Planet Formation (in the Solar System)	
	ne solar system were formed in a disk netary nebula (or, solar nebula) ~4.6 Gyr ago.
	as more extra-solar systems are discovered dust disk of HD141569A
concepts:	 Minimum-mass solar nebula. Planetesimal hypothesis. Frost line.
application: test:	4) Story about giant & terrestrial planet formation.5) Isotope dating results; possible problems.

2) Can planets form in the solar nebula by direct gravitational collapse, just like how stars are thought to form?

No. At least not likely in the case of M_{MMSN} (too low by a factor of ~20)

Tidal gravity from the Sun far exceeds the self-gravity of a sphere of gas (tidal bulge >~ size of sphere that wants to collapse)

3) The planetesimal hypothesis

Planets are formed step-by-step, starting from dust particles as small as a virus

- Disk cools, rock/icy grains condense, forming micron-sized dust grains (mass ~10⁻¹⁵kg, micron)
- 2) Sticking together, these form pebbles (~1 g, cm)
- 3) Quick collidisions lead to planetesimals (~10¹² kg, km) --> the asteroid belt?

4) A few planetesimals dominate -- planetary embryos (~ 10¹⁸ kg, 100 km)

- 5) Embryos slowly collide, form planetary cores (~ 10²¹ kg, 1000 km, proto-Earth)
- 6) Cores accrete gas and become gaseous planets (~10²² kg, proto-Jupiter)

High angular momentum, does not fall into the Sun directly
Likely had the same elemental composition as the Sun Sun: H 70% H, He 28%, C, N, O ~1.3%, Ne ~ 0.17%, Mg, Al, Si,S, Ca, Fe, Ni ~0.36% --- also seen in meteorites
A substantial nebula likely existed for a few Myr, then, either accreted to the star or blown away by stellar winds & UV + a *small* fraction locked into planets

Minimum-mass solar nebula

Current mass sum: ~ 1.5 M_{J} ~ 0.0015 M_{\odot} , originally must be a lot more

Reconstruction of a minimum disk (lower limit):

Solar nebula: the **disk** surrounding the newly formed Sun

Replenish all planets back to solar abundance, add them all up (Mercury: *350, Earth: *235, Jupiter: *5, Saturn:*8, Uranus:*15...) Yields a minimum mass for the solar nebula

 $M_{\rm MMSN} \sim 10 \ M_{\rm H} \sim 0.01 \ M_{\odot}$

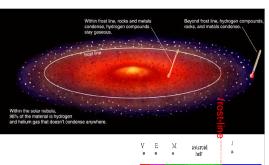
density decreases outward

at least 85% lost (preceding generations of planets?) used as starting points in theoretical modeling compatible with many other observed disks

Evolution of the nebula depends on its initial mass (stability, temperature...)

steps 2 & 3: dust somehow builds up to planetesimals (stickiness? grav. influence?)

Many of these planetesimals survive to today



Not everthing is collected into planets---there is left-over junk 1) Some irregular moons – captured planetesimals 2) Kuiper belt -- primordial planetesimals formed at ~30 AU 3) Oort cloud -- planetesimals ejected outward by Jupiter & co. 4) Early bombardment stage (first ~700 Myr)

These pristine (un-differentiated, un-processed) materials provide a window to the early solar system.

frost line

Distance from Sun where temperature was low enough for hydrogen compounds (H_2O ,...) to condense into ices, between the present-day orbits of Mars and Jupiter

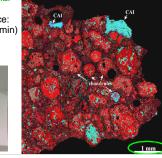
300

Average Temperature at that Distance

Distance from sun

100 K

frost-line ~4AU


- 1) Rocky planetesimals inside frost-line *T*_{melt} < 1300 K, rocks & metals, refractory Asteroid belt, terrestrial planets, volatiles in gas phase
- Icy planetesimals outside frost-line (H₂O: T_{melt} ~150 K @ near vacuum pressure) T_{melt} < 150 K (roughly), H₂O-ice, carbon-grains, volatile
 - Cores of giant planets, Kuiper belt & Oort cloud (comets),
- Higher mass-fraction in solids outside the frost-line (solid mass jumps by ~5) Carbon, oxygen ~ twice more abundant than heavier elements

When was the Solar system formed? ---- Isotope dating

The pristine, leftover junk is useful: meteorites (asteroids, comets, Moon, Mars...) (pristine: abundances of parent, daughter & non-radiogenic element un-altered) not melted since condensation, no differential settling, trap some gas

85% of all meterorite finds are chrondrites (meteoric stone containing chrondrules)

- --- Abundance pattern remarkably close to the Sun except for H & He, some volatiles, primordial
- --- Chrondrules and CAI (calcium-aluminuminclusion) appear to have been melted once: heating to ~1700 K + a rapid cooling (~10 min) Not melted since!

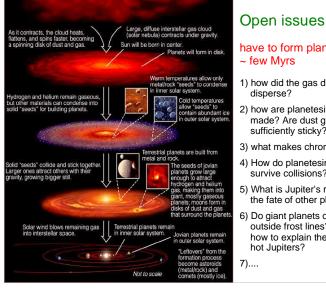
Giant & terrestrial planet formation

5th step: planetesimals conglomerate into 10³ km-sized cores

If core massive enough, H & He can be accreted ----> a giant planet

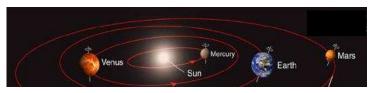
Jupiter, Saturn, Uranus & Neptune all have cores+gaseous env.

