Planet Formation (in the Solar System)

Planets in the solar system were formed in a disk ---proto-planetary nebula (or, solar nebula)--~ 4.6 Gyr ago.
We have an incomplete theory on how this worked But improving as more extra-solar systems are discovered...

concepts:	1) Minimum-mass solar nebula. 2) Planetesimal hypothesis. 3) Frost line.

application: 4) Story about giant \& terrestrial planet formation. test: 5) Isotope dating results; possible problems.
2) Can planets form in the solar nebula by direct gravitational collapse, just like how stars are thought to form?
No. At least not likely in the case of $\mathrm{M}_{\text {MMSN }}$ (too low by a factor of ~ 20)
Tidal gravity from the Sun far exceeds the self-gravity of a sphere of gas (tidal bulge >~ size of sphere that wants to collapse)
3) The planetesimal hypothesis

Planets are formed step-by-step, starting from dust particles as small as a virus

1) Disk cools, rock/icy grains condense,
forming micron-sized dust grains (mass $\sim 10^{-15} \mathrm{~kg}$, micron)
2) Sticking together, these form pebbles ($\sim 1 \mathrm{~g}, \mathrm{~cm}$)
3) Quick collidisions lead to planetesimals $\left(\sim 10^{12} \mathrm{~kg}, \mathrm{~km}\right)-->$ the asteroid belt?
4) A few planetesimals dominate -- planetary embryos ($\sim 10^{18} \mathrm{~kg}, 100 \mathrm{~km}$)
5) Embryos slowly collide, form planetary cores ($\sim 10^{21} \mathrm{~kg}, 1000 \mathrm{~km}$, proto-Earth)
6) Cores accrete gas and become gaseous planets $\left(\sim 10^{22} \mathrm{~kg}\right.$, proto-Jupiter)

Solar nebula: the disk surrounding the newly formed Sun

- High angular momentum, does not fall into the Sun directly
- Likely had the same elemental composition as the Sun

Sun: H $70 \% \mathrm{H}, \mathrm{He} 28 \%, \mathrm{C}, \mathrm{N}, \mathrm{O} \sim 1.3 \%, \mathrm{Ne} \sim 0.17 \%, \mathrm{Mg}$, $\mathrm{Al}, \mathrm{Si}, \mathrm{S}, \mathrm{Ca}, \mathrm{Fe}, \mathrm{Ni} \sim 0.36 \%$

- A substantial nebula likely existed for a few Myr,
then, either accreted to the star or blown away by stellar winds \& UV + a small fraction locked into planets

Minimum-mass solar nebula

Current mass sum: $\sim 1.5 M_{J} \sim 0.0015 M_{\odot}$, originally must be a lot more
Reconstruction of a minimum disk (lower limit):
Replenish all planets back to solar abundance, add them all up Mercury: *350, Earth: *235, Jupiter: *5, Saturn:*8, Uranus:*15...
Yields a minimum mass for the solar nebula
$M_{\text {MMSN }} \sim 10 M_{\mathrm{J}} \sim 0.01 M_{\odot}$
density decreases outward
at least 85% lost (preceding generations of planets?)
cod atible with many other observed modeling
Evolution of the nebula depends on its initial mass (stability, temperature...)
steps 2 \& 3: dust somehow builds up to planetesimals (stickiness? grav. influence? Many of these planetesimals survive to today
an interplanetary dust particle

Not everthing is collected into planets----there is left-over junk 1) Some irregular moons - captured planetesimals
2) Kuiper belt -- primordial planetesimals formed at $\sim 30 \mathrm{AU}$
3) Oort cloud -- planetesimals ejected outward by Jupiter \& co 4) Early bombardment stage (first $\sim 700 \mathrm{Myr}$)

These pristine (un-differentiated, un-processed) materials provide a window to the early solar system.

frost line

Distance from Sun where temperature was low enough for hydrogen compound $\left(\mathrm{H}_{2} \mathrm{O}, \ldots\right)$ to condense into ices, between the present-day orbits of Mars and Jupiter

frost-line ~4AU

1) Rocky planetesimals inside frost-line
$T_{\text {melt }}<1300 \mathrm{~K}$, rocks \& metals, refractory

Distance from sun

Asteroid belt, terrestrial planets, volatiles in gas phase
2) Icy planetesimals outside frost-line ($\mathrm{H}_{2} \mathrm{O}: T_{\text {melt }} \sim 150 \mathrm{~K} @$ near vacuum pressure) $T_{\text {melt }}<150 \mathrm{~K}$ (roughly), $\mathrm{H}_{2} \mathrm{O}$-ice, carbon-grains, volatile
Cores of giant planets, Kuiper belt \& Oort cloud (comets),
3) Higher mass-fraction in solids outside the frost-line (solid mass jumps by ~ 5) Carbon, oxygen \sim twice more abundant than heavier elements

Giant \& terrestrial planet formation

$5^{\text {th }}$ step: planetesimals conglomerate into

 $10^{3} \mathrm{~km}$-sized coresIf core massive enough, $\mathrm{H} \& \mathrm{He}$ can be accreted ----> a giant planet

Jupiter, Saturn, Uranus \& Neptune all have cores+gaseous env.
If core does not grow fast enough it cannot accrete gas ----> a terrestrial planet

Explains

1) Giant planets gas rich, terrestrial no gas
2) Giant planets formed outside frost line. Enriched in metals + icy-rocky core of 10-20 M_{\oplus} Outside: more solid (ice), smaller velocity, gas easier to accrete
3) Terrestrial planets formed inside frost line. Contain rocky, refractory material.
4) seems to explain our system, but correct?

When was the Solar system formed?

