Integrating Olffice with the Rest of the World

Office 2
XML

Evan Lenz, Mary McRae

O,REILLY® & Simon St.Laurent

CHAPTER 2
The WordprocessingML Vocabulary

Microsoft Office Word 2003 marks the introduction of XML as a native format for
Word documents. Any Word document can now be opened in Word and saved as
XML, thereby freeing documents from the tyranny of Word’s proprietary .doc for-
mat. This new format, called WordprocessingML, opens up a multitude of possibili-
ties for generating and processing Word documents. (Read Chapter 3 first if you
want some immediate gratification regarding use cases for WordprocessingML.) This
chapter includes a basic introduction to WordprocessingML, along with some gen-
eral technical observations and guidelines for learning more. It is meant to comple-
ment, rather than replace, a detailed investigation of the WordprocessingML
schema.

N
< An authoritative and thorough source for learning is the Microsoft-
.‘s‘ supplied XSD schema for WordprocessingML. The “Microsoft Office
T Gk 2003 XML Reference Schemas” package has been released under a

" royalty-free license and includes each of the WordprocessingML
schema documents, as well as accompanying documentation. It can be
found by starting at hitp://www.microsoft.com/office/xml/.

Introduction to WordprocessingML

WordprocessingML is Microsoft’s XML format for Word documents. It’s what you
get when you select Save As... and choose “XML Document.” WordprocessingML is
a lossless format, which means that it contains all the information that Word needs
to re-open a document, just as if it had been saved in the traditional .doc format—all
text, formatting, styles, document metadata, images, macros, revision history, Smart
Tags, etc. (The one exception is that WordprocessingML does not embed TrueType
fonts, which is only a disadvantage if the users opening the document do not have
the needed font installed on their system.) Indicative of Word’s tremendous size and
legacy, the WordprocessingML schema file approaches 7,000 lines in length. Fortu-
nately, a little bit of knowledge about WordprocessingML can go a long way.

16

N
It was only recently that Microsoft began calling Word’s XML format
as “WordprocessingML,” whereas previously it was called, simply,
AONNP
C ks “WordML” (as still reflected in the schema’s namespace URI). Why
" they decided to adopt this new name isn’t entirely clear...though it cer-
tainly is wordier.

To gain an advanced understanding of WordprocessingML, you’ll need to first
understand the fundamentals of Word itself. While this chapter briefly touches on
Word’s global architecture and design, books such as the following can provide a
more solid foundation:

Word Pocket Guide, by Walter Glenn (O’Reilly)
Word 2000 in a Nutshell, by Walter Glenn (O’Reilly)

In this chapter, we’ll examine several increasingly detailed examples of Wordpro-
cessingML. First, we’ll take a look at the definitive “Hello, World” example for
WordprocessingML. Next, after learning some tips for working with Wordprocess-
ingML, we’ll take a tour through an example WordprocessingML document as out-
put by Word. Then, we’ll systematically cover Word’s primary formatting
constructs: runs, paragraphs, tables, lists, sections, etc. Finally, we’ll take another
look at one of Word’s most important features: the style. Understanding how styles
work—how they interact with direct formatting and how they relate to document
templates—is essential to an overall understanding of WordprocessingML and Word
in general.

A Simple Example

Example 2-1 shows a WordprocessingML document that one might create by hand
in a plain text editor. This example represents the simplest non-empty Wordprocess-
ingML document possible.

Example 2-1. A simple WordprocessingML document created by hand

<?xml version="1.0"?>
<?mso-application progid="Word.Document"?>
<w:wordDocument
xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">
<w:body>
<wip>
<WiT>
<w:t>Hello, World!</w:t>
</wWir>
</wip>
</w:body>
</w:wordDocument>

The first thing to note about this example is the mso-application processing instruc-
tion (PI). This is a generic PI used by various applications within the Microsoft Office

Introduction to WordprocessingML | 17

System. Its purpose is to associate the given .xml file with a particular application in
the Office suite. In this case, the file is associated with Microsoft Word. This has a
double effect: not only is the Word application launched when a user double-clicks
the file, but Windows Explorer renders the file using a special Word XML icon. This
behavior is enabled through an Explorer shell that is automatically installed with
Office 2003. All XML documents saved by Word will include this PI. We’ll see more
uses of the mso-application PIin Chapter 7 and Chapter 10.

As mentioned above, Example 2-1 shows the simplest non-empty Wordprocess-
ingML document possible. The w:body element is the only required child element of
the w:wordDocument root element. It technically can be empty, but that would make for
a pretty boring first example. The w:p element stands for “paragraph,” w:r stands for
“run,” and w:t stands for “text.” The namespace prefix w maps to the primary Word-
processingML namespace: http://schemas.microsoft.com/office/word/2003/wordml.

Beware the default namespace! Word, in its longstanding attempt to
be everything to everybody, does something funny when you try to
open a WordprocessingML document that uses a default namespace,
rather than the w (or some other) prefix, for elements in the Wordpro-
cessingML namespace. It sees the naked (un-prefixed) body element
and thinks “This must be HTML!” The easiest way to avoid this prob-
lem is to always use an XML declaration (e.g., <?xml version="1.0"?>)
at the beginning of an XML document that will be opened by Word.
Word will consistently recognize the document as XML if the XML
declaration is present.

With few exceptions, all text in a given document is contained within a w:t element
that’s contained within a w:r element that’s contained within a w:p element. A final
thing to note is that, except for the w:wordDocument element, none of the elements in
Example 2-1 (w:body, w:p, w:r, and w:t) can have attributes. As we’ll see, properties
are instead assigned (to paragraphs and runs) using child elements. Figure 2-1 shows
the result of opening our example document in Word. We see “Hello, World!” in the
default font and font size, in the default view. Word supplies these defaults, because
they are not explicitly specified in our WordprocessingML document.

Tips for Learning WordprocessingML

Learning WordprocessingML—particularly how Word behaves when it encounters
various markup constructs—is an iterative process. You go back and forth between
the text editor and the Word application, closing the document in Word so you can
make changes to it elsewhere, and then re-opening it to see what effects those
changes have. You make hypotheses and you test them. Anything you can do to
speed up the iterations of this process will help. Below are several pieces of advice to
consider as you begin this educational journey.

18 | Chapter2: The WordprocessingML Vocabulary

Zh Hello.xml - Microsoft Word |._||E|E|
! Fle Edt Wew Insert Format Tools Table window Help x

PN @ @ s Gy e @ o - E

b todbox- | 13 8 AT R O Wine < [
SEENEEREEEREREEE RN, -

Hello, World!

R

Page Sec At Ln Cal REC a

Figure 2-1. Our hand-edited WordprocessingML file, opened in Word

Experiment

Since Microsoft has released fairly limited documentation of Wordprocess-
ingML so far, it is often best to learn through experimentation. Create a docu-
ment in Word that uses various formatting features you are interested in. Save
the document as XML. Then, investigate the WordprocessingML for the docu-
ment, making note of how various document structures are represented as XML.
Internet Explorer can be a good tool for viewing WordprocessingML docu-
ments. (See the sidebar “Using Internet Explorer to Inspect WordprocessingML

Documents.”)

Don’t try to learn everything

This tip offsets the first one. It is sometimes possible to get hung up on particu-
lar theoretical questions or problems when experimenting with Wordprocess-
ingML. But if you want to remain productive, you should be prepared to
suspend understanding at various turns in your investigation. The beauty of
WordprocessingML is that you can accomplish quite a lot without understand-
ing everything in the markup. For example, to create a stylesheet that generates
WordprocessingML documents, you would only need to prepare the document
in Word itself, save it as XML, and then copy and paste the bulk of it into your

stylesheet, zeroing in on only the elements that contain dynamic content.

Use the Reveal Formatting task pane

Word’s Reveal Formatting task pane (press Shift-F1) provides a very helpful
intermediate view of formatting properties between the WordprocessingML
itself and how the document actually looks. Moreover, if you check the “Distin-
guish style source” checkbox (at the bottom of the task pane), it will identify the
source of specific formatting properties, distinguishing between those that are
defined in a style and those that are applied as direct formatting. This chapter

includes some example screen shots that use the Reveal Formatting task pane.

Tips for Learning WordprocessingML |

Use the XML Toolbox

The XML Toolbox was quietly released by Microsoft as a plug-in for Word. It is
Word’s equivalent of View Source, and it is a godsend. It lets you view the
underlying WordprocessingML for a document or selection right from within
Word. You can also manually insert WordprocessingML, using the “Insert
XML” dialog, shown in Figure 2-2. Ultimately, it is not a substitute for saving as
XML, as it leaves out some things (such as document metadata and spelling
errors). One caveat is that the XML Toolbox plug-in requires .NET Programma-
bility support. This means that the .NET Framework 1.1 must have been
installed prior to the Office 2003 installation. Get and read about this plug-in at
http://msdn.microsoft.com/library/en-us/dnofftalk/html/odc_office01012004.asp

nsert XML Editor]

<wrwordbocument
xmlns:w="http: //schenas . nicrosoft. . con/office/word/Z003
xml:space="praesarve">
“1r-hodys
“wIpE
“WIEE
=w:t=Insert Text Here| < w:t=
“fwiEE
=g
= w:bodys=
< fwiwordbocunent =

< | >

Inzert XML || Undo Last Action || Cloze |

Figure 2-2. The “Insert XML” dialog, available only with the XML Toolbox plug-in for Word

WordprocessingML’s Style of Markup

If you have any XML or HTML markup background, then WordprocessingML’s
style of markup may surprise you. WordprocessingML was not designed from a clean
slate for the purpose of creating documents in XML markup. Instead, it is an unveil-
ing of the internal structures that have been present in Microsoft Word for years.
Though certain features have been added to make WordprocessingML usable out-
side the context of Word, by and large it represents a serialization of Word’s internal
data structures: various kinds of objects associated with myriad property values.
Indeed, the object-oriented term “properties” permeates the WordprocessingML
schema. If you want to make a run of text bold, you set the bold property. If you
want to indent a particular paragraph, you set its indentation property. And so on.

No Mixed Content

Mixed content describes the presence of text content and elements inside the same
parent element. It is standard fare in the world of markup, especially when using

20 | Chapter2: The WordprocessingML Vocabulary

Using Internet Explorer to Inspect WordprocessingML
Documents

Internet Explorer’s default tree-view stylesheet for XML documents provides
a handy, readable way to investigate the structure of WordprocessingML
documents. However, if you try opening a WordprocessingML document in
IE (e.g., by right-clicking the file and selecting Open With — Internet
Explorer), IE turns around and launches Word, because it too is now trained
to recognize and honor the mso-application processing instruction. There are
two techniques for getting around this.

The first technique is to simply remove the mso-application PI before open-
ing the WordprocessingML document in IE:

1. Save the Word document as XML and then close it.
2. Open the newly saved WordprocessingML document in Notepad.
3. Delete or comment out the mso-application PI and re-save.

IE will now display the document using its pretty XML tree view, and will
continue to do so even if the document is subsequently updated by Word to
include the mso-application PI. Once you’ve initially opened it in IE, you can
refresh IE to see how changes to the document from within Word affect the
underlying WordprocessingML.

The second technique involves making a temporary global system change,
obviating the need to comment out the mso-application PI for each and every
document you want to inspect.

1. Open the Registry Editor by selecting Start = Run and typing regedit.

2. Find the sub-key named HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Office\1 1.0\Common\Filter\text/xml.

3. Right-click the Word.Document string value entry, and select Rename.
4. Change the name to something like Word.DocumentDISABLED.

This will make it easy to restore the setting later, by simply renaming it again
and removing the “DISABLED” part. With the WordprocessingML filter
effectively disabled, IE will now open WordprocessingML documents using
its default XML tree-view stylesheet just like any other XML document. Win-
dows Explorer, however, will still continue to associate WordprocessingML
documents with Word, which is probably what you will always want.

document-oriented markup. For example, in HTML, to make a sentence bold and
only partially italicized, you would use code such as the following:

This sentence has <i>mixed</i> formatting.

WordprocessingML, however, never uses mixed content. All of the text in a Word-
processingML document resides in w:t elements, and w:t elements can only contain
text (and no elements). The above sentence is represented much differently in

WordprocessingML's Style of Markup | 21

WordprocessingML. The hierarchy is flattened into a sequence of runs having differ-
ent formatting properties:

<WiT>
<W:TPT>
<w:b/>
</w:rPr>
<w:t>This sentence has </w:t>
</Wir>
<WiT>
<W:TPT>
<w:b/>
<w:i/>
</w:TPr>
<wrt>mixed</w:t>
</wir>
WiT>
<wW:TPT>
<w:b/>
</w:TPr>
<w:t> formatting.</w:t>
</wir>

As you can see, all of the text occurs by itself (no mixed content), within w:t elements.

Properties Are Set Using Empty Sub-Elements

The above snippet illustrates another general principle in WordprocessingML’s style
of markup: properties are assigned using empty sub-elements (e.g., w:b and w:i in the
above example). For runs, the w:1Pr element contains a set of empty elements, each
of which sets a particular property on the run. Similarly, for paragraphs (w:p ele-
ments), the w:pPr element contains the paragraph formatting properties. For tables,
table rows, and table cells, there are the w:tblPr, w:trPr, and w:tcPr elements,
respectively. In each case, the *Pr element must come first, so that the general struc-
ture of paragraphs, runs, tables, table rows, and table cells looks like this:

Object

Properties
Content

The properties are defined first, and the content follows. If you have any experience
with RTF (Rich Text Format), then this pattern may look familiar. Before the advent of
WordprocessingML, RTF was the most open format in which Word was willing to
save documents. A look at the same sentence after saving it as RTF is demonstrative:

{\b\insrsid3691043 This sentence has }

{\b\i\insrsid3691043 mixed}

{\b\insrsid3691043 formatting.}
The parallels should be fairly easy to draw, without understanding every detail.
There are three runs (delineated by curly braces). The first run has bold turned on by
virtue of the \b command. The second run has both bold and italic turned on by

22 | Chapter2: The WordprocessingML Vocabulary

virtue of the \b and \i commands. And the third run goes back to using just bold
and no italic. From this perspective, WordprocessingML may look more like an
XML format for RTF—an estimation that is not too far off the mark.

N
To learn more about RTF, consider the RTF Pocket Guide (O’Reilly),

by Sean M. Burke.
R
153

qs
[
N

No Hierarchical Document Structures

Nested markup describes the use of element nesting to arbitrary depths. In addition
to formatting text, nested markup is useful for structuring documents. For example,

a Docbook document may have sections and sub-sections nested to an arbitrary
depth, like this:

<article>
<section>
<title>Section 1</title>
<para>This is the first section.</para>
<section>
<title>Section 1A</title>
<para>This is a sub-section.</para>
</section>
</section>
</article>

The above document is represented much differently in WordprocessingML. The
hierarchy is flattened into a sequence of four paragraphs having different properties.
Below is the w:body element, excerpted from such a document:

<w:body>
<Wip>
<W:pPr>
<w:pStyle w:val="Heading1"/>
</w:pPr>
<Wir>
<w:t>Section 1</w:t>
</wir>
</wip>
<wWip>
<Wir>
<w:t>This is the first section.</w:t>
</wir>
</wip>
<Wip>
<w:pPr>
<w:pStyle w:val="Heading2"/>
</w:pPr>
<W:r>
<w:t>Section 1A</w:t>
</WiT>
</wip>

WordprocessingML's Style of Markup | 23

<wWip>
<WiIr>
<w:t>This is a sub-section.</w:t>
</WiT>
</wip>
</w:body>
In Word, the paragraph is the basic block-oriented element, and paragraphs may not
contain other paragraphs. Word does, however, provide a workaround for hierarchi-
cal documents, through use of the wx:sub-section element. In fact, if you were to open
the above document and then save it from within Word, the result would include wx:
sub-section elements that reflect the hierarchy intended by the heading paragraphs.
We'll look at how this works in detail later, in “Outline Levels and Sub-Sections.”

All Attributes Are Namespace-Qualified

One more peculiarity worth noting about WordprocessingML markup is its use of
namespace-qualified attributes. In most XML vocabularies, attributes are not in a
namespace. They are generally thought to “belong” to the element to which they are
attached. As long as the element is in a namespace, then no naming ambiguities
should arise. Namespace qualification, however, can be useful for “global attributes”
that can be attached to different elements. Such attributes do not belong to any par-
ticular element. The xml:space attribute is a good example of a global attribute.
XSLT also has some global attributes, such as the xsl:exclude-result-prefixes
attribute, which can occur on any literal result element (in any namespace). These
are considered good use cases for qualifying attributes with a namespace.

WordprocessingML, however, does not follow this convention. While there are some
“global attributes” in WordprocessingML (such as the w:type attribute, which
appears on the aml:annotation element, which we’ll see), WordprocessingML does
not restrict its use of namespace qualification to those cases. Instead, it universally
qualifies all attributes across the board. For this reason, the key thing to remember
when working with attributes in WordprocessingML is that they always must have a
namespace prefix (because there’s no such thing as a default namespace for
attributes in XML).

A Simple Example Revisited

Example 2-2 shows how our “Hello, World” example looks after opening it in
Word, selecting Save As..., and saving the file with a new name, HelloSaved.xml. For
the sake of readability, we’ve added line breaks and indentation, neither of which
affects the meaning of the file. The highlighted lines in this example correspond to
the lines that were present in our original hand-edited WordprocessingML docu-
ment in Example 2-1. Everything else is new.

24 | Chapter2: The WordprocessingML Vocabulary

Example 2-2. The same Word document, after Word saves it as XML

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?mso-application progid="Word.Document"?>
<w:wordDocument
xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"
xmlns:v="urn:schemas-microsoft-com:vml"
xmlns:w10="urn:schemas-microsoft-com:office:word"
xmlns:sl="http://schemas.microsoft.com/schemalLibrary/2003/core"
xmlns:aml="http://schemas.microsoft.com/aml/2001/core"
xmlns:wx="http://schemas.microsoft.com/office/word/2003/auxHint"
xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"
w:macrosPresent="no" w:embeddedObjPresent="no" w:ocxPresent="no"
xml:space="preserve">
<o:DocumentProperties>
<o0:Title>Hello, World</o:Title>
<o:Author>Evan Lenz</o:Author>
<o:lLastAuthor>Evan Lenz</o:LastAuthor>
<o:Revision>4</o0:Revision>
<0:TotalTime>15¢</0:TotalTime>
<o:Created>2003-12-06T22:45:00Z</o:Created>
<o:LastSaved>2003-12-18T07:59:00Z</0:LastSaved>
<o0:Pages>1</o0:Pages>
<0:Words>2</0:Words>
<o:Characters>12</o:Characters>
<o:Lines>1</o:Lines>
<o:Paragraphs>1</o:Paragraphs>
<o:CharactersWithSpaces>13</o:CharactersWithSpaces>
<o:Version>11.5604</0:Version>
</o0:DocumentProperties>
<w:fonts>
<w:defaultFonts w:ascii="Times New Roman" w:fareast="Times New Roman"
w:h-ansi="Times New Roman" w:cs="Times New Roman"/>
</w:fonts>
<w:styles>
<w:versionOfBuiltInStylenames w:val="4"/>
<w:latentStyles w:deflLockedState="off" w:latentStyleCount="156"/>
<w:style w:type="paragraph" w:default="on" w:styleId="Normal">
<w:name w:val="Normal"/>
<w:rsid w:val="00B15979"/>
<W:TPT>
<wx:font wx:val="Times New Roman"/>
<W:isz wival="24"/>
<w:sz-cs wival="24"/>
<w:lang w:val="EN-US" w:fareast="EN-US" w:bidi="AR-SA"/>
</w:rPr>
</wistyle>
<w:style w:type="character" w:default="on"
w:styleId="DefaultParagraphFont">
<w:name w:val="Default Paragraph Font"/>
<w:semiHidden/>
</w:style>
<w:style w:type="table" w:default="on" w:styleId="TableNormal">
<w:name w:val="Normal Table"/>

A Simple Example Revisited

25

Example 2-2. The same Word document, after Word saves it as XML (continued)

<wx:uiName wx:val="Table Normal"/>
<w:semiHidden/>
<W:rPr>
<wx:font wx:val="Times New Roman"/>
</wirPr>
<w:tblPr>
<w:tblInd w:w="0" w:type="dxa"/>
<w:tblCellMar>
<w:top w:w="0" w:type="dxa"/>
<w:left wiw="108" w:type="dxa"/>
<w:bottom w:w="0" w:type="dxa"/>
<w:right wiw="108" w:type="dxa"/>
</w:tblCellMar>
</w:tblPr>
</w:style>
<w:style w:type="list" w:default="on" w:styleId="NolList">
<w:name w:val="No List"/>
<w:semiHidden/>
</w:style>
</w:styles>
<w:docPr>
<w:view w:val="web"/>
<w:zoom w:percent="100"/>
<w:proofState w:spelling="clean" w:grammar="clean"/>
<w:attachedTemplate w:val=""/>
<w:defaultTabStop w:val="720"/>
<w:characterSpacingControl w:val="DontCompress"/>
<w:validateAgainstSchema/>
<w:savelnvalidXML w:val="off"/>
<w:ignoreMixedContent w:val="off"/>
<w:alwaysShowPlaceholderText w:val="off"/>
<w:compat/>
</w:docPr>
<w:body>
<wx:sect>
<u:p>
<WiT>
<w:t>Hello, World!</w:t>
</wzr>
</wip>
<w:sectPr>
<W:pgSz w:w="12240" w:h="15840"/>
<w:pgMar w:top="1440" w:right="1800" w:bottom="1440" w:left="1800"
w:header="720" w:footer="720" w:gutter="0"/>
<w:cols w:space="720"/>
<w:docGrid w:line-pitch="360"/>
</w:sectPr>
</wx:sect>
</w:body>
</w:wordDocument>

26 | Chapter2: The WordprocessingML Vocabulary

The first thing that may come to mind when looking at this example is “Why does
the XML contain so much more information when all I did was save it?” Or perhaps
you’ve begun to panic.