If core does not grow fast enough it cannot accrete gas ----> a terrestrial planet


Explains

- 1) Giant planets gas rich, terrestrial no gas.
- Giant planets formed outside frost line. Enriched in metals + icy-rocky core of 10-20 M_⊕ Outside: more solid (ice), smaller velocity, gas easier to accrete
- Terrestrial planets formed inside frost line. Contain rocky, refractory material.
- 4) seems to explain our system, but correct?

Pb-Pb isochrons Isotope dating: results Efremovka CAI E4 = 4567.17 ± 0.70 1. The AGE of the solar system (from chrondrites): 4567.2±0.6 Myrs e = 4567.4 ± 1.1 N MSWD = 1.09 Dated using long-lived radio-active 0.636 nuclei (e.g., ²³⁸U -> ²⁰⁶Pb, t_{1/2}=4.47 Gyr) 2 Mvr vounae ⁰⁷Pb/ 2. There was a last supernova a few Myr before AGE = 4564.66 ± 0.63 N Dating using short-lived radio-active nuclei MSWD = 0.51 (e.g. ⁶⁰Fe, t_{1/2}=1.5Myrs & ²⁶Al, t_{1/2}=0.7 Myr) 0.620 SS formation triggered by a supernova? 0 000 0.001 0.003 0.004 0.002 0.005 204 Ph/ ²⁰⁶Ph 3. Earth formed within ~10 Myr after AGE Relative age dating can be rather accurate using short-lived nuclei (e.g. 12 Hf \sim 182 Hf \sim 4. Moon formed within ~30 Myr after AGE


 Moon formed within ~30 Myr after AGE Age of Moon (since last melt) ~4.5 Gyr, Apollo samples & lunar meteorites. Oldest rock on Earth ~4.28 Gyr (Nuvvuagittuq, Hudson Bay, QC) (rare, most old rock ~3.8 Gyr, after late heavy bombardment) Mars (since last melt) ~4.5 Gyr (Martian meteorites ALH84001 --life?) Age of oldest fossils ~ 3.5 Gyr (blue-green algae)

have to form planets in

- 1) how did the gas disk
- 2) how are planetesimals made? Are dust grains sufficiently sticky?
- 3) what makes chrondrules?
- 4) How do planetesimals survive collisions?
- 5) What is Jupiter's role in the fate of other planets?
- 6) Do giant planets only form outside frost lines? If so, how to explain the extra-solar

Origin of the Moon

Earth is unique among terrestrial planets in having a large moon radius ~ 1737 km, mass ~ 10²³ kg ~ 1% Earth mass ~ Mercury

- 1) largest satellite/planet mass ratio (except. Pluto/Charon)
- 2) Moon raises tide. Junar cycles
- 3) Moon always faces us with the same side (nodding -> see 59% of Moon)
- 4) Moon stabilizes Earth's spin axis/climate

Lunar Geology

no atmosphere, dominated by cratering

- 1) "land" is older & pock-marked early solar-system Terrae (lands) heavy-bombardment stage craters
- ~4 Gvr old 2) "sea" is younger, smoother huge impacts, molten lava (dark) end of bombardment stage
- 3) little cratering after the heavy stage, no re-surfacing surface pulverized by micro-meteroites (Earth is constantly resurfaced; soil made by weathering & life)

Maria (seas) smooth 3.1-3.8 Gyr old

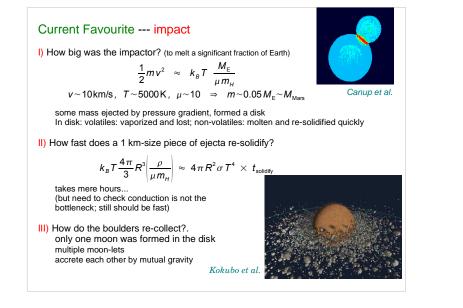
4) clues to formation from comparison with Earth ~400 kg of lunar rocks returned in '70s lunar rock has little water and other volatiles (low boiling T material) iron-deficient (small iron core, < 200km) similar isotope pattern (e.g. Oxygen, different from meteorites)

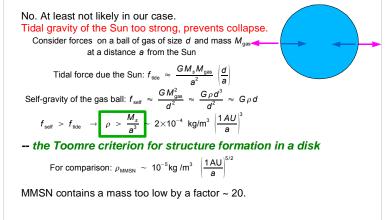
Various hypothesis for the origins of Planetary Satellites - and of our Moon

capture

Phoebe (@S), Deimos/Phobos(@M) Moon: why oxygen isotopes? small initial separation? very massive?

> fast spinning planet if above break-up speed Moon: why volatiles gone?


accretion disk


primordial accretion disk lo, Europa... (@J) Moon: why ecliptic plane? why volatiles gone?

> molten ejecta recollect also explain Pluto-Charon? Moon: iron-poor, volatile poor isotope ratios similar

Extra Notes: Can planets form in the solar nebula by gravitational collapse -- just like how stars form?

