J  dH      J       dVx               dJ 
 ────── = (Vx──)dZ + [(H-Hr)───]dZ + Vj(Hj-Hr)── 
  ρ.g     0  dX      0       dX                dX 

∫ ∫   (1.3) 

 
F4rom elementary hydraulics we know that the head H consists of three 
components: the elevation head (HZ=Z), the pressure head (HY) and the 
velocity head (HV). The velocity head of groundwater flow is negligibly 
small, so that H=Z+HY. At a phreatic surface, i.e. at the free water table, 
the pressure head corresponds to atmospheric pressure, which can be taken as 
zero reference pressure, so that HY=0. Hence, for Z=J, i.e. at the water 
table, we find HZ=J=J. 
 Using the Dupuit assumptions that the velocity Vx, the head H, and the 
gradient dVx/dX are constant with height Z, so that Vj=Vx and H=HZ=J=J, and 
writing Jr for Hr, Equation 1.3 can be simplified to 
 
  dEx/dX         dJ          dVx           dJ 
  ────── = (Vx.J)── + J(J-Jr)─── + Vx(J-Jr)──   (1.4) 
   ρ.g           dX          dX            dX 
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The assumption that the horizontal velocity Vx is constant with height is 
realistic when the resistance to vertical flow is small compared to that to 
horizontal flow.  
 
 

1.3. The water balance 
 
When the velocity Vx is constant with height Z, the two-dimensional 
discharge Q (m3/day per m width of cross-section, or m2/day) equals Q=Vx.J, 
and its differential coefficient, i.e. the change of discharge Q per unit 
change in distance X, becomes: 
 
  dQ   d(Vx.J)    dJ     dVx 
  ── = ───── = Vx ── + J ─── = R 
  dX     dX       X      dX 

 
Hence, Equation 1.4 can be simplified to: 
 
  dEx/dX        dJ 
  ───── = (Vx.J)── + R(J-Jr)      (1.5) 
    ρ.g          dX 

 

1.4. Energy conversion by friction of flow 
 
The electric current in a conduit is known to lose electrical energy by its 
conversion to heat. The conversion rate is proportional to the resistance of 
the conduit and the square value of the current (the law of Joule). The 
resistance is inversely proportional to the conductance. In analogy, the 
conversion of hydraulic energy to friction of flow is taken as 
 
       J(Vx)2  
  Fx = [───]
       0 Kx 

∫ dZ 

 
where Kx is the horizontal hydraulic conductivity of the soil (m/day). 
Further, it is stated that the energy loss rate (as in Equation 1.5) is 
proportional to the negative value of the friction losses. Thus we obtain: 
 
  dE/dX 
  ──── = - Fx 
   ρ.g 

 
Combining the previous two equations, and assuming again that the velocity 
Vx is constant with height Z, one obtains 
 
  dEx/dX      (Vx)2
  ───── = - J ───        (1.6) 
   ρ.g         Kx 
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1.5. The hydraulic energy balance for steady state flow 
 
When there is no change in storage of water, and consequently there is no 
change in storage of hydraulic energy (i.e. energy storage associated with 
water storage), we have a steady state: the hydraulic energy losses are 
fully converted into frictional energy. It can then be found from Equation 
1.5 and 1.6 that: 
 
     dJ   R(J-Jr)    (Vx)2
  Vx ── + ──────  = - ── 
     dX     J         Kx 

 
The minus sign in the above equation assures that the energy losses are 
positive when the gradient dJ/dX is negative, which occurs when the flow Vx 
is positive (i.e. in the positive x-direction or, in Figure 1, to the 
right), and vice versa. Division by Vx and rearrangement gives: 
 
  dJ     Vx   R(J-Jr) 
  ── = - ── - ────       (1.7) 
  dX     Kx   Vx.J 

 
 