Don’t. While all of this XML is certainly daunting at first glance, we’ll see that for
the most part its meaning is straightforward. Take comfort in the fact that, while
Word may create markup that’s quite verbose, it can handle markup that minimally
conforms to its schema without complaining at all. This liberality in what Word
accepts makes it much easier to write applications that generate WordprocessingML.

Let’s take a tour through this document, examining each top-level element in turn.
Getting an overall, top-down view of what goes into a WordprocessingML docu-
ment will help bring context to the more nitty-gritty, bottom-up examination of the
vocabulary that will follow later in this chapter.

The w:wordDocument Element

The root element of Example 2-2, w:wordDocument, has a large number of attributes:

<w:wordDocument
xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"
xmlns:v="urn:schemas-microsoft-com:vml"
xmlns:w10="urn:schemas-microsoft-com:office:word"
xmlns:sl="http://schemas.microsoft.com/schemalLibrary/2003/core"
xmlns:aml="http://schemas.microsoft.com/aml/2001/core"
xmlns:wx="http://schemas.microsoft.com/office/word/2003/auxHint"
xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"
w:macrosPresent="no" w:embeddedObjPresent="no"
w:ocxPresent="no" xml:space="preserve">

Actually, most of these are technically namespace declarations. They are present on
every WordprocessingML document that Word outputs, regardless of whether all
the namespaces are actually used in the document. In WordprocessingML, you can
safely leave out all the namespace declarations except the ones you actually use,
which will minimally include the primary WordprocessingML namespace (normally
mapped to the w prefix). Below is a list of the namespaces declared in this document,
along with a brief description of the purpose of each.

http://schemas.microsoft.com/office/word/2003/wordml
Mapped to the w prefix. All of the core WordprocessingML elements and
attributes are in this namespace.

urn:schemas-microsoft-com:vml
Mapped to the v prefix. Elements in this namespace represent embedded Vector
Markup Language (VML) images.

urn:schemas-microsoft-com:office:word

Mapped to the w10 prefix. This namespace is used for legacy elements from
Word Ten. It is used in HTML output.

ASimple Example Revisited | 27

http://schemas.microsoft.com/schemalibrary/2003/core
Mapped to the sl prefix. The sl:schema and sl:schemalibrary elements are used
with Word’s custom XML schema functionality, and are introduced in
Chapter 4.

http://schemas.microsoft.com/aml/2001/core
Mapped to the aml prefix. The Annotation Markup Language (AML) elements
are used to describe tracked changes, comments, and bookmarks.

http://schemas.microsoft.com/office/word/2003/auxHint
Mapped to the wx prefix. Elements in this namespace provide “auxiliary hints”
for processing WordprocessingML documents outside of Word. They represent
derivative information that is useful to us but that is of no internal use to Word.
See “Auxiliary Hints in WordprocessingML,” later in this chapter.

urn:schemas-microsoft-com:office:office
Mapped to the o namespace. This is the namespace for “shared” document
properties and custom document properties. They are shared in that they also
apply to other Office applications, such as Excel.

uuid:C2F41010-65B3-11d1-A29F-00AA00C14882
Mapped to the dt prefix. This is the XML Data Reduced (XDR) namespace,
which, in WordprocessingML, qualifies the dt (data type) attributes of a docu-
ment’s custom document property elements.

While some confusing legacy is evident in this list, the overall distinction between
namespaces is helpful, particularly between the wx and w namespaces, as we’ll see.

The xml:space attribute is set to preserve, in order that whitespace characters (and
even any instances of the empty w:tab element) are interpreted correctly. As a matter
of best practice, you should include xml:space="preserve" on the root element of any
WordprocessingML document you create.

The remaining three attributes of the w:wordDocument element are all optional and
default to the value no.

w:macrosPresent="no" w:embeddedObjPresent="no" w:ocxPresent="no"

These are consistency checks for when certain kinds of base64-encoded binary
objects are embedded in the document. Specifically, w:macrosPresent must be set to
yes when the w:docSuppData element is present (containing toolbar customizations,
VBA macros, etc.); w:embeddedObjPresent must be set to yes when the w:docOleData
element is present (containing OLE objects from other applications, such as Excel);
and w:ocxPresent must be set to yes when a w:ocx element is present somewhere in
the body of the document (representing a control from Word’s Control Toolbox).
Unless your document contains any such objects, you can safely leave out these
attributes.

The child elements of w:wordDocument, as included in this example, represent only a
portion of the root element’s complete content model. Below is a list of all possible

28 | Chapter2: The WordprocessingML Vocabulary

child elements in the order they are supposed to occur, according to the Wordpro-
cessingML schema. Word tends to be lenient about WordprocessingML documents
that contain these elements in a different order, which suggests it does not validate
documents against the published schema when they are loaded. However, to be on
the safe side, you should ensure that these elements are in the correct order in Word-
processingML documents that you create. As mentioned before, w:body is the only
required child element of w:wordDocument. Only the highlighted elements in this list
are actually present in Example 2-2.

:ignoreSubtree
:ignoreklements
:SmartTagType
:DocumentProperties
:CustomDocumentProperties
sl:schemalibrary
:fonts

:frameset

:1lists

:styles

:divs

:docOleData
:docSuppData
:shapeDefaults
:bgPict

:docPr

:body

O O O = =

£ £ £ £ £ £ £ £ £ £ £

Apart from the highlighted elements, the w:lists element is the only one in the
above list that will receive further coverage in this chapter.

The o:DocumentProperties Element

The o:DocumentProperties element in Example 2-2, shown again below, is in the gen-
eral Office namespace (mapped to the o prefix), because it includes properties, such
as metadata and statistics, that are common to both Word and Excel:

<o:DocumentProperties>
<0:Title>Hello, World</o:Title>
<o:Author>Evan Lenz</o:Author>
<o:LastAuthor>Evan Lenz</o:LastAuthor>
<o:Revision>4</o0:Revision>
<o:TotalTime>15</0:TotalTime>
<0:Created>2003-12-06T22:45:00Z</0:Created>
<o0:LastSaved>2003-12-18T07:59:00Z</0:LastSaved>
<o0:Pages>1</o0:Pages>
<o:Words>2</0:Words>
<o:Characters>12</o:Characters>

ASimple Example Revisited | 29

<o:Lines>1</o:Lines>

<o:Paragraphs>1</o:Paragraphs>

<o:CharactersWithSpaces>13</o:CharactersWithSpaces>

<0:Version>11.5604</0:Version>

</o0:DocumentProperties>

These elements are also serialized as such when Word saves a document as HTML.
They correspond primarily to the properties you see when you open the document
Properties dialog (by selecting File — Properties). Figure 2-3 shows the Statistics tab
of the file Properties dialog.

HelloSaved.xml Properties

Pages:

Paragraphs:

Lines:

‘Words!

Characters:

Characters {with spaces);

[—————— LT |

Figure 2-3. The Statistics tab of the Properties dialog, corresponding to values inside the o:
DocumentProperties element

There are 12 more valid child elements of o:DocumentProperties not shown here,
making a total of 26. A number of these can be added to a document from within
Word, at user option. For example, there is an element corresponding to each of the
fields in the Summary tab of the file Properties dialog, shown in Figure 2-4.

30 | Chapter2: The WordprocessingML Vocabulary

]

HelloSaved.xml Properties

Hella, Wwarld

Evan Lenz

EE——
el ord |
]
Evantez |
|
]
|
]
|

:
d

Figure 2-4. Other document properties can be populated at user option

The w:fonts Element

The w:defaultFonts element inside the w:fonts element specifies the default font for a
document.

<w:fonts>

<w:defaultFonts w:ascii="Times New Roman" w:fareast="Times New Roman"
w:h-ansi="Times New Roman" w:cs="Times New Roman"/>

</w:fonts>
A document’s default font is applied to all of the document’s paragraph styles that
do not explicitly specify a font. Normally, when you create a new blank document in
Word, the default font setting as specified in the Normal.dot document template is
copied into the document. But our hand-coded WordprocessingML document
(Example 2-1) isn’t “normal” in this sense. It was created outside of Word and con-
tains no default font definition at all. Word gracefully handles this scenario when it
loads the document by automatically inserting a default font, as shown in
Example 2-2. Times New Roman is thus the “default default” font. In fact, Times
New Roman is also the default font assigned to the Normal.dot template when Word
is first installed, or when it is forced to create a new Normal.dot template because
someone deleted the Normal.dot file.

ASimple Example Revisited | 31

The attributes on the w:defaultFonts element indicate which font should be used for
each character encoding range among ASCII, high ANSI, complex scripts, and East
Asian characters. In Example 2-2, Times New Roman is the default font for all of
these ranges.

The w:fonts element may also contain zero or more w:font elements (zero in the case
of Example 2-2) following the w:defaultFonts element. The w:font elements are
optional; you don’t need to include a corresponding w:font element just to use a par-
ticular font. The only purpose of this element is to provide Word with descriptive
information about a font (using its seven possible child elements) that could be use-
ful in the event that the font is not available on a user’s machine. In that case, Word
can choose a reasonable alternative based on the information about the font pro-
vided in the document.

The w:styles Element

The w:styles element includes definitions of all of a document’s styles. Before look-
ing at the WordprocessingML syntax for defining styles, let’s establish some basic
terminology. A style is a group of formatting properties that can be applied as a unit.
There are four possible style types in Word:

paragraph
character
table
list

These style types apply respectively to paragraphs, runs, tables, and lists. Every para-
graph, run, table, and list in a Word document is necessarily associated with a style
of the corresponding type. If a paragraph, run, table, or list in a WordprocessingML
document doesn’t explicitly specify an associated style (as is the case in
Example 2-2), then it takes on the document’s default style of the appropriate style
type. Thus, styles are always involved, regardless of whether you specifically make
use of them.

Normally, when you create a new blank document in Word, all of the styles defined
in the Normal.dot document template are copied into the document. These include,
at minimum, a default style definition for each style type. However, our hand-coded
WordprocessingML document does not include the w:styles element. Just as Word
automatically creates the w:fonts element when absent, Word automatically inserts
four w:style elements, corresponding respectively to the four style types (paragraph,
character, table, and list):

Normal

Default Paragraph Font
Normal Table

No List

32 | Chapter2: The WordprocessingML Vocabulary

These four Word-defined styles are what we see inside the w:styles element in
Example 2-2. Effectively, they are implicitly present in any WordprocessingML docu-
ment that does not explicitly define them. (However, to explicitly refer to them from
within the body of the document, they must also be explicitly present in the docu-
ment’s w:styles element.) These “default default” styles are also the same four style
definitions that are automatically copied into the Normal.dot template when Word is
first installed, or when it is forced to create a new Normal.dot template.

Now let’s take a look at the content of the w:styles element, extracted from
Example 2-2. Preceding the style definitions themselves are two elements:

<w:versionOfBuiltInStylenames w:val="4"/>
<w:latentStyles w:deflockedState="off" w:latentStyleCount="156"/>

The w:version0fBuiltInStylenames and w:latentStyles elements are used to refer to
particular built-in styles when document formatting protection is turned on. Since
document protection is an important ingredient in building custom XML solutions
in Word, these elements will be covered in Chapter 4. For now, all you need to know
is that there are no formatting restrictions on this document. In fact, this document
would be interpreted no differently if we were to remove these two (optional)
elements.

Next, there are four w:style elements, one for each of the “default default” styles
listed above:

<w:style w:type="paragraph" w:default="on" w:styleId="Normal">
<w:name w:val="Normal"/>
<w:rPr>
<wx:font wx:val="Times New Roman"/>
<w:sz wival="24"/>
<W:sz-cs w:val="24"/>
<w:lang w:val="EN-US" w:fareast="EN-US" w:bidi="AR-SA"/>
</w:rPr>
</wistyle>
<w:style w:type="character" w:default="on"
w:styleId="DefaultParagraphFont">
<w:name w:val="Default Paragraph Font"/>
<w:semiHidden/>
</w:style>
<w:style w:type="table" w:default="on" w:styleId="TableNormal">
<w:name w:val="Normal Table"/>
<wx:uiName wx:val="Table Normal"/>
<w:semiHidden/>
<W:rPr>
<wx:font wx:val="Times New Roman"/>
</wirPr>
<w:tblPr>
<w:tblInd w:w="0" w:type="dxa"/>
<w:tblCellMar>
<w:top w:w="0" w:type="dxa"/>
<w:left wiw="108" w:type="dxa"/>
<w:bottom w:w="0" w:type="dxa"/>

ASimple Example Revisited | 33

<w:right wiw="108" w:type="dxa"/>
</w:tblCellMar>
</w:tblPr>
</w:style>
<w:style w:type="list" w:default="on" w:styleId="NoList">
<w:name w:val="No List"/>
<w:semiHidden/>
</w:style>
For now, we’ll only look at the lines that are highlighted. The w:type attribute of
each w:style element indicates the style type (paragraph, character, table, or list).
The presence of w:default="on" denotes that this style is the default style for its style
type. This attribute’s default value is off.

Each style has two different names, as indicated by the w:styleId attribute and the w:
name element. The w:styleId attribute is for intra-document references only; it must
be unique within the file. Styles can be referred to either from within the document’s
body (to associate a paragraph with a certain paragraph style, for example) or from
within another style definition (to derive the style from another style, for example).
The w:styleld attribute is unused apart from these internal associations. In fact,
Word doesn’t preserve its value when it opens the document. When a document is
subsequently saved as XML, Word auto-generates a value for the w: styleId attribute,
usually deriving it from the style’s primary name.

The primary name of a style is denoted by the w:val attribute of the w:name element.
The primary name of a style is what the user sees in the Style drop-down menu in the
Word UL Also, for styles that came from a template, the primary name uniquely
identifies the style in the attached template and is the basis by which styles are
updated when the “Automatically update document styles” document option is
turned on. This name, like the w:styleId attribute, must be unique within the file.
Otherwise, Word will try to fix things up, probably not in the way that you intended.

For certain built-in styles, the style name displayed in the Word UI differs from the
primary name of the style. For example, the “Normal Table” style appears as “Table
Normal” in the UL This (dubious) privilege is restricted to Word’s built-in style
names; there is no way in WordprocessingML to define a custom style whose Ul
name differs from its primary name. Word, however, does throw us a bone when it
saves such styles as XML. The wx:uiName element clues us in to the distinction:

<wx:uiName wx:val="Table Normal"/>

This element is strictly informational. If you were to remove it or change the wx:val
attribute’s value, Word would behave no differently when opening the file. Elements
and attributes in the namespace designated by the wx prefix are for our benefit only
and are of no internal use to Word.

34 | Chapter2: TheWordprocessingML Vocabulary

The w:docPr Element

Have you ever wondered whether a particular option in the Word Ul represents a
property of the document you are editing as opposed to a property of the applica-
tion’s state? The answer to your question may lie inside the w:docPr element, which,
like one of its siblings mentioned earlier, stands for “document properties.” How-
ever, unlike the information inside the o:DocumentProperties element, these docu-
ment properties are unique to Word and describe particular aspects of a document’s
state, options, and default settings, rather than metadata or statistics that are com-
mon to multiple Office applications.

The Tools — Options... dialog in the Word UI, with its many tabs, is rather notori-
ous for being unclear about what exactly the user is modifying, whether global appli-
cation options or document options. By investigating the contents of the w:docPr
element, you can begin to identify which of these options are document-specific and
which of them aren’t.

The *Pr naming convention that w:docPr follows is common in WordprocessingML.
As we’ll see, a number of other elements follow this convention, such as w:pPr (para-
graph properties), w:rPr (run properties), w:tblPr (table properties), w:trPr (table
row properties), w:tcPr (table cell properties), and w:1istPr (list properties). In fact,
the baseline content model of these elements is also similar: a sequence of mostly
empty elements, each standing for a particular property and each having zero or
more attributes to set the values of that property. The most commonly used attribute
is w:val. You may have noticed by now that WordprocessingML favors putting not
only elements but also attributes in its namespace, which means you should get used
to typing those w prefixes. (The attributeFormDefault value is set to qualified in
each of the WordprocessingML schema documents.)

The w:docPr element has 84 optional child elements. They are declared in the Word-
processingML schema as an ordered sequence (as opposed to a repeating choice
group), which suggests that they must occur in the declared order. In reality, Word
does not enforce this order, though it does appear to follow it in the Wordprocess-
ingML documents it creates.

Now, let’s look at the w:docPr element as output by Word in Example 2-2:

<w:docPr>
<w:view w:val="web"/>
<w:zoom w:percent="100"/>
<w:proofState w:spelling="clean" w:grammar="clean"/>
<w:attachedTemplate w:val=""/>
<w:defaultTabStop w:val="720"/>
<w:characterSpacingControl w:val="DontCompress"/>
<w:validateAgainstSchema/>
<w:saveInvalidXML w:val="off"/>
<w:ignoreMixedContent w:val="off"/>
<w:alwaysShowPlaceholderText w:val="off"/>
<w:compat/>

</w:docPr>

ASimple Example Revisited | 35

The 11 child elements shown here provide a fairly representative sampling of these
options.

The w:view element determines what view to use when opening the document. The
default view for a WordprocessingML document that does not specify a view is web,
which is also Word’s default view for opening XML documents in general. That
explains why we see the value web in this example:

<w:view w:val="web"/>

This value is the result of Word re-saving a WordprocessingML document that we
constructed by hand, without specifying a view. The five possible values of view are
print, outline, normal, web, and master-pages (similar to outline but applies only to
documents that refer to sub-documents).

The w:zoom element denotes the zoom percentage that should be set when opening
the document:

<w:zoom w:percent="100"/>

If you change the zoom percentage from within Word and re-save (provided that you
also make a substantive change to the document’s content to ensure that the file is
actually updated), Word will save the document, recording the zoom level that you
last used. Alternatively, you could directly edit the zoom property in the Wordpro-
cessingML, causing Word to display the document at some other zoom percentage
the next time someone opens the file.

The w:proofState element records the state of the grammar and spelling checkers
(clean or dirty) at the time Word saved the document:

<w:proofState w:spelling="clean" w:grammar="clean"/>

Since actual spelling and grammar errors are recorded in the body of the document,
this state check reflects not whether there are errors in the document, but whether
Word had a chance to finish checking for errors before the user saved the document.
Thus, its primary purpose is as an optimization hint for Word when it opens the doc-
ument. Its absence, however, could conceivably be a useful warning for applications
that otherwise rely on Word having completed its proofing.