---- Isotope dating

The pristine, leftover junk is useful: meteorites (asteroids, comets, Moon, Mars...) (pristine: abundances of parent, daughter \& non-radiogenic element un-altered) not melted since condensation, no differential settling, trap some gas

85\% of all meterorite finds are chrondrites (meteoric stone containing chrondrules) --- Abundance pattern remarkably close to the Sun except for H \& He, some volatles, primoraia
--- Chrondrules and CAI (calcium-aluminuminclusion) appear to have been melted once. heating to $\sim 1700 \mathrm{~K}+$ a rapid cooling ($\sim 10 \mathrm{~min}$) Not melted since!

Isotope dating: results

1. The AGE of the solar system (from chrondrites): $4567.2 \pm 0.6 \mathrm{Myrs}$
Dated using long-lived radio-active nuclei (e.g., $\left.238 \mathrm{U} \rightarrow 206 \mathrm{~Pb}, \mathrm{t}_{1 / 2}=4.47 \mathrm{Gyr}\right)$
2. There was a last supernova a few Myr before AGE
Dating using short-lived radio-active nuclei
(e.g. $\left.{ }^{60} \mathrm{Fe}, \mathrm{t}_{1 / 2}=1.5 \mathrm{Myrs} \&{ }^{26} \mathrm{Al}, \mathrm{t}_{1 / 2}=0.7 \mathrm{Myr}\right)$

SS formation triggered by a supernova?

3. Earth formed within ~ 10 Myr after AGE

Relative age dating can be rather accurate using shor-tived nuclei
Relative age dating can be rather accurate using shor--lived nuclei
(e.g. ${ }^{182 \mathrm{Hf}} \rightarrow{ }^{182 \mathrm{~W}, \mathrm{t}_{1 / 2}=9} \mathrm{Myr}$, Yin et. al, Klein et. al, Nature 2002)
TROUBLE FOR THEORISTS!
4. Moon formed within ~ 30 Myr after AGE

Age of Moon (since last mett) ~ 4.5 Gyr, Apollo samples \& lunar meteorites.
Oldest rock on Earth ~4.28 Gyr (Nuvvuagittuq, Hudson Bay, QC)
(rare, most old rock ~ 3.8 Gyr, after late heavy bombardment)
Mars (since last melt) ~ 4.5 Gyr (Martian meteorites ALH84001--life?)
Age of oldest fossils ~ 3.5 Gyr (blue-green algae)

Open issues
have to form planets in ~ few Myrs

1) how did the gas disk disperse?
2) how are planetesimals made? Are dust grains sufficiently sticky?
3) what makes chrondrules?
4) How do planetesimals survive collisions?
5) What is Jupiter's role in the fate of other planets?
6) Do giant planets only form outside frost lines? If so, how to explain the extra-solar hot Jupiters?
7)....

Lunar Geology

no atmosphere, dominated by cratering

1) "land" is older \& pock-marked early solar-system heavy-bombardment stage Terrae (lands)
2) "sea" is younger, smoother ~ 4 Gyr old huge impacts, molten lava (dark) end of bombardment stage
3) little cratering after the heavy stage, no re-surfacing surface pulverized by micro-meteroites Earth is constantly resurfaced; soil made by weathering \& life)
4) clues to formation from comparison with Earth $\sim 400 \mathrm{~kg}$ of lunar rocks returned in '70s
lunar rock has little water and other volatiles (low boiling T material) ron-deficient (small iron core, $<200 \mathrm{~km}$) similar isotope pattern (e.g. Oxygen, different from meteorites)

Origin of the Moon

Earth is unique among terrestrial planets in having a large moon radius $\sim 1737 \mathrm{~km}, \quad$ mass $\sim 10^{23} \mathrm{~kg} \sim 1 \%$ Earth mass \sim Mercury

1) largest satellite/planet mass ratio (except. Pluto/Charon)
2) Moon raises tide, lunar cycles
3) Moon always faces us with the same side (nodding -> see 59% of Moon)
4) Moon stabilizes Earth's spin axis/climate

Various hypothesis for the origins of Planetary Satellites - and of our Moon

accretion disk

primordial accretion dis
Io, Europa... (@J)
Moon: why ecliptic plane?
why volatiles gone?
(@S), Deimos/Phobos(@M) oon: why oxygen isotopes? small initial separation?
very massive?
fast spinning plane if above break-up speed Moon: why volatiles gone?

giant impact

Current Favourite --- impact
) How big was the impactor? (to melt a significant fraction of Earth)

$$
\frac{1}{2} m v^{2} \approx k_{B} T \frac{M_{E}}{\mu m_{H}}
$$

Canup et al.

Extra Notes: Can planets form in the solar nebula by gravitational collapse -- just like how stars form?

No. At least not likely in our case.
Tidal gravity of the Sun too strong, prevents collapse.
Consider forces on a ball of gas of size d and mass M at a distance a from the Sun

Tidal force due the Sun: $f_{\text {tide }} \approx \frac{G M_{s} M_{\text {gas }}}{a^{2}}\left(\frac{d}{a}\right)$
Self-gravity of the gas ball: $f_{\text {self }} \approx \frac{G M_{\text {gas }}^{2}}{d^{2}} \approx \frac{G \rho d^{3}}{d^{2}} \approx G \rho d$

$$
f_{\text {self }}>f_{\text {tide }} \rightarrow \rho>\frac{M_{s}}{a^{3}}-2 \times 10^{-4} \mathrm{~kg} / \mathrm{m}^{3}\left(\frac{1 A U}{a}\right)^{3}
$$

-- the Toomre criterion for structure formation in a disk

$$
\text { For comparison: } \rho_{\text {MMSN }} \sim 10^{-5} \mathrm{~kg} / \mathrm{m}^{3}\left(\frac{1 \mathrm{AU}}{a}\right)^{5 / 2}
$$

MMSN contains a mass too low by a factor ~ 20.