2. PHREATIC AQUIFERS WITH RECHARGE 
 

2.1. The hydraulic energy balance equation 
 
Figure 2 shows the two-dimensional flow of groundwater in a phreatic aquifer 
recharged by evenly distributed percolation from rainfall or irrigation 
(R>0, m/day). At the distance X=N (m) there is a water divide, here the 
water table is horizontal. The impermeable base is taken horizontal. The 
height of the water table above the impermeable base is taken equal to J 
(m). At the distance X≤N, the discharge of the aquifer equals Q=-R(N-X) 
(m2/day). We find: 
 
  Vx = Q/J = -R(N-X)/J 
 
With this, Equation 1.7 can be changed into 
 
  dJ   R(N-X)   Jr-J 
  ── = ────── - ──── 
  dX    Kx.J    N-X 

 
Setting F=J-Jo and Fr=Jr-J, where Jo is the value of J at X=0, and applying 
the condition that dF/dX=0 when X=N, we find Fr=Fn, where Fn is the value of 
F at X=N, and 
 
  dF   R(N-X)  Fn-F 
  ── = ───── - ───       (2.1) 
  dX    Kx.J   N-X 
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 Figure 2.  Flow conditions of groundwater in a phreatic aquifer  
 recharged by percolation.  
 
 

2.2. Integrations 
 
Integrating Equation 2.1 from X=0, where F=0, to any value X, gives 
 
      X R(N-X)    X Fn-F 
  F = ∫[─────]dX - ∫[───]dX      (2.2) 
      0 Kx.J      0 N-X 
 
The integration of the last term requires advance knowledge of Fn. To 
overcome this problem, a numerical solution and a trial and error procedure 
is given in Section 2.4. 
 

2.3. The current method of analysis 
 
When, according to the current method of analysis, the Darcy equation is 
used with the water balance and the Dupuit assumptions to describe the 
groundwater flow under the same conditions, one finds instead of Equation 
2.2 (e.g. Wesseling 1973): 
 
      X R(N-X) 
  F* = [─────]
       0 Kx.J 

∫ dX        (2.3) 

 
Here, the symbol F* is used instead of F to indicate the current method of 
analysis. In the following, a numerical solution of Equation 2.4 is given, 
but the equation can also be solved directly as 
 
  F* = ½R.N2/Kx.J        (2.4) 
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2.4. Numerical integrations 
 
For the numerical integrations, the horizontal distance N is divided into a 
number (T) of equal small elements with length U, so that U=N/T. The 
elements are numbered S = 1, 2, 3, ...., T. The heights F and J of the water 
table in the point defined by the largest value of distance X in element S 
are denoted as FS and JS. The change of height F over the S-th element in the 
zone of radial flow is denoted as GS and found from 
 
  GS = FS - FS-1
 
The average value of height F over the S-th element is  
 
  FS = FS-1 + ½GS-1
 
and the average of the cross-sectional height J of flow is 
 
  JS = JS-1 + ½GS-1
 
The average value of the horizontal distance X of the S-th element from the 
center of the drain is found as 
 
  XS = U(S - 0.5) 
 
Equation 2.1 can now be approximated by: 
 
  GS = U(AS+BS)        (2.5) 
where 
  AS = R.(N-XS)/K.JS
 
  BBS = (FS-FT)/(N-XS) 
 
where FT is the value of FS when S=T. Now, the height of the water table at 
any distance X can be found, conform to Equation 2.2, from: 
 
   S 
  FS =  GS  
   1 

Σ        (2.6) 

 
Since FS depends on BS and BS on FT, which is not known in advance, Equation 
2.6 must be solved by trial and error.  
 In similarity to the above procedure, the value GS* (where the symbol * 
is used to indicate the numerical solution of Equation 2.3 instead of 2.2, 
i.e. not using the energy balance but the current method of analysis) is 
found as 
 
  GS* = R.U(N-XS)/K.JS*        (2.7) 
 
where JS*=JS-1*+½GS-1*. Thus the height of the water table, in conformity to 
Equation 2.4, is: 
 
    S 
  F * = Σ G *         (2.8) S S
    1 
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2.5. Example of a numerical solution 
 
To illustrate the numerical solutions we use the following data: 
 
 N   =  100.0    m   J0  =  10.0   m 
 Kx  =    1.0    m/day  R   =  0.01  m/day 
 U   =    0.5    m 
 