The w:attachedTemplate property is one of the two elements representing Templates
and Add-Ins options (along with the w:1inkStyles element):

<w:attachedTemplate w:val=""/>

Its value in this example is empty, which means simply that the default Normal.dot
template is attached. Should you attach a different template (through the Tools —
Templates and Add-Ins... dialog) and re-save, then this value would be populated with
the specific file location of a template. Alternatively, you could manually edit the XML
attribute value so that the next time Word opens the document, the new template will
already be attached by virtue of your manual change. Note, however, that unless the w:
linkStyles element is also present inside the w:docPr element (as explained later), the

36 | Chapter2: TheWordprocessingML Vocabulary

fact that a template is merely attached has no immediate effect on the document. The
w:attachedTemplate element defines a loose association whose potential is only real-
ized when the w:1inkStyles element is also present.

The w:validateAgainstSchema, w:saveInvalidXML, w:ignoreMixedContent, and w:
alwaysShowPlaceHolderText properties (among several others not included in this
example) are specific to Word’s custom XML schema functionality (only available in
Office 2003 Professional or standalone Word 2003), which is discussed in Chapter 4.

The w:defaultTabStop element sets the interval between default tab stops in the
document:

<w:defaultTabStop w:val="720"/>

While the Word Ul exposes this value in inches (when you select Format — Tabs...),
the underlying value is stored in twips, or 20ths of a point, or 1,440ths of an inch.
(Completing this equation, there are 72 points in an inch.) Since the value of the w:
val attribute is 720 twips, the default tab stops for paragraphs in this document
occur every half inch. Thus, when Word opens the document, it displays the short
vertical lines beneath the ruler, spaced every half inch, as shown in Figure 2-5.

g"'l"'l'"I"'2"'I"'3"'I

Figure 2-5. Default tab stops every half inch, or 720 twips

Once again, Word supplies this value as an application default, because our original
hand-edited document (Example 2-1) did not specify a default tab stop interval. As
we’ll see, individual paragraphs can define their own custom tab stops too. For those
paragraphs, the default tab stops only take effect to the right of the last custom stop.

The w:characterSpacingControl element is one of several Asian Typography options.
<w:characterSpacingControl w:val="DontCompress"/>

There are three possible self-describing values (DontCompress, CompressPunctuation, or
CompressPunctuationAndJapaneseKana) that can be used to sets the compression option
for East Asian characters. The default value that Word outputs, as evident in our exam-
ple, is DontCompress. Of course, this doesn’t have any real effect on our document,
since it does not contain Asian characters.

Finally, the w:compat element is among the few w:docPr children that may themselves
contain child elements (w:mailMerge, w:hdrShapeDefaults, w:footnotePr, w:endnotePr,
and w:docVars being the only others). It has 51 possible child elements, correspond-
ing to the compatibility options for a document that are set in the Compatibility tab
of the Tools - Options... dialog, as shown in Figure 2-6.

The w:compat element is empty in Example 2-2, because our document does not set
any particular compatibility options.

ASimple Example Revisited | 37

Options

Wigw I General I Edit I Prink I Save
Security I Spelling & Grammar I Track Changes

Iser Information File Locations

Compatibility options For Document1

Fant Substitution. .. |

Recommended options for:
IMichsoFt Office Word 2003 j

Opkions:

&dd space For underlines
[adijust line height to grid height in the table
[align table rows independently
[allow table rows to lay out apart
[allow tables to extend inko margins
[auko space like Word 95
[Balance SBCS characters and DBCS characters
[Combine table borders like Word 5. For the Macintosh
[Conwert: backslash characters inko ven signs
[Do full justification like WordPerfect f.x For Windows
[Don't add automatic kab stop for hanging indent
[Don't add extra space For raisedlowered charackers
[Don't add leading (extra space) between rows of text ;I

Defaulk. .. |
o]4 I Cancel |

Figure 2-6. Compatibility options, corresponding to the child elements of w:compat

Before moving on, it would be good to point out one more common Wordprocess-
ingML convention. Among w:docPr’s 84 possible child elements, 49 are declared
using the same type in the WordprocessingML schema: the on0OffProperty. The dec-
laration for the onOffProperty type in the WordprocessingML schema is as follows:

<xsd:complexType name="onOffProperty">

<xsd:attribute name="val" type="onOffType" default="on"/>

</xsd:complexType>
The onOffType type referred to here allows for two possible values: on or off. As you
can see, the attribute declaration for w:val specifies a default value of on. This means
that for the elements inside the w:docPr element that are defined with this type, the
presence of w:val="on" is always implied (and thus redundant), unless overridden by
the value off. However, this has no bearing at all on Word’s behavior when the
property element itself is absent. Default behavior in those cases varies depending on
the property, and the WordprocessingML schema itself does not generally cast any
light on that question, although annotations therein do sometimes help. Experimen-
tation is probably the best way to determine Word’s default behavior when particu-
lar property elements are absent.

38 | Chapter2: TheWordprocessingML Vocabulary

The wx:sect Element

Finally, we get to the content of our document, residing inside the w:body element.
Our hand-coded original (Example 2-1) directly contained a w:p (paragraph) ele-
ment inside the body. After saving, we now see that the paragraph element has been
inserted into an intervening wx:sect element. As mentioned earlier, the namespace
mapped to the wx prefix signals a piece of information that may be useful to us in pro-
cessing the XML as output by Word, but that is ignored by Word when opening a
WordprocessingML file. The wx elements and attributes are of no use to Word inter-
nally. In this case, we could remove the wx:sect element’s start and end tags, leaving
only its contents for Word to read, and Word would behave no differently the next
time it opens the file.

That’s all well and good, you might be thinking, but what is the wx:sect element for?
As you might guess, it stands for “section.” As is true with many Word documents, our
“Hello World!” example document contains only one section, so it’s not particularly
useful in this case. To learn what sections are and how they are defined using w:sectPr
elements, see “Sections” later in this chapter. And to learn how the wx:sect element is
a useful aid to external processing, see “Section Containers” later in this chapter.

The w:body Element

It may seem strange to talk about the w:body element after the wx:sect element, when
until now we’ve been traversing our original example in document order. As already
noted, however, the wx:sect element is a completely optional intervening element
between w:body and its content. So, while in Example 2-2 it is the wx:sect element
that contains a w:p element, that content model really belongs to w:body. Using a
DTD-like syntax, we can express w:body’s entire content model (much more simply
than its XSD definition), like this:

(w:p|w:tbl|w:cfChunk |w:proofErr |w:permStart |w:permend)*, w:sectPr?

In other words, w:body may contain any number of w:p, w:tbl, w: cfChunk, w:proofErr,
w:permStart, and w:permEnd elements, in any order, followed by an optional w:sectPr
element. The w:p element represents a paragraph, the w:tbl element represents a
table, and the w:cfChunk element represents a “context-free” chunk of inline default
fonts, styles, list definitions, paragraphs, and tables.” We’ll describe the purpose of
the w:proofErr, wiperménd, and w:permStart elements later, in the section entitled
“Proofing, Protection, and Annotation Markings.”

* At least, that is how the WordprocessingML schema advertises it. A plethora of experiments yields few
answers as to how this element is actually supposed to be used or how it is supposed to behave. Word tends
to fix things up, merging such inline definitions with the document’s global definitions. This is one area
where more documentation from Microsoft is certainly needed.

ASimple Example Revisited | 39

The w:sectPr element, included in Example 2-2, defines the section properties for the
last (and first, in this case) section of the document. See “Sections,” later in the chap-
ter, for more information on how w:sectPr elements are interpreted.

The first part of the w:body element’s content model (that is, not including the
optional w:sectPr element) is worth repeating:

(w:p | witbl | wicfChunk | w:proofErr | w:permStart | w:permEnd)*

That’s because it also functions as the content model for six other elements in Word-
processingML, namely w:hdr, w: ftr, w: footnote, w:endnote, w:tc, and w:txbxContent.
(The only exception is that w:tc may also contain an optional preceding w:tcPr ele-
ment.) The first two of these elements stand for “header” and “footer,” respectively;
they occur in the property definitions for a particular section, i.e., inside the w:sectPr
element. Footnotes and endnotes may occur inside any “run,” or w:r, element. The
w:tc element represents a table cell; thus, tables may contain tables. Finally, the w:
txbxContent element represents a text box that is embedded inside a VML (Vector
Markup Language) image embedded somewhere inside a document’s content.

This content model is actually more open than implied above. The Wordprocess-
ingML schema also allows any element from any other namespace to occur here.
This enables annotations from the AML (Annotation Markup Language) namespace,
as well as tags from a custom XML schema to be embedded inside Wordprocess-
ingML. (See Chapter 4.)

Document Structure and Formatting

Now that you’ve been inundated with information about lots of document-level con-
structs, let’s move into the actual content of a Word document and how it is repre-
sented in WordprocessingML. All Word documents contain three levels of hierarchy:
one or more sections containing zero or more paragraphs containing zero or more
characters. A run is a grouping of contiguous characters that have the same proper-
ties. Tables can occur where paragraphs can, and list items are just a special kind of
paragraph. You cannot have nested structures in WordprocessingML—sections
within sections, or paragraphs within paragraphs. The one exception to this rule is
that tables may contain tables.

Runs

A “run” is the basic leaf container for a document’s content and is represented by the
w:r element. As we've seen, the w:r element may contain w:t elements, which con-
tain text. Including the w:t element, there are 24 valid child elements of the w:r ele-
ment, representing things like text, images, deleted text, hyphens, breaks, tabs,
footnotes, endnotes, footnote and endnote references, page numbers, field text, etc.
We'll look at just a few of these.

40 | Chapter2: TheWordprocessingML Vocabulary

The w:r element may occur in five separate element contexts: w:p, w:fldSimple, w:
hlink, w:rt, and w:rubyBase. The first one, the paragraph, is the most common. The
w:fldSimple element represents a Word field, the w:hlink element represents a hyper-
link in Word, and the w:rt (“ruby text”) and w:rubyBase elements are used together
for laying out Asian ruby text.

The run is not an essential part of a Word document in the same way that para-
graphs and sections are. Rather, it is WordprocessingML’s way of grouping multiple
characters (or other objects) that have the same property settings. To illustrate this
point, consider the following WordprocessingML paragraph:
<wW:p>
<WiT><witOH</wet></wer>
<wir><w:itre</wit></wir>
AWrr><wit>1</witr</wir>
<Wir><Kwit>1</wit></wir>
<wir><witro</wit></wir>
KWIT>KWIT> </wit></wir>
<WiT><witHwe/wit></wer>
<wir><witro</wit></wir>
KWIT>KWIE>T</ Wit ></wir>
<WiT><Kwit>1</wit></wir>
<KWiT><W:t>d</wit></wir>
</wip>

The above paragraph is exactly equivalent to the paragraph below:

<wip>

<WIr>

<w:t>Hello world</w:t>
</wir>
</wip>

When Word saves a document as XML, it merges consecutive runs that have the
same property settings. It also merges consecutive w:t elements into a single w:t ele-
ment. In the above paragraph’s case, all of the run properties are assigned through
the document’s default paragraph and character styles, because no explicit, local
property settings are applied (through the w:rPr element).

Text and whitespace handling

The w:t element, which stands for “text,” has no attributes and may only contain
text. Being one of the few string-valued elements in Word, it is also one of the few
contexts in which whitespace is significant. The handling of whitespace within the w:
t element can be summarized in three basic rules:

1. Each space character (#x20) is preserved as a space and shows up as a space in
Word.

2. Each line-feed character (#xA) and character reference to a carriage-return
(#xD) is converted into a space.

Document Structure and Formatting | 41

3. Each tab character (#x9) is replaced by a w:tab element (broken out into a sepa-
rate run).

The one exception is that when xml:space="default" is present, tab characters are
instead converted to spaces (and w:tab elements ignored altogether).

Tabs and breaks

The run inside the following WordprocessingML paragraph contains text as well as a
text-wrapping break and a tab, represented by the w:br and w:tab elements.

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"
xml:space="preserve">

<w:body>
<W:p>
<WiT>
<w:t>This is the first line.</w:t>
<w:br/>
<w:t>This is a tab:</w:t>
<w:tab/>
<w:t>And this is some more text.</w:t>
</wir>
</wip>
</w:body>

</w:wordDocument>

The first thing to note here is that the presence of xml:space="preserve" is necessary
for the w:tab element to be interpreted correctly. Otherwise, the tab is stripped out
when the document is loaded (even though it technically doesn’t constitute whitespace
as far as XML is concerned). Again, for this reason, xml:space="preserve" should be
included on the root element of any WordprocessingML document you create.

The w:br element, like its HTML counterpart, inserts a break within the text flow. It is
short for <w:br w:type="text-wrapping"/>. The w:type attribute may have two other
values: column and page, representing column and page breaks. Figure 2-7 shows the
result of opening this document in Word, with formatting marks turned on.

The bent arrow at the end of the first line indicates that this is a text-wrapping break
(represented in WordprocessingML by the w:br element) rather than the end of the
paragraph. (Word users can insert text-wrapping breaks by pressing Shift-Enter).
The right-pointing arrow on the second line denotes the presence of a tab. The w:tab
element inserts a tab into the text flow, according to the tab settings for the current
paragraph. In this case, since the tab stops for this paragraph are not specified either

42 | Chapter2: The WordprocessingML Vocabulary

@ BreakAndTab.xml - Microsoft Word

! File Edit Wew Insert Formak Tools Table ‘Window Help X

§d|§1|ﬁj§§|@mwn% - @) jimnrmal - [

P Toobox - | E1E 8 BN F 3 O Wik o)) e
0 0 0 . . 3 .

5"':"'%"':"'% -

This+s-the-frst-line +'

R

Thiss-a-tab: + And-tlus-is-some-more-text | =
F3
@
¥

=l =@ 4 |+

Page Sec Ak Ln Cal REC T a

Figure 2-7. A text-wrapping break and a tab inside a single paragraph

locally or in the Normal paragraph style, the tab stops default to the application
default: every half inch (as specified by the document’s w: defaultTabStop element).

Run properties

Among all the valid child elements of w:r, the w:rPr element is special. It stands for
“run properties.” All of the other children of w:r may occur in any order, but the w:
rPr element, when present, must come first. Its child elements collectively set proper-
ties on the run, controlling primarily how text inside the run is to be displayed.
There are 42 possible child elements of the w:rPr element, all of which are empty ele-
ments. Their various attribute values specify formatting properties such as font, font
size, font color, bold, italic, underline, strikethrough, character spacing, text effects,
etc. They correspond to the properties you see in Word’s Font dialog box, accessed
by selecting Format — Font..., as shown in Figure 2-8.

When font settings are applied using a local w:rPr element, such settings are called
“local settings,” “manual formatting,” or “direct formatting,” as distinct from font
settings applied through a selection’s associated paragraph and character styles. Indi-
vidual font properties applied through direct formatting always override the corre-
sponding properties defined in the associated paragraph or character styles.

Example 2-3 shows the use of some of these formatting elements, each of which is
highlighted.

Document Structure and Formatting | 43

T Cen MT Condensed

| .

[I
[]
[u
[[

Times New Eoman

o | cocel |

Figure 2-8. Word’s font settings which correspond to run properties

Example 2-3. Applying various font properties

<?xml version="1.0"?>
<?mso-application progid="Word.Document"?>
<w:wordDocument
xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"
xml:space="preserve">
<w:body>
<wW:p>
<WIT>
<W:IPT>
<w:i w:val="on"/> <!-- turns italics on -->
<w:b/> <!-- turns bold on -->
</w:TPr>
<w:t>This run is bold and italic. </w:t>
<w:br/>
</wir>
<WiT>
<W:rPT>
<w:u w:val="single"/> <!-- single underline -->
<w:rFonts w:ascii="Arial"/>
</W:rPr>
<w:t>This is Arial and underlined.</w:t>
<w:br/>

44 | Chapter2: The WordprocessingML Vocabulary

Example 2-3. Applying various font properties (continued)

</Wir>
<WiT>
<W:rPr>
<w:sz w:val="56"/> <!-- 28-point font size -->
</w:rPr>
<w:t>This is big.</w:t>
</Wir>
</wip>
</w:body>
</w:wordDocument>

This example contains a single paragraph that contains three runs, each of which
contains text. The first two runs also contain trailing text-wrapping breaks (w:br ele-
ments), effectively separating the text of each run onto its own line. Each run has dif-
ferent run properties specified in the w:rPr element. These properties, since they are
applied as direct formatting, override the corresponding settings in the Normal style
(the “default default” paragraph style, as we saw earlier).

The first run introduces the w:b and w:i elements:

<W:TPr>
<w:i w:val="on"/> <!-- turns italics on -->
<w:b/> <!-- turns bold on -->
</w:TPr>

The w:b and w:1 elements stand for “bold” and “italic,” respectively. They are among
19 of w:rPr’s 42 possible child elements that, like many of w:docPr’s children, are
declared with the onOffProperty type in the WordprocessingML schema. This means
that the default value of the w:val attribute is on. Thus, w:val="on" on the w:i ele-
ment above is technically redundant. As might be guessed, by turning these proper-
ties on, all of the text within the run will be formatted in bold weight and italic style.

The presence of the w:val attribute is necessary to turn off a particular
\ property, overriding its setting in the style. For example, if you want to

s turn off bold for a particular portion of text that’s associated as a
whole with a style in which the bold property is turned on, then you
would include <w:b w:val="off"/> inside the w:rPr element.

The second run in Example 2-3 introduces the w:u and w:rFonts elements:

<W:rPr>
<w:u wival="single"/> <!-- single underline -->
<w:rFonts w:ascii="Arial"/>

</w:rP1>

The w:u element is similar to w:b and w:i, in that it is empty and has a w:val
attribute. The difference is that, instead of having only the values on and off, you
have a choice between 18 different values, including single (as in this example) and
none. These values correspond to the choices in the “Underline style” drop-down
menu in Word’s Font dialog.

Document Structure and Formatting | 45

This run also specifies the Arial font, overriding the default Times New Roman font
of the Normal style. This is done using the w:rFonts element, which has the same
declared type in the WordprocessingML schema as the global w:defaultFonts ele-
ment we saw earlier. Specifically, it allows the same attributes for specifying the fonts
of different character sets: w:ascii, w:h-ansi, w:cs, and w:fareast. In this case, only
the w:ascii attribute is supplied, which means that the other character sets still
assume the default font.

The third and final run in our single-paragraph document sets the font size using the
w:sz element:

<w:rPr>

<w:sz wival="56"/> <!-- 28-point font size -->

</w:rPr>
The value of the w:val attribute in this case is measured in half-points, or 10 twips,
or 144ths of an inch. Thus, while its value is 56 in the XML, the actual font size (in
full points) is 28.

Finally, we see the result of opening this document in Word in Figure 2-9.

I ex0203.xml - Microsoft Word

! File Edit Wew Insert Formak Tools Table ‘Window Help Tvpe & question for help = (30

P @0 [=E] - @)] HRead 54_4 Normal + 28 pt » 28 v |

L Toobox- | E1E3 A B e | S O Wi o P a0 el 2

g'"""1"""'2"':ﬁ;iRevealFormatting v X

Thisrun-is-hold-and-italic. -+
Thisis-Arial-and undetlined.«

This-is-big.s b1g

[] Compare to anather selection

Selected text

Formatting of selected text

[H Font ~
From Paragraph Style: Normal =
Fonk: —
12 pk
Langquage:
English (L1.5.)
Direct Formatting
Font:
— 28 pk v
- M
+ Dptions
@ [w] Distinguish skvle source
¥ [wl Show all Formatting marks
slela =8 4 |¥]
Page et ak Lm Cal REC TRE EXT OVR a

Figure 2-9. Direct formatting using local w:rPr elements

46 | Chapter2: TheWordprocessingML Vocabulary

Figure 2-9 also shows how direct formatting is represented in the Word UL In this
case, the cursor is inside the third run, containing the text “This is big.” There are
two things worth noting about how this direct formatting is represented:

* The style drop-down box, as shown at the top right of the window, says “Nor-
mal + 28 pt.” This is how all direct formatting is represented here (style name +
individual property settings).

* The Reveal Formatting task pane, because “Distinguish style source” is checked,
distinguishes between the font size as set in the Normal style (12 pt) and the
overriding font size as applied through Direct Formatting (28 pt).

Associating a run with a character style

In addition to specifying direct formatting, a run can explicitly associate itself with
one of its document’s character styles. This is done using the w:rStyle element.
Below are three runs excerpted from a document in which the “Hyperlink” character
style is defined. All three runs are associated with the “Hyperlink” style, but the mid-
dle run also applies some direct formatting (italics):

<WiT>
<W:rPr>
<w:rStyle w:val="Hyperlink"/>
</w:rPr>
<w:t>This just </w:t>
</Wir>
<WiT>
<W:rPr>
<w:rStyle w:val="Hyperlink"/>
<w:i/>
</w:rPr>
<w:t>looks</w:t>
</wir>
<WiT>
<W:TPT>
<w:rStyle w:val="Hyperlink"/>
</w:rPr>
<w:t> like a hyperlink.</w:t>
</wir>

Figure 2-10 shows the result of opening this document in Word, assuming it has
defined the “Hyperlink” style in its w:styles element (rendering the font blue and
underlined).

Once again, the Reveal Formatting task pane shows the distinction between the
properties applied through direct formatting (“Italic”) and the properties defined in a
style (“Font color: Blue” and “Underline”). It also reveals the character style for this
run: “Hyperlink.”

Document Structure and Formatting | 47

it} HyperlinkStyle.xml - Microsoft Word

I File Edit ‘Miew Insert Format Tools Table Window Help Type a question For help = X

i 2 H (A]S A ES G T 200% o @)] GHRead !id_{*perlink+1ta\in12v|§ 1= i

D tokox | 13 A |8 N 3 O W d ol P ac BAAsSAd %]

g N S S - Z { Reveal Formatting v x
®@| 8| A

Selected text

This just Zobks like a hyperlink.

looks

[[] Compare to another selection

Formatting of selected text

[=IFont -
From Paragraph Style: Normal =
Font: B
12 pt
Language:
English {U.5.)

From Character Style: Hyperlink
Characker Skyle:

Hyperlink
Font:

Undetline

Font color: Elue

Direct Formatting
Fonk:
Ttalic

— v
S bd
+ Options
@ [v] Distinguish style source
® [[] shaw all Formatting marks
=[zla =& 4| |+]
Page Sec ak Ln Cal REC TRK EXT ovr [CF A

Figure 2-10. A run of text associated with the “Hyperlink” style

Paragraphs

Paragraphs are the basic block-oriented element in Word. All text content within a
document is contained within paragraphs, whether it’s inside the main body of the
document, a table cell, a header, a footer, a footnote, an endnote, or a textbox
embedded in an image. Normally, a new paragraph is created whenever a user hits
the Enter key while editing.

In WordprocessingML, a paragraph is represented by the w:p element. The area
inside the w:p element could be called a “run-level” context, because it is a context in
which runs (w:r elements) may appear. Similarly, the area inside the w:body element

1S

a “block-level” context, because it is a context in which paragraphs and tables may

appear. The traditional distinction between a block and an inline element (or run) is
that blocks are laid out on separate lines, whereas inline elements (runs) are laid out
continuously, without any hard line breaks.

48

| Chapter2: The WordprocessingML Vocabulary

The content model of the w:p element is simple enough that it’s worth showing here
(using a DTD-like notation):

w:pPr?,

(w:r|w:proofErr|w:permStart |w:permend |w:fldSimple|w:hlink |w:subDoc)*
This follows the same pattern as w:r’s content model: an optional properties ele-
ment followed by any of a number of element choices in any order. (We didn’t show
w:1’s entire content model because it has so many element choices.)

Three of the elements in w:p’s content model, as we’ve seen, may also occur as chil-
dren of w:body. The w:proofErr, w:permStart, and w:permend elements are thus both
block-level and run-level elements. They are explained later in “Proofing, Protection,
and Annotation Markings.”

The w:fldSimple element represents a Word field, and the w:hlink element repre-
sents a hyperlink in Word. You may recall that these elements are also run-level con-
texts, i.e., they themselves may contain runs. The w:subDoc element represents a link
to a sub-document of the current document.

As is the case with the w:body element, w:p’s content model is actually more open
than implied above. The WordprocessingML schema also allows any element from
any other namespace to occur here. This enables annotations from the AML (Anno-
tation Markup Language) namespace, as well as tags from a custom XML schema to
be embedded inside WordprocessingML. As we’ll see in Chapter 4, Word renders
custom XML tags differently depending on whether they occur at the block level
(inside w:body) or run level (inside w:p).

Paragraph properties

Among all the valid child elements of w:p, the w:pPr element is special. It stands for
“paragraph properties.” All of the other children of w:p may occur in any order, but
the w:pPr element, when present, must come first. Its child elements collectively set
properties on the paragraph, controlling how the paragraph will be displayed. There
are 34 possible child elements of the w:pPr element, many but not all of which are
empty elements. Their various attribute values and child elements specify paragraph
properties such as alignment, indentation, spacing, tab stops, widow/orphan con-
trol, paragraph borders, etc. Most of these properties correspond to the properties
you see in Word’s Paragraph dialog box, accessed by selecting Format — Para-
graph..., as shown in Figure 2-11.

When paragraph settings are applied using a local w:pPr element, such settings are
called “local settings,” “manual formatting,” or “direct formatting,” as distinct from
settings applied through a paragraph’s associated paragraph style. Individual para-
graph properties applied through direct formatting always override the corresponding
properties defined in the associated paragraph style. If this sounds familiar, it should.
It’s the same basic rule as for font settings. Local w:rPr and w:pPr elements always

Document Structure and Formatting | 49

Paragraph

Froe o b =

powe [

A work imd o el ook Brim o dull ko, AN wodk iad no e akes
Foimn o dull oy, A% wodk imd no el nokes Frn a dull buy. AR wodt imd no plisy

ks Ersm 1 dult by

Figure 2-11. Word’s Paragraph dialog, corresponding to properties inside the w:pPr element

override settings applied through (explicit or default) style association. Also, the
properties within the w:rPr and w:pPr elements are completely disjoint from each
other, so there is no possibility of conflict between these two elements.

Example 2-4 shows the use of some of these paragraph formatting elements, each of

which is highlighted.

Example 2-4. Applying various paragraph properties

<?xml version="1.0"?>
<?mso-application progid="Word.Document"?>
<w:wordDocument
xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"
xml:space="preserve">
<w:body>
<w:p>
<w:pPr>
<w:jc w:val="center" />
</wipPr>
<WiT>
<w:t>All work and no play makes Evan a dull boy.</w:t>
</Wir>

50 | Chapter2: The WordprocessingML Vocabulary

Example 2-4. Applying various paragraph properties (continued)

</wip>
wip />
<Wip>
<w:pPr>
<w:spacing w:line="480" w:line-rule="auto" />
<w:ind w:left="720" w:first-line="720" />
</w:pPr>
<WiT>
<w:t>All work and no play makes Evan a dull boy. All work and no play makes Evan a
dull boy. All work and no play makes Evan a dull boy. All work and no play
makes Evan a dull boy.</w:t>
</wir>
</wip>
<W:p>
<W:pPr>
<w:ind w:left="2880" w:right="2880" />
</w:pPr>
<WiT>
<w:t>All work and no play makes Evan a dull boy.</w:t>
</wir>
</wip>
</w:body>
</w:wordDocument>

The result of opening this document in Word is shown in Figure 2-12. Also, the For-
mat — Paragraph... dialog shown earlier in Figure 2-11 reflects the paragraph set-
tings of the third paragraph of this example (note that the second paragraph is
empty).

Example 2-4 contains four paragraphs. The second paragraph is empty and does not
apply any direct formatting. The other three each specify paragraph properties that
override the corresponding settings in the Normal style (the “default default” para-
graph style).

The first paragraph is centered. The w:jc element represents the paragraph justifica-
tion settings:

<w:jc wival="center" />

Its w:val attribute value may be left, center, right, both, or one of several other
options specific to East Asian text. The first four values correspond to the “Left,”
“Centered,” “Right,”, and “Justified” options in the Alignment drop-down menu in
the Format — Paragraph... dialog.

The second non-empty paragraph is double-spaced, indented on the left, and has a
first-line indent. The double-spacing effect is achieved through the w:spacing element:

<w:spacing w:line="480" w:line-rule="auto" />

Document Structure and Formatting | 51

T ex0204.xml - Microsoft Word

Type a question for help /[

Reveal Formatting I AL

Q@A

Selected text

Sample Text |

[l Compare to another selsction

Formatting of selected text

ElFont
From Paragraph Style: Normal
Font: =
12 pt
Language:
English {U.5.}

Eraragraph
From Paragraph Style: Normal
Alignment:
Left
Indentation:
Left: 0"
Right: 0"

Direct Formatting
Indentatinn:

Left: 0.5

First line: 0.5"
Spacing:

Line spacing: Double

€

Options

Distinguish style source
[wl Show all Farmatting marks

{ Flle Edit Wiew Insert Format Tools Table Window Help
NEE S C G RTEI LB 08 aEE S ST @) dead lid e n = :
ook | 8 9 | W | B2 O
[|I|9§'234 ‘a-ﬂ
Allwworkrand-no-play-malkes-Evan-a-dull-boy.|
1
Allwork-and-no-play-makes-Evan-a-dull-boy - All-work-and-no-play-mak es-
Evan-a-dull-boy.-All-work-and-no-play-makes-Evan-a-dull-boy.- All-work-and-no-
play-makes-Evan-a-dull-boy.w
All-work-and-no-play-makes-
Evan-a-dull-bow
E
£
o
2
BN]
Pags 1 Sec 1 111 At 21" In5 Col28 | REC TRK EST OVR

Figure 2-12. Applying paragraph properties as direct formatting

Unlike the w:jc element, which has specific keywords corresponding to each of the
UI options, the w:spacing element specifies its values numerically—in twips. The w:
line attribute’s value of 480 (equivalent to 24 points), in conjunction with the w:
line-rule attribute’s value of auto, represent the overall setting of “Double” in the
Line Spacing drop-down menu in the Format — Paragraph... dialog, as shown ear-
lier in Figure 2-11. When the w:1ine-rule attribute’s value is auto, then the w:line
attribute’s value is interpreted in a pre-defined way, regardless of the current para-
graph’s font size. A value of 480 means “Double,” 360 means “1.5 line,” and 240
means “Single.” The actual line spacing distance is automatically adjusted according
to the current font size, but the w:1line attribute’s value stays the same. The other
possible values of w:line-rule are exact and at-least. These correspond to the
“Exactly” and “At least” options in the Line Spacing drop-down menu and affect
how the w:1ine value is interpreted. For example, a value of exact would fix the line
spacing distance to the specified value in the w:1line attribute, regardless of the cur-
rent font size. The w:spacing element also has other attributes (not present in this
example) that are used to determine the spacing before and after the paragraph itself.

The indentation of the third paragraph (following the empty second paragraph) is
specified using the w:ind element:

<w:ind w:left="720" w:first-line="720" />

52 |

Chapter 2: The WordprocessingML Vocabulary

The w:left attribute specifies the left indentation distance as 720 positive twips, or
half an inch to the right of the page margin. (Negative indent values move the text
into the page margin.) The w:first-line attribute specifies a first-line indent of
another half inch. The effect of these settings on Word’s ruler is shown in
Figure 2-13.

9?'2'3

Figure 2-13. A half-inch left indent and a half-inch first-line indent

The w:ind element may also have a w:hanging attribute which specifies a hanging
indent. Its presence is mutually exclusive with the w:first-line attribute, because
the same paragraph cannot have both first-line and hanging indents. If our example
used a hanging indent rather than a first-line indent, then the WordprocessingML
would look like this:

<w:ind w:left="720" w:hanging="720" />
And the ruler would look like Figure 2-14.

[N S S SR SR

Figure 2-14. A half-inch left indent and a half-inch hanging indent

Interestingly enough, you can also supply negative values for the w: first-line and w:
hanging attributes. Since a hanging indent is essentially the opposite of a first-line
indent, Word interprets a negative value as if you had supplied a positive value of the
other type of indent. In fact, when it subsequently saves the document as Wordpro-
cessingML, it replaces one attribute with the other attribute (w:hanging with w:first-
line or vice versa) and its negative value with its opposite (positive) value. For exam-
ple, if you open a document that has this:

<w:ind w:hanging="-720" />

then Word will normalize it to this instead:
<w:ind w:first-line="720" />

The two are equivalent.

The last paragraph in Example 2-4 has both right and left indents:
<w:ind w:left="2880" w:right="2880" />

The positive value (in twips) of 2880 in each of the w:left and w:right attributes
means that the paragraph will be indented two inches from the margin on each side.

The w:left, w:right, w:first-line, and w:hanging attributes all measure distance in
twips. You can alternatively measure distance in character spaces, by using the w:ind

Document Structure and Formatting | 53

element’s other four optional attributes instead: w: left-chars, w:right-chars, w: first-
line-chars, and w:hanging-chars.

Defining tab stops

Paragraphs can specify custom tab stops, overriding the document’s default tab stop
interval. This is done using the w:tabs child element of a paragraph’s w:pPr element.
Example 2-5 shows a paragraph with custom tab stops as well as some tabs inside
the paragraph that make use of those stops.

Example 2-5. Defining custom tab stops

<?xml version="1.0"?>
<?mso-application progid="Word.Document"?>
<w:wordDocument
xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"
xml:space="preserve">
<w:body>
<W:p>
<wW:pPr>
<w:tabs>
<w:tab w:val="left" w:pos="720" />
<w:tab w:val="center" w:pos="3600" />
<w:tab wival="right" w:pos="6480" />
</w:tabs>
</w:pPr>
<WiT>
<w:tab/>
<w:t>Left-aligned tab</w:t>
<w:tab/>
<w:t>Centered tab</w:t>
<w:tab/>
<w:t>Right-aligned tab</w:t>
</Wir>
</wip>
</w:body>
</w:wordDocument>

Each w:tab element within the w:tabs element defines a different tab stop. Both the
w:val and w:pos attributes are required. The w:val attribute indicates the type of tab
stop, controlling the alignment of text around it. Its value must be one of left,
center, right, decimal, bar, list, or clear. (The value clear enables tab stops defined
in an associated paragraph style to be explicitly cleared.) The w:pos attribute speci-
fies the position of the tab stop on the ruler, as the number of twips to the right of
the left page margin. The w:tab element may also have an optional w:leader
attribute, which sets the style of the empty space in front of the tab. These proper-
ties correspond to the settings found in Word’s Format — Tabs... dialog, shown in
Figure 2-15, which here is populated with the same tab stops as defined in
Example 2-5.

54 | Chapter2: TheWordprocessingML Vocabulary

Tabs g|
Tah stop position: Default tab stops:
5 =

Tah stops to be cleared:

=

Alignnent
" Left * Center " Right
" Decimal " Bar

Leader
% 1 Mone 12 v, 5 e
L

Set | Clear | Clear all |

oK I Cancel |

Figure 2-15. Tab stop definitions, corresponding to Example 2-5

Finally, the result of opening this file in Word is shown in Figure 2-16, with format-
ting marks turned on.

EE"'L"'1"""'2'"J.'"3'"""4"'J"'5"""'|ﬁ

| -+ Left-aligned-tab - Centeredtab - Right-aligned-taby

Figure 2-16. Three kinds of custom tab stops

The custom tab stops can be seen on the ruler, and the tabs themselves are signified
by arrows in the document content. The document’s default tab stops (every half
inch) are signified by small vertical lines below the ruler and do not resume until
after the last custom tab, beginning at the 5-inch mark.

Paragraph mark properties

You may be surprised to learn that the w:rPr element (“run properties”) may also
occur as a child of the w:pPr element. Actually, it shows up quite often when editing
documents in Word. For example, if you turn bold on, type a short paragraph, and
hit Enter, then the resulting paragraph in WordprocessingML will look like this:
<wip>
<w:pPr>
<w:rPr>
<w:b/>

</w:xPr>
</w:pPr>

Document Structure and Formatting | 55

<W:ir>
<w:rPr>
<w:b/>
</w:rPr>
<w:t>This text is bold.</w:t>
</wir>
</w:p>
This may look redundant, but it isn’t. By now, you should be familiar with the pur-
pose of the second w:rPr element above. It sets the properties (in this case, bold) on
the run in which it is contained. However, the first w:1Pr element (inside the w:pPr
element) functions differently than you might expect. Rather than setting properties
of the runs inside the paragraph, it represents properties of the paragraph’s
paragraph mark. If we removed the first w:rPr element altogether, it would have no
actual effect on the formatting of our document. In fact, we wouldn’t even see a dif-
ference in the Word Ul—unless paragraph marks are turned on. In that case, we
might notice whether or not the paragraph mark itself is displayed in bold weight.

The run properties, or font settings, of a paragraph mark, though they do not directly
affect the paragraph’s formatting, do have an effect on Word’s behavior when subse-
quently editing the document. For that reason, you can think of the paragraph mark
properties as containing information about your document’s editing state rather than
its actual formatting. For example, one practical effect of setting bold on a para-
graph mark is that if the user selects the paragraph mark (by double-clicking it) and
drags and drops it to create a new paragraph, bold will be turned on by default for
runs entered in the new paragraph.

In practice, Word synchronizes the font settings of the paragraph mark with the font
settings of the last run in the paragraph. For example, if you are typing a paragraph
and you hit Enter when italics are turned on, then the paragraph mark of the para-
graph you just created will also have italics turned on, as will the paragraph mark of
the following paragraph, at least initially. If, on the other hand, you turn italics off
right before you hit the Enter key, then the last part of your paragraph will still be
italicized, but the paragraph mark won’t be, and neither will the following para-
graph’s paragraph mark.

One final example may help elucidate the function of paragraph mark properties.
Consider the WordprocessingML document in Example 2-6. It is devoid of any text
content, but it does have one empty paragraph whose paragraph mark has italics
turned on.

Example 2-6. An empty paragraph with italics turned on

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument
xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"
xml:space="preserve">
<w:body>

56 | Chapter2: TheWordprocessingML Vocabulary

Example 2-6. An empty paragraph with italics turned on (continued)

<W:p>
<wW:pPr>
<W:TPT>
<w:i/>
</WirPr>
</wipPr>
</wip>
</w:body>
</w:wordDocument>

If we open this document in Word, we’ll see nothing but a blank document with a
flashing cursor—an italicized flashing cursor. This, again, reflects the document’s
editing state, rather than its formatting. Any time you create a new paragraph while
editing, Word tries to remember the formatting properties you had in effect on the
last paragraph—even when you create an empty paragraph, save the document, close
it, and open it again later, which is what Example 2-6 demonstrates.

It’s good to clear up the potential confusion surrounding w:pPr’s seemingly redun-
dant w:rPr child. Now that you’re cognizant of what instances of this element do not
represent, you can safely exclude them from WordprocessingML documents that
you create. Their absence will have negligible impact on the user’s editing experi-
ence. Don’t worry—Word will still work its magic.

Associating a paragraph with a paragraph style

In addition to specifying direct formatting, a paragraph can explicitly associate itself
with one of its document’s paragraph styles. This is done using the w:pStyle ele-
ment. Below is a paragraph excerpted from a document in which the “Headingl”
paragraph style is defined:

<Wip>
<w:pPr>
<w:pStyle w:val="Heading1" />
</w:pPr>
<WiT>
<w:t>This is a heading</w:t>
</wir>
</wip>

This paragraph will be formatted according to the explicitly associated paragraph
style, provided that the containing document has a style definition that looks some-
thing like this:

<w:style w:type="paragraph" w:styleId="Heading1">
<w:name w:val="Heading 1"/>
<!-- other style options -->
<W:pPr>
<!-- paragraph property settings -->
</w:pPr>

Document Structure and Formatting | 57

<W:rPr>
<!-- font property settings -->

</wirPr>

</w:style>

Tables

Tables may occur anywhere that paragraphs may occur (and vice versa), which most
commonly is directly inside the w:body element (or inside an intervening wx:sect ele-
ment when the WordprocessingML is output by Word). The other contexts in which
paragraphs and tables may occur are the w:hdr, w: ftr, w: footnote, w:endnote, w:tc, w:
txbxContent, and w:cfChunk elements, which we already introduced briefly.