For the example, the calculations with Equations 2.5, 2.6, 2.7 and 2.8 were 
made on a computer. The results are presented in the Tables 1 and 2 and in 
Figure 3. 
 Table 1 gives the values of height FS (m) and gradients GS/p, AS, BS at 
some selected values of distance X, using Equations 2.5 and 2.6 (i.e. using 
the energy balance) with steps of U=0.5 m, so that in total 200 steps are 
taken with a large number of iterations per step. Smaller values of step U 
do not yield significantly different results. 
 Table 2 gives the values of height FS* and gradient GS*/p, at the same 
selected values of distance X of Table 1 and 2, using Equations 2.7 and 2.8 
(i.e. ignoring the energy balance). It is seen from Table 2.2 that the Fn* 
value (i.e the value of F* at X=N=100 m) equals 4.142 m. This is in 
agreement with the value Fn*=4.142 m that can be calculated directly from 
Equation 2.4. 
 Comparison of the tables learns that the Fn value (i.e. the value of F at 
X=N=100 m) of Table 1 (Fn=2.972) is considerably smaller than the Fn* value 
(4.142 m) of Table 2 (i.e. without energy balance). This is also shown in 
Figure 3. 
 
(Postscript. The computer program used was later refined and it uses steps 
of U=0.01 m standard. The program is available under the name of EnDrain, 
see www.waterlog.info/endrain.htm ) 
 

   
 

Figure 3.  The shape of the water table calculated with the energy 
balance equation and the Darcy equation for the conditions given in the 
example. 

http://www.waterlog.info/endrain.htm
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Table 1.  Results of the calculations of the height of the 
Water table using a numerical and iterative solution of the 
hydraulic energy balance with steps U=0.5 m for the condi- 
tions described the example, using Equations 2.5 and 2.6. 
---------------------------------------------------------- 
Distance   Height   Gradient    Gradient     Adjustment 
           of the     of F     needed for    of A due to  
           water-               the flow     the energy  
           table      G/U          A         of recharge 
  X (m)    F (m)     (m/m)       (m/m)        B (m/m) 
---------------------------------------------------------- 
   1       0.070     0.069       0.099       -0.029   
   2       0.138     0.068       0.097       -0.029   
   5       0.336     0.064       0.092       -0.028   
  10       0.643     0.059       0.085       -0.026   
  20       1.181     0.049       0.072       -0.022   
  30       1.630     0.041       0.060       -0.019   
  40       2.004     0.034       0.050       -0.016   
  50       2.310     0.027       0.041       -0.013   
  60       2.553     0.021       0.032       -0.011   
  70       2.739     0.016       0.024       -0.008   
  80       2.869     0.010       0.016       -0.005   
  90       2.947     0.005       0.008       -0.003   
  95       2.966     0.003       0.004       -0.001   
  98       2.971     0.001       0.002       -0.001   
  99       2.972     0.001       0.001       -0.000 
 100 (N)   2.972     0.000       0.000       -0.000 
--------------------------------------------------------- 
 
 
 
Table 2.  Results of the calculations of the level of 
the water table using a numerical solution of Equation 
2.7 and 2.8 (i.e. without energy balance), with steps 
U=0.5 m, for the conditions described in the example. 
---------------------------------------------------- 
 Distance           Height of the          Gradient 
                     water table            of F* 
   X (m)               F* (m)             G*/U (m/m) 
---------------------------------------------------- 
    1                  0.099                0.099  
    2                  0.196                0.097  
    5                  0.476                0.092  
   10                  0.909                0.083  
   20                  1.662                0.069  
   30                  2.288                0.058  
   40                  2.806                0.047  
   50                  3.229                0.038  
   60                  3.564                0.030  
   70                  3.820                0.022  
   80                  4.000                0.015  
   90                  4.107                0.007  
   95                  4.133                0.004  
   98                  4.141                0.002  
   99                  4.142                0.001  
  100 (N)              4.142                0.000  
---------------------------------------------------- 
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