The basic structure of the w:tbl element looks like this:

<w:tbl>
<w:tblPr>...</w:tblPr>
<w:tblGrid>
<w:gridCol w:val="..."/>
<w:gridCol w:val="..."/>

</w:tblGrid>

<w:tr>
wite>...</wite>
<wite>...</wite>

</witr>
<witr>...</witr>
</w:tbl>
The content model for the w:tbl element, using a DTD-like syntax, is:

aml:annotation*, w:tblPr, w:tblGrid,

(witr | wiproofErr | wipermStart | w:permtnd)+
In other words, the w:tbl element may contain zero or more aml:annotation ele-
ments, followed by a w:tblPr element and a w:tblGrid element, followed by one or
more w:tr, w:proofErr, w:permStart, or w:perménd elements, in any order. The w:
tb1Pr element contains table-wide properties. The w:tblGrid element contains w:
gridCol elements that define the widths of columns in the table.

Table rows are represented by the w:tr element. The content model of the w:tr ele-
ment, using the same notation, is:

witblPTEX?, witrPr?, (w:tc | wiproofErr | w:permStart | w:permknd)+

The w:tb1PrEx element contains exceptions to the table-wide properties for this row
only. The w:trPr element contains table row properties for this row.

Table cells are represented by the w:tc element. The content model of the w:tc ele-
ment, using the same notation, is:

witcPr?, (w:p | w:tbl | wicfChunk | w:proofErr | wipermStart | w:permtnd)*

58 | Chapter2: TheWordprocessingML Vocabulary

Thus, after optionally specifying the table cell properties (with the w:tcPr element),
we are once again inside a block-level context. At this point, paragraphs may con-
tain the text for the table cell, or another table can be nested inside this one.

We've repeatedly seen the trio of w:proofErr, w:permStart, and w:permEnd—now at
row-level, cell-level, block-level, and run-level contexts. See “Proofing, Protection,
and Annotation Markings,” later in this chapter, to find out what exactly these ele-
ments are for and how they function.

Example 2-7 shows a simple table that references one of its document’s table styles
and additionally utilizes several table formatting features.

Example 2-7. A sample table with a style and merged cells

<?xml version="1.0"?>
<?mso-application progid="Word.Document"?>
<w:wordDocument
xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"
xml:space="preserve">
<w:styles>
<w:style w:type="table" w:styleId="MyTableStyle">
<w:name w:val="My Table Style" />
<w:tb1Pr>
<w:tblBorders>
<w:top w:val="single"/>
<w:left w:val="single"/>
<w:bottom w:val="single"/>
<w:right w:val="single"/>
<w:insideH w:val="single"/>
<w:insideV w:val="single"/>
</w:tblBorders>
<w:tblCellMar>
<w:left wiw="108" w:type="dxa" />
<w:right w:w="108" w:type="dxa" />
</w:tblCellMar>
</w:tb1Pr>
</w:style>
</w:styles>
<w:body>
<w:tbl>
<w:tb1Pr>
<w:tblStyle w:val="MyTableStyle" />
</w:tblPr>
<witr>
<w:ite>
<wip>
<WiT>
<w:t>First row, first column</w:t>
</wir>
</wip>
</w:te>
<wite>
<w:tcPr>

Document Structure and Formatting | 59

Example 2-7. A sample table with a style and merged cells (continued)

<w:vmerge w:val="restart" />
</w:tcPr>
<w:p>
WiT>
<w:t>First row, second column (merged with second row, second
column)</w:t>
</w:r>
</wip>
</wite>
</witr>
<w:tr>
<w:te>
<W:p>
<WiT>
<w:t>Second row, first column</w:t>
</w:r>
</wip>
</wite>
<w:te>
<w:tcPr>
<w:vmerge />
</w:tcPr>
w:ip/>
</wite>
</witr>
</w:tbl>
</w:body>
</w:wordDocument>

The result of opening this WordprocessingML document in Word is shown in
Figure 2-17.

'%5' B L - B T - S B - R BT
IFirst row, first column | First row, second column {merged with second row, second
Second row, first column)
column

Figure 2-17. A simple table, with automatically sized cells

There are a few things to note about this table:

* The table is associated with “MyTableStyle,” which is defined within the docu-
ment.
* The “MyTableStyle” style adds borders and cell-spacing to the table.

* Word opens the document without complaint, even though it doesn’t have a w:
tblGrid element; Word automatically sizes the cells to contain the content.

60 | Chapter2: TheWordprocessingML Vocabulary

* The w:vmerge element is a table cell property that is used to vertically merge one
table cell with another table cell below it—similar to its horizontal equivalent,
the w:hmerge element.

* The w:tbl element as generated by Word tends to be much more verbose than
this example, explicitly specifying many individual property settings.

There is a lot that this example doesn’t cover. To give you an idea just how much
more there is to tables, the w:tblPr element has 17 possible child elements (many of
which contain their own children), the w:trPr element has 12 possible child ele-
ments, and the w:tcPr element has 13 possible child elements. That’s not to mention
the w:tb1PrEx (exceptions for a specific row), w:tb1StylePr (for table-style condi-
tional override properties), and w:tblpPr (for specifying the position of a table) ele-
ments. If you’re writing WordprocessingML for tables, the main things you’ll need to
configure are the properties of the table, rows, and cells. These work in the same way
as the paragraph properties that we’ve looked at in detail earlier, so we won’t go into
them here. A quick look at the properties dialogs for tables should give you an idea
of what’s involved.

Lists

Lists are a rather strange beast in WordprocessingML. Though tables can get pretty
hairy, they at least are generally structured the way you would expect: tables contain-
ing rows containing cells. Lists, on the other hand, have no such explicit structure in
WordprocessingML. Instead, a list consists of a sequence of paragraphs that func-
tion as list items. They do not have a common container, nor, unfortunately, does
Word provide an auxiliary hint for list containers when outputting Wordprocess-
ingML. The member paragraphs of a list are linked to one of its document’s “list def-
initions.” These are responsible for maintaining the identity of a single list. When
numbering restarts, for example, a new list definition is automatically created. These
list definitions, in turn, are linked to one of the document’s “base list definitions”,
which, if there is no subsequent list style link to traverse, define the actual format-
ting properties of the list. If the phrase “spectacularly convoluted” comes to mind,
just wait until you see an example of this.

What makes a paragraph a list item

A paragraph participates as a member of a list under one of these separate circum-
stances:

* It has a w:1istPr element inside its w:pPr element, which refers to a specific list
definition (via the w:ilfo element).

* It is associated with a paragraph style that includes list formatting.

Document Structure and Formatting | 61

Let’s take a look at how the first mechanism works. The following paragraph is a
member of a list:

NTH
<w:pPr>
<w:listPr>
<w:ilvl w:val="0"/>
<w:ilfo w:val="1"/>
</w:1listPr>
</wipPr>
<WiT>
<w:t>This is item one.</w:t>
</Wir>
</wip>

The w:ilfo element (whose name may stand for something like “item list format,”
though Microsoft has not documented what it actually means) refers to one of the
document’s list definitions, identified by the number 1. The w:ilvl element specifies
at what level of nesting this list item occurs. It is incremented each time a list is
nested within another list. Since there are nine possible levels of list indentation in
Word (starting at 0), its value can be anywhere from 0 to 8. It basically says, “Once
you find the definition for how each level of this list is supposed to look, sign me up
for the formatting and indentation that are defined for level 0.” Finding the list defi-
nition is the trick. But before we figure out how that’s done, let’s take a look at how
WordprocessingML lists compare with HTML lists.

Comparing HTML and WordprocessingML lists
Below is a simple nested list in HTML.:

<1i>
<p>This is top-level item 1</p>

<1i>This is second-level item 1</1i>
<1li>This is second-level item 2</1i>

</1i>
<1i>This is top-level item 2</1i>

In WordprocessingML, a list like this is expressed much differently. Instead of using
a hierarchical structure to express the list hierarchy, we must represent the list as a
flat sequence of four sibling paragraphs, assigning them to the same list but to differ-
ent levels within the list:
<w:p>
<w:pPr>
<w:listPr>
<w:ilvl w:val="0"/>
<w:ilfo w:val="1"/>
</w:listPr>

62 | Chapter2: The WordprocessingML Vocabulary

</wipPr>
<WiT>
<w:t>This is top-level item 1</w:t>
</Wir>
</wip>
<wip>
<W:pPr>
<w:listPr>
<w:ilvl wival="1"/>
<w:ilfo w:val="1"/>
</w:listPr>
</w:pPr>
<WIT>
<w:t>This is second-level item 1</w:t>
</wir>
</w:p>
<Wip>
<w:pPr>
<w:listPr>
<w:ilvl wival="1"/>
<w:ilfo w:ival="1"/>
</w:listPr>
</w:pPr>
<W:T>
<w:t>This is second-level item 2</w:t>
</wW:ir>
</wip>
<Wip>
<w:pPr>
<w:listPr>
<w:ilvl w:val="0"/>
<w:ilfo w:val="1"/>
</w:listPr>
</w:pPr>
<WiT>
<w:t>This is top-level item 2</w:t>
</Wir>
</wip>

For this list to display correctly, the document must contain at least one list defini-
tion (a w:list element with w:ilfo="1", as we’ll see) and a corresponding base list
definition (w:listDef element), which contains the actual formatting information for
list items. Each paragraph’s w:ilvl value represents how far it is nested in the list.
The “top-level” paragraphs are each at level 0, whereas the “second-level” para-
graphs are each at level 1. Figure 2-18 shows how Word renders this Wordprocess-
ingML list, using one of its built-in list styles.

Finding the list definitions

Now let’s take a look at where the “list definitions” and “base list definitions” are actu-
ally defined. Unsurprisingly, they are both to be found inside the top-level w:1ists

Document Structure and Formatting | 63

'U'&'!"'?"'f"'z."'f
13 Thiz 15 top-level ttem 1

a) This 1z second-level item 1

by This 15 second-level item 2
21 This 15 top-level item 2

Figure 2-18. A simple nested list in Word

element, whose basic content model is a sequence of w:1istDef elements followed by a
sequence of w:1ist elements:

<w:lists>
<w:listDef ...»>

</w:listDef>
<!-- more w:listDef elements -->
<w:list ...>

</w:list>
<!-- more w:list elements -->
</w:lists>

The w:1ist elements represent what we’re calling “list definitions,” and the w:1istDef
elements represent what we're calling “base list definitions.”

Consider the first example list paragraph we saw earlier. This will be our starting
point for finding the list definitions in the same way that Word does. Here’s the
paragraph again:
<wW:p>
<w:pPr>
<w:listPr>
<w:ilvl w:val="0"/>
<w:ilfo w:ival="1"/>
</w:listPr>
</w:pPr>
<W:Ir>
<w:t>This is item one.</w:t>
</wW:ir>
</wip>

Since our paragraph’s w:ilfo element refers to the value 1, we need to find the list
definition identified by the number 1. In other words, we need to find a w:1list ele-
ment that looks something like this (whose w:ilfo attribute’s value is 1):

<w:list w:ilfo="1">

<w:ilst w:ival="5"/>

</w:list>
Now that we’ve found the list definition, the next step is finding the “base list defini-
tion.” We do that by looking at the value provided by the w:ilst element. In this
case, it is referring to a base list definition identified by the number 5. Recalling that
the base list definitions are represented by w:1istDef elements and that they precede

64 | Chapter2: The WordprocessingML Vocabulary

the w:1ist elements inside the w:1ists element, we continue to search further back in
our WordprocessingML document. Eventually, we find what we’re looking for:

<w:listDef w:listDefId="5">

<w:lvl w:ilvl="0">...</w:1vl>
<w:lvl weilvl="1">...</w:1lvl>
<w:lvl wiilvl="2">...</w:1lvl>
<w:lvl w:ilvl="3">...</w:1vl>
<w:lvl wiilvl="4">...</w:1lvl>
<w:lvl w:ilvl="5">...</w:1lvl>
<w:lvl w:ilvl="6">...</w:1vl>
<w:lvl weilvl="7">...</w:1lvl>
<w:lvl w:ilvl="8">...</w:1lvl>
</w:listDef>

The w:listDef element is identified by its w:1istDefId attribute and contains one w:
1v1 element for each level of list nesting for which it defines formatting. While you
can create base list definitions that define fewer levels without a problem, Word’s
built-in list styles define all nine levels of nesting. The content of the w:1vl element
includes all kinds of formatting information, such as indentation, tab stops, the num-
ber to start on, number format, and bullet images.

Once Word finds the base list definition, with all its formatting information, it then
applies the appropriate level’s formatting to the paragraph, according to the value of
the w:ilvl element that occurs in the paragraph’s list properties. Thus, Word applies
the level 0 list item formatting to our example paragraph above.

List Styles

An even more complex variation of this approach occurs is when list styles are used.
Unlike paragraph, table, and character styles, which can be directly associated with
paragraphs, tables, and runs (via the w:pStyle, w:tb1Style, and w:rStyle elements,
respectively), list styles are not directly associated with paragraphs in Wordprocess-
ingML—there is not a corresponding element for direct list style references. For
example, when an end user applies the built-in list style “1 / a /i” to a paragraph, the
paragraph is effectively associated with a list definition, but it is not directly associ-
ated with the “1 / a /i” list style that was applied to it. The resulting Wordprocess-
ingML paragraph looks essentially no different from the example paragraph we
looked at earlier. Here it is again (with the only difference here being that the w:ilfo
element happens to refer to a list definition identified by the number 2):
<wip>
<w:pPr>
<w:1listPr>
<w:ilvl w:val="0"/>
<w:ilfo w:val="2"/>
</w:listPr>

</w:pPr>
<WiT>

Document Structure and Formatting | 65

<w:t>This is item one.</w:t>
</wir>
</wip>
This is what the WordprocessingML looks like when an end user applies a list style
to a paragraph. Rather than being directly associated with the list style, the para-
graph refers to a list definition using the w:ilfo element—no differently than when a
list style is not involved. However, the list style association is still retained; it’s just
that you can’t tell that from looking at the paragraph alone. The list style association
only becomes evident when we start traversing the graph, and that’s where things get
complicated. First, the paragraph associates itself with the document’s list definition
(w:1ist element), identified by the value 2:
<w:list w:ilfo="2">
<w:ilst w:val="1"/>
</w:list>
The list definition, in turn, refers (via the w:ilst element) to a base list definition (w:
listDef element) identified by the value 1. So far, so good. Now, here is where a few
extra levels of indirection appear. Whereas before we were done at this point (the
base list definition contained all the formatting properties for each level of the list),
now we’re only halfway there. This time, the referenced base list definition doesn’t
contain any formatting properties (inside w:1v1 elements) at all. Instead, it contains
yet another reference—the w:1istStylelink element:
<w:listDef w:listDefId="1">
<w:1sid w:val="27DC6005"/>
<w:plt w:val="Multilevel"/>
<w:tmpl w:val="0409001D"/>

<w:1listStyleLink w:val="1ai"/>
</w:listDef>

This w:1listDef element refers, via its w:1listStylelLink element, to a list style defini-
tion whose w:styleld attribute’s value is 1ai. This corresponds to the “1 /a /i” style
that the end user applied. Here is the document’s list style definition that it refers to:

<w:style w:type="list" w:styleId="1ai">
<w:name w:val="Outline List 1"/>
<wx:uiName wx:val="1 / a / i"/>
<w:basedOn w:val="Nolist"/>
<w:rsid w:val="00283CEE"/>
<w:pPr>
<w:listPr>
<w:ilfo w:val="1"/>
</w:listPr>
</w:pPr>
</wistyle>

As you can see, the list style definition, in turn, contains a reference to yet another
list definition (identified by the number 1). Dizzy yet?
<w:list w:ilfo="1">
<w:ilst w:val="0"/>
</w:list>

66 | Chapter2: TheWordprocessingML Vocabulary

This list definition refers to yet another base list definition, identified by the number
0. Finally, we are home free, as this base list definition actually contains the list for-
matting properties Word needs in order to format each level of the list:

<w:listDef w:listDefId="0">
<w:lsid w:val="1B850634"/>
<w:plt wival="Multilevel"/>
<w:tmpl w:val="0409001D"/>
<w:styleLink w:val="1ai"/>
<w:lvl w:ilvl="0">
<w:start w:val="1"/>
<w:lvlText w:val="%1)"/>
<w:1vldc w:val="left"/>
<W:pPr>
<w:tabs>
<w:tab w:ival="list" w:pos="360"/>
</w:tabs>
<w:ind w:left="360" w:hanging="360"/>
</w:pPr>
</w:lvl>
<w:lvl wrilvl="1">

</w:lvl>
<w:lvl w:ilvl="2">

</w:lvl>
<w:lvl w:ilvl="3">

</w:lvl>
<w:lvl w:ilvl="4">

</w:lvl>
<w:lvl w:ilvl="5">

</w:lvly
<w:lvl w:ilvl="6">

</w:lvly
<w:lvl wiilvl="7">

</w:lvly
<w:lvl w:ilvl="8">

</w:lvl>
</w:listDef>
In summary, w:ilfo refers to w:1list, which refers to w:listDef, which refers to w:
style, which refers to another w:1ist, which refers to another w:listDef. Home,
sweet home. Oh yeah, and the last w:1istDef refers back to the same w:style through
an element called w:styleLink (which you can see in the last code snippet above)—
thereby throwing in a little circularity for good measure.

Document Structure and Formatting | 67

Sections

A section in Word is an area or set of areas within a document, characterized by the
same page settings, such as margin width, header and footer size, orientation, bor-
der, and print settings. These settings are accessible within the Word UI through the
File - Page Setup... dialog, shown in Figure 2-19. Figure 2-19 also shows the five
different kinds of section breaks you can insert into a document: “Continuous,”
“New column,” “New page,” “Even page,” and “Odd page.”

Page Setup

|
Caontinuous

New column

e &

Whnle document

lili
e

Figure 2-19. The Page Setup dialog for section settings

As mentioned previously, the structure of a Word document consists of one or more
sections containing zero or more paragraphs containing zero or more characters.
WordprocessingML, however, does not reflect that hierarchy exactly. In fact, there is
no section container element in WordprocessingML proper. (As we’ll see later in “Sec-
tion Containers,” the wx:sect element helps to fill this void by acting as a surrogate
container, thereby aiding external processing.) Rather, sections are represented indi-
rectly through the presence of section breaks. A section break is signified in Wordpro-
cessingML by the presence of a w:sectPr element inside the w:pPr element of the
section’s last paragraph. Example 2-8 shows the WordprocessingML for a document

68 | Chapter2: The WordprocessingML Vocabulary

that contains two section breaks, and therefore three sections. The w:sectPr elements
are highlighted.

Example 2-8. Multiple sections in a document

<?xml version="1.0"?>
<?mso-application progid="Word.Document"?>
<w:wordDocument
xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"
xml:space="preserve">
<w:docPr>
<w:view w:val="normal"/>
</w:docPr>
<w:body>
<wip>
<W:pPr>
<w:sectPr/>
</w:pPr>
<Wir>
<w:t>First section</w:t>
</wir>
</wip>
<wip>
<WiT>
<w:t>Second section, first paragraph</w:t>
</Wir>
</wip>
<wip>
<w:pPr>
<w:sectPr/>
</wipPr>
<WiT>
<w:t>Second section, second paragraph</w:t>
</wir>
</wip>
<wip>
<Wir>
<w:t>Third section, first paragraph</w:t>
</wir>
</wip>
<wip>
<WiT>
<w:t>Third section, second paragraph</w:t>
</Wir>
</wip>
<w:sectPr/>
</w:body>
</w:wordDocument>

The first two w:sectPr elements in this document represent section breaks, because
they each occur inside a w:pPr element. One thing to keep in mind about Wordpro-
cessingML’s way of representing section breaks is that it can be deceiving. Specifi-
cally, the w:sectPr elements do not lexically divide the text of the document

Document Structure and Formatting | 69

according to its true section boundaries. For example, though from a first glance it
may look as if the paragraph that says “Second section, second paragraph” belongs
to the third and final section, that is not the case. It only looks that way because the
w:sectPr element comes before the text of the paragraph in which it resides. This
potential confusion is all the more reason to look forward to “Section Containers,”
later in this chapter.

The last w:sectPr element in Example 2-8 does not occur inside the w:pPr element.
Rather, it is a child of w:body, following the last paragraph in the document. This is
where Word always expects to see the final w:sectPr element of the document. It
does not represent a section break; rather, its job is simply to apply properties to the
final (and possibly only) section of the document. If it isn’t there when Word loads
the document, Word will add it. The presence of w:sectPr inside a w:pPr element
always denotes a section break, but the presence of w:sectPr as the last child of the
w:body element does not. It’s important to keep this distinction in mind when gener-
ating WordprocessingML documents that have multiple sections.

Figure 2-20 shows what we see when Word opens the document in Example 2-8.

I Sections.xml - Microsoft Word |._||E|[‘5__<|
I Fle Edit Wiew Insert Format Tools Table Window Help Type a question for help = X

NEEHROSR)TEI B0 8 3TES 0 -0 med B =E

i xML Toohox ~ | (E] 5 4 ||§W|@30!

- R SR IR T

EFirst section

TP TR Y.

e ﬂ i Reveal Formatting v x
® DA

Selected text

Kl

Section Break (Mext Page)...
Second section, first paragraph
Second section, second paragraph Sample Text

Section Break (Mext Page) ...
Third section, first paragraph
Third section, second paragraph

[] Compare ko anather selection

Formatting of selected text

[+] Font A
[f] Paragraph =
[2 Section =
Marains:

Left: 1.25"

Right: 1.25"

Top: 1"

Bottom: 1"
Lawout:

Section start: Mew page
Paper:

width: 8.5"

Height: 11"

| €

Dptions
[] Distinguish style source

«o»|<_

[[] Show all formatting marks

BRI N i

Page 1 Sec 1 143 Ak 1" Ln 1 Cal 1 REC TRE ERT OWR a

Figure 2-20. Three sections separated by Next Page section breaks

70 | Chapter2: The WordprocessingML Vocabulary

In the “Normal” view (which we see automatically, thanks to Example 2-8’s use of
the w:view element), all section breaks are visible. The first mystery of the empty w:
sectPr section break element is answered: by default it stands for a “Next Page”
break. We could have explicitly specified this in our document by using the w:type
child element of w:sectPr, like this:

<w:sectPr>

<w:type w:val="next-page"/>

</w:sectPr>
Besides next-page, the other possible values (corresponding to the drop-down menu
options we saw in Figure 2-19) are next-column, continuous, even-page, and odd-page.

Of course, the insertion of section breaks is not the only responsibility of the w:
sectPr element, which stands for “section properties.” Its content model, after all,
includes 21 possible element children, which collectively represent the settings a
user can edit through the File — Page Setup... dialog. The properties specified inside
the w:sectPr element apply to the section before the break that it represents (i.e., the
section containing the paragraph with which the w:sectPr element is associated).

Normally, when you create a new blank document in Word, all of the page settings
defined in the Normal.dot document template are copied into the document. These
include margins, paper dimensions, vertical alignment, orientation, etc. But our
hand-coded WordprocessingML document (Example 2-8) isn’t “normal” in this
sense. It was created outside of Word and specifies no page settings at all (as the w:
sectPr elements are empty). Word gracefully handles this scenario when it loads the
document by automatically inserting its application defaults for page settings. These
default page settings are the same settings that are automatically copied into the
Normal.dot template when Word is first installed, or when it is forced to create a
new Normal.dot template.

We can see Word’s application defaults for margins and paper size in the Reveal For-
matting task pane in Figure 2-20. The underlying XML representation for these val-
ues looks something like this:
<w:sectPr>
<w:pgSz w:iw="12240" w:h="15840"/>
<w:pgMar w:top="1440" w:right="1800" w:bottom="1440" w:left="1800"
w:header="720" w:footer="720" w:gutter="0"/>
</w:sectPr>
All of the attribute values shown here are expressed in twips, or 1,440ths of an inch.
The w:pgSz element sets the page size to 8.5" x 11." The w:pgMar element sets the mar-
gin widths around the page: one inch on the top and bottom, and 1.25 inches on the
right and left. It also sets header and footer areas, each with a height of half an inch.

If you need to override the default page settings for a particular section, you can sim-
ply specify your own values, using any of the other child elements of w: sectPr as nec-
essary.

Document Structure and Formatting | 71

Proofing, Protection, and Annotation Markings

The w:proofErr, w:permStart, w:permEnd, and aml:annotation elements have shown
up in various places so far without any real explanation. One thing they have in com-
mon is that they are all used to mark up ranges of text in a Word document: w:
proofErr for spelling and grammar errors, w:permStart and w:permEnd for an editable
area within a protected document, and aml:annotation for annotating comments,
bookmarks, and revisions within a document.

A range is a span of text defined by a start character position and an end character
position. The distinctive thing about ranges is that they can cross paragraph and sec-
tion boundaries. From within a VBA application, a commonly used range is the
range that corresponds to the user’s current selection. Individual sentences and
words are also examples of ranges that you can access through the Word object
model, but they are not actually stored as part of the information in a Word docu-
ment. Instead, such ranges are purely derivative and calculated on the fly, as the
Word or VBA application demands. However, there are certain kinds of ranges that
are necessary to be stored as part of the Word document itself. These include the var-
ious kinds of annotations you can make to a document without affecting its actual
formatting, and markings that are automatically created, such as proofing marks for
grammar and spelling.

There is a problem with representing such ranges of text in XML, because XML only
allows you to represent a single tree. The problem of needing to represent multiple,
overlapping hierarchies (which is what such annotations amount to) is commonly
addressed in XML by inserting markers into the flow for the start and end positions
of the range in question. This is exactly what Word does, too.

Figure 2-21 shows a paragraph in Word in which three ranges are overlapping,
namely a document protection range, a grammar error range, and a comment anno-
tation range.

Evan Lenz, 12,/22,/2003 12:15:00 PM
commented:
Isn't that bad grammar?

Ilhis Eggere a g;rammatieally]jedllj suspect sentence]

Figure 2-21. Overlapping grammar, protection, and comment markings

The outer brackets surrounding the entire sentence delineate the boundaries of an
editing region with particular permissions; the inner parentheses delineate the
boundaries of the text about which a comment was made; and the squiggly line
under “This were” is a grammar error automatically recognized and flagged as such
by Word. Example 2-9 shows the underlying WordprocessingML for this document
excerpt, as output by Word. The start and end markers for each range, all of which
are empty elements, are highlighted.

72 | Chapter2: The WordprocessingML Vocabulary

Example 2-9. Overlapping protection, proofing, and comment ranges

<w:p/>
<w:permStart w:id="0" w:edGrp="everyone"/>
<w:proofExr w:type="gramStart"/>
<wip>
<WiT>
<w:t>This </w:t>
</wir>
<aml:annotation aml:id="0" w:type="Word.Comment.Start"/>
<WiT>
<w:it were</w:t>
</Wir>
<w:proofExrr w:type="gramEnd"/>
<WiT>
<w:t> a grammatically</w:t>
</wir>
<aml:annotation aml:id="0" w:type="Word.Comment.End"/>
<WiT>
<W:TPT>
<w:rStyle w:val="CommentReference"/>
</w:rPr>
<aml:annotation aml:id="0" aml:author="Evan Lenz"
aml:createdate="2003-12-22T12:15:00Z"
w:type="Word.Comment" w:initials="edl">
<aml:content>
<Wip>
<W:pPr>
<w:pStyle w:val="CommentText"/>
</wipPr>
<WiT>
<W:rPr>
<w:rStyle w:val="CommentReference"/>
</w:rPr>
<w:annotationRef/>
</WiT>
<WiT>
<w:t>Isn't that bad grammar?</w:t>
</WiT>
</wip>
</aml:content>
</aml:annotation>
</wWir>
<WiT>
<w:t> suspect sentence.</w:t>
</wWir>
<w:permEnd w:id="0"/>
</wip>
<W:ip/>

This example illustrates the use of start and end markers to annotate ranges of text,
regardless of whether they overlap each other or other elements, such as paragraphs.
This explains, at long last, why these elements crop up in so many places in the

Document Structure and Formatting | 73

WordprocessingML schema. They need to occur as block-level elements as well as
run-level elements. The w:permStart element occurs in this example in a block con-
text, as a sibling of paragraphs, whereas the corresponding w:permend element occurs
in a run context, before the end of the paragraph. Likewise, the first of the w:
proofErr elements occurs as a block-level element, before the beginning of the para-
graph, but the second w:proofErr element, which ends the range at the word “were,”
occurs as a run-level element.

Document protection

Now let’s look at how each type of annotation works. The w:permStart and w:
permEnd elements work together to identify a range of text that has a particular edit-
ing permission enabled. The w:id attribute of each element is used to associate the
markers with each other. In this case, we know that they go together, because the w:
id attribute value is 0 for both of them:

<w:permStart w:id="0" w:edGrp="everyone"/>

<w:permknd w:id="0"/>

The value of the w:edGrp attribute denotes a group of people who can edit this region
of text. In this case, the value is everyone, which means that there are no restrictions
for this particular range. This is useful as a way of overriding a global document pro-
tection policy in which the rest of the document is off-limits for making changes. For
more information on Word’s document protection features, see Chapter 4.

Proof errors

The w:proofErr elements in Example 2-9 are used to identify the start and end points
of a grammar error. The type of each marker is denoted by the w: type attribute:

<w:proofErr w:type="gramStart"/>

<w:proofErr w:type="gramknd"/>

Since grammar, as well as spelling, errors cannot overlap each other, there is no need
for an ID attribute to associate start and end markers with each other. Word knows
that a grammar error ends at the first gramEnd marker that it finds after the gramStart
marker. Spelling errors are represented in the same way, using the values of
spellStart and spellEnd for the w:type attribute. Thus, the w:proofError’s w:type
attribute has four possible values:

gramStart
gramknd
spellStart
spellEnd

74 | Chapter2: The WordprocessingML Vocabulary

Comments and other annotations

Example 2-9 also demonstrates how comments are represented in Wordprocess-
ingML. Every comment is represented using three separate aml:annotation elements.
The three are associated with each other by having the same aml:id attribute value (0
in Example 2-9’s case). The first two aml:annotation elements are used to denote the
start and end of the range that the comment is about:

<aml:annotation aml:id="0" w:type="Word.Comment.Start"/>

<aml:annotation aml:id="0" w:type="Word.Comment.End"/>

The w:type attribute values distinguish the start and end markers from each other:
Word.Comment.Start and Word.Comment.End. The third aml:annotation element occurs
inside a run (w:r element) that immediately follows the comment end marker:
<WiTr>
<W:TPT>

<w:rStyle w:val="CommentReference"/>
</w:rPr>

</w:r>
This run is associated with the CommentReference character style, a built-in style that
is automatically inserted into the document when you insert a comment. So far, this
looks like a normal run that might appear in the flow of document text. The content
of the run, however, does not consist of normal document text. Instead, inside the
run, we see the third and last aml:annotation element for this comment:
<aml:annotation aml:id="0" aml:author="Evan Lenz"

aml:createdate="2003-12-22T12:15:00Z"
w:type="Word.Comment" w:initials="edl">

</aml:annotation>

The aml:id attribute’s value is 0, which associates this annotation with the previous
two. The w:type attribute is Word.Comment, which indicates that this element contains
the actual content of the comment. The other three attributes contain metadata
about the comment, including who made the comment, their initials, and the date
and time they made it.

Inside the aml:annotation element is the aml:content element, which is used to con-
tain the text of the comment:

<aml:content>

<w:p>
<W:pPr>
<w:pStyle w:val="CommentText"/>
</wipPr>
<WiT>
<W:rPr>
<w:rStyle w:val="CommentReference"/>
</w:rPr>

Document Structure and Formatting | 75

<w:annotationRef/>
</wir>
<WiIr>
<w:t>Isn't that bad grammar?</w:t>
</wir>
</wip>
</aml:content>
The comment text is represented using a sequence of Word paragraphs. These para-
graphs are “out-of-band” in the sense that they do not occur in the normal flow of
document text. After all, they ultimately occur inside a w:r element. A paragraph
inside a run isn’t normally allowed; it wouldn’t make any sense. Only because of the
intervening aml:annotation and aml:content elements is the w:p element allowed to
occur as a descendant of a w:r element.

In addition to comments, the aml:annotation element is also used to represent book-
marks and revision markings (recorded when “Track Changes” is turned on). In each
case, the type of annotation is identified by the value of the w:type attribute, which
has these possible values:

Word.Insertion
Word.Deletion
Word.Formatting
Word.Bookmark.Start
Word.Bookmark.End
Word.Comment.Start
Word.Comment.End
Word.Insertion.Start
Word.Insertion.End
Word.Deletion.Start
Word.Deletion.End
Word.Comment
Word.Numbering

Auxiliary Hints in WordprocessingML

Until now, we’ve managed to stick to a pretty strict diet of elements and attributes
from the WordprocessingML namespace, which has had times more pleasant than
others. Now it’s time to introduce a set of elements and attributes from another
namespace that are designed purely for the purpose of making your life easier. That’s
right, you guessed it: the wx prefix is your friend (so long as it’s mapped to the right
namespace: http://schemas.microsoft.com/office/word/2003/auxHint).

There are quite a few contexts in which elements and attributes from the wx
namespace appear in WordprocessingML documents saved by Word. We'll be
focusing on some of the most significant of these: sections, sub-sections, and list

76 | Chapter2: The WordprocessingML Vocabulary

text, as well as formatting hints. These hints save consumers of WordprocessingML
documents much grief and processing power that would otherwise be spent on
things like traversing the links of a list definition, for example.

Again, elements and attributes in the wx namespace represent information that could
be useful to us in handling WordprocessingML but that is of no internal use to Word.
One implication of this distinction is that, while you may write applications that
depend on their presence, it hardly ever makes sense to write applications that out-
put elements or attributes in the wx namespace when generating Wordprocess-
ingML—except perhaps when doing incremental processing of an existing document
such that you want to maintain the auxiliary information that originally came from
Word. Even then, you’re not really generating it; you’re just forwarding it on.

Section Containers

Earlier in the chapter, in “Sections,” we introduced WordprocessingML’s non-intui-
tive way of representing a document’s sections—how the presence of a w:sectPr ele-
ment is implicitly interpreted to mean that the current paragraph is the last one in a
section. Without a common container in which paragraphs of the same section are
grouped together, it’s not only counterintuitive but more difficult to process than it
would otherwise be. Fortunately, the wx:sect element, which was introduced way
back in Example 2-2, is Microsoft’s answer to this problem. Whenever Word saves a
document as XML, it doesn’t just output the content of the w:body element. Instead,
it groups the paragraphs and tables inside the body into wx:sect elements, corre-
sponding to sections in the Word document.

To recognize the helpfulness of this feature, all we need to do is have Word open and
to re-save the WordprocessingML document from Example 2-8. No longer is it so
difficult to figure out where the section boundaries are:

<w:body>
<wx:sect>
<Wip>
<w:pPr>
<w:isectPr>
<w:pgSz w:w="12240" w:h="15840"/>
<w:pgMar w:top="1440" w:right="1800" w:bottom="1440"
w:left="1800" w:header="720" w:footer="720"
w:gutter="0"/>
<w:cols w:space="720"/>
</w:sectPr>
</wipPr>
<WIT>
<w:t>First section</w:t>
</wir>
</wip>
</uwx:sect>
<wx:sect>
<Wip>

Auxiliary Hints in WordprocessingML | 77

<Wir>
<w:t>Second section, first paragraph</w:t>
</wir>
</w:p>
<Wip>
<w:pPr>
<w:sectPr>
<W:pgSz w:iw="12240" w:h="15840"/>
<w:pgMar w:top="1440" w:right="1800" w:bottom="1440"
w:left="1800" w:header="720" w:footer="720"
w:gutter="0"/>
<w:cols w:space="720"/>
</w:sectPr>
</w:pPr>
<Wir>
<w:t>Second section, second paragraph</w:t>
</wir>
</wip>
</wx:sect>
<wx:sect>
<wip>
<Wir>
<w:t>Third section, first paragraph</w:t>
</wir>
</w:p>
<Wip>
<Wir>
<w:t>Third section, second paragraph</w:t>
</wir>
</wip>
<w:sectPr>
<W:pgSz w:iw="12240" w:h="15840"/>
<w:pgMar w:top="1440" w:right="1800" w:bottom="1440"
w:left="1800" w:header="720" w:footer="720"
w:gutter="0"/>
<w:cols w:space="720"/>
<w:docGrid w:line-pitch="360"/>
</w:sectPr>
</wx:sect>
</w:body>

Note that there are three wx:sect elements, one for each section, and that the para-
graphs in each section are clearly grouped together. As mentioned before, we could
remove the start and end tags of each wx:sect element, and Word would process the
document no differently. Conversely, the meaning of the document as far as Word is
concerned is completely unaltered by the addition of the wx:sect element. It only
considers the w:sectPr elements to determine where the sections are. The same old
rules apply: w:sectPr elements inside w:pPr elements represent section breaks, but
the last w:sectPr element (provided it follows the last paragraph inside the w:body
element) does not represent a break, but instead simply contains the properties of the
last section.

78 | Chapter2: The WordprocessingML Vocabulary

An example using XPath can help demonstrate how the wx:sect element enables eas-
ier processing of WordprocessingML documents outside of Word. If we were to
write an XPath expression to select all of the paragraphs in, say, the third section,
this would be easy (assuming the appropriate namespace bindings):

/w:wordDocument/w:body/wx:sect[3]/w:p

However, without the aid of the wx:sect element, the task is still possible but not as
straightforward and certainly not as intuitive:

/w:wordDocument/w:body/w:p[count(preceding: :w:sectPr)=2]

Clearly, the wx:sect element, though it may have looked cryptic at first sight, is a
helpful aid to processing WordprocessingML documents as output by Word.

Outline Levels and Sub-Sections

Word has a special paragraph property that we didn’t mention earlier: the outline
level. As might be guessed, the outline level property has an effect on the display of a
paragraph in Word’s “Outline” view. Example paragraph styles for which an outline
level is defined include all of Word’s built-in Heading styles. In fact, it’s no accident
that the Outline view supports nine levels and that there are precisely nine Heading
styles. Figure 2-22 shows how all of the Heading styles are displayed in Outline view,
along with some body text on each rung of the ladder. The body text has no outline
level specified, as is the case with most normal paragraphs. All of the Heading para-
graphs, however, have the outline level corresponding to their name. Heading 1 has
Outline Level 1, Heading 2 has Outline Level 2, etc.

Clearly, the document in Figure 2-22 follows a hierarchical structure (if rather deep).
Many people author such hierarchically organized documents in Word. Indeed, the
Heading styles in conjunction with Outline view give them incentives for doing so.
Unfortunately none of that hierarchical structure made it into WordprocessingML,
which remains wedded to the flat-list-of-paragraphs paradigm. Sure, you can make a
document look like it’s hierarchically structured, but underneath the covers it’s just a
sequence of paragraphs with various formatting properties applied. But all is not lost.
Once again, the wx namespace comes to the rescue, in what is arguably the most use-
ful element of all the auxiliary hints: the wx: sub-section element.

Whenever Word saves a WordprocessingML document that has an outline level
specified on any of its paragraphs, then at least a one-level depth tree of wx:sub-
section elements will be present in the output. Specifically, any time Word comes
across a paragraph with an outline level, it establishes a new sub-section context
equal in depth of sub-sections to the outline level of the paragraph. For example, if
the outline level is 3, then the paragraph will be contained within three nested wx:
sub-section elements. This stays in effect for following paragraphs either until it
reaches another paragraph with an outline level, or it comes to the end of the section

Auxiliary Hints in WordprocessingML | 79

Th Document18 - Microsoft Word
P Fle Edt View Insst Format Tools Table Window Help Type a question for help =%
IR NEWE TP PRV W R A PRI W Weec 00 s ML N]| e T T
wmmﬂggmgwﬁﬁoa W sl ae BE s AR EE
Db Leveld B T AR | vzg\g_mamoc.ﬁ_ﬂjﬁ T
% Heading 1 i
= Some text inside the top-level section.
= Some more text inside the top-level section Selected text
¢ Heading 2
@ Some text inside the second-level section Sample Text
= Some more text inside the second-level section. ["] Compare to another selection
¢ Heading 3 Formatting of selected text
@ Some text inside the third-level section
Font ~
® Some more text inside the third-lewel section. O Paragraph =
& Heading 4| Peraarach SLle:
® Some text inside the fourth-level section alignment:
= Some more text inside the fourth-level section. Ouﬁ:‘te -
& Heading § Level 4
= Some text inside the fifth-level section. %
= Some meore text inside the fifth-level section Right: 0"
¢ Heading 6 Spacing:
® Some text inside the sizth-level section. i?:g:?laﬁ g
® Some more text inside the sizth-level Line and Paqs Brasks:
P Keep with next
¢ Heading 7 Section
@ Some text inside the seventh-level
section
= Some meore text nside the seventh-
level section
& Heading 8
= Some text inside the eighth-
level section.
@ Some more text inside the
eighth-level section
2 Heading 9
® Seme text mnside the
ninth-lewel section
= Some more text inside
the mnth-le 3
section =l -
s = Options
S [l Distinguish style source
S SR L] i F [Show all formatting marks
Page 1 Sec 1 1 At 2.8" Ln 10 Col 10 REC TRK EXT owR |OK 4

Figure 2-22. Word’s built-in Heading styles, as displayed in Outline view

(in which case all of the wx:sub-section elements are closed). In the case of the docu-
ment in Figure 2-22, it would output a structure similar to the following:

<wx:sub-section>
Heading 1
Body text
Body text
<wx:sub-section>
Heading 2
Body text
Body text
<wx:sub-section>
Heading 3
Body text
Body text
</wx:sub-section>
</wx:sub-section>
</wx:sub-section>

80 | Chapter2: TheWordprocessingML Vocabulary

You can achieve a similar effect with any custom paragraph style that you develop,
simply by adding an outline level to the style definition. While using styles is proba-
bly the best way to achieve this effect, the use of styles isn’t required. You can also
apply the outline level property locally, as direct formatting on your paragraph.
Example 2-10 finally demonstrates the syntax for the outline level property, as speci-
fied inside a paragraph’s w:pPr element. This document contains a series of five para-
graphs, two of which specify an outline level using the w:outlinelLvl element, whose
w:val attribute value must be between 0 and 8 (exposed as 1 through 9 in the Word
uUD).

Example 2-10. Setting outline levels locally

<?xml version="1.0"?>
<?mso-application progid="Word.Document"?>
<w:wordDocument
xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"
xml:space="preserve">
<w:body>
<wip>
<w:pPr>
<w:outlinelvl w:val="0"/>
</wipPr>
<w:r><w:t>This is the top-level heading</w:t></w:r>
</wip>
<wip>
<w:r><w:t>This is some text inside the top-level sub-
section.</w:t></wir>
</Wip>
<W:p>
<w:r><w:t>This is some more body text.</w:t></w:r>
</Wip>
<W:p>
<wW:pPr>
<w:outlinelvl w:val="1"/>
</wipPr>
<w:r><w:t>This is a second-level heading</w:t></w:r>
</Wip>
<W:p>
<w:r><w:t>This is some body text under the second-level
heading.</w:t></w:r>
</wip>
</w:body>
</w:wordDocument>

First, let’s see what this document looks like when opened in Word. Figure 2-23
shows both the Normal view and the Outline view. The outline levels are completely
invisible in the Normal view; the paragraphs look no different than any other plain,
boring paragraph. Outline view is another story.

Auxiliary Hints in WordprocessingML | 81

4 SubSections.xml - Microsoft Word

i File Edit Miew Insert Format Tools Table Window Help x
N e (]38 P E S e - @ et SR
it Tookox - | £ 3 8 | P N [3 O Wik o)P a0 A
P Levell r &% | @& & |+ = | ShowallLevels ~ :’E“ |#] Update TOC ||E|
SR N R KRN EEEE RN R R~
Ths 1z the top-level heading

This 15 some text mside the top-level sub-section.
This 15 some more body text.

This 12 a second-level heading z
This 15 some body text under the second-level heading, @
¥

=@ =@ 4] |+

o II'his 15 the top-level heading
s This 15 some text inside the top-level sub-section.
o This 15 some more body text.
@ This iz a second-level heading
o This 15 some body text under the second-level heading.

|
«0»'1_

s o[Ew 4| | o

Page Sec 1 Ak 1" Ln 1 Col 1 REC TRE EXT OVR a

Figure 2-23. Outline levels shown in Normal and Outline views

Finally, we can see the wx:sub-section element in action by resaving the document as
XML from within Word. Example 2-11 shows the body content excerpted from the
WordprocessingML document as saved by Word.

Example 2-11. A document body with outline levels, when saved as XML in Word

<w:body>
<wx:sect>
<wx:sub-section>
<Wip>
<w:pPr>
<w:outlinelvl w:val="0"/>
</w:pPr>
<Wir>
<w:t>This is the top-level heading</w:t>
</wir>
</wip>
<wip>
<wir>
<w:t>This is some text inside the top-level sub-section.</w:t>
</WiT>

82 | Chapter2: The WordprocessingML Vocabulary

Example 2-11. A document body with outline levels, when saved as XML in Word (continued)

</wip>
<Wip>
<Wir>
<w:t>This is some more body text.</w:t>
</wir>
</wip>
<wx:sub-section>
<wip>
<W:pPr>
<w:outlinelvl w:val="1"/>
</w:pPr>
<Wir>
<w:t>This is a second-level heading</w:t>
</wir>
</wip>
<wip>
<WiT>
<w:t>This is some body text under the second-level heading.</w:t>
</Wir>
</wip>
<w:sectPr>
<W:pgSz w:iw="12240" w:h="15840"/>
<w:pgMar w:top="1440" w:right="1800" w:bottom="1440"
w:left="1800" w:header="720" w:footer="720"
w:gutter="0"/>
<w:cols w:space="720"/>
<w:docGrid w:line-pitch="360"/>
</w:sectPr>
</wx:sub-section>
</wx:sub-section>
</wx:sect>
</w:body>

Example 2-11 demonstrates that Word interprets the outline levels to automatically
structure the resulting WordprocessingML into sub-sections, using wx:sub-section
elements, which are highlighted. Again, outline levels are most useful when they are
associated with particular paragraph styles, rather than assigned directly to individ-
ual paragraphs (which, in the Word U, can only be done in Outline View). Pro-
vided that the user applies styles in the order that they are intended, e.g., Heading 1
followed by Heading 2, etc., then the WordprocessingML that Word generates will
be structured into sub-sections that reflect the true hierarchical structure of the docu-
ment, rather than merely a flat sequence of paragraphs.

List Item Formatting Hints

Anything Word wants to provide in the way of making lists easier to process is cer-
tainly welcome. As we saw earlier in this chapter, lists in WordprocessingML are
rather complicated to process. Generally, you can recognize the presence of a list

Auxiliary Hints in WordprocessingML | 83

item by the presence of a w:1istPr element inside a paragraph’s w:pPr element. While
that’s a start, if you want to find out anything about how the list item is formatted,
including even whether it’s a “numbered” or “bulleted” list, you have to traverse a
number of intra-document links. How many depends on whether and to what extent
paragraph or list styles are involved.

As a matter of fact, Word does rather consistently save us this trouble by outputting
the wx:t element inside a paragraph’s w:1istPr element. The wx:t element has three
attributes: wx:val, wx:wTabBefore, and wx:wTabAfter. The wx:val attribute specifies
the actual text used for the number or bullet point of this particular list item. The wx:
wTabBefore is measured in twips and specifies the width of the tab preceding the line
number. This usually corresponds to the indentation of the list item from the page’s
left margin. The wx:wTabAfter, on the other hand, calculates the distance, in twips,
between the end of the text of the line number and the beginning of the editable area.
It takes into consideration the font size and length of the line number itself. For
example, consider the second list item of the simple list in Figure 2-24.

T Document21 - Microsoft Word |._||E|fz|
! Fle Edit Yiew Insert Format Tools Table Window Help b4

8 3RS N 0 - @) e iz

EXMLTnc-Ibc-x'|E|ﬂ||§W|@30!§%ﬁ‘|m “

El"'l'v'e"'l"'2"'l R 1 A
1. How am I numbered?
“What about me?

- =

4

fe)

¥

BEGELEEK N]

Page 1 Sec 1 11 Ak 11" Ln 2 ol 4 REC a

Figure 2-24. A simple list item

The hint as it resultantly appears in this paragraph’s w:1istPr element (inside its w:
pP1 element) is as follows:

<wx:t wx:val="a." wx:wTabBefore="1080" wx:wTabAfter="195" />

The wx:val attribute clearly relates that the line number text is “a.” The wx:
wTabBefore corresponds to the actual left indent of this paragraph, namely .75 inches,
or 1080 twips. And the wx:wTabAfter attribute represents the distance between the
“a.” text and the contents of the list item—in other words, the gray, highlighted area
following “a.” in Figure 2-24.

84 | Chapter2: TheWordprocessingML Vocabulary

More on Styles

Having come this far in the chapter, you should already know a few key aspects of
how styles work in Word and WordprocessingML:

* A style is a grouping of property settings that can be applied as a unit.
* There are four kinds of styles: paragraph, character, table, and list.

* Styles are defined using w:style elements inside a WordprocessingML docu-
ment’s w:styles element.

* Paragraphs, runs, and tables can be directly associated with a style of the appro-
priate kind through the w:pStyle, w:rStyle, and w:tblStyle elements, respec-
tively.

You should also know the basic syntax of the w:style element, and four aspects in
particular:

* The w:type attribute, indicating the type of style defined here (paragraph,
character, table, or list)

* The w:default attribute, indicating whether this style is the default style for its
type
* The w:styleld attribute for intra-document references to this style

* The w:name element, indicating the style’s primary name as exposed in the Word
Ul

In this section, we’ll look at a few more aspects of how styles are defined, how
default styles work (or don’t), how to derive styles, and how style conflicts are
resolved.

A Document’s Styles

All styles that are used within a document must also be defined in the document.
This effectively means that you can’t leverage Word’s built-in styles outside of Word;
i.e., you can’t simply refer to them by name. When a document uses a built-in Word
style, Word makes a copy of the built-in style, rather than merely a reference to it.
From that point forward, the style is part of the document and begins to exist inde-
pendently of the built-in style from whence it came. To see a definitive list of the
styles that are contained in your document, through the Word UlI, select Tools —
Templates and Add-Ins... and then click the Organizer... button. The styles listed on
the left should correspond one-to-one with the w:style definitions in the Wordpro-
cessingML serialization of your document.

MoreonStyles | 85

Default Styles

WordprocessingML’s default style mechanism (using the w:default attribute) works
well for paragraph and table styles. If you have w:p and w:tbl elements in your docu-
ment that do not explicitly associate themselves with a style (with w:pStyle or w:
tblStyle elements, respectively), then you can create sweeping formatting changes
by simply changing the default style to a different paragraph or table style inside the
w:styles element. You do this by setting the w:default attribute to on:

<w:style w:type="paragraph" w:default="on" w:styleId="MyParagraphStyle">
<w:name w:val="My Paragraph Style"/>

</wistyle>

On the other hand, the default style mechanism does not work for character styles
and lists. If you try to specify a custom default character style, for example, Word
will ignore it and will simply set the “Default Paragraph Font” character style as the
default. For example, the w:default attribute shown here has no effect on Word’s
behavior:

<w:style w:type="character" w:default="on" w:styleId="MyCharacterStyle">
<w:name w:val="My Character Style"/>

</w:style>

Effectively, this means that runs can only be associated with a character style explic-
itly—through the w:rStyle element, like this:
<WIX>
<W:rPT>
<w:rStyle w:val="MyCharacterStyle"/>
</wirPr>

<w:t>This text is associated with a custom character style.</w:t>
</wir>

Also, while you can freely customize the “Normal” paragraph style properties in your
document, Word will discard any changes you attempt to make to the “Default Para-
graph Font.” Thus, there is no defaulting mechanism for associating runs with a par-
ticular character style (other than “Default Paragraph Font,” which amounts to “no
style”). In some respects, this is disconcerting, as it doesn’t seem to match up with
what WordprocessingML’s syntax implicitly advertises. On the other hand, it
reduces the possible combinations, thereby making the overall application of styles
somewhat easier to think about.

The w:default attribute is essentially “syntax sugar,” making it easy to create Word-
processingML documents without having to explicitly associate all of a document’s
paragraphs with a particular style (using a bunch of w:pStyle elements). Since the w:
default attribute is merely syntax sugar and not part of Word’s internal data struc-
tures, Word does not preserve your default style choices when it opens your docu-
ment. Instead, Word always sets w:default="on" to the “Normal” style definition

86 | Chapter2: TheWordprocessingML Vocabulary

when it outputs WordprocessingML, regardless of which paragraph style was the
default in the WordprocessingML document it originally opened. This doesn’t affect
your document’s formatting; it just means that the resulting WordprocessingML
markup will be a little more verbose if most of your paragraphs don’t use the “Nor-
mal” style. In that case, your paragraph style will be explicitly referenced via w:
pStyle elements, rather than implicitly via the default style association:
<wip>
<w:pPr>
<w:pStyle w:val="MyParagraphStyle"/>
</w:pPr>
<WIX>
<w:t>This paragraph is explicitly associated with a para style.</w:t>
</wir>
</wip>

Default Font Size for Paragraph Styles
There are two kinds of default font sizes in Word:

* 12 points, the font size of Word’s built-in “Normal” style that gets automati-
cally inserted into your document if you don’t explicitly define it using a w:style
element

* 10 points, the font size of a paragraph style definition (w:style element) that
does not explicitly specify a font size using the w:sz element

We have already seen how the first default font size comes about. If you do not
explicitly define the “Normal” paragraph style in a document, then Word automati-
cally inserts its built-in “Normal” style, whose font size is 12 points (24 half-points).
This scenario is exactly what we saw in Examples 2-1 and 2-2.

However, when you do define a paragraph style but do not explicitly specify the font
size (using the w:sz element), then the font size of your paragraph style defaults to 10
points (20 half-points). For this reason, if you do define the “Normal” style in your
document but without specifying a font size, then you will get a different result than
if you didn’t define the style at all. Specifically, the font size of your document’s text
will be 10 points, rather than 12 points. Example 2-12 shows a document that dif-
fers from Example 2-1 only in that it contains an empty definition for the “Normal”
paragraph style (as identified by the w:name element).

Example 2-12. Defining the “Normal” style without specifying a font size

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument
xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

<w:styles>
<w:style w:type="paragraph" w:default="on">

More onStyles | 87

Example 2-12. Defining the “Normal” style without specifying a font size (continued)

<w:name w:val="Normal"/>
</wistyle>
</w:styles>

<w:body>
<w:p>
<WIT>
<w:t>Hello, World!</w:t>
</wir>
</wip>
</w:body>
</w:wordDocument>

When Word opens this document, the text “Hello, World!” is displayed in 10-point,
rather than 12-point, Times New Roman. This is because you defined the style in
your document, but did not include a w:sz element (inside a w:rPr element):
<w:style w:type="paragraph" w:default="on">
<w:name w:val="Normal"/>
</wistyle>
Word interprets such a paragraph style definition (regardless of whether it’s the
“Normal” style or some other paragraph style) as having a font size of 10 points. The
above definition is equivalent to this one, where the font size of 20 half-points is
explicitly specified:
<w:style w:type="paragraph" w:default="on">
<w:name w:val="Normal"/>
<W:rPr>
<w:sz w:ival="20"/>
</w:rTPr>
</wistyle>
The only case where a paragraph style’s font size could be different than 10 points
without explicitly specifying a font size is when the style is derived from another
paragraph style that has a different font size. As long as both the w:basedOn and w:sz
elements are absent, then you can be sure that the paragraph style’s font size is 10
points. But if there is a w:basedOn element and no w:sz element, then you would have
to look at the base style to determine what the font size is.

So, what is the default font size for a WordprocessingML document? The answer is:
it depends on what you mean by “default font size.” If you’re talking about the font
size of Word’s built-in “Normal” style, the answer is 12 points. If you're talking
about the default font size of paragraph style definitions, the answer is 10 points.

88 | Chapter2: TheWordprocessingML Vocabulary

Derived Styles

In MS Word, editing styles is like drilling for oil in the Mariana Trench: by the time
you finish the descent through the menus, you’re down so deep that you can get the
bends trying to remember what you started to do.

—http://www.linuxjournal.com/article.php?sid=7120

One of the most powerful aspects of styles is the ability to base one style on another
(in WordprocessingML, using the w:basedOn element), overriding individual proper-
ties as necessary. We'll see a couple examples of derived styles later in “A Pop Quiz,”
but the basic syntax looks like this:
<w:style w:type="paragraph" w:styleId="MyDerivedStyle">
<w:name w:val="My Derived Style"/>
<w:basedOn w:val="MyBaseStyle"/>
<l-- formatting information -->
</wistyle>
Using style derivation, you can base all of your paragraph styles, for example, on a
base “Normal” style. Then, if you want to make a global change to all of your styles,
such as font size, you need only make the change in one place—in the base style.
This, of course, assumes that none of your derived styles override the base style’s
font size setting. Unfortunately, the Word Ul doesn’t give any visual clues as to when
a particular property of a derived style is merely inherited from the base style or
whether it is hard-wired to the style itself. This can make for some bewildering
behavior.

For example, say your document has a base style called “Normal,” from which a
number of different styles have been derived, all of which merely inherit the font size
property from “Normal.” Whenever you update the font size of the “Normal” style,
all of the derived styles’ font sizes will be updated accordingly. So far, so good. But
suppose you now want to derive another style, called “Code,” that you know upfront
should always be set to a font size of 9 points, regardless of any changes to the base
“Normal” style’s font size. This is the tricky part. When you first create the “Code”
style and select a font size of 9 points, whether that size will end up being hard-wired
to the “Code” style (which is what you want) or whether the “Code” style will
merely inherit the font size from “Normal” (not what you want) completely depends
on what the font size of “Normal” happens to be at the time you create the style.
That’s because Word gives you no way of telling it to hard-wire the font size to this
style. Instead, it makes an assumption based on the current state of the base style. It
assumes, in this case, that if the “Normal” font size is 9 points and you select 9
points when creating the “Code” style, you must want “Code” to always be the same
size as “Normal.” The only way to get around this is to temporarily change the “Nor-
mal” style’s font size to something other than 9 points, and then create the new style,
changing it back after you’re done.

MoreonStyles | 89

The introduction of WordprocessingML can largely alleviate this problem. By saving
as XML, you get a readable (assuming you’ve pretty-printed), as well as editable,
dump of all of your document’s style definitions, removing once and for all any
doubt about which of a style’s properties are inherited and which are hard-wired to
the style.

Resolving Conflicts

A given piece of text’s formatting information can come from several different places,
which raises the question of how conflicts are handled. Even after resolving a docu-
ment’s derived-style inheritance tree, there are still plenty of potential ambiguities,
since you still have direct formatting, paragraph styles, and character styles to con-
sider. Understanding how these all interact is fundamental to an understanding of
WordprocessingML. In this section, we’ll look at how potential conflicts are
resolved—first for paragraph properties and then for font properties.

Paragraph property conflicts
A given paragraph can have paragraph properties applied to it in two ways:

* Through the associated paragraph style
* Through direct formatting

There is a simple rule for resolving conflicts between these two ways of applying
paragraph properties: direct formatting always wins. For example, you can be sure
that the following paragraph will be centered, without ever having to look at the
MyParagraphStyle definition:
<wW:p>
<w:pPr>
<w:pStyle w:val="MyParagraphStyle"/>
<w:jc w:val="center"/>
</w:pPr>
<Wir>
<w:t>This text is centered, regardless of what the associated paragraph
style says.</w:t>
</wir>
</wip>
The w: jc element in the above snippet is an example of direct paragraph formatting.
It is a paragraph property that is applied locally to this specific paragraph, as
opposed to being part of a style definition. Any time you see a property setting
applied within a local w:pPr element, you can be sure that it will take precedence
over any conflicting settings in the associated paragraph style.

90 | Chapter2: The WordprocessingML Vocabulary

Font property conflicts

While paragraph properties can only be applied in two ways, font properties can be
applied to a given piece of text in three different ways:

* Through the associated paragraph style
* Through the associated character style
* Through direct formatting

For font properties, as with paragraph properties, direct formatting always wins. For
example, you can be sure that the run of text in the snippet below is italic and not
bold without even looking at the MyParagraphStyle or MyCharacterStyle definitions:
<wip>
<w:pPr>
<w:pStyle w:val="MyParagraphStyle"/>
</wipPr>
<WiT>
<W:rPr>
<w:rStyle w:val="MyCharacterStyle"/>
<w:i/>
<w:b w:val="off"/>
</w:rPr>
<w:t>This text is italic and not bold, regardless of what the associated
paragraph and character styles say.</w:t>
</wir>
</wip>
The w:i and w:b elements in the above snippet are examples of direct font format-
ting. They are font properties applied locally to this specific run, as opposed to being
part of a style definition. Any time you see a property setting applied within a local
w:rPr element, you can be sure that it will take precedence over any conflicting set-
tings in the associated paragraph or character styles.

While the rule that “direct formatting always wins” is sufficient to resolve all poten-
tial paragraph property conlflicts, it does not resolve all potential font property con-
flicts. Resolving font properties is a more complex problem, because—unlike
paragraph properties—font properties can be defined in both the character style and
the paragraph style. What happens when font property settings conflict between a
run’s associated paragraph and character styles?

To help answer this question, let’s consider the different kinds of font properties that
can be applied. Word’s font properties can be classified into two categories:

* On/off properties
* Everything else (multi-valued properties)

Examples of on/off properties are bold (w:b), italic (w:i), all caps (w:caps), and
strikethrough (w:strike). Examples of the other, multi-valued properties include

MoreonStyles | 91

underline (w:u), font (w:rFonts), font size (w:sz), and font color (w:color). For multi-
valued properties, the rule is simple: the character style takes precedence.

For the on/off properties, the rule isn’t about which style has precedence; the para-
graph and character styles are considered equally. Instead, the rule is about how their
settings are merged. Here’s the rule: a given property is turned on only when it is
turned on in one style but not the other.

To help make this more explicit, Table 2-1 shows all four possible combinations for
a particular on/off property and the effective result of each.

Table 2-1. How on/off font properties are merged between a paragraph and character style

Paragraph style Character style Result
Off Off off
off On On
On Off On
On On off

Table 2-1 is essentially a truth table. The first two columns contain the inputs and
the third column contains the XOR (“exclusive or”) result. If you imagine represent-
ing a style’s on/off property settings as a binary number (a series of Os and 1s), then
to compute the final result, you would apply an XOR bitmask to the two binary
numbers, i.e., to the paragraph and character styles. That is in fact what Word does.

Let’s bring this back down to earth with an example. At one time or another, you
may have noticed Word’s behavior when you applied an italicized character style to
text within an italicized paragraph. Rather than keeping the text italic, this action
had the opposite effect: the resulting text was not italicized. You may have thought
that Word was just being clever about interpreting your intentions. After all, if you
wanted to emphasize a particular word in a paragraph that is already emphasized as
a whole, how else would Word do it? In reality, Word was just following the above
rule. Since the italic property was turned on in both the paragraph and the character
styles, they effectively cancelled each other out, and the result was not italicized.
Example 2-13 illustrates exactly this scenario.

Example 2-13. Turning italics off using a character style

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument
xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

<w:styles>
<w:style w:type="paragraph" w:styleId="EmphasizedParagraph">
<w:name w:val="Emphasized Paragraph"/>
<w:rPr>
<w:i/>

92 | Chapter2: The WordprocessingML Vocabulary

Example 2-13. Turning italics off using a character style (continued)

<w:b/>
</wirPr>
</w:style>
<w:style w:type="character" w:styleId="Emphasis">
<w:name w:val="Emphasis"/>
<W:rPr>
<w:i/>
<w:b w:val="off"/>
</wWirPr>
</w:style>
</w:styles>
<w:body>
<wip>
<wW:pPr>
<w:pStyle w:val="EmphasizedParagraph"/>
</w:pPr>
<WiT>
<w:t>Most of this paragraph is italicized, but </w:t>
</wir>
<WiT>
<W:rPr>
<w:rStyle w:val="Emphasis"/>
</w:rPr>
<w:t>this part is not.</w:t>
</wir>
</wip>
</w:body>
</w:wordDocument>

Figure 2-25 shows what this document looks like when opened in Word. The last
part of the paragraph is not italicized. The “Reveal Formatting” task pane shows that
the “Emphasis” style contributes the “Not Italic” effect. In any other (non-italicized)
paragraph, the “Emphasis” style would have exactly the opposite effect.

The other thing to note about this example is that the entire paragraph is rendered
bold, even though the “Emphasis” character style explicitly tries to turn bold off:

<w:b w:val="off"/>

This behavior is consistent with the rule that if either (but not both) of the para-
graph and character styles turns a property on, then that property will effectively be
turned on. The only times that explicitly turning a property off will have an overrid-
ing effect are either when you are inheriting from another style (using the w:basedOn
element) or when you are applying direct formatting (using a local w:rPr element). In
those cases, to turn a property off, you explicitly turn it off. In contrast, if you want
to use a character style to turn a property off, you have to do the counter-intuitive
thing: you turn the property on.

MoreonStyles | 93

24 ex0213.xml - Microsoft Word [9{(=0[E3)
i Fle Edit View Insert Format Tools Table window Heln Type aquestion for help [+
N ESEHRG SR T EIBR] - E =S G0 @) eead fid e o0 o =
E_XML Toobex - | [E] 2 3

PEEA T E Y RV IEY.

AR - S |

EEEEYSY

g‘.

Most-of this-paragraph is-italicized, 'buttllis’pal'tl‘is’not‘ﬂ Selected text

: | Reveal Formatting > x

-

["] Compare to another selection
Formatting of selected text

ElFont
From Paragraph Style: Emphasized
Paragraph =
Faont:

10pt

Bald

Italic

I |

From Character Style: Emphasis
Character Skyle:

Emphasis
Forit:

Mot Ttalic

[

Options
Distinguish style source
Show all Farmatting marks

woon|d|

sl zm 4 | »

Page Sec Ak Ln Col REC TRE EXT OWR a

Figure 2-25. How Word renders Example 2-13

N

o For most on/off font properties, explicitly turning them off in a char-
.‘s‘ acter style has no effect. However, there are a few exceptions to this
i rule, including the w:dstrike (double strikethrough), w:noProof (ignore

spelling/grammar errors for this run), and w:rtl (right-to-left reading
order) elements. Though each of these are on/off properties, they are
interpreted more like their multi-valued counterparts, i.e., they have
an overriding effect. The character style takes precedence over the
paragraph style setting. For example, if a run’s paragraph style turns
double strikethrough on, but its character style definition includes <w:
dstrike w:val="off"/>, then it will be rendered without the double
strikethrough.

A Pop Quiz

Now it’s time for a pop quiz. Considering what you now know about default styles,
derived styles, direct formatting, and how paragraph and character styles interact, try
to figure out what formatting the runs in Example 2-14 have. There are two runs of

text, separated by a soft line break. For each run, ask yourself: Is it bold? Is it italic?
Is it both?

94 | Chapter2: The WordprocessingML Vocabulary

Example 2-14. What formatting do I have?

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"
xml:space="preserve">

<w:styles>
<w:style w:styleId="BaseParagraphStyle" w:type="paragraph">
<w:name w:val="Base Paragraph Style"/>
<W:TPT>
<w:b/>
<w:i/>
</w:rPr>
</wistyle>
<w:style w:styleId="DerivedParagraphStyle" w:type="paragraph"
w:default="on">
<w:name w:val="Derived Paragraph Style"/>
<w:basedOn w:val="BaseParagraphStyle"/>
<W:TPT>
<w:i wival="off"/>
</wWirPT>
</w:style>
<w:style w:styleId="BaseCharacterStyle" w:type="character">
<w:name w:val="Base Character Style"/>
<W:TPT>
<w:i/>
</wWirPT>
</w:style>
<w:style w:styleId="DerivedCharacterStyle" w:type="character">
<w:name w:val="Derived Character Style"/>
<w:basedOn w:val="BaseCharacterStyle"/>
<w:rPr>
<w:b/>
</w:rPr>
</wistyle>
</w:styles>

<w:body>
<w:ip>
<WiT>
<W:rPr>
<w:rStyle w:val="DerivedCharacterStyle"/>
<w:i wrval="off"/>
</w:rPr>
<w:t>What formatting do I have?</w:t>
</wir>
<WiT>
<W:TPT>
<w:rStyle w:val="DerivedCharacterStyle"/>
</w:rPr>
<w:br/>
<w:t>And what formatting do I have?</w:t>
</wWir>

More on Styles

95

Example 2-14. What formatting do I have? (continued)

</wip>
</w:body>

</w:wordDocument>

Okay, let’s figure it out. The first thing we can do is determine what styles are used
in the document. The document’s one paragraph doesn’t explicitly associate itself
with a paragraph style; it has no w:pStyle element. Therefore, it adopts whatever the
document’s default paragraph style is. Looking at the document’s style definitions,
we see that the “Derived Paragraph Style” definition is the default one:

<w:style w:styleId="DerivedParagraphStyle" w:type="paragraph"

w:default="on">
<w:name w:val="Derived Paragraph Style"/>

Inside the document’s paragraph are two runs, both of which are associated with the
“Derived Character Style” definition, using the w:rStyle element:

<w:rStyle w:val="DerivedCharacterStyle"/>

The next thing we need to do is resolve the style derivations to determine exactly
what formatting properties are applied by each derived style. The “Base Paragraph
Style” turns bold and italic on:

<w:b/>

<w:i/>
But the “Derived Paragraph Style” turns italic off:

<wW:i wival="off"/>

Therefore, our document’s default paragraph style consists of one font property set-
ting: bold.

The “Base Character Style” turns italic on, and the “Derived Character Style” turns
bold on. Nothing is overridden. Therefore, the character style associated with our
document’s two runs has two font property settings: bold and italic.

Next, we look to the body of the document itself. The first run explicitly turns italic
off, so we know that the first run will not be italicized, as direct formatting always
has the final word:
<WiI>
<wW:rPr>
<w:rStyle w:val="DerivedCharacterStyle"/>
<w:i w:val="off"/>
</w:rPr>

<w:t>What formatting do I have?</w:t>
</wir>

The next question is whether this run is bold or not. Since, as we’ve seen, both the
fully resolved paragraph style and the fully resolved character style turn bold on, that
means bold will effectively be turned off. This is in keeping with the rule that a

96 | Chapter2: The WordprocessingML Vocabulary

property is on only if one but not both styles turns it on. Thus, the first run is ren-
dered in neither bold nor italic type.

The second run is the same as the first, except that italic is not explicitly turned off
via direct formatting. In fact, there is no direct formatting:
<WiTr>
<W:TPT>
<w:rStyle w:val="DerivedCharacterStyle"/>
</w:rPr>
<w:br/>
<w:t>And what formatting do I have?</w:t>
</WiT>

We've already seen that the paragraph and character styles’ bold settings cancel each
other out, so the remaining question is whether this run is italicized or not. Since the
character style turns italic on but the paragraph style does not, that means that italic
will indeed be turned on, because it is turned on in one but not both of the para-
graph and character styles. Figure 2-26 shows the result of opening this document in
Word (with paragraph marks turned on).

What-formatting-do-Thavebs
And-what formatting do I have 2§

Figure 2-26. How Word renders Example 2-14

Dummy Styles

A common advantage of using styles in Word is that they can help to enforce consis-
tency of presentation throughout a document. However, for an XML-oriented user,
styles may at first seem to provide yet an additional advantage, especially when they
are defined in a template: a way to separate presentation from content in Word. In a
limited way they do, because within a document, the style definitions and the content
are in distinct places, and changes to a document’s style are propagated to all
instances of that style throughout the document. However, styles defined externally in
a template, rather than remaining separate from a document, are copied into the docu-
ment when the template is first attached. (This ensures that a document will display
uniformly on different machines without requiring all users to have access to the origi-
nally attached template.) When a template is attached, all of its styles are copied into
the document, and the template’s role is essentially over. The document does retain a
loose association with the template (as represented by the w:attachedTemplate ele-
ment), but for all practical purposes the template is no longer needed—unless you
elect to set the document’s “Automatically update document styles” option to true, as
shown in Figure 2-27, in the “Templates and Add-ins” dialog box.

WordprocessingML represents this setting through the presence of an empty w:
linkStyles element inside the w:docPr element (short for <w:1inkStyles w:val="on"/>

More onStyles | 97

X

Templates | XML Schema | %ML Expansion Packs | Linked c55 |

Templates and Add-ins

Document template

|C:'I,Dc-cuments and Settingsilenze, SEATTLELLAD Attach... |

[v' {automatically update document styles!

™ attach to all new e-mail messages

Global templates and add-ins

Checked ikems are currently loaded,

Y

add...
Hemowve |

Full path:

Crganizer. .. | QK I Cancel

Figure 2-27. The “Automatically update document styles” checkbox

because on is the default attribute value for w:val). When w:1inkStyles is present, the
w:attachedTemplate reference gains new meaning. The next time Word opens the doc-
ument, it immediately copies all the style definitions within that template into the doc-
ument once again, replacing any style definition that has the same name as a style
defined in the template. As long as this option is set, Word will continue to update the
styles in the document, whenever the document is opened.

There is a practical implication for the XML developer writing XSLT stylesheets to,
say, generate Word document reports. Provided that the user who opens the target
Word document has access to its attached template, then styles in the template can
effectively be referenced without duplicating the entire style definition.

As long as the w:1inkStyles option is set, you can rely on Word to supply all the style
definitions for you as soon as it opens the document. This greatly simplifies pro-
grams (such as XSLT stylesheets) that generate WordprocessingML documents that
use styles already defined in a template.

Remember that to use any style within a document, it always must be declared in the
top-level w:styles element. You can’t just refer to a style from inside the w:body ele-
ment, even if it’s a built-in style. If you try to use a style without declaring it, the style
reference will be ignored and discarded. So you must declare the style, giving it an
arbitrary internal ID (using the w:styleId attribute) for reference from within the
document body. (The w:styleId attribute’s value can be any string.) Then, to have
Word replace a dummy style definition for you, you must additionally ensure all
three of the following:

98 | Chapter2: The WordprocessingML Vocabulary

* Thew:1linkStyles element is present inside the w:docPr element

e The value of the w:name element’s w:val attribute is the same as the name of a
style declared in the attached template

* The attached template is available to the user who initially opens the document

Example 2-15 shows a minimal WordprocessingML document created by hand that
uses the Code, x style defined in the O’Reilly Word template. Rather than defining the
entire style in all its verboseness, along with the ripe potential for error that would
entail, this WordprocessingML document simply declares the style, using a dummy
definition that includes nothing other than the w:name element, which identifies it as
the Code, x style. The only paragraph of the document then is assigned that style using
the w:pStyle element inside the w:pPr element. Thanks to the presence of the w:
linkStyles element, the complete style definition for Code,x is inserted automatically
(along with all of the template’s other styles), as soon as Word opens the document.

Example 2-15. Replacing dummy style definitions via w:linkStyles

<?xml version="1.0"?>
<?mso-application progid="Word.Document"?>
<w:wordDocument xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">
<w:styles>
<w:style w:styleId="Code">
<w:name w:val="Code,x"/>
</wistyle>
</w:styles>

<w:docPr>
<w:attachedTemplate w:val="C:\Documents and Settings\lenze.SEATTLEU\Application Data\
Microsoft\Templates\ora.dot"/>
<w:linkStyles/>
</w:docPr>

<w:body>
<wip>
<w:pPr>
<w:pStyle w:val="Code"/>
</w:pPr>
<WiT>
<w:t>This is a code example.</w:t>
</wWir>
</wip>
</w:body>
</w:wordDocument>

Word will always output complete style definitions in the WordprocessingML it cre-
ates. Accordingly, this technique shouldn’t be thought of as enabling the separation
of presentation and content, but rather as a one-time macro of sorts for getting Word
to put all the styles in your document for you. Indeed, this describes the basic role
that template attachment plays in the first place.

MoreonStyles | 99

Linked Styles

The w:1ink element, when present in a paragraph style definition, represents a link to
a character style. Conversely, when present in a character style definition, the w:1ink
element represents a link to a paragraph style. Only paragraph and character styles
can be linked to each other. The key characteristic of a paragraph-character style link
is that the two styles are exposed in the primary Word Ul as a single style, using the
name of the paragraph style. Also, changes to the character properties of one style are
automatically propagated to the other. Word automatically creates a linked character
style when a user applies a paragraph style to only a portion of a paragraph, rather
than to a paragraph as a whole. The alternative would be to throw an error, chastis-
ing the user for trying to use a paragraph style on anything but a complete paragraph.
That being potentially bad business, Word instead gracefully falls back and automati-
cally creates a new character style by copying all of the paragraph style’s character
properties into the newly created style. Thus a linked character style is born.

Figure 2-28 shows the creation of a linked character style named “Heading 1 Char.”
Word automatically creates the style, because the user has tried to apply the “Head-
ing 1” style to only a portion of a paragraph (the word “partial”). At the top of the
screen, the style is still listed simply as “Heading 1,” though the Reveal Formatting
task pane and the Style dialog box both reveal the distinction between “Heading 1”
and “Heading 1 Char.”

The style definitions in the resulting WordprocessingML are shown below, with the
w:1ink elements highlighted:

<w:style w:type="paragraph" w:styleId="Heading1">
<w:name w:val="heading 1"/>
<wx:uiName wx:val="Heading 1"/>
<w:basedOn w:val="Normal"/>
<w:next w:val="Normal"/>
<w:1link w:val="HeadingiChar"/>
<w:rsid w:val="00B33163"/>
<w:pPr>
<w:pStyle w:val="Heading1"/>
<w:keepNext/>
<w:spacing w:before="240" w:after="60"/>
<w:outlinelvl w:val="0"/>
</w:pPr>
<W:rPr>
<w:rFonts w:ascii="Arial" w:h-ansi="Arial" w:cs="Arial"/>
<wx:font wx:val="Arial"/>
<w:b/>
<w:b-cs/>
<w:kern w:val="32"/>
<w:sz w:val="32"/>
<w:sz-cs w:val="32"/>
</w:rPr>
</wistyle>
<w:style w:type="character" w:styleId="HeadingiChar">
<w:name w:val="Heading 1 Char"/>

100 | Chapter2: The WordprocessingML Vocabulary

@Dncumenﬂ' - Microsoft Word | X
g File Edit Wiew Insert Format Tools Table ‘Window Help - X
: KML Taolbox ~ 44 Heading 1 - frial -6 2Bl Z U= = Ig | 4= = E
EE M | A I R R R S ﬂ | Reveal Formatting v x
o
Thls'1s-a'p|art|a|'head1ngﬂ selected tnt
- partial ‘
— [] Compate to another sekection
Style
- &l Formatting of selected text
Cateqgory: = Font ~
|Sty\es in use j From Paragraph Style: Normal =
Font: =
Skyles: " 12 pt
Mew | Lenquare:
a Default Paragraph Font ;I English {L).5.)
Heading 1 Delets |
3 ticad 2eee From Character Style: Heading 1 Char
= Character Style:
Bi= Mo List .
¥ 1 Normal Fol:teladlng 1 Char
M Table Mormal ~(Defaul) Arisl
16 pk
Bald
Character Sparing:
LI Kern at 16 ot
Preview Paragraph
v _rla I Section
A &
aragraph il i o B
Defaulk Paragraph Font + Font: (Default) Arial, 16 pt, Bold, Dptions
English {U.5.3, Kern at 16 pt .x Seion
@ Distinguish style source
x Show all Farmatting marks
Ele o=« | Organizer.., | Apply I Cancel | i |
Page 1 Sec 1 - Eg

Figure 2-28. An automatically created linked character style, “Heading 1 Char”

<w:basedOn w:val="DefaultParagraphFont"/>
<w:1link w:val="Heading1"/>
<w:rsid w:val="00B33163"/>
<W:TPT>
<w:rFonts w:ascii="Arial" w:h-ansi="Arial" w:cs="Arial"/>
<w:b/>
<w:b-cs/>
<w:kern w:val="32"/>
<w:sz w:val="32"/>
<W:sz-cs w:val="32"/>
<w:lang w:val="EN-US" w:fareast="EN-US" w:bidi="AR-SA"/>
</W:rPr>
</w:style>

As you can see, all of the run properties from the “Heading 1” style are copied into
the new “Heading 1 Char” style. The w:1ink elements retain the association between
the two styles by reference to the w:styleId attribute of the other style. Word main-
tains the link between the styles and honors it by propagating any character prop-
erty changes in one style to the other. It’s possible to create a “synthetic”
WordprocessingML document outside of Word that links two styles that do not
share the same character properties. However, as soon as you try to change one of
the styles within Word, all of the character properties of each get merged together
and are synchronized from that point forward.

More onStyles | 101